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Abstract

This work focuses on building frameworks to strengthen the relation between human and

machine learning. This is achieved by proposing a new category of algorithms and a new

theory to formalize the perception and categorization of objects. For what concerns the al-

gorithmic part, we developed a series of procedures to perform Interactive Continuous Open

World learning from the point of view of a single user. As for humans, the input of the al-

gorithms are continuous streams of visual information (sequences of frames), that enable

the extraction of richer representations by exploiting the persistence of the same object in

the input data. Our approaches are able to incrementally learn and recognize collections

of objects, starting from zero knowledge, and organizing them in a hierarchy that follows

the will of the user. We then present a novel Knowledge Representation theory that for-

malizes the property of our setting and enables the learning over it. The theory is based

on the notion of separating the visual representation of objects from the semantic meaning

associated with them. This distinction enables to treat both instances and classes of objects

as being elements of the same kind, as well as allowing for dynamically rearranging objects

according to the needs of the user. The whole framework is gradually introduced through

the entire thesis and is coupled with an extensive series of experiments to demonstrate its

working principles. The experiments focus also on demonstrating the role of a developmen-

tal learning policy, in which new objects are regularly introduced, enabling both an increase

in recognition performance while reducing the amount of supervision provided by the user.
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1

Chapter 1

Motivations

We are currently living in the golden age of Machine Learning. This field, after decades

spent growing mainly inside academia, is delivering its power to the industry in an ever

increasing number of sectors. At the same time, the application of techniques and algorithms

developed in the field of Machine Learning enabled to boost the research of numerous fields,

from Biology to Engineering, and to extract new knowledge from their existing data sources.

Among the many subfields of Machine Learning that experienced this dramatic explo-

sion, one of the most prominent is Deep Learning and the theory of Neural Networks in

general. This Reinassance of Neural Networks, whose ground theory dates back to the mid-

dle of the past century, originates from the encounter of the demand and offer; the latter is

the availability of new solutions to accelerate the computations of these kind of architec-

tures, while the former being a long list of real world tasks in which Neural Network excels,

like text recognition and speech and image processing.

If we focus on Computer Vision, we can appreciate the disruptive innovation Neural

Network fostered in the spotlight task of this field, which is image classification. The first

Deep Learning architecture specifically developed for image classification achieved, at the

time of its of introduction and after many years of incremental improvements, a reduction

in the error rate of almost 20%, compared with the previous state of the art (a shallow
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model) [46]. From that point on, deep architecture monopolized the charts of the majority

of Computer Vision challenges.

The success of Deep Neural Networks in this field was made possible by the availability

of huge training datasets. Deep models are famous for requiring huge collections of exam-

ples in order to be effective, thus the need of application specific accelerators. The bigger the

data collection, the deeper the models can be, the better the performances they can obtain.

This drove the whole field to produce ever increasing datasets in order to accommodate the

needs of the models [2]; what was then one of the key enabler of innovation in these fields

now is seen as a minimum requirement. This ever increasing growth has drawbacks too.

Aside from the exorbitant cost of model training (a single training for the famous BERT

neural language model is estimated costing tens of thousands of dollars [86]), this kind

of architectures are not able to easily expand their knowledge, instead they require a new

training from scratch each and every time new data is published (the so called catastrophic

forgetting).

In a push to overcome the limitations of "mainstream" deep models, over the last few

years many new tasks and challenges arose, many of them focused on fostering new ways

to train models in constrained scenarios. We thus assisted to the genesis of new algorithms

capable of obtaining performances comparable to full-fledged state-of-the-art algorithms of

few years back, but requiring just a fraction of parameters (and thus computational power

[36]). Other tasks focused on explicitly limiting the size of the training dataset (the so-called

few shots and meta learning tasks). Others tackled instead the challenge of continuously and

non disruptively adding new classes to the pool recognized by the models or rejecting the

unknown classes.

All the new interest towards augmenting the flexibility of the models clearly depicts

what is considered the direction that must be pursued, in order to allow for a new evolutive

step for the field. It is not a coincidence that many of the developed techniques try to mimic
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the way in which (allegedly) another kind of agents learn and reason: humans. Humans are

masters of continuously learning new information, in transferring their knowledge, applying

it in other domains and to reason in the Open World.

Multiple factors block machines to acquire the same learning abilities as humans, the

most obvious being the fact that the biological mechanisms that govern learning are still

obscure. Another difference between humans and machines is the interaction with the in-

formation and how in general the knowledge is provided. The information that is used to

train modern machine learning models is organized following the principles, developed in

the field of Knowledge Representation, of Ontology Engineering. In such structures the

knowledge is articulated in a network of classes, organized by relations among them. A

class in this context is nothing more than a set of individuals. In the vision realm, these are

represented by sets of images. Humans on the other side learn from a constant stream of

visual stimuli. Each thing that is perceived does not come with a string attached pointed to

a node in a hierarchy of concepts.

This gap between what knowledge is for the machines (and what it is not for humans)

fostered the proposal of new biologically inspired theories to organize information. Among

them, Teleosemantics [55] proposes to view concepts as functions, and the knowledge of

the machine as a set of abilities to perform specific functions. Without leaving the visual

sphere, part of the concepts can be characterized as abilities to recognize specific types of

perceived items. Subsequent works then expanded the theory, in order to build structures

that are the counterpart of the standard Ontologies [29].

The focus of this thesis is to further develop settings and techniques to increase the sim-

ilarity between the learning environment of the machine and the one of its user, combining

together multiple characteristics of the constrained frameworks that made their appearance

over the last few years. At the same time we wanted to explore new forms of interaction

(and supervision) of the user with the machine, in order to increase the cooperation between
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them. The next section will offer a brief overview of all the topics we covered.

1.1 Research issues and contributions

Reason and recognize the unknown with scarce data

The new interest towards settings like Few-Shot or Open World learning shifted part of the

focus of the academic community towards less monolithic models, capable of reason in

more dynamic environments. In Chapter 3 we present a framework that merges together

the characteristics of these two settings while adding further constraints towards the goal of

continuously recognizing both unknown and known objects, after the first encounter. We

then present a first model capable of learning and recognizing instances of objects in this

new setting. The model is capable of recognizing and adding unseen objects by itself, and

to actively elicit a supervision from the user when necessary. This work was published at

the 24th European Conference of Artificial Intelligence [19] .

From instances and classes to Objects

Chapter 3 presents a first, limited, approach towards the goal of recognizing any object. In

order to extend the recognition capabilities from just instances to whole classes, Chapter 4

exposes a framework we developed a that enables to treat both instances and classes as being

Objects of the same type. This was done by leveraging the assumption of a many-to-many

correspondence between Objects and their representations (that comes from visual inputs).

This is in contrast to the standard Ontology based theory, that usually uses a one-to-may

approach where each example is associated to a unique class. This theory is grounded on

the work of [29], and is based on a new type of interaction with the user, which is called

to answer to a series of queries over the visual appearance of couples of Objects, rather
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than giving a label to each of them. This work is at the time of writing under submission at

Spinger Nature Computer Science journal.

Learning hierarchies of Objects

Chapter 5 details the last major contribution in this thesis, where the combination of the

work presented in Chapters 3 and 4 is used to produce an algorithm capable of learning

a true multi-level hierarchy of concepts bound to the requirements of the user that inter-

acts with it. The agent is capable of estimating when to elicit the supervision of the user

and to recognize new unseen objects and to add them inside its ever growing hierarchy of

Objects. Via an interaction procedure that follows the principles detailed in Chapter 4, the

user can intervene to guide the growth of the hierarchy following her own desires for what

concerns the structure of the tree of Objects. This work is under submission to the Artificial

Intelligence Journal.

1.2 Outline

The remainder of this thesis is organized as follows: Chapter 2 introduces various lines

of research found in literature that are affine to our work. Chapter 3 details an algorithm

capable of continuously recognizing and learning seen and unseen instances of objects.

Chapter 4 lays the ground theory to extend the model in order to enable it to build, aided

by the user, representations of groups of Objects that can be used to expand the recognition

beyond single instances of Objects. Chapter 5 presents a first algorithm that takes full

advantage of the theory presented in the previous Chapter, and that is able to learn and

recognize full-fledged hierarchy of Objects. Finally, Chapter 6 summarizes all the work

done, as well as foreseeing future developments and research directions.
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1.3 Availability

Each algorithm presented in this work is tied to a python implementation and a dataset that

are meant to be publicly released on acceptance of the corresponding paper. The code and

dataset for the algorithms in Chapter 3 (accepted at ECAI 2020) were made available upon

publication 1. We also provide early releases of the code and datasets used in the works

described in Chapter 4 and submitted to SNCS 2, as well as the one presented in Chapter 5

and submitted to AIJ 3.

1Availabe at https://github.com/lucaerculiani/ecai20-continual-egocentric-object-recognition
2Early release: https://github.com/lucaerculiani/towards-visual-semantics
3Early release: https://github.com/lucaerculiani/hierarchical-objects-learning
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Related Work

As stated in the previous chapter, over the last few years Deep Neural Networks led to

massive improvements for the tasks of object detection and recognition in images [32, 77].

The main application scenario for this work is the use of large sets of photos, most of the

time collected from the Web, to reliably identify objects from an increasingly large but

static hierarchy of classes [81]. One of the key factors of the success of these approaches

has been the availability of large datasets of (annotated) images and videos [14, 2]. A

major disadvantage of these algorithms is the lack of adaptability and the huge amounts of

resources they require.

Before introducing further details on the setting we propose, in this chapter we introduce

the main techniques found in literature regarding the topics covered in this thesis. Further-

more we present a high level view of the learning mechanisms in humans. The chapter

ends with an introduction to Teleosemantics, a Knowledge Representation theory that tries

to overcome the classical dichotomy classes/instances and proposes to organize concepts

similarly on how is done by humans.

The rest of the Chapter is structured as follows. Section 2.1 offers a brief excursus on the

theories that were developed to model the learning process in the biological and cognitive

field. Section 2.2 details the current progress in the field of Continuous and Open World
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Learning. Section 2.3 summarizes the modern approaches to learn in contexts where scarce

data is available. Section 2.4 presents the most relevant algorithms capable of dealing with

the task of hierarchical classification. The chapter ends with Section 2.5, where the basis of

the Teleosemantics theory are introduced.

2.1 Human learning

The themes of catastrophic forgetting and continual lifelong learning are known and studied

in biology as well. In this field, the struggle to balance the effort to integrate new information

without interfering with the consolidated knowledge is usually referred as the stability-

plasticity dilemma.

Humans, and animals in general, excel in the task of continual lifelong learning. Our

capacity to continuously learn and refine the knowledge over long periods, by interacting

with the environment, is mediated by a complex set of cognitive and neurochemical abilities.

These functions guide us in the early-age development and mediate the specialization of our

perceptual abilities and motor skills [104].

Even if in the course of our life we tend to forget part of what we learned, it is rare for the

new knowledge to directly interfere with the previously retained information. For example,

a human can learn new motor skills without compromising the stability of the previously

acquired ones [9].

Over the last fifty years many theories were proposed to explain the mechanisms that

govern the learning inside the human brain. Among these, the two most popular ones are

the Hebbian Plasticity and Stability theory [33] and the Complementary Learning System

[57]. The Hebbian theory explains the stability-plasticity postulating that when a neuron

drives the activation of another neuron, the strength of the link between them increases.

During development, this effect drives the synaptic configuration towards a shape that offers
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the optimal pattern of neural connectivity. In order to ensure stability, this system is then

complemented with a controller that regulates the growth of the feedback between affine

neurons.

The Complementary Learning System (CLS) [57] is based on the idea that different

areas of the brain learns at different rates. Some areas show a fast adaptation and are re-

sponsible for the short-term memory. The information in these areas is encoded with sparse

representations to minimize interferences. The short-term information is played back to

other systems, that are responsible for the long-term storage. There, the information is

encoded in overlapping representations to facilitate abstraction.

To date, there is no universally accepted model of how the learning works, at biological

level, for humans. Nevertheless the theories introduced in these paragraphs have inspired a

series of architectures that will be discussed in the next sections.

