DEM Working Papers

Model-based variance estimation in

non-measurable spatial designs

Roberto Benedetti, Giuseppe Espa, Emanuele Taufer

N. 2016/03

Qe
%1 =5 UNIVERSITA DEGLI STUDI
& DI TRENTO




Universita degli Studi di Trento

Department of Economics and Management, University of Trento, Italy.

Editors
Luciano ANDREOZZI luciano.andreozzi@unitn.it
Roberto GABRIELE roberto.gabriele@unitn. it

Technical officer

Marco TECILLA marco.tecilla@unitn.it

Guidelines for authors

Papers may be written in Italian or in English. Faculty members of the Department must submit to one of
the editors in pdf format. Management papers should be submitted to R. Gabriele. Economics Papers
should be submitted to L. Andreozzi. External members should indicate an internal faculty member that
acts as a referee of the paper.

Typesetting rules:
1. papers must contain a first page with title, authors with emails and affiliations, abstract,
keywords and codes. Page numbering starts from the first page;
2. atemplate is available upon request from the managing editors.



MODEL-BASED VARIANCE ESTIMATION IN NON-MEASURABLE
SPATIAL DESIGNS

Roberto Benedetti®, Giuseppe Espa®, Emanuele Taufer”

*Department of Economic Studies, University of Chieti-Pescara - Italy
benedett@Qunich.it
b Department of Economics and Management, University of Trento - Italy
giuseppe.espa@unitn.it, emanuele.taufer@Qunitn.it

February 15, 2016

Abstract

Two-dimensional systematic sampling and maximal stratification are fre-
quently used in spatial surveys, because of their ease of implementation and
design efficiency. An important drawback of these designs, however, is that no
direct estimator of the design variance is available. In this paper estimation
of the sampling variance of a total in a model based context is considered.

The estimation strategy is based on the use of the sample variogram which
can be either a non- parametric or a parametric one. Consistency of the
estimators is discussed; simulations and an application to real data show the
good performance of the proposed procedure in practice.

Keywords: spatial survey, two-dimensional systematic sampling, two-dimensional
maximal stratification, semi-variogram, Gaussian random field.

1 Introduction

In agricultural and environmental surveys statistical units are often defined using
purely spatial criteria, for all details see Benedetti et al. (2015). Also, many Na-
tional Statistical Institutes are increasingly geo-referencing their sampling frames by
adding information regarding the exact position of each record.

An inherent and fully recognized feature of spatial data is that they are depen-
dent, as expressed in Tobler’s first law (Tobler, 1970). As a consequence, certain
sampling schemes for spatial units and estimators can be defined by introducing
a suitable model for spatial dependence within a model-based or model-assisted
framework.

In this paper we will discuss and implement a model-based estimator of the

variance for some spatial sampling designs; in particular we will concentrate on two-



dimensional systematic sampling and one-per-stratum (or maximal stratification)
sampling which are quite common for surveys where sampling units are spatially
referenced. They are relatively simple to plan and implement; provide unbiased
estimators of totals and can even yield lower variability in estimators. On the other
hand, design-based variance is not possible because some joint inclusion probabilities
are null. This brings us in the field of non-measurable designs.

Recall that a probability sampling design is measurable if all the inclusion prob-
abilities of the first and second order are strictly positive. The positivity of the
inclusion probabilities of the first order is a necessary and sufficient condition for an
unbiased estimator of a total to exist. The condition of positivity of the inclusion
probability of the second order, instead, makes it possible to calculate an unbiased
(or approximately unbiased) estimator of the sample variance. Such design-based
variance can be used to build design-based confidence intervals. For all the details
see Sdarndal et al. (1992, sect. 2.4 and sect. 14.3) and Benedetti et al. (2015, p.
115).

Solutions to the non-measurable problem discussed in the literature and used in
practice can be divided into three broad groups: i) ignoring the problem, i.e. using
variance estimators derived from simple random sampling; ii) post-stratification, i.e.
aggregating strata or adjacent samples from systematic designs and use stratified
variance estimators; iii) modeling the process producing the finite population and
exploit this information to estimate the variance.