2.2 Continuous Learning

Incorporating novel classes is a notoriously hard problem for deep networks. The way in

which these networks are trained drives them to learn models that implicitly follow the

closed world assumption, and trying to dynamically expand their capabilities negatively

affects previous knowledge. To overcome this, the task of continuous lifelong learning has

been developed, that paved the way towards the Open World recognition task.

2.2.1 Lifelong learning

The task of continual lifelong learning is usually defined as a sequence of T study-sessions.

In each study session t, the agent is provided with a batch of Nt labeled examples {(xtj, ytj)}Nt
j=1,

where xtj ∈ Rd is the d-dimensional vector containing the example, and ytj is the corre-

sponding label. The number of examples in every session may vary, and there is no iid.
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assumption among the examples inside the same batch. Each session is considered a sepa-

rate learning stage. In each stage, the agent is exposed only to the corresponding batch of

examples. In spite of these limitations, the agent is allowed to store examples of previous

sessions and use them in each learning stage. In each session t, a new classes are introduced.

The description of the setting matches the natural idea of an incremental learning sce-

nario. The new information is gradually presented to the agent, which, ideally, must be

able to build a representation for the new class that does not interfere with the ones already

learnt without a complete retrain, so without building a brand new set of representations

from scratch for all the other classes. Given that building class representations respecting

this truly incremental setting has proven to be quite a hard task, the constraints of the sce-

nario are relaxed, giving the ability to the agents to explicitly store information of the past

sessions and combine them with the current batch of examples. The reason behind this grant

is that the knowledge learnt from previous sessions could require small adjustments in order

to fit the new one without major interferences. This approach can be seen as a middle way

between pure continual lifelong learning and standard offline supervised learning.

A number of datasets were proposed to evaluate and compare different architectures.

The most used datasets are built on top of famous datasets for vision or audio classifica-

tion. The evaluation is done at the end of every training session. The results at the end of

each session are then collected and organized in order to measure the overall capabilities

while increasing the number of classes, as well as the performances of the models over the

standard classification (meaning the results at the end of the first training session) and the

accuracy over only the newly introduced classes at each session. Due to the nature of the

task, these models usually imply some sort of dynamic mechanism to scale the resources

they use during training, such as the number of neurons of the network. For this reason, the

models are often compared in terms of their requirements in order to scale up the number

of classes they handle. The same is done if the agents need to store and use examples from
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previous sessions.

Among all the lifelong learning algorithms it is possible to identify two main approaches

in the literature. The first approach is focused on limiting the interference between previous

and new knowledge by imposing constraints on updates of the weights or other forms of

regularization. Examples of this approach include estimating the importance of each indi-

vidual synapses for a certain task in order to reduce the rate for the most relevant ones [105].

Similar methods can be complemented with custom loss functions that explicitly account

for this behavior [42]. Many other methods deal with the new knowledge by allocating new

neurons. Then the old weights can be completely frozen [82], or selectively retrained [103,

90, 18, 106]. Another approach makes use of a technique commonly referred as Knowledge

Distillation [34]. It is based on the idea of transferring knowledge from a Neural Network

to another by training the second to produce the same output distribution of the first one

(in the case of the original work, the vector produced by the final softmax operation). This

technique was adopted in Continual Learning mainly by training the two network on sepa-

rate tasks, and then distilling the knowledge of one of them in the other [51, 99, 85, 38, 15,

59]

Another common technique that is used in the field is inspired by the Complementary

Learning System theory, described in Section 2.1. These solutions are equipped with two

different subsystems, in order to handle short and long term memory separately. The role

of the two components is fundamentally different in different architectures. Some use the

long-term memory module as a generator to sample in order to obtain pseudo-examples

of the classes sees in previous sessions [88, 16, 4]. Others make use of both modules for

classification, having a short-term classifier that exploits basic nearest neighbor techniques

to predict new classes, while the long-term module is used to classify the old ones. A

third module is used to decide which memory module should be used for classifying a

new sample. The information from the short-term memory is then moved to the long-term
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one by retraining, combining the content of the short-memory with past examples [25], or

pseudo-examples [39, 40].

Albeit allowing for a non-destructive increase of the knowledge base, these methods

still require a Closed World assumption. None of them is able to recognize the new objects

as coming from a new class, requiring explicit supervision of the user any time new data

appears. To overcome these limitations new solution have been developed, which will be

presented in the next section.

2.2.2 Open Set and Open World

Getting rid of the closed-world assumption is a recent research trend in the machine learn-

ing community. The problem was first framed in terms of open set learning, i.e. learn to

identify examples of unknown classes [84, 5]. More recently, open world learning has been

introduced, where the learner should both identify examples of unknown classes, and be

able to add them in the future as a novel class, if new external supervision is made avail-

able. As happens for most few-shot learning strategies, existing approaches for open world

learning are similarity-based [6, 79]. Still, these works assume that novel classes are incor-

porated via class-specific training sessions, and their main objective is minimizing the effort

required to update their internal representations. Our solution adapts this similarity-based

principle to deal with user supervision in an online active learning fashion, and to work in

an instance-level object recognition scenario.

2.3 Learning from few data

The perpetual addition of new knowledge and classes is not the only requirements towards

a really developmental learning approach. All the framework cited in the previous sections
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still require batches of examples in order to model a single class. Humans by contrast are

able to model a new object by requiring very few encounters with it.

The desire of alleviating the requirements of huge training dataset led to the formulation

of the few-shot learning task. Moreover, the requirement of reasoning with few examples

has fostered the research in other fields too, where the nature of the setting imposed similar

constraints. Examples are the field of human re-identification and human-guided interactive

robotics.

2.3.1 Few-shots and meta learning

The basic idea of few-shots learning is quite straightforward: learn a task in a setting where

very few data is available for training. This limitations seems not to fit with the requirements

that modern deep learning architectures have, for instance, when dealing with the task of

image classification [14, 81, 2]. For this reason, few-shot learning is tightly related to an-

other research topic, called meta-learning. Meta-learning is the task of learning the learning

process. In this scenario, the goal of the agents is to learn how to optimize the task of fitting

a model for a specific problem. Given the scarcity of training data, few-shots learning has

become a test bed for meta-learning algorithms.

Commonly used evaluation schemes [83, 76] have a quite similar structure. The training

set is a collection of task sets Dmeta−train = {Dt}T
t=1. Each task set contains two subsets:

a train batch of labeled examples {(xtj, ytj)}N
j=1 where xtj ∈ Rd is the d-dimensional

vector containing the example, and ytj is the corresponding label. Each batch contains a

fixed number m of classes, and for every class there are a number of examples n such that

nm = N. Commonly used values for n are 1 and 5. The second batch (the test batch)

contains other examples labeled with the same classes of the train batch. Each task set has

to be considered as a different learning problem, virtually independent from the others. For

this reason, different task sets contain different labels, that are shuffled in order to discourage
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D1

D2

Dk

A B C D E ? ?

Dtrain
1 Dtest

1

A B C D E ? ?

Dtrain
2 Dtest

2

A B C D E ? ?

Dtrain
k Dtest

k
...

Dmeta−train

...
Dmeta−test

FIGURE 2.1: Representation of the data structures used in the task of Few
Shots/Meta Learning. The train data Dmeta−train is composed by a set of
datasets {Dt}T

t=1, each of them containing the information for a different
classification task. For each task, a fixed number of classes and examples
is given (5 classes and one example per class in this case). Each task also
contain a set of test examples to classify. Among different tasks there is
no correspondence in the classes to predict. The test Dmeta−test and the
validation Dmeta−val datasets (the second is omitted in the figure) have

the same structure of Dmeta−train.

to learn sample-class bindings. Two other datasets Dmeta−val and Dmeta−test are provided,

with the same structure of Dmeta−train, that are used for validation and final evaluation of

the algorithms. During training the agent repeatedly fits a model for the task t using the

train batch of the task set Dt, and then evaluates the performances over the test batch. The

validation and testing is done following the same procedure over the tasks sets of Dmeta−val

and Dmeta−test.

Although works on meta-learning using deep networks have been circulating for quite

some time [68], the topic gained serious traction only over the last few years. Many of

the proposed architectures have dealt with the task via a metric learning approach. Some
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of these method explicitly trained Siamese architectures to produce class representatives

that are used to match examples in the test batches [44, 94, 95]. Other works made use of

techniques commonly used in sequence labelling, treating the training batch as a sequence

of elements coupled with their labels, followed by an element with no label (coming from

the test batch), asking the network to predict the label for this element. Both recurrent

[96, 76] and convolutional [67] architectures were presented. All of these approaches have

in common the fact that they use a single global model to compare the data from train

and test batches. Another approach, instead, keeps a separate global state that is used to

initialize task specific classifiers [21]. These classifiers are then finetuned with the task

specific examples. The error on the test set is then used to update the global state.

2.3.2 Human re-identification and human-aided robotics

The task of discriminating objects at instance level is usually referred as re-identification.

In this setting the system is provided with N collections of input data. Each of these col-

lections contains visual information (one or more frames of a video, for example) of a

particular instance of an object, often referred as identity, different from all the others. Then

the algorithm is provided with another set of M collections of data, each of them having

one of the identities of the initial collection. The task of the algorithm is, for each of the

new collections, to rank the original N identities by similarity. Then the performances of

the algorithm are assessed by computing the Cumulative Matching Score (CMS), which

represent the fraction of the M identities that had their corresponding identity in their rank

up to position k.

No work tackling the re-identification task for generic objects was found in literature.

The most prominent applications in this field are related to the identification of humans,

for both static images [102, 50] and video streams [97, 58, 100]. Most of the approaches

rely on Siamese Neural Networks, trained to embed images or videos of individuals into
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vectors that are then compared by using various forms of similarity or distance metrics. Part

of these methods rely on submodules specifically tailored to deal with human recognition,

such as components that search for parts of the human body [102]. Similar approaches were

applied for the task of vehicle re-identification from surveillance cameras [52, 87]. The

main drawbacks of these approaches is the fact that they were developed to deal with single

categories of objects.

In the robotics field, a number of works have focused on studying approaches for human-

guided interactive learning [98, 43, 91, 69, 72]. In this setting a machine is trained to recog-

nize objects that are manipulated by a human [98, 43], or directly by the robot [69], asking

supervision to the user if the object is considered unknown. While sharing similarities with

our setting, these approaches are focused on recognizing what is known and rejecting what

is unknown, and always require human intervention in order to expand the pool of known

objects. In contrast, we aim at building systems that can autonomously discriminate the

unknown and integrate it with the previous knowledge, expanding the pool of recognized

entities even without human intervention.

2.4 Hierarchical learning

The idea of framing the learning task around a setting in which the data is inherently or-

ganized in a hierarchy is common to multiple domains. Among all, the prominent ones in

the literature concern the task of text classification and the one of gene/protein classifica-

tion. For what concerns text classification, one of the first approaches, proposed by [45],

aimed at exploiting the hierarchical arrangement of words in order to decompose the global

classification task (in their case assigning topics to fragments of text), in multiple local clas-

sifications, each aimed at discriminating between the children of a particular node in their

predefined hierarchy. The final prediction was then the last of a series of predictions starting
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from the root of the tree. Each of the classifiers was implemented as a Bayesian model. Soon

after [45], other works proposed the use of SVMs [17] or tree-structured Neural Networks

[80] to accomplish the same task. [20] proposed techniques derived from boosting methods.

With the advent of the deep learning era, these techniques were surpassed by sophisticate

Deep Networks [37, 48], and were mainly abandoned.

In the realm of Bioinformatics, the proteins (and thus the genes that encode them) are

usually organized in a hierarchy based on their functions. Multiple representations were

proposed and made available to researchers, such as the Gene Ontology Project [3] or the

Enzyme Commission classification system. These tree-like ontologies in turn enabled the

development of a multitude of works based on the task of classification of proteins [73, 41,

74, 8, 11]

The use of hierarchical approaches is not limited to the fields cited in the previous para-

graphs. The organization of knowledge in tree-like structures is a pivotal feature of many

supervised and unsupervised learning algorithms. In [47] the authors exploited the knowl-

edge of an Ontology to organize a large number of classes of objects in a tree, and then

trained a separate neural network for each level of the hierarchy, combining their output at

test time in order to boost the accuracy. Another example is the field of hierarchical cluster-

ing [13], an unsupervised setting in which the models are expected to return a hierarchy in

which the leaves are the single clusters. These unsupervised techniques can be then com-

bined with supervised learning algorithms. [107] made use of hierarchical clustering, in

place of an Ontology, coupled with a Neural Network to boost the recognition of a large

number of classes of objects.