There is an increasing recognition that ignoring the problem can be severely mis-
leading: some recent contribution discuss a modeling based approach for variance-
estimation in spatial surveys, such as Fewster (2011) which applies a multinomial
model to strip sampling and transect sampling, Opsomer et al. (2012) which discuss
a linear model based on auxiliary variables and D’Orazio (2003) which applies cor-
rections based on Moran’s and Geary’s spatial auto-correlation statistics to simple
random sampling and post-stratification derived estimators of variance.

In our approach, the distance between units, which is often bearer of relevant
information, is exploited as an auxiliary variable through the use of the variogram
in building a model based estimator of the variance. The idea was already present

in Fuller (2009, sec. 5.3) however we did not find any further development of it in



the literature.

For an up-to-date review of applications and methods in relevant fields such as
natural resource surveys, forestry inventories and soil sampling for precision agricul-
ture, see Benedetti et al. (2010, 2015), Gregoire and Valentine (2007), Tan (2005).

In Sections 2 and 3 the estimators are defined and discussed; in Section 4, using
simulated data, comparisons with other estimators of the variance using either para-
metric and non-parametric forms of the variogram are provided and an application
to the celebrated Mercer and Hall data is presented. Proofs of the results are in an

Appendix.

2 Methodology

Let {Y;,i € T} denote a random field, where 7" is an index set. In a general setting
T = Z? represents a 2-dimensional lattice, while for 7' = R? one has a continuous
random field. T can also represent a collection of spatial entities such as territorial
economic or administrative units. This last setting is the one which interests most
here as the case where there is a, possibly very large, finite population U of size N;
in this case let T = Ty C Z? with |Ty| = N, i.e. |T| indicates the cardinality of
T. The set T of territorial units can be thought to be embedded in some general
stationary field {Y;,i € R?}.

Let Yy = N"'32V ¥; be the mean of U and let T, |T,,| = n, n < N, denote a
sample set of observations from T} collected according to some sampling strategy.
The primary object of investigation is a model-based estimation of the variance of
a design-based, say Yy, estimator of Yy, where the suffix d indicates the sampling
design. For example, selection of unis from 7 may be done with unequal probability,
under some systematic or stratified scheme.

Estimation of the ezpected design variance E[Var(Yy)] in a model based context
is considered, i.e. when the finite population is regarded as a random realization
from a super-population model. In our case we will assume that the geo-referenced

Y’s satisfy

Assumption 1. {Y;,i € T} is a stationary random field with mean E(Y;) = pu,
covariance Cov(Y;,Y;) = C(i — j) and E(Y*) < oo.
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Note that we do not require the field to be isotropic as the covariance rests on
the difference (i — 7) between locations only, nor we require that T represents a
regular lattice although in Section 4, for simplicity, simulations based on regular
girds are considered. We are going to investigate the behavior of estimators and
parameters of the finite population U as T,, and Ty grow large. For this we will
place the restriction that ||i — j|| > 0 > 0, Vi,j = 1,2,..., N where || - || indicates
the Euclidean norm. This assures that the observed field increases in extent as
N increases. We are not interested here in the case where a sample may become
increasingly dense in some bounded region.

Furthermore, we ask that the covariances be absolutely summable, i.e. we set

Assumption 2. For the field of Assumption 1 it holds that limy Z” |Cov(i —
J)| < oo.

The above assumption essentially excludes random fields with long memory. Ex-
amples of random fields satisfying Assumptions 1 and 2 are the so-called spherical
model used in geo-statistics (see, e.g. Mardia and Marshall (1984), Matheron (1971),
Journel and Huijbregts (1978)), and the isotropic covariance model discussed by
Whittle (1954). See also Leonenko and Taufer (2013) for models on a lattice with
covariance functions satisfying Assumptions 1 and 2.

In the paper we will extensively use the variogram E(Y; — Y;)? = 2v(i — j), see,
e.g. Cressie (1993) for further details. In practice we will exploit the information
given by the correlation between units and use distance as an auxiliary information.

A capital letter will be used to indicate the unit values either in the sample and
the finite population. When needed, sample and population are distinguished by
the extended notation {Y;,t € T,,} and {Y;,t € Tn} respectively.

3 Estimators of the expected variance

3.1 Sampling with unequal probabilities of selection

We begin with a simple random sampling scheme with unequal probabilities of selec-

tion: given the form of the variance of the celebrated Horvitz-Thompson estimator,



it provides a natural justification for the use of the variogram. Defining with Y7

the Horvitz-Thompson estimator of a population total, we have:

Y Y\
Var YHT ZZ (mim; — i) (1)
Uy

i=1 j>i T
where m; = P(Y;,i € Ty) and m;; = P(Y;,Y;,(i,j) € Tn), 4,j = 1,2,... N, i # j are
respectively the first and second order inclusion probabilities.

In order to exploit the spatial location of units and construct the variogram,
define N(d) as the set of pairs of observations with spatial coordinates i and j such
that |i — j| = d; more formally, N(d) = {(i,7) : |i —j| = d;i,7 € Ty} and |N(d)| its
cardinality. With some abuse of notation we simply indicate that d =1,..., D with
D indicating the total number of distinct differences |i —j|. In practical applications
an approximate distance d is used, implemented with a certain tolerance.

The following proposition links the expected variance of the HT estimator to the

variogram and will introduce our estimation strategy; the proof is in the Appendix.

Proposition 1. Let {Y;,t € T} be a stationary random field satisfying Assumption
1 and define

gi(m,d) = Z M’ gQ(W):ZZ (mim; — mij) 7% 2)

T T4 - T T4
li—j|EN(d) v i v

Then

E[Var(Yar)] =2 gi(m, d)y(d) + 0 ga(r). (3)

d=1
Note that the quantities g;(m, d) and go(7) are known as information on the dis-
tance and the inclusion probabilities are known in advance for the whole population.
It follows that by substituting in (3) consistent estimators of the variogram ~ and
the variance o2 one gets a consistent estimator for the expected variance.
In the case where all units have the same probability of being selected, i.e. m; =
n/N and m;; = n(n —1)/N(N — 1), i, = 1,2,..., N, the anticipated variance can

be reduced to

Mw

BlVar(Vigr)] = 25 %_ >IN (1)



This essentially corresponds to the approach suggested by Fuller (2009, sec. 5.3)
where he also discusses the application to the case of designs with one unit per

stratum.

3.2 Stratified sampling with one unit-per-stratum design and
systematic sampling

Consider the case of a stratified sample with one unit per stratum. Let Y}, denote
the sample mean of a stratified sample and h = 1,..., H the strata. In the case of

a one-per-stratum design, letting W), = N, /N, we have the classical result

Mm

Var(Y, HWES? (5)

h:l
Again, one can link the expected variance to the variogram by noting that

Ny, Np N

9 1
Sh:(Nh_l);(Y Vi)? = A h—lzzy Y;)? (6)

h i=1 j=1

From (6) under the super-population model and using the relation E(Y; — Y;)? =
2v(i = j),

Np Ny

E(S}) = R Nh_l ZZM—J (7)

i=1 j=1
In stratum h, let Ny(d) = {(:,7) : |i —j|=d, i,7=1,2,...,N,} and suppose, in
stratum h, d =0,1,2,...,D; then

E(S;) = Nh(Nlh—l Ny (0 +Z|Nh : (8)

Using all sample data, a parametric or semi-parametric model for «(d) can be esti-
mated and substituted in (8) to obtain an estimated variance for Y in a one per
stratum design.

With the help of Lemma 1 and Lemma 2 in the Appendix, we can establish a con-

sistency result for the model-based estimators. The proof is given in the appendix.



Proposition 2. Let v denote a consistent estimator of the variogram ~. Then,
under Assumptions 1 and 2, for H =0(N), as N — oo,

H D
N N 1
-\ T2 a2 - 2 _ . .
hE_ (1-N, WS}, with S, NN =D NpA(0) + dE_l |Np(d)|A(d) |,

(9)

is a consistent estimator of Var(Ys) as N — oo.

Note that in Proposition 9, the term S? is substituted by a general variogram
approximation, not depending on h. In practice the two dimensional systematic sam-
pling can be treated analogously where the expected variance can be estimated by

substituting a variogram approximation to all differences in the sampled population.

4 Comparisons of estimators by a Monte Carlo study

This Section presents the results of some Monte Carlo experiments by which the
performance of estimator (9) and that of some alternative estimators are compared.
Comparisons include populations with different intensities of spatial dependence and
three different variogram estimators.