The field of structured output prediction often deals with tree-like structures. The main

difference in this context is the fact that the trees are the output rather than the input. A

notable example is the task of phrase structure parsing, where the classifier receives as input

a phrase and must output its syntactic parse tree [1].
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Our goal differs from all these works. We are interested in learning and predicting in

a setting where the objects belong to specific nodes in a hierarchy, but this hierarchy is

dynamic and, starting from zero nodes, grows indefinitely following the desires of the user.

2.5 Knowledge Representation

In our view on of the root cause of the limitations that all the previous work have lies in the

model used to represent and interact with the knowledge. The mainstream way to represent

the knowledge is based on the idea that concepts can be organized by means of instances and

classes. The former represent sets of individual elements, while the latter encode properties

that are used to organize and group the instances. This way of representing the knowledge is

usually referred in philosophical literature with the name of Descriptionism [65]. Accord-

ing to this theory, each concept is a representation of something, in terms of its properties.

Artificial Intelligence and knowledge Representation were hugely influenced by Descrip-

tionism, mainly because it is natural to organize knowledge via classification. In the context

of this theory objects are endurants, meaning that they are wholly present at any given

moment of time, always satisfying the properties defined by their classes.

An alternative approach is the one provided by Teleosemantics [55]. This school of

thought provides an interpretation of concepts in terms of functions, i.e. abilities to perform

specific tasks. For what concerns this thesis, the most influential work was the one devel-

oped by the philosopher Ruth Millikan [64, 61, 65, 63], further formalized by Giunchiglia,

Fumagalli and Bella [29, 22]. The work of Millikan is focused on the process of recogni-

tion, and it is built starting from what she calls substance concepts, which represent abilities

of recognizing certain types of items (that in the Teleosemantics theory are referred as sub-

stances). Anything that a human is interested (and capable) to recognize is bound to a

substance concept. A substance concept can be seen as some sort of apparatus in the human
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brain that is devoted to recognition of a specific thing (the substance), and whose goal is

to accumulate the information, via experience, needed to perform this task. The experience

required by a certain substance concept is obtained by being exposed to the substance, a

process that is usually defined as encounter. The information contained in each encounter

can be used to update the representation modeled by the substance concept. The fact that

this process of refinement needs to happen implies that in this context the objects are per-

durants, meaning that it must be assumed that a full (visual) picture of the items is never

available but that their representation is built progressively, in time, as it is always the case

in our everyday life.

The fact that perdurants are never experienced in a complete manner pose some chal-

lenges for the recognition process. How we can recognize something that, due to its nature,

does not always present a set of uniquely identifying properties? Millikan gives us a so-

lution: in her theory perdurants are those things (quote from [65]), “... about which you

can learn from one encounter something of what to expect on other encounters, where this

is no accident but the result of a real connection ...". Thus perdurants are assumed to have

some characteristics that persist over multiple encounters. The persistency of the perdurants

is a key property of perdurants, which will be exploited multiple times in this thesis. The

persistency of objects is both spatial and temporal. The spatial persistency refers to the

assumption that small spatial changes of the objects will result in small variation of their

appearance. For instance a cup, if rotated by a minuscule angle, will still preserve the ap-

pearance it had before the rotation. Thus the two cups (the one before and the one after

the rotation), can be easily recognized as being the same object. The temporal persistency

refers tho the tendency of most of the objects to retain their appearance over time, thus eas-

ing their recognition in different encounters. This property is not absolute and can even vary

depending on the time between different encounters. For instance a person would be able to

recognize her best friend the day after their last encounter, but if they are kept separated for
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twenty years, the changes in the visual appearance of her pal could deny the recognition.

Another consequence of the nature of perdurants regards the nature of the substance

concepts (their mental representations) they generate. The relation between substances and

substance concept is many-to-many. Multiple substances can be recognized by the same

substance concept. For instance, an inexperienced person could be unable to distinguish

different species of felines, thus recognizing all of them as generic cats. This is similar

to the relation between classes and instances used by descriptionist models (which implies

just a one-to-many relation). The key difference of Teleosmantics is the fact that the same

substance can be recognized by multiple substance concepts. In a person will struggle to

re-identify her best friend if seen from a long distance or in the dark, and will probably

recognize him as a generic guy. Thus, depending on its appearance, a substance can be

associated to different substance concepts. This must not be considered as the equivalent,

for Descriptionism, of a classification error; the recognition from the point of view of that

particular person was correct, but that encounter did not contain enough information to fur-

ther recognize the substance as her pal. As a result of this formulation, the result of the

recognition process is highly influenced by both the subject (different humans have differ-

ent substance concepts) and the context (different encounter will be associated to different

substance concepts).

Substance concepts play no role in organization of knowledge. They sole purpose is

recognition, they play no role in the semantic interpretation of the knowledge. The ability

to organize the knowledge is provided by the classification concepts. These concepts model

the abilities “... of simplifying the environment, of reducing the load on memory, and of

helping us to store and retrieve information efficiently ... " [65], and mediate reasoning.

The classification concepts are responsible, as the name suggests, for the classification of

objects, but they do not perform the recognition of visual stimuli. The mapping of substance

concepts onto classification concepts enable humans to link recognition and classification.
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Chapter 3

Continual Egocentric Learning

We are interested in recognizing objects in a setting which resembles the one under which

humans see and perceive the world. This problem is of high relevance in all those applica-

tions where there is a wearable camera (e.g., the glasses) which generates images or videos

whose recognition can be used to support the user in her local needs (e.g., everyday life,

working tasks). The main innovative characteristics in this setting are: (i) it assumes an

egocentric setting [93], where the input is the point-of-view, and the desires, of a single per-

son (i.e., the data has low diversity and high correlation); (ii) there is a continuous flow of

input data, with new objects appearing all the time (i.e., we assume the agent operates in an

open world); (iii) recognition should be able to go as deep as instance-level re-identification

(e.g. recognizing my own mug); (iv) supervision is scarce and should be solicited to the

user when needed, also accounting for entirely autonomous identification and processing of

new objects.

This scenario contrasts with the typical setting in which deep learning architectures

shine. Incorporating novel classes is a notoriously hard problem for deep networks. The

way in which these networks are trained drives them to learn models that implicitly follow

the closed world assumption, and trying to dynamically expand their capabilities negatively

affects previous knowledge (the so-called catastrophic forgetting [30]). While substantial
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progresses have been made in fields such as continual lifelong learning [75] and few-shot

learning [44], state-of-the-art algorithms in this field are far from being able to match the

capabilities of humans. We argue that a key factor for this gap is the way these algorithms

are exposed to the data during training, with respect to what happens for humans and other

animals. Humans experience the world via a continuous stream of highly correlated visual

stimuli, initially focused on very few objects. This enables them to progressively acquire an

understanding of the different ways in which objects can appear, and on the similarities and

differences between objects.

On these premises, the solution we developed is based on the following intuitions:

• Introduce persistency (as defined in Section 2.5) as a key element for instance-level

labeling. By this we mean the fact that when we see an object as part of a video

the object will change very slowly, allowing to identify visual invariances useful for

sub-sequence recognition. This is thought to be one of the key aspects for early visual

learning in children [23, 71].

• Use similarity as the main driving principle for object recognition and novelty detec-

tion. This is consistent with the recent trend in few-shot [44, 94] and Open World [6,

79]) learning, and we extend it here towards the autonomous recognition of new ob-

jects.

• Progressively introduce novel objects in a developmental fashion [7, 93], and provide

supervision on-demand in an online active learning fashion.

The rest of the Chapter is structured as follows. The setting and the framework we

developed are detailed in 3.1, while in Section 3.2 we present the result of an ample set of

experiments we realized both on publicly available dataset as well as a dataset we collected,

specifically meant for this task. Finally, in Section 3.3, we explicit some final remarks on
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this work, as well as detailing the limitation of this approach (that are partially addressed in

the next Chapters).

The work presented in this Chapter was published at the 24th European Conference on

Artificial Intelligence [19].

3.1 The framework

The previous chapter highlighted the solutions found in literature that are the closest to our

line of research. Still no work was found that is able to achieve our goal of recognizing any

object it encounters (as a new or an already seen object), while dynamically add to the pool

of recognized items each new object it encounters. In this section we will further detail our

setting and provide a first straightforward algorithm that is able to tackle the task.

3.1.1 The setting

As explained at the beginning of the chapter, we focus on Open World, incremental instance-

level object recognition, with an egocentric view bound to a specific user. Note that we

assume maximal granularity, meaning that each object has its own class, and the goal of

the algorithm is to cluster input data rather than assigning a label to each sample. In the

following chapters we will relax this assumption, enabling the recognition of classes of

objects.

The information is made available to the learning agent via a continuous stream of data.

Each sample in this stream is a short video, focused on a certain object. The video simu-

lates the point of view of an user who is interacting with the object via manipulation. The

objects are thus small enough to be handled by hand, and are subjects to a series of rota-

tions and deformations, which are performed in order to inspect/recognize the object and its

functional use. The same object is encountered multiple times in different environments (i.e
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with different backgrounds). The goal of the agent is, for each new video, to determine if it

contains an object it has already seen, or if it shows an object it sees for the first time. After

the first encounter, the agent should add the new object to the pool of objects it knows, so

as to recognize it in the future. The agent can query the user in order to gather supervision

on instances it considers uncertain and prevent taking wrong decisions, in an online active

learning fashion.

As discussed in the previous chapter, although this setting is affine in many aspects to a

number of other tasks, the combination of its characteristics make it extremely challenging.

In particular the fact that the input data (the frames of the video sequences), albeit abundant,

is highly correlated makes training any kind of model a difficult task. This is true even for

algorithms developed for the task of Few Shots Learning (discussed in Section 2.3.1), that

can still access a train time to a fair amount of examples. The best sounding approach is

then to tackle our recognition task with a similarity based approach. In this perspective, the

target of the algorithm is then to build representations of objects capable of extracting all the

information contained in the input data. If built correctly, these representations can be then

used to perform recognition and classification by computing their distance/similarity with

the examples available at training time, even when the training data is scarce. The basic

assumption of these techniques is that input frames containing the same objects will be

closer together/more similar than frames containing different ones, i.e. that, in the features

space, the classes of neighbors of the input objects are a good approximation of the class

of the newcomer. This is the principle assumed by K-Nearest Neighbors (KNN), one of

the simplest (and yet effective) Machine Learning algorithm, and it is in turn the approach

chosen by many of the works we discussed in Chapter 2 tackling tasks like Open World

learning, Meta Learning and Re-Identification.

In principle any technique that is capable of building a representations of input data is

viable. In practice the constraints we discussed in the previous paragraph limit the range
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of effective approaches. Limiting the input information to just uncorrelated examples (for

instance selecting a single frame for each sequence) would make the training data too small.

An alternative approach would be employing models specifically meant to deal with cor-

related (sequential) data, such as Recursive or unidimensional Convolutional Neural Net-

works. The drawbacks of these models is that they employ even more parameters than their

equivalent approaches for non sequential data, thus requiring even more data. Moreover,

recent works started questioning the competitive advantage of such architectures when deal-

ing with visual classification [101, 54]. In the end we decided to employ part of a network

pre-trained on a different task (image classification in this case) to obtain a representation

of each single frame in the input sequences, a strategy that is quite common in settings in

which there is no easy way of training an ad-hoc model. We then decided to further sim-

plify our solution by aggregating the different representations of frames in a single one by

averaging them. The choice of using the average as aggregations is also motivated by the

environment in which the input data is captured. Due to the presence of a fair amount of

potentially useless information (coming for instance form the background surrounding the

target object), the average can help to retain the invariances in the sequence, the target ob-

ject, while filtering part the noise and variance in the input data. This is obviously a tradeoff,

due to the fact that the variance in the sequence could also come from some features of the

object, but it adds some form of robustness against outliers.

There is another implication, for our setting, in choosing to use a network that was pre-

trained for the task of classification. The set of classes to which the model was exposed on

training could prevent it to distinguish single elements of a particular class. For instance a

model trained to recognize the class "cup" could be unable to build useful representations of

different cups. The reason of this is the fact that the training it received explicitly pushes the

network to ignore intra-class invariances. This drawback can be in part avoided by using,

after training, just the first layers of the network as embedding model, discarding the last
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Algorithm 1 Open world egocentric object recognition
Input : a real value α ∈ [0, 1]

1: procedure FOLLOWER(α)
2: M← ∅; K ← ∅
3: while s← NEXTVIDEO() do
4: vs ← EMBEDVIDEO(s)
5: vmin, lmin ← GETNEARESTNEIGHBOUR(vs,M)
6: δ← D(vs, vmin)
7: λl , λu ← GETDECISIONTHRESHOLDS(K, α)
8: if δ < λl then
9: ls ← lmin

10: else if δ > λu then
11: ls ← NEWID()
12: else
13: y← ASKUSERSUPERVISION(vs, vmin)
14: if y then
15: ls ← lmin
16: else
17: ls ← NEWID()

18: K ← K ∪ {〈δ,y〉}
19: M←M∪{〈vs, ls〉}

ones that are more closely related to class discrimination. This is the approach we followed

in our work; later in Section 3.2.1 we show the results of an experiment we did to confirm

that the model we used still allows for intra-class discrimination.

3.1.2 The Algorithm

The pseudocode of the algorithm is shown in Algorithm 1. It takes as input a parameter

α ∈ [0, 1] that represents the amount of effort the user is expected to provide on average, in

terms of number of queries. α must not be considered as an hyperparameter of the model

due to the fact that is used to model a characteristic of the user, rather than a configuration

of the algorithm we present. For this reason, in the experiments later in the chapter, α will

not be optimized but used to explore the behavior of the framework at different levels of

supervision.

The algorithm consists of an iterative routine that receives from the environment a new

video s (containing a single object) at each iteration. By exploiting the notion of persistency
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FIGURE 3.1: Graphical representation showing an iteration of our algo-
rithm. In black the state of the algorithm at the end of the previous itera-
tion. In green and red the couples of same and different objects inside K.
In blue the operations that occur at the current iteration. The new video s
is converted in an embedding vs (1) and its nearest neighbor vmin is iden-
tified (2). Given that their distance is lower than λl (3), vs is added to the
memoryM with the same identifier of vmin (4), and the iteration finishes.

No user feedback is required in this iteration.

as defined in Section 2.5, the algorithm assumes that the object in the video sequence is

the same in all the frames. thus the information of each single frame can be combined in a

single representation. The new video is transformed in a fixed size representation vs ∈ Rn,

by generating embeddings for each frame using ResNet152 [32], and computing the mean

of the embeddings of the frames. We tested more advanced aggregation methods, such as

LSTMs, but we found these underperforming, likely because these architectures require an

offline training phase with a lot of training data, a rather different setting from the one we

are facing.

The resulting representation is compared with a collection of representations of past

videos, that the algorithm has stored in its memory. The algorithm then decides if there

exists a representation in memory that contains the very same object, at instance level. It

starts by computing the distance δ between the new representation and its nearest neighbor

vmin (in memory). Based on this distance it needs to decide among three possible options:
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1) the object is the same as the one retrieved from memory; 2) the object is a new one;

3) there is not enough evidence to make a decision, and the user feedback is needed. The

choice among the three options is made by comparing the distance δ with a pair of thresholds

λl , λu, computed using a procedure described later on. If δ < λl , the object is recognized as

already seen (option 1), and it is assigned the same identifier lmin of its nearest neighbour.

If δ > λu the object is considered a new one (option 2) and it is assigned a brand new

identifier. Otherwise, a user feedback is requested (option 3). In this latter case, the user is

asked whether vs and vmin are the same objects, and the identifier of the object is updated

according to the user feedback. Finally the new object-label pair is added to the memory

M. If the algorithm decided to request the user supervision, the answer to its query is stored

in another memoryK, together with the distance δ. Then the whole process is repeated with

a new video.

As described above, the whole decision process depends on the values of the two thresh-

olds λl and λu. These thresholds are estimated at each iteration by using the supervision

provided by the user in previous iterations,which is used to build a collectionK = {〈δi, yi〉 |

1 < i < |K|} of distances between pairs of objects δi = D(ri, r′i), coupled with a boolean

value yi, that represents the supervision from the user (i.e., yi = > if ri and r′i are the

same object, yi = ⊥ otherwise). As explained in Section 3.1.1, the underlying assump-

tion is that the embeddings of various instances of the same object are closer together than

those of different objects. Based on this assumption, GETDECISIONTHRESHOLDS sets the

two thresholds so as to maximize the probability that, if δ is inside these boundaries, the

algorithm would take a wrong decision on the corresponding object, given the information

currently stored in memory. This is achieved by solving the following optimization prob-

lem:
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argmax
λl ,λu

H(Yλu
λl
)− H(Yλl )− H(Yλu) (3.1)

subject to: Yλu
λl

= {y|〈δ, y〉 ∈ K ∧ λl ≤ δ ≤ λu}

Yλl = {y|〈δ, y〉 ∈ K ∧ δ ≤ λl}

Yλu = {y|〈δ, y〉 ∈ K ∧ λu ≤ δ}
|K|

∑
i=1

1(λl ≤ δi ≤ λu) = dα|K|e (3.2)

Here Yλu
λl

is the subset of K of user answers related to objects with a distance within the

two thresholds, while Yλl and Yλu are the subsets related to objects below λl and above λu

respectively. The function H returns the entropy of a given set. 1 is the indicator function

mapping true to 1 and false to 0. Eq. 3.2 imposes the constraint that the user is queried with

probability α, where the probability is estimated using the currently available feedback. The

objective function is chosen in order to set the two thresholds in the area where the algorithm

is maximally confused, adjusting the size of the area to the effort the user is willing to

provide. During training, the algorithm will receive supervision only for those examples

where λl ≤ δi ≤ λu. Thus only these elements will be added to the supervision memory

K, increasing the fraction of elements in K having a distance between the two thresholds.

This, combined to the fact that α remains constant during training, will eventually lead to

selecting two closer and closer values for λl , λu, reducing the size of the area of confusion

and thus the probability to request supervision. An alternative approach could be leaving

the algorithm the freedom to select the optimal size for the confusion area (leaving α as

an upper limit). We tested this approach, but we found that this led to instability during

training, due to poor estimates of the correct size of the confusion area.

Another advantage of formulating the constraints as in Eq. (3.2) is the ability to solve
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the maximization problem efficiently, provided that the content of K is stored inside a list

that is kept sorted with respect to δi. We refer to this list as sorted(K). Then the optimal

solution is associated to one of the contiguous sub-lists of sorted(K) of length dα|K|e.

Let 〈δj, λj〉 and 〈δk, λk〉 be the first and last element of a sub-list L, where j, k refer to the

positions of the elements in the full list sorted(K), so that k = j+ dα|K|e. Setting λL
l = δj

and λL
u = δk guarantees that the constraint in Eq. (3.2) is satisfied. Our algorithm evaluates

the objective (3.1) for each of the contiguous sub-lists (there are at most |K| of them) and

returns the values λl = λL∗
l , λu = λL∗

u corresponding to the sub-list L∗ for which the

objective is maximized.

For evaluation purposes as well as to allow the algorithm to work in absence of user

supervision, it is useful to have a modality where asking the user is not an option, and the

algorithm can only decide between recognizing the object as already seen or considering it

a new object. This can be done defining a single “recognition” threshold λr, such that if

δ is lower than the threshold the object is recognized as the same as its nearest neighbor,

otherwise it is considered a new object. The threshold can be set in order to maximize the

number of correct predictions given the available supervision K, by solving the following

optimization problem:

λr = argmax
λ

|K|

∑
i=1

1((δi < λ)⊕¬yi) (3.3)

where 1 is the indicator function mapping true to 1 and false to 0, and⊕ is the exclusive OR.

This problem too can be solved in time linear in the size of K, by just testing all thresholds

λi =
δi+δi+1

2 for i ∈ [0, |K|] (where δ0 = δ1 − ε and δ|K|+1 = δ|K| + ε for an arbitrary

small ε).

Even this maximization problem can be solved efficiently by using the sorted version of

K. The solution is linked to one of the |K| ways to partition sorted(K) in two contiguous
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FIGURE 3.2: Re-identification results on generic objects (upper left) and
on the coffee mugs (lower left) depicted on the right.

lists. For each index i in sorted(K), we can partition the list in two sub lists containing

indices where ranges are 0..i and i + 1..|K|, by selecting a threshold λi =
δi+δi+1

2 . In order

to find the optimum, we evaluate equation 3.3 for all the |K| candidate thresholds λi.

3.2 Experiments

The framework described in Section 3.1 differs in many aspects from the ones of main-

stream classification algorithms. For this reason, commonly used benchmarks meant for

classification, even those employed for continuous lifelong learning, aren’t suited to eval-

uate our approach. The ideal dataset should contain a collection of videos, each focused a

single instance of an object, with the same object appearing in multiple videos over different
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backgrounds, somehow emulating the first stages of developmental learning under an ego-

centric point-of-view [93]. The egocentric perspective was selected because it is the most

natural setting for this task. It mimics the behavior of a user who focuses on an object she

is interested in, rotates and deforms different perspectives.

As far as we know only two public datasets satisfy these requirements [78, 53]. The

larger of the two, called CoRe50 [53] contains a total of 50 objects, each recorded 11 dif-

ferent times. Given that our goal is to measure the ability to deal with the unknown in an

incremental scenario, we need to prioritize the number of different objects over the number

of recorded sequences. Thus, we collected a new dataset of videos of objects commonly

found in office/home spaces. The dataset contains 500 short videos of 100 different ob-

jects, 5 videos per object, recorded with different backgrounds, and it is freely available

together with the python code used to run the experiments 1. The main findings are however

confirmed when evaluating our algorithm on the CoRe50 dataset.

3.2.1 Re-identification and the role of persistency

Our first experiment is aimed at investigating how exploiting persistency in space-time af-

fects the recognition performance of our model. We compare our algorithm with an alter-

native model that does not make use of this feature. Without persistency, each frame of a

sequence should be classified independently of the others, as if they were a collection of

pictures. We performed these tests on a closed-world re-identification setting, similar to

the one used in person re-identification [50, 100]. The aim of these tests is to evaluate the

role of persistency independently of the other aspects of our framework, like Open World

recognition and online active learning.

For each object in our dataset, we sampled one video for the training set and one for

the test set. For each test sample, we then computed its nearest neighbor in the training set,

1Available at: https://github.com/lucaerculiani/ecai20-continual-egocentric-object-recognition
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where samples are videos when using persistency, and individual frames otherwise. Fig-

ure 3.2(upper left) reports the fraction of videos (or frames) that have as nearest neighbor

a sample of the same object (i.e., we report the Cumulative Matching Characteristic used

in re-identification, with a number of positions k = 1), averaged over 100 folds, for an

increasing number of objects to re-identify. The advantage of using persistency is appar-

ent, and while increasing the number of objects clearly decreases the performance of both

alternatives, the gap is substantially preserved.

The network we use for embedding frames (ResNet152) was originally trained to clas-

sify objects of 1000 different classes of ImageNet, a database that follows the same structure

of the WordNet lexical database. Even if the original training set covered a broad spectrum

of the objects commonly found in tasks recognition (including some in our own dataset),

ResNet was trained with class-level supervision, a way that explicitly pushes the network

towards suppressing intra-class variance.

In order to assess the performance of our algorithm at instance-level object recognition,

we performed a second series of re-identification experiments focused on the “coffee mug”

synset. Note that the synset appears as a leaf in the tree of ImageNet, i.e., the network we

use for the embedding is not trained to distinguish between different mugs, but to consider

them as a single category. We recorded a small collection of videos of nine different coffee

mugs (shown on the right of Figure 3.2). Figure 3.2(lower left) presents the re-identification

results. As expected, performance are lower than the ones for generic objects, but the per-

sistency model still obtains consistently better results than the frame-based one.