In the first subsection details on the simulation design such as the generated
populations, the variogram estimators used and the alternative estimators used as
a benchmark are provided. In the second one the results of the simulation will be

presented and discussed.

4.1 Simulation design

For our comparison four different populations are considered: the first consists of
real data, while the remaining are simulated ones.

The real population considered is based on the data collected by Mercer and
Hall (1911, Tab. 5) in 1910 summer by the Rothamsted Ezperiment Station of
Harpenden, Hertforshire, England. This data set is well known and has been used
in several papers in spatial analysis such as Whittle (1954), Patankar (1954), Besag
(1974), Ripley (1981) and Cressie (1993). Mercer and Hall collected data on the



weight in 1bs. of the yield of grain and straw on a field divided in 500 approximately
regular cells (or plots). The dimension of each plot was approximately 3.2 x 2.5
meters over a one-acre uniform area. Then one plot was approximately 1/500 of an
acre. In the paper we consider only the data on the wheat yield. The dataset is
then a regular grid (or raster) of 20 (in direction South-North) x 25 (in direction
West-East) = 500 cells.

The three remaining populations are composed of simulated data on regular
grids of 20 x 20 = 400 cells. The choice of this dimension is due to the possibility
of choosing two different sample sizes in two dimensional systematic sampling and
maximal stratification sampling.

The three simulated populations are the following:

i) A quadratic trend (QT) of the form Y; = (i; — 10)? + (iy — 10)*> + 3 + ¢ with
e ~ N(0,4) where the pixel ¢ in the grid has coordinates (i1,42). The random

variables ¢ in each cell are independent of each other.

ii) A Gaussian random field (GRF1) =5, 0 = 1 and exponential correlation
function p(u) = exp{—u/¢} with ¢ = 3.

iii) A Gaussian random field (GRF2) p = 5, 0> = 1 and Gaussian correlation
function p(u) = exp{—(u/¢)*} with ¢ = 3.

For further details on Gaussian random fields, see Diggle and Ribeiro (2007, Ch.
3). For the four populations above, in order to have an idea of the strength of spatial
dependence we have computed Moran’s index either under the normality assumption
and under randomization, using queen’s and rook’s neighborhoods obtaining quite
similar results in the various cases. The value of the index under the hypothesis
of normality and using a rook neighborhood is 0.3073 for MH data, 0.9534 for QT
data, 0.7389 for GRF1 and 0.8873 for GRF2.

In order to compare the performance of our and alternative estimators, the real
and simulated populations are divided into n domains (or strata), i.e. the N =
R x C regular grid of units of the population is divided in non-overlapping blocks
of k = kg X k¢ cells. In this way n strata, each formed by a regular grid of size

ngr X ng with ng = R/kg and ng = C'/kc (both integers), are obtained.
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Figure 1: Left: simulated populations; Right: Empirical variogram; the classical method
of moments estimator (Cressie 2003, Chapter 2). 21 is the numerical value defining the
maximum distance for the variogram. Pairs of locations separated for distance larger
than this value are ignored for the variogram calculation. The correlation function is the
exponential model. Value of the smoothness parameter = 0.5.

In the actual simulation runs we have the following values:

i) for the Mercer and Hall (MH) data, kg = ko = 5. Hence the initial N =
500 = 20 x 25 units have been organized in 25 strata composed of 20 units

(pixels in figure 1);

ii) for the three simulated populations, for the N = 400 = 20 x 20 units, two
distinct scenarios are considered: kr = k¢ = 5 and kr = k¢ = 4 which respec-

tively yield two regular grids of n = 16 and n = 20 strata. In a such a way

9



the aggregation problem of adjacent cells is limited (for a discussion see Ripley

(1981, pp.108-109) and a control for increasing sample size is introduced.

With self-explaining acronyms, in the output tables we will indicate the differ-
ent simulate populations and sizes as QT1g, QT55, GREF 115, GRF 195, GRF 244,
GRF225,

As far as the sampling procedures are concerned, in the case of maximal strati-
fication the selection procedure has been repeated 1000 times and based on this we
construct the empirical distribution of the estimators. In the case of two-dimensional
systematic sampling, given the number possible samples is limited to stratum size
(k), we simply selected all possible samples.