3.2.2 Open World recognition

The next series of experiment aims at evaluating the performance of our algorithm in the

setting described in Section 3.1.1. One of the key elements that distinguish our setting from

a standard object recognition one is the fact that data arrive as a continuous stream, as typical
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random devel

FIGURE 3.3: Open world recognition results for increasing number of
iterations (on the horizontal axis).

of online learning settings, and the order in which data are presented to the algorithm can

have an impact on the quality of learning [7]. In infants, the ratio at which novel objects

appear is considered crucial for the development of their recognition capabilities [93, 12].

In order to investigate how this can affect our recognition algorithm, we considered two

different policies for introducing novel objects. The fist one, named random, presents

videos in a random order. The second, that we named devel (short for developmental), at

each iteration picks the video of a randomly chosen unseen object with probability 0.3, and

randomly selects the video of an already seen object otherwise. We chose the probability
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0.3 to evenly spread the encounter of new objects. Lowering the probability would result

in showing all the videos of already seen objects before introducing a new one. Raising

the probability would eventually result in showing all the unseen objects before showing a

video of an already seen object, resulting in a behavior similar to the one obtained showing

the sequences in random order (or even more pronounced). While being less intuitive, the

devel setting is less artificial than the random setting, especially when the number of

objects increases. Assuming that the dataset contains each object in the world, a random

setting would imply that the user sees the majority of objects once, before interacting with

an already seen object. That is not how a human interacts with the environment and learns.

In this sense, the devel setting is clearly a better approximation of the behavior of a human.

For each of the two policies, we compared our recognition algorithm, FOLLOWER (see

Algorithm 1) with a fully supervised version of the algorithm (which we refer to as FUL-

LOWER), where user feedback is requested at each iteration.

The dataset was divided in three subsets. First, 10 objects were randomly selected,

and all their sequences (50 in total) were used to perform unsupervised evaluation after the

online training phase. For each of the remaining 90 objects, four videos were used for the

interaction with the algorithm, while the fifth was kept in a separate set for online evaluation

in the training phase. The procedure was repeated 2000 times with different permutations

of the data and results were averaged.

Supervised

As FOLLOWER needs as input the expected user effort α, we tuned it so as to ask the min-

imum supervision required to have similar performance as FULLOWER. For the random

setting, this was achieved with α = 0.92, while in the devel setting, α = 0.35 was suf-

ficient. For the first 10 iterations FOLLOWER was forced to always ask for supervision, in

order to bootstrap the estimation of its internal thresholds.
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Figure 3.3 shows the results of our experiments in terms of user effort and recognition

quality for an increasing number of objects presented to the algorithms, for the random

(left column) and the devel (right column) setting respectively. The upper row shows the

average fraction of objects seen at least once up to that iteration included (green curve). The

plot also shows the number of queries to the user for FOLLOWER (blue curve) and FUL-

LOWER (constantly one, red curve); these can be interpreted as the probability to request

supervision at each iteration. In the random setting, in the first iterations the vast major-

ity of the videos contains brand new objects, while in the last iterations the probability of

encountering something new is close to zero. The devel setting spreads the encounter of

objects evenly, except for the last iterations when almost all objects have already been seen.

This latter setting is highly beneficial in terms of user effort, as the amount of supervision

that FOLLOWER requests to match the performances of FULLOWER is far less than the one

it needs in the random case, in agreement with what believed about infant learning [12].

The middle row in Figure 3.3 shows the “instantaneous” accuracy in classifying the next

object (as brand new or as one already seen). This can be computed as:

1


δ(vs, vmin) ≤ λr ∧ same(vs, vmin))

∨

δ(vs, vmin) > λr ∧ @ r′s ∈ M : same(vs, r′s)


(3.4)

where λr is the recognition threshold in eq. 3.3 (asking to the user is not an option here),

M is the memory of the algorithm (at each training iteration), vmin is the nearest neighbor

in M, and same is true if vs and vmin are representations of the same object. For both

settings, the drop in performance follows the shape of the probability of encountering new

objects (that is, it decreases as the number of objects to recognize increase, like in the re-

identification experiments shown in Fig. 3.2). By design (i.e., choice of the α values) the
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performance of the FOLLOWERs never fall much below the ones of the FULLOWERs (the

relative difference in performance in the last 100 iterations is lower than 5%). At the start of

the experiment, the values of the instantaneous accuracy of FULLOWER and FOLLOWER

are roughly the same in the random setting, while in the devel setting FULLOWER

has a small advantage over FOLLOWER. This is due to the considerably lower amount of

supervision that FOLLOWER receives in the devel setting with respect to FULLOWER.

This has the effect of momentarily reducing the performance of FOLLOWER in the first

iterations (in which the algorithm is learning thresholds λl and λu). After this initial phase,

the gap between the two algorithms shrinks. In both settings the performance increase

towards the end, due to the fact that the algorithms are exposed mainly to objects they have

already seen.

We also evaluated the performance of the algorithms on a separate in-training evaluation

set, as customary in online learning settings. The lower row in Figure 3.3 shows the fraction

of correctly recognized objects (in red for FULLOWER, in blue for FOLLOWER):

1
|STe |

∑
s∈STe

1 (δ(vs, vmin) ≤ λr ∧ same(vs, vmin))

and the fraction of examples correctly identified as unseen objects (in black for FUL-

LOWER, in purple for FOLLOWER):

1
|STe |

∑
s∈STe

1
(
δ(vs, vmin) > λr ∧ @ r′s ∈ M : same(vs, r′s)

)

over the 90 hold-out videos STe (one per object). In the random setting, due to the fact that

in the first iterations the overwhelming majority of the encountered object were never seen

before, the two algorithms are strongly biased towards marking every object as unseen. For

this reason the green and purple curves are overlapping.
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In this setting, the advantage of receiving feedback at each iteration is apparent in the

progressively larger gap in recognition accuracy. On the other hand, in the devel scenario

the algorithms are exposed to both new and unseen object right from the beginning. As

FOLLOWER requests supervision only for ambiguous cases (i.e., nearest-neighbor distance

neither low nor high enough), it is more biased towards predicting objects as seen with

respect to FULLOWER. This enables FOLLOWER to match FULLOWER performances in

terms of recognition accuracy even when the number of novel objects shrinks towards zero.

The same trends were found when repeating these experiments over the CoRe50 dataset

[53]. Figure 3.4 presents the results obtained over the random and devel setting, obtained

using a value of α of 0.84 and 0.6 respectively. These two values were selected in order to

minimize the amount of supervision in the two setting while keeping the performances at a

level comparable with FULLOWER.

The results are in line with the ones obtained over our dataset. A devel setting still

requires less effort from the user to enable FOLLOWER to match the performances of FUL-

LOWER. Due to the fact that CoRe50 contains many sequences but fewer different objects

(compared to our dataset), in the 90% of the iterations the models receive a sequence con-

taining an already seen object. For this reason the FOLLOWER models make less queries on

average for each iteration in the experiments involving this dataset.

The different number of sequences per object in the CoRe50 dataset, with respect to our

dataset, led to have a distribution of unseen objects (the green curves in the upper row of

graphs) that is quite similar between random and devel. In both settings almost all the

objects are shown to the models in the first 200 iterations. This is due to our choice to keep

the parameters of the devel setting, i.e. the probability of encountering a new object, at

the same value of the ones used in the experiments showed in the Figure 3.3. As a result, the

graphs of the instantaneous accuracies and the recognition performances of seen and unseen

objects, comparing the two settings, have a similar shape.
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random devel

FIGURE 3.4: Open world recognition results on the CoRe50 dataset for
increasing number of iterations (on the horizontal axis).

Unsupervised

The last series of tests are aimed at measuring the ability of the model to autonomously

recognize and discriminate new objects. These tests are performed after the interactive

training session with the user. The model is presented with all the 50 sequences of the 10

objects that were kept separate and never shown. The role of the model is to classify and

store them as in the interactive phase, but without resorting on the supervision of the user.

As for the training phase, we tested the performance of our algorithm by showing these 50
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sequences both with a random and a devel policy2.

In this phase we computed the overall accuracy of the model, averaging the instanta-

neous accuracy (eq. 3.4) over all 50 decisions, one for each sequence. We refer to this

metric as the Averaged Instantaneous Accuracy (AIA). As in this phase no supervision is

provided by the user, this evaluation can be seen as a sort of incremental clustering. At each

iteration the model observes a new sequence and decides whether to consider the object in it

as the same as one seen previously (linking it to its nearest-neighbor in memory), or to add

it as a novel object. Let’s consider a graph with sequences as nodes and an edge between

each pair of nodes predicted as representing the same object. The connected components

of this graph can be seen as clusters, each representing a (presumably) distinct object. We

extracted these clusters for the 50 evaluation sequences and we computed two widely used

clustering metrics, the Adjusted Mutual Information score (AMI) and Adjusted Rand Index

score (ARI).

Table 3.1(top) shows the results obtained when presenting evaluation sequences using a

random policy. The table shows the metrics described above, computed over FOLLOWER

trained using a random (left) or a devel (right) policy. In order to compare the two

training policies over the same number of examples, we tried different values of α so as to

end up with an approximately equal number of training examples (|K| in the table), for a

decreasing number of training examples. It is easy to see that when trained with the random

policy, the performance of FOLLOWER are seriously affected by a decrease in the number

of training instances. On the other hand, a devel policy during training enables the model

to retain similar levels of accuracy even for substantially reduced amount of user feedback.

While the clustering performance are more affected by the reduced level of supervision, this

effect is much less pronounced when using a devel policy during training with respect to

a random one.
2Given the low number of different objects, we decided not to compute the unsupervised evaluation on the

CoRe50 dataset, in order to avoid to further reduce the number of objects in supervised evaluation
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TABLE 3.1: Test phase evaluation results. Top results refer to a random
evaluation policy, bottom ones to a devel one. Results are computed
over FOLLOWER trained using a random (left) or a devel (right) policy.

random devel
|K| AIA ARI AMI |K| AIA ARI AMI

r
a
n
d
o
m

285 0.47 0.45 0.38 289 0.46 0.44 0.38
237 0.45 0.43 0.37 240 0.46 0.42 0.36
210 0.43 0.39 0.34 203 0.45 0.42 0.36
177 0.4 0.35 0.31 152 0.45 0.41 0.35
81 0.32 0.21 0.2 84 0.45 0.4 0.38
36 0.33 0.22 0.21 37 0.45 0.35 0.37

d
e
v
e
l

285 0.73 0.56 0.5 289 0.73 0.6 0.54
237 0.73 0.49 0.45 244 0.73 0.56 0.52
210 0.72 0.44 0.4 203 0.73 0.55 0.5
177 0.71 0.37 0.35 152 0.73 0.52 0.49
81 0.68 0.21 0.2 84 0.73 0.44 0.45
36 0.69 0.22 0.21 37 0.72 0.35 0.4

Table 3.1(bottom) shows the results obtained when presenting evaluation sequences us-

ing a devel policy. The trends seen with the random evaluation policy are basically pre-

served here, with a devel policy at training time leading to better results than a random

one. Comparing the two tables, it is apparent that FOLLOWER achieves massive improve-

ments in recognition accuracy when evaluated with sequences in a devel rather than

random order, with up to 100% increase in AIA. Clustering performance are also sub-

stantially better in most cases, especially when the models is trained with a devel policy.

Note that the decrease in clustering performance when reducing the number of training ex-

amples is more pronounced here with respect to the top part of the table. This is due to the

fact that a devel evaluation policy allows the method to substantially increase its ability to

recognize already seen objects, at the cost of a relative decrease in ability to identify the un-

known. In absolute terms, however, also in terms of clustering the best results are achieved

when FOLLOWER is both trained and evaluated with a devel policy.
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3.3 Summary

In this Chapter we presented the first results of a long term project whose goal is to build

systems which see, perceive and interact in open world environments like humans. Our

results show that FOLLOWER is capable of progressively memorizing novel objects, even in

complete absence of supervision, and that a developmental strategy is highly beneficial in

boosting its performance and reducing its need for human supervision.

In this line of thinking the natural evolution of this work is to make the algorithms capa-

ble of dealing with semantics and make it knowledge-aware, this being the basis for a mean-

ingful interaction with humans. The key choices underlying this work (i.e., the exploitation

of persistency, the choice of a similarity-based approach and the attention to incremental-

ity) were indeed motivated by this intuition. The use of similarity and the focus on the

instance-level allow for the adaptability to an Open World environment, with instance-level

recognition naturally scaled to the perception of classes. This is the central focus of the

work that will be presented in the next chapter.
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Chapter 4

A new hierarchical theory

The Oxford Research Encyclopedia defines Lexical Semantics as the study of word mean-

ings, where these word meanings are implicitly assumed to be those constructed by humans

when hearing a word. Following this definition, we take the meaning of a word to be the

the mental representation which is constructed when hearing or reading a word, i.e., its con-

cept [49]. Very much in the same line of thinking, in this Chapter we on Visual Semantics,

which we take as the study of how to build concepts when using vision to perceive the en-

vironment. We tackle the problem with a computational approach, motivated by the goal of

building a machines which rely on meaningful human machine interactions [26].

The key observation underlying our work is that the concepts built via language, e.g., the

concept associated to the word cat, are built according to a process which is very different

from that used when perceiving something, e.g., a cat, via vision; it is a fact that in humans

the two processes involve different parts of the brain [56]. Following the terminology de-

fined in [29], we call the concepts built from words, classification concepts, and the latter

concepts, substance concepts. This terminology is motivated by the fundamentally different

function that these concepts have, the first being in charge of recognizing substances as they

are perceived, the latter being in charge of classifying what is being perceived according

to various organization principles. This idea of seeing concepts as (biological) functions
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is based on the work in the field of Teleosemantics, sometimes called Biosemantics [55],

and in particular on the work by the philosopher R. Millikan [64, 61, 65, 63]; some of the

implications on AI of the distinction between substance concepts and classification can be

found in [29, 22].

Despite the crucial differences existing between substance and classification concepts,

humans are able to seamlessy switch between them, being able to always use suitable words

to describe what they perceive; this despite (and maybe, thanks to) the many possible com-

bination of words that language provides them and the many different situations in which

the same reality presents itself to them. Our goal is to provide a computational model that

can cope with this phenomenon, namely of the process by which a substance, e.g., a cat, as

it appears in one or more sequence of images, becomes represented by a substance concept

which is in one-to-one correspondence to the classification concept of the word naming it,

e.g., the word cat. A more precise articulation of the problem we deal with is as follows.

Suppose that a person and a machine, e.g., a pair of smart glasses, are put in a situation

where they both see exactly the same parts of the world under the same visual conditions.

This interaction between the human and the machine is supposed to last for very long,

possibly for as long as the life of the person, or of the machine. Suppose that the human is

an adult, namely a person with a full repertoire of words and concepts which allow her to

describe what she sees according to her current point of view, which will change in time as

a function of many internal and external factors, not least depending on how objects appear

to her.1 Dually, assume that the machine starts from scratch without any prior knowledge of

the world and of how to name whatever it perceives. How can we build an algorithm which,

by suitably asking the human, will learn how to recognize and name whatever it sees in the

same way as its friend of a life?

1We assume that this person does not make mistakes and that she is consistent in the ways she names what she
sees.
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Put it in simple words, the problem that we are dealing with is how to develop a learning

algorithm which will be able to recognize the outside world, evolving in time and adapting

coherently with the needs of the user. A meaningful metaphor for this problem is that of

a mother who is teaching her baby child how to name things using her own words in her

own spoken language. The work in [29] provides an extensive description of the challenges

related to this problem, mainly related to the many-to-many relation existing between what

is seen and what is conceptualized. Further complications come from the fact that, based on

the definition provided above, the learning algorithm needs to satisfy the following further

requirements:

• it must be generic, in that it should make no assumptions about the input objects;

• it must learn new objects never seen before as well as novel features, never seen

before, of previously seen objects;

• it must learn from a small number of examples, starting from no examples.

We propose a general Knowledge Representation (Knowledge Representation) theory

which addresses the problem above. This theory is articulated in terms of a set of novel

definitions of some basic notions, most importantly that of object. The theory proceeds as

follows.

• We model objects as substance concepts, which in turn are modeled as sets of visual

objects, i.e., sequences of similar frames, as perceived in multiple events called en-

counters. Visual objects are stored in a cumulative memoryM of all the times they

were previously perceived.

• Substance concepts are organized into a (visual) subsumption hierarchy which is

learned based on two notions, those of Genus and Differentia, which repli-

cate the notions with the same name that, in Lexical Semantics, are used to build
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subsumption hierarchies of word meanings [60, 28]. The key observation is that the

one-to-one correspondence which must exist between two hierarchies in order to be

able to speak meaningfully, i.e., in human terms, of what is perceived is not a given

nor something easy to compute.

• The visual hierarchy is learned autonomously by the algorithm; the user feedback

makes sure that the hierarchy built by the machine matches her own linguistic or-

ganization of objects. In other words, the user feedback is the means by which the

hierarchy of substance concepts is transformed into a hierarchy of classification con-

cepts. The key observation here is that the user feedback is provided not in terms of

object names, as it is usually the case, but in terms of the two properties of Genus

and Differentia.

The chapter is organized as follows. First, we introduce objects as classification con-

cepts, as they are used in natural language and organized in Lexical Semantics hierarchies

(Section 4.1). This section provides also an analysis of why the very definition of clas-

sification concepts makes them unsuitable for visual object recognition. Then we define

substance concepts as sets of visual objects, where a visual object is taken to be a sequence

of frames as they occur, for instance, in a video (Section 4.2). Then, in Section 4.3, we

provide the main algorithm by which substance concepts are built, while, in Section 4.4,

we describe how a hierarchy of substance concepts is built which is aligned with that of

classification concepts. In this section we also provide the two basic notions of Genus and

Differentia which are used to build the hierarchy. The setting and the algorithm for

object learning is described in Section 4.5. This algorithm has been developed for the base

case of hierarchies of depth two. The extension to hierarchies of any level is discussed in

the next chapter. The algorithm in evaluated in Section 4.6. Finally, the chapter ends with a

summary of the work presented (Section 4.7).
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4.1 Objects as Classification Concepts

Let us concentrate on nouns, as they are usually used to name objects. In Lexical Seman-

tics the meaning of nouns is provided via definitions articulated in terms of Genus and

Differentia [60]. Let us consider for instance the following two definitions:

• a triangle is a plane figure with three straight bounding sides;

• a quadrilateral is a plane figure with four straight bounding sides.

In these two definitions we can identify three main components:

• Genus: some previously defined set of properties which is shared across distinct

objects, in the definitions above the property of being a plane figure;

• genusObj (also called genusObj object): a certain representative object which

satisfies the Genus property, in the definition above, the object plane figure. The set

of objects satisfying the Genus properties are said to have that (same) genusObj;

• Differentia: A selected novel set of properties, different from the Genus prop-

erties, which are used to differentiate among objects with the same genusObj, in

the definitions above, the properties having three straight bounding sides and having

fours straight bounding sides, defining, respectively, triangles and quadrilaterals as

distinct objects with the same genusObj.

Genus and Differentia satisfy the following four constraints:

• Role 1 of Genus: if two objects have different genusObj, then they are (said to be)

different. For instance, a pyramid is not a plane figure and, therefore, is different from

a triangle.
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• Role 2 of Genus: The inverse of Role 1 is not true, namely we may have different

objects with the same genusObj. For instance, a quadrilateral and a triangle are

both plane figures but they are not the same object.

• Role 1 of Differentia: Two objects with the same genusObj, but different from

the genusObj, are (said to be) the same object if and only if the Differentia

properties do not hold of the two objects. Thus, for instance, two objects with the

same genusObj and with a different Differentia, e.g., a triangle and a quadri-

lateral, are different despite being both a plane figure. Dually, two objects with the

same genusObj and the same Differentia, e.g., two triangles, are the same

object (relatively to the current selection of Genus and Differentia).

• Role 2 of Differentia: a genusObj and an object with that genusObj are dif-

ferent when the latter is characterized by a set of properties, i.e., its Differentia,

that the genusObj does not have. Thus for instance a triangle is not the same as

a plane figure, as it is just one of the many possible plane figures", e.g., triangles,

quadrilaterals which share the same genusObj (in this case, plane figures).

The first observation about the definitions above is what it means for two objects to be the

same object. It definitely does not mean that they are the same instance, it only means

that the two objects satisfy the same Genus and the same Differentia. Thus for in-

stance a right triangle and a equilateral triangle are the same object, when compared with

quadrilaterals, in that they have the same number of sides, but they are different when the

Differentia being considered is the triangle internal angles. This observation has two

immediate consequences. The first is that the process above can be iterated at any level of

detail, thus creating hierarchies of any level of depth. It is a fact that, in lexical semantics,

the meaning of nouns is organized as a hierarchy of increasing specificity, each layer being

characterized by a new Genus and a new Differentia, where an object with a certain
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Genus is a child of its genusObj. Such a hierarchy of depth n can be seen as the recursive

stacking of (n− 1) hierarchies of depth 2, where the genusObj of the depth 2 hierarchy

one level down is one of the children of the genusObj one level above. The root of this

hierarchy is usually referred as thing or entity [60, 28]. This process of progressive differ-

entiation allows to split the set of objects under consideration into progressively smaller and

smaller sets, based on the selected set of properties.

The second observation is that the above definitions state what is the same of what is

different using natural language. These linguistic definitions are designed to generate what

we call classification concepts, namely concepts which are amenable for classification [22].

And in fact the very existence of lexical semantics hierarchies provides evidence of their

suitability for this task. This type of definitions is well grounded in the everyday practice,

in particular when used to name and describe things, for instance during interactions among

humans. However they do not work as well while one is in the middle of the recognition

process, namely while she is trying to identify the object she is looking at. How many

times were you able to recognize someone or something based only on a natural language

description, without the help of a photo or anything which could point to specific spatial

objects or properties?

Let us clarify the problem highlighted by the last observation with an example. Assume

you see at a certain distance two things moving towards you. Initially you will not recognize

what these things are but, when they are close enough, you will be able to recognize two

persons, seen from the back. The day after, you see again two persons, which may or may

not be those recognized the day before: hard to say, they did not come close enough. In

any case, this second time these two persons get close enough for you to finally recognize

your friends Karl and Frank. What allowed you to distinguish Karl from Frank is that

the former has white hair while the latter has black air and mustaches. Later on, walking

towards you, you will recognize a woman. You will have been able to recognize her as a
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person different from the two previous men because she has long hair and a skirt. Of course

you will know the terms you have used to describe what you will have seen, i.e., person,

man, woman, Karl and Frank, as someone will have taught them to you, for instance during

your childhood. In Knowledge Representation, the simple scene described above can be

formalized by saying that Karl and Frank are instances, while person, man and woman are

(classification) concepts and by stating the following facts: man(Karl) (to be read as Karl is

a man), man(Frank), man v person (to be read as man is subsumed by person) and woman

v person, the latter two facts stating that all men and all women are persons. The resulting

hierarchy, as formally defined via the logical subsumption symbol v, is provided in Figure

4.1 (first left) where the classification concepts there represented are defined, for instance,

as (partial quote from [60])

• person: individual, someone, somebody;

• woman: an adult female person;

• man: an adult male person;

• Karl: an instance of a man;

• Franz: an instance of a man.

Notice how the above definitions and the properties they involve (e.g., being adult, male or

female, being an instance) are completely unrelated to the process by which recognition was

carried out, which was in terms of a continual analysis of visual information, at increasing

levels of precision.