The performance of the proposed estimation strategy is compared either with
estimators which explicitly consider the spatial nature of the problem as well as well
as estimators which ignore the problem. We do not consider estimators based on
auxiliary variables as the estimators proposed here do not and this situation is quite

common in agricultural trials.

i) The classical variance estimator of the HT total, denoted with Vags(Y) (see
Cochran (1977, p.261)), which just ignores the problem and treat the system-

atic and stratified samples as simple random samples (SRS).

ii) The estimators proposed by D’Orazio (2003) which imply a correction of
Vsrs(Y) by using either Geary (c) or Moran (I) spatial auto-correlation in-
dexes (see, e.g., Cliff and Ord (1981, Ch. 1 and 3) or Ripley 1981, sec. 5.4);
namely VSRS(Y) -c and VSRS(Y) 1.

Finally, as far as variogram estimators are concerned, we consider three different

estimation strategies:

i) a moment based variogram estimator, i.e. for {Y;,i € T,,},

A(d) = SN Z (Yi = Y5)% (10)
(4.7)EN(d)

10



ii) a robust to contamination of outliers estimator (Hawkins and Cressie (1984)),
see also Cressie (1993, p. 175, formula 2.4.12).

4
N@ Zepen 1Y — Y5V

) 0.914 + 0.988/N (11)

iii) a nonparametric variogram estimator as proposed by Garcia-Soidan et al.
(2003). This estimator estimates a multidimensional variogram (and its first
derivatives) using local polynomial kernel smoothing of linearly binned semi-
variances. We have set the bandwidth parameter equal to 10 as it is done in
most practical applications. For further discussion see also Fernandez-Casal
et al. (2003) and Fernandez-Casal and Francisco-Fernandez, (2014).

Based on the above variogram estimators we propose then three different variance

estimators which we will denote respectively as VMM, VRBS and VNp

4.2 Results

Tables 1 and 2 report the simulation results respectively for the case of maximal
stratification and two-dimensional systematic sampling. In both tables the relative

bias and relative square root of the MSE are reported, i.e. for the relative bias

ElV(Ya)] = V(Var)
V(Yar)

(12)

and for the relative RMSE,

i (13)

where, following the notation and results introduced in sections 2 and 3, V(Yyr) is
the true variance of the HT estimator which can be calculated because the inclusion
probabilities for each sample design are known; it becomes then the benchmark for

our procedures. E[V(Y;)] indicates the mean obtained in the simulation runs by

the different estimation strategies under each sample design; the operator E should
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Table 1: Maximal stratification: empirical relative bias and RMSE of the estimators.
1000 Monte Carlo replications.

Relative Bias

Vium  Vass  Vwp Vsrs Vsps IVsgs

MH -0.012 -0.023 -0.131 0.267 0.184 -0.130
QT16 0.656 0.932 3.635 2.524 2.094 0.679
QTss 1.102  1.467 5.945 4.429 2.873 0.356
GRF16 0.171 0.103 0.775 0.878 0.740 0.738
GRF1y5 0.284 0.158 0.776 1.277 0.935 0.520
GRF26 -0.110 -0.163 1.573 0.611 0.429 0.422
GRF2y5 0.220 0.109 2426 1.272 0.924 0.841

Relative RMSE
Vv  Vees  Vnp Vsrs cVsps 1Vsrs

MH 0.366 0.407 0.825 0.419 0375 0.458
QT16 0.759 1.098 4.667 2.685 2.216 0.924
QTss 1.171  1.585 6.628 4.534 2.938 0.454
GRF16 0.523 0.516 1.834 1.059 0.929 0.993
GRF1y5 0.482 0.439 1.453 1.378 1.028 0.843
GRF26 0.394 0.450 2.802 0.837 0.670 0.813
GRF2y5 0.424 0.455 3.485 1.384 1.028 1.153

be read as F in the case of systematic sampling as all possible samples have been
considered.

As far as maximal stratification is concerned, from the first part of Table 1
(relative bias) the only circumstances of underestimation of V (Yyr) is in the case
of MH data (weak spatial auto-correlation) and when, for small sample size, there
is a wrong specification of the auto-correlation function for variogram estimator
(GRF246). In both cases the size of the relative bias is quite small compared to that
of other estimators.