The previous example is representative of the situation where the observer has complete

knowledge of the objects being perceived and the partiality of information is caused by

some contextual factors. Consider now the hierarchy of classification concepts in the center

of Figure 4.1, which names and classifies daisies, whose images are in the corresponding
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asterales

leucanthemum
vulgare

astereae

bellis
sylvestris

aster
alpinus

person

woman

man

Karl Franz

FIGURE 4.1: (Left): a classification concept hierarchy; (Center): a classi-
fication concept hierarchy for daisies; (Right:) the center hierarchy where
words are substituted with images representing the corresponding daisies.

place in the hierarchy in the right of Figure 4.1. A possible lexical semantics definition of

these daisies is as follows:

• asterales: an order of flowering plants containing eleven families, the most notable

being asteraceae (known for composite flowers made of florets);

• leucanthenum vulgare: flower native to Europe and the temperate regions of Asia,

commonly referred as marguerite;

• astereae: a tribe of plants, commonly found in temperate regions of the world, also

called daisy or sunflower family;

• bellis sylvestris: Southern daisy, perennial plant native to central and northern Europe;

• aster alpinus: blue alpine daisy, plant commonly found in the mountains in Europe.

Most readers, in particular those who are not florists, even if coming to know about the

hierarchy above, e.g., because being described it, will be unable to recognize the various

types of daisy. As a consequence they will not be able to build it starting from images (e.g.,

the ones on the right in Figure 4.1), simply because they will not be able to recognize the

features which allow to distinguish among the various types of daisy. Most likely, in many

cases, the hierarchy will be collapsed to a single node while, in others, the light purple daisy

will be separated from the others, just because of its colour.
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In general, classification concepts do not seem well suited for the process of object

recognition. This despite the fact that it is common practice to use them in supervised

machine learning, where the user feedback is, often if not always, provided in terms of words

whose meaning is defined via lexical semantics hierarchies. Evidence of this difficulty is

provided by the so called Semantic Gap problem, which was already identified in 2010 [92]

as (quote) “... the lack of coincidence between the information that one can extract from the

visual data and the interpretation that the same data have for a user in a given situation.",

and which is still unsolved. The main motivation for this fact seems to be that classification

concepts model objects as endurants, i.e., as being always wholly present, at any given

moment in time, with their proper parts being present in a certain spatial configuration

and satisfying certain properties (e.g., color, shape, position, activity) [24]. Of course, this

configuration may change, or the object might not be accessible visually (as in the first

example above), or the observer might not be able to discriminate some of its relevant

properties (as in the daisies example above) but this has no impact on how classification

concepts are defined. Classification concepts, while well serving the purpose of describing

what was previously perceived, are completed unrelated to the process by which the objects

are perceived and, in particular, to the fact that their perception is constructed incrementally,

via a set of partial views which progressively enrich what is visually known. To this extent,

notice how person, man, and Karl are correctly represented in Figure 4.1 as three different

classification concepts. However in the little story above, these three classification concepts

actually describe the same piece of reality, seen at different times, at different levels of detail

and from different points of view.
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4.2 Objects as substance concepts

The key intuition underlying the work described here is to model objects are perdurants,

where, quoting from [24] ... perdurants ... just extend in time by accumulating different

temporal parts, so that, at any time they are present, they are only partially present, in the

sense that some of their proper temporal parts (e.g., their previous or future phases) may

be not present. According to these definitions, examples of endurants are physical objects,

e.g., those mentioned above, while examples of perdurants are events and activities. Taking

an object as a perdurant amounts to saying that we never have a full (visual) picture of the

object but that the full representation is built progressively, in time, as it is always the case

in our everyday life. We call substance concepts the representation of objects as perdurants.

The starting point in the definition of substance concepts is the crucial distinction be-

tween what we perceive as being in the real world, that we call substances and their corre-

sponding mental representations, i.e., their substance concepts. Following R. Millikan, we

take substances as those things (quote from [65]), “... about which you can learn from one

encounter something of what to expect on other encounters, where this is no accident but

the result of a real connection ...". [29] provides a detailed discussion of what substances

are and of how they generate substance concepts in the mind of observers, based on the

work on Teleosemantics [55], and in particular on the work by Ruth Millikan [64, 60, 62,

66, 61, 65]. In the following, substances should be intuitively thought as those things which,

when perceived in the most detail, will generate the perception of individuals, e.g., Karl, my

cat, but that, under different conditions, will generate more generic or even very different

substance concepts, e.g., a moving object, an animal. The key observation is that, while

substances are crucial in our informal understanding of perception in that they allow us to

focus on the process of how objects are perceived, they play no role in the formal model that

we define below. With this in mind in the following: (i) we avoid defining what a substance
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v1 v2 v3

E

FIGURE 4.2: Example of an encounter. For better visualization, each
visual object is represented, here and later, as its first frame.

is (no such definition could be meaningfully grounded in human experience); and (ii) we

consider substances only in their causal role on the generation of a concept, a role that is

constrained within the events during which a substance is perceived. We call such events,

encounters and (iii) we qualify this causal role in terms of two properties that substances

have, as introduced below, and that we call Space Persistency and Time Persistency. Notice

however that both Space Persistency and Time Persistency, as all the definitions provided in

this chapter, are given as properties of substance concepts.

We use superscripts to mean elements of a sequence, and (optionally) the subscript S,

to mean elements obtained from one or more encounters ES with the substance S, as in

f i
S, vi

S, and Oi
S. Different subscripts mean elements generated in possibly different sets of

encounters. In the following we omit the subscript whenever the substance we are referring

to is clear from the context.

We assume that encounters are represented as spatio-temporal worms, i.e., temporal

sequences of frames, where f i
S is a frame for a substance S, each frame being encoded

via a set of low-level visual features. We represent encounters, by exploiting the Space

Persistency of substances, namely the fact that, in time, substances change very slowly

their spatial position. Because of space persistency, during an encounter, any two adjacent

frames will be very similar, while this will not necessarily be the case with two non adjacent

frames. We model Space Persistency in terms of Frame Similarity (Dissimilarity), written
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E1

E2

O(S)

FIGURE 4.3: A single object consisting of two encounters. The green
line connects two similar visual objects.

fS1 ' fS2 ( fS1 6' fS2 ) (see the algorithm below for a possible implementation). Given

Frame Similarity, we define visual objects, where vS is a visual object for a substance S, as

sequences of adjacent frames where the last frame is similar to the first, and encounters ES

as sets of visual objects, i.e.,:

ES = {v1
S, . . . , vn

S}. (4.1)

Figure 4.2 reports an example of an encounter consisting of eight frames organized in three

visual objects. Notice how having multiple similar frames in the same visual object makes

it quite robust to local contextual variations. The first time a substance S is perceived as a

new object, that object will consist of a single encounter; but this object will be enriched

by subsequent encounters. We model this situation by taking objects to be the set of all

the different visual objects collected by the different encounters. Let E1
S, ..., Em

S be a set of

encounters. Then we have:

OS = ∪i Ei
S = {v1

S, . . . , vn
S} = {vi

S}. (4.2)

This situation is well represented in Figure 4.3 where each row is a different encounter.
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4.3 Building Substance concepts

Objects as substance concepts get cumulatively built in time. Let E1
S, ..., Em

S be a sequence

of encounters. Let OS be an object defined as in Equation (4.2). Then OS is incrementally

constructed as follows:

1. ADDOBJECT(M, E1
S) (4.3)

2. UPDATEOBJECT(M, Oi
S, Oi−1

S ∪ Ei
S), i = 2, ...

3. OS IS Oi
S, i = 1, ...

where:

• ADDOBJECT creates a new object O1
S in the cumulative memory M of the objects

perceived so far;

• Oi
S is an object as perceived after any given number i of encounters; and

• Oi−1
S ∪ Ei

S ∈ M is the cumulative memory of Oi
S;

• UPDATEOBJECT updates the current memory Oi−1
S of an object with the visual ob-

jects coming from Ei
S, thus constructing Oi

S;

• The construct IS in Item 3 is the formal statement assessing that we take objects as

the cumulative memory of what has been perceived so far.

A first observation is that item 3 implicitly states that substance concepts evolve in time,

i.e., that they are perdurants. In this perspective, Oi−1
S , Oi

S, Ei
S and also OS, are all partial

views of S that individually contribute to the construction of OS. This process of object

construction will eventually terminate if the appearance of an object does not change, in

that new encounters will not enlarge the set of visual objects defining the object. However

an object can also keep evolving. Thus, for instance, the current encounter with Frank may
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contain visual objects which are quite dissimilar from the ones encountered earlier on, for

instance because we saw him at different ages (e.g., when he was fifteen and now that he is

thirty-five).

A second observation is that the process described in Equation (4.3), and in particular

the decision of which between step 1 and step 2 must be applied, depends on the ability to

recognize whether the current encounter is a partial view of an object already recognized.

But how to decide? Let us write OS1 = OS2 to mean Object Identity, namely that the

two substance concepts are actually two (partial) views of the same object, rather than two

views of two different objects. Notice that this can be the case also in the case of objects

generated by two different sequences of encounters and despite being, at least partially,

visually dissimilar. Let us also write OS1 6= OS2 to mean Object Diversity. Then, Item 2

will be applied only for that object OS such that Oi−1
S = Ei

S, while Item 1 will be applied

whenever Oi−1
S 6= Ei

S for all objects inM.

The complications arising in the decision on Object Identity depend on two main fac-

tors. The first is that the correlation between substances and substance concepts is many-

to-many. To reiterate an example from the previous section, the same substance can be

perceived as Karl, as a man or as a person while, vice versa, the same substance con-

cept, e.g., man can be recognized from multiple individuals. In other words, we need to

decide at which level, in the visual subsumption hierarchy, the current encounter for the

same substance should be assigned. The second issue is that, independently of the level of

the subsumption hierarchy, the decision on Object Identity must made taking objects to be

endurants, as represented by classification concepts, being classification concepts what is

used by humans in their everyday interaction and classification activities. Object Identity

is a much richer notion than visual similarity as it involves considerations like language,

culture, function of the objects, and much more, see, e.g., [35, 70, 31]. Among other things

notice how we have OS = Oi
S, i = 1, ..., this meaning that Object Identity is invariant
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in time. As a consequence, there is a many-to-many correspondence between substance

concepts and classification concepts, as also extensively exemplified in [29].

The double many-to-many mapping from substances to classification concepts is the

main cause of the inherent arbitrariness which exists in how to identify what we perceive as

objects. This phenomenon is well known in Computational Linguistics and it is the cause

of the so-called lexical gaps, namely concepts which are lexicalized in one language but not

in other languages [27]. Things are made even worse when, even within the same language,

one considers the subjective behaviour of individuals; see the two examples in Section 4.1.

Notice that the problem is not that of constructing a hierarchy of meanings; in Section 4.4

we will show how this can be done based on the visual similarity of objects as defined as in

Equation (4.2). The problem is that such a hierarchy will almost inevitably suffer from the

Semantic Gap problem and, therefore, will not achieve the goal of aligning classification

concepts and substance concepts. The solution we propose is articulated in the following

main assumptions:

1. We assume that the fact that two objects are visually similar is a necessary condition

for object identity. This assumption is well grounded in our everyday experience and

also made in the mainstream Computer Vision research. To this extent, we introduce

the notions of Visual Object Similarity (Dissimilarity), written vS1 ' vS2 (vS1 6' vS2 )

and of Object Similarity (Dissimilarity), written OS1 ' OS2 (OS1 6' OS2 ). Notice

that we need to define what visual similarity is, given that, as discussed above, the

same object can appear in many different ways; this will be discussed in Section

4.5.2.

2. We assume, as also implicit in Millikan’s quote, that substances have a property of

Time Persistency, namely some form of time invariance in how they appear across en-

counters. This assumption allows us to compare, up to a point, visual objects coming



4.3. Building Substance concepts 59

from different encounters. Notice that how space and time persistency operate is spe-

cific to the objects being considered, no matter whether instances or concepts. Thus,

for instance, Karl will keep having white hair while Frank will keep having black hair

and mustaches, while, for instance, humans, like all animal species, are characterized

by a homeostatic mechanism which causes them to possess a certain set of common

traits (e.g., their shape, how they move) that often, but not always, make them look

similar [29]. The key consideration here is that, once an observer has subjectively de-

cided what is the object that she is trying to recognize from a substance S, the criteria

for object identity do not change. In other words, time persistency applies not only to

the perceived object but also to the perceiving subject.