In all other cases our estimators VMM and VRBS have a positive relative bias
always smaller than that of other estimators. An exception is VNp; the choice of the
window parameter may get a too high flexibility in the variogram estimator with
consequent high variability in variance estimates. We will not pursue fine tuning of

the window parameter in this context and this case will not be considered any more
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Table 2: Systematic sampling: population relative bias and RMSE of the estimators.

Relative Bias

VMM VRBS ‘A/NP VSRS CVSRS IVSRS

MH 0.019 0.063 -0.350 0.279 0.160 -0.237
QT 12.110 15.527 25.566 27.778 20.541 6.978
QTss 1.255 2352  0.719 4.662 2471 0.071
GRF146 3.278 3431 2915 5361 4.939 4.994
GRF1y5 -0.063 0.016 -1.255 0.506 0.282  0.058
GRF246 15.029 15.182 20.099 19.851 17.609 17.698
GRF2y5 2808 2170 0.442 3870 3.020 2.496

Relative RMSE
Vum  Vees  Vwnp Vsrs cVsrs 1Vsrs

MH 0.411 0528 1.641 0.462 0.389 0.506
QT16 12.340 15.830 30.788 28.487 20.702 6.994
QTo5 1.302 2401 2.823 4.739 2.482 (.088
GRF146 3.754 4078 6.416 5799 5411  5.593
GRF195 0.268 0.327 1.820 0.646 0.425 0.427
GRF244 16.717 16.547 41.856 22.088 19.483 20.499
GRF25 2894 2380 7279 4117 3135  2.950

in our analysis.

Next, note from Table 1 that the relative RMSE of the proposed estimators is
always smaller of the estimators of DOrazio (2003) but the case of QT5. Probably
the Moran’s index correction better captures the high positive correlation present
in the population.

In order to facilitate interpreting the figures in Tables 1 and 2, the values of
the relative RMSE of ours and the estimators suggested by D’Orazio have also been
compared with the relative RMSE of the SRS design: tables 3 and 4, for an estimator
V, report the values

rel RMSE:
1 - Loty 14
00 > ( relRMSESRS> (14)

to measure the efficiency gains of spatial estimators with respect to SRS (Dickson
et al. (2014)).

Note from table 3 that for maximal stratification, notwithstanding the good

13



Table 3: Efficiency gain for Maximal stratification design. 1000 Monte Carlo replications.

Efficiency gain
Vv Vees cVsrs 1Vsrs

MH 12.66 2.86 15.80 -9.41
QT16 71.75 59.13 2733 7545
QTss 74.18 65.04 47.64 98.14
GRF146 50.67 51.30 6.70 3.56
GRF1y5 65.00 68.15 34.25 33.87
GRF245 52.88 46.21 11.79 7.20
GRF25 69.39 67.16 23.85 28.34

Table 4: Efficiency gain for two-dimensional systematic design.

Efficiency gain

Var  Vess  Vsrs  IVsgs

MH 11.01 -14.19 15.80 -9.41
QT16 56.68 44.43 27.33  75.45
QTos 72.52 4933 47.64 98.14
GRF16 35.27  29.68 6.70 3.56
GRF1y; 08.03 49.35 34.25 33.87
GRF26 2432 25.09 11.79 7.20
GRF295 29.71 4218 23.85 28.34

performance of Vens - I, the proposed estimators bring to considerable efficiency
gains with respect to SRS: an average efficiency gain of 65% for Vi against an
average efficiency gain of 40% for VSRS - .

Examining the case of spatial systematic sampling in Table 2 note that the high
values of relative bias and relative RMSE concern the small sample case (n = 16).
The problem reduces substantially in the case n = 25. Inspection Table 2 confirms
the good performance of Vsgrs - I in the case of heavily concentrated populations
(QT). In all other cases the estimators proposed here perform better. The difference
in efficiency gain between Vsrs - I and Visas - I is now smaller (respectively 40% and

45%) but remains in favor of the latter.
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5 Conclusions

This paper suggests using a parametric or non-parametric variogram estimator in a
model-based variance estimation in spatial surveys. A natural justification for this
approach, as discussed in section 3.1, stems from the analogies of the variogram and
the expected variance of the HT estimator in the case of equal selection probabilities
of the first and second order. From this, extensions to other cases of interest in prac-
tical applications, specifically two-dimensional systematic sampling and maximal
stratification, are derived. For these two survey strategies, simulation results show
that the variogram-based estimators outperforms alternative estimators in several
cases and indeed they also have a good performance when the spatial correlation
between units is low. Theoretical results show the consistency of the suggested

estimators.

6 Appendix

With the notation X,, = Op(a,) it is meant that, for any € > 0 there exists a finite
M such that P(|X,/a,| > M) < ¢ ¥n and X,, = 0,(a,) meaning that, for any ¢ > 0,
lim,, 00 P(|X0n/an| >¢) =0.

Proof of Proposition 1. We have

Y Y
E V&I‘ YHT E E T — 7TU (7‘(‘ - 7‘[‘> ; (15)
J

=1 j5>1

note that we can take the following estimate

2
p(Y_NY (N Y %Y
v Ty iy T 5 iy

Indicating with Cov(Y;,Y;) = C(i — j) (the covariogram) and exploiting the rela-
tionships E(Y;?) = C(0) + 2, E(Y;Y;) — E(Y?) = C(i — j) = C(0), 29(i — j) =

15



2(C(0) — C(i — j), the above equation becomes

p(E-0Y = Lo (2 1) o
= (5 - 2 )aco - ci- )

. 1 1)\?
_ =) < - ) (C(0) + p2).

T T4 ™ T
Noting that C'(0) + p? = o2, substituting the result in (15) and exploiting the
definition of ¢g;(m, d) and go(m) we finally obtain (3). O

Proof of Proposition 2. If 4(d) is consistent for v(d) then (9) is consistent for the
estimated variance E(Var(Yy,)) = S0 (1 — N; )WPE(S2). Lemma 1 and Lemma
2, providing convergence rates, show that Var(Var(Yy)) = 0,(1) as N — oo and as
long as H = o(N). It follows that |E(Var(Yy)) — Var(Yy)| = 0,(1) for N — oo and

the result of the proposition follows. Ol

Lemma 1. Let {Y;,t € T} satisfying Assumption 1 and 2. Let Ty, and Ty, two

non-overlapping subsets of Ty. Then

Var($%) = O, (]1V> Cov(S%,,5%,) = O, (\/ml\/E) (18)

Proof. Defining py and Xy to be respectively the (constant) mean vector and the
covariance matrix of {Y;,t € Ty}, we can obtain an upper bound for Var(SJQV) from
Theorem 2 in Knautz and Trenkler (1995) as

N-1

Var(Sy) < (ua— DA =N)"2 Y N (ua > 1) (19)

i=1
where Ay > Ay > -+ > Ay are the eigenvalues of Xy. Then Var(S%) = O, (%) if

g < 00, true by assumption, and if

(1-N)™* i A2 < oo. (20)

16



To devise an easy way to check whether condition 20 holds, let us resort to matrix
norm theory which tells us that, if [|3y]|| denotes a subordinate norm of Xy, then
|A1] < ||2n]|| where one can take ||X ||, i-6. the max row sum of X y. Note next
that the max row sum of Xy is >, . C'(i — j) which is finite if {V;,¢ € T} satisfies
Assumption 2.

The fact that Cov(S},,S%,) = Op (ﬁ) follows by an application of the
Cauchy-Schwartz inequality. O]

Lemma 2. Let N, = N/H, then, as N — oo and under Assumptions 1 and,

Var(Var(Yy)) = O, (%) if H is fized, Var(Var(Yy)) = 0, (55), if H = o(N).

Proof. Exploiting the results of Lemma 1,

Var(Var(¥y)) = iia - N1 N (%)()o(s 52
- iia - N (- N;l)(ffvhf 5o, () @
1

m(l‘gy@ @)

where in the last line we have used the simplifying assumption that N, = N, = N/H.
One can see that the dominating term in the above expression, as N — oo is of
order O,(1/N) if H is fixed, while it is of order 0,(1/N?) if the number of strata H
is allowed to grow with the population dimension N at rate H = o(NN). O
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