3. We organize objects in a visual subsumption hierarchy, exactly like the one used in

lexical semantics, but with the key difference that Genus and Differentia are

computed in terms of the substance concepts’ visual properties, as represented by the

visual objects. This allows to deal with the problem of the many-to-many mapping

between substances and substance concepts.

4. Last, but not least, we deal with the many-to-many mapping between substance con-

cepts and classification concepts by relying on the key role of the user supervision.

This transformation is crucial to the integration of visual perception, where objects

keep evolving in time (i.e., they are perdurants), and language-based reasoning, which

thinks of objects as being completely described in any moment in time (i.e., they are

endurants). Genus and Differentia can be computed in a completely unsuper-

vised manner, via object similarity, but the user feedback, which is given only on

Genus and Differentia, guarantees that the machine-built hierarchies largely

coincide, modulo recognition mistakes, with the hierarchies that a user would build.
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Notice how this supervision is unavoidable, that it is exactly the same type of super-

vision that a mother would give to her child, and that it is subjective, evidence being

also that different languages conceptualize different objects [27].

As a last remark, notice that in the visual hierarchy mentioned in item 3, all nodes are

labeled only by substance concepts. Instead, in lexical semantics hierarchies, nodes are

labeled by (classification) concepts, e.g., man, and instances e.g., Frank. In other words,

as correctly pointed out by R. Millikan [65], but see also [29], from a perception point of

view, the usual Knowledge Representation distinction between concepts (usually modelled

as sets of instances) and instances does not apply.

4.4 Object Subsumption and Identity

As from Equation (4.2), objects, represented as substance concepts, are sets of visual ob-

jects. The idea is to exploit this fact to build a hierarchy of objects based on visual similarity.

As from the discussion at the end of the previous section, this hierarchy gives us only the

necessary conditions for object identity (i.e. visual similarity). In the following we will

assume that the two hierarchies of substance concepts and classification concepts will coin-

cide assuming, as also discussed at the end of the previous section, that the user feedback

will be used to validate the choices made. The algorithm in Section 4.5.2 will show how

this is done in practice by suitably asking feedback to the user.

As from the discussion in Section 4.1, a lexical semantics hierarchy can be seen as

the iteration of many depth 2 hierarchies, each with its own Genus and Differentia.

Therefore, without lack of generality, in the following we focus on hierarchies of depth 2.

The main goal below is to restate the conditions for Genus and Differentia, informally

stated in Section 4.1 for classification concepts, in terms of formally defined conditions on

substance concepts. Let us assume that we are given a genus object genusObj. In the
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general case the construction of genusObj will happen recursively from the top node, i.e.,

thing or entity. Then, let us define same(OS1 , OS2) and Different(OS1 , OS2) as two

binary boolean functions which, based on the intuitions described above, discriminate over

objects, defined as in Equation (4.2), based on their visual objects. We enforce the four roles

in Section 4.1 by enforcing the following three constraints:

¬same(OS1 , OS2) −→ OS1 6= OS2 , (4.4)

same(OS1 , OS2) −→

(OS1 = OS2 ←→ ¬Different(OS1 , OS2)),
(4.5)

OSG ⊆ OS1 ∩OS2 . (4.6)

where OSG is the genusObj of OS1 , OS2 . Notice how the specifics of Genus and Differentia

are left open, we only require that they are both computed out of the visual objects in in-

put, i.e., OS1 , OS2 and that they satisfy the three constraints above. This is on purpose as

it gives us freedom in many dimensions, e.g., of the specifics of the learning algorithms

used, of how visual similarity and/or object identity are defined, and also of how same and

Different are defined in any different layer of the hierarchy under construction. The al-

gorithm in Section 4.5.2 will instantiate the missing information selecting, for each decision

point, one among the many possible options.

Let us concentrate on the constraints. They satisfy the following intuitions. First, they

satisfy the four criteria defined in Section 4.1. Equation (4.4) formalizes Role 1 and Role

2 of Genus while Equation (4.5) formalizes Role 1 of Differentia. Equation (4.6)

formalizes Role 2 of Differentia; in fact from Equation (4.6) we have OSG ⊆ OS1 .

To have OSG 6= OS1 , OS1 must have at least a visual object vi
S1
6∈ OSG . Then there are
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two cases, either vi
S is such that Different holds, in which case we are done (from

Equation (4.5)), or this is not the case, in which case OSG = OS1 , namely that visual

object is irrelevant to the identity of OS1 . Notice how this latter case does not rise if we

take genusObj to be exactly the intersection. Equation (4.6) captures the intuition that the

visual objects which are not considered belong to both objects by chance. Thus for instance,

Karl and Frank might happen to have had, when observed, a red sweater. But red sweaters

are not a characteristic of men. Second, Equation (4.4) captures the fact that same provides

necessary but not sufficient conditions for object identity. Third, Equation (4.5) provides

necessary and sufficient conditions for two objects to be different, but under the assumption

that same holds. Namely, Different can be applied only after having discarded all the

objects which do no satisfy same.

The three constraints above allow us to build the desired subsumption hierarchy. Let us

write OSj v OSi (OSi w OSj ) and say that OSj is subsumed by OSi (OSi subsumes OSj )

to mean that the visual objects of OSj are a subset of those visual objects of OSi which

are relevant for the computation of Different (see discussion above on Equation (4.6)).

We also write OSj @ OSi and talk of strict subset and subsumption to mean OSj v OSi

and OSj 6= OSi , and similarly for OSi A OSj . Let us assume that OS2 and OS2 have the

same genusObj, OSG namely, that same(OS1 , OS2) and, therefore, same(OSG , OS2),

same(OSG , OS1) hold. Clearly, OSG v OS1 and OSG v OS2 . This makes the premise and

therefore the consequence of Equation (4.5) hold of all three objects. We have the following

cases (for compactness, below we write D to mean Different):

1. D(OS1 , OS2), D(OS1 , OSG ) and D(OS2 , OSG ): we have OSG @ OS1 and OSG @ OS2 ,

namely the situation where all three objects are different;

2. D(OS1 , OS2), ¬D(OS1 , OSG ) and D(OS2 , OSG ): we have OSG = OS1 and OSG @

OS2 ;
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3. D(OS1 , OS2), D(OS1 , OSG ) and ¬D(OS2 , OSG ): we have OSG = OS2 and OSG @

OS1 ;

4. ¬D(OS1 , OS2), D(OS1 , OSG ): we have OSG @ OS1 with OS1 = OS2 ;

5. ¬D(OS1OS2), ¬D(OS1 , OSG ): we have OS1 = OS2 = OSG .

Two observations. The first is that, under the assumption that OS1 and OS2 have the same

genusObj OSG , same and Different provide us with necessary and sufficient condi-

tions for both object identity and object subsumption and, therefore, they provide us with

the means for building the depth 2 sub-hierarchy under consideration. In fact as from the

(only if) directions of clauses 2,3,4,5, two objects are the same if they have the same Genus

and Different does not hold of them. Thus, taking into account the necessary conditions

provided by Equation (4.4) we have:

OS1 = OS2 ←→ same(OS1 , OS2) ∧ (4.7)

¬Different(OS1 , OS2)

Furthermore, as from clauses 1,2,3,4, we have that genusObj is the parent node of the

objects of which it is the genusObj, namely:

OS1 @ OSG ←→ Different(OS1 , OSG ) (4.8)

The concluding remark is that, so far, we have only dealt with hierarchies of depth two, but

the reasoning above can be replicated to build hierarchies of any depth. Let us assume that

we have a new object OS3 with ¬same(OS3 , OS1) and, thus, OS1 6= OS3 , OS2 6= OS3 , and

OSG 6= OS3 . At the same time, OS3 can share some visual objects with OS1 or OS2 which

make Different false. Thus, for instance, a plane is not a bird, but they both fly. Given,
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any two objects there is always a genusObj, also when these objects are very different,

and this is the key fact which allows for the construction of subsumption hierarchies of any

depth. Notice how we may end up with a genusObj which is the empty set, this being

the limit case where the genusObj is thing: a generic object is something which has been

perceived but with no associated visual objects.

4.5 The Framework

The theory described in the previous section has been implemented in an algorithm capable

of recognizing hierarchies of depth two. In this section we present the setting in which this

algorithm reasons, as well as its implementations details. An early release of the implemen-

tation of the entire framework is available2.

4.5.1 The Setting

The setting for this framework can be considered as an extension of the one presented in

Section 3.1.1. The main difference is the extension to the recognition of any kind of object,

rather than single instances of objects. The limitations described in the setting of the previ-

ous chapter are still present, but new constraints negate the use of the same architecture.

For the same reasons explained in the previous chapter we decided to make use again

on a pre-trained network. Taking advantage of recent developments in the field of Deep

Clustering, we make use of a Neural Network trained with a self-supervised policy [10],

thus avoiding the risk of poor intra-class representations.

Due to the requirements of the theory, a single representation (like the average of all

the frames) is not suited for the task. This is due to the fact that a single representation

would not allow for the clear distinction between the object and its genusObj. Thus from

2Early release: https://github.com/lucaerculiani/towards-visual-semantics
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a sequence multiple representations were obtained by using a moving average run over the

embeddings obtained from the single frames. The next section will explain in details how

they were built and used.

The use of a running mean in place of an average requires some rethinking of the en-

vironment in which the input data is captured. As explained in Section 3.1.1, an average

based aggregation trades robustness against noise with some loss of information. In order

to retain the complete information one could use directly each single frame separately (as

its own visual object). This obviously means increasing both the level of noise as well as

the storage and computation requirements. Using a moving average is the middle ground

between these two extremes.

In order to have this simple approach working, we found we had to reduce the amount

of noise in the input data. This was done by creating a new version of the dataset using

always the same neutral background (a white wall). This simplifying assumptions is clearly

limiting for a real world application. This assumption is motivated by the focus on the

recognition of Genus and Differentia, rather then on the distinction between objects

and background. This setting requires a collections of objects that can be grouped on the

basis of their visual appearance. Inside each group, all objects must have some partial

views that make them indistinguishable from the other elements of the group (the Genus),

while at the same time having other views that enable the discrimination of single objects

(the Differentia). No public dataset enforces this constraint. As a consequence we

have created our own data set, which consists of a collection of video sequences of various

objects, recorded while rotating or being deformed against a blank background, making sure

that each video contained only a partial view of the object. The resulting dataset contains

five pairs of objects that only differ for a certain view (as in Figure 4.4). For each object in

each pair, we recorded five videos that contain the discriminative view, and five that do not.
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4.5.2 The Algorithm

We first provide a computational interpretation of the definitions introduced in the previous

sections and then we introduce the algorithm, which should be seen as a first prototype and

representative of a wide class of algorithms. Any algorithm will do as long as it satisfies the

constraints for Genus, Differentia and the genusObj. This enables the development

of smarter algorithms, for instance concentrating on noisy backgrounds or the many other

complexities which make Computer Vision a very complex task. The algorithm we presents

in this section is able to handle hierarchies of objects of two levels, and thus to encode

just one single genusObj per object. We employed this strategy to keep the algorithm as

simple as possible. This limitation will be eased in the next chapter.

Frames. We encode frames using an unsupervised deep neural network [10], trained to per-

form a combination of self-supervised and clustering tasks. Using an unsupervised network

allows to produce embeddings which are not explicitly biased towards classes of objects,

while, at the same time, complying to the assumption that machines extract features from

what they perceive, autonomously, as humans do. We define Frame similarity as the Eu-

clidean distance between frame encodings.

Visual objects. We define them as contiguous sequences of frames, and we represent them

as the average between the frame encodings. We assume for robustness that visual objects

are of a fixed limited length. Visual object are perceived by a procedure, named PERCEIVE,

which returns an encounter as a set of visual objects, as from Equation (4.1). We model

Visual object similarity. as a diversity threshold on the distance between visual objects:

vi ' vj def
= d(vi, vj) < θ (4.9)

Objects. We define Objects as from Equation (4.2), i.e., as sets of visual objects extracted

from sets of encounters. We define object similarity, analogously to visual object similarity,
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as a diversity threshold on the distance between objects:

OS1 ' OS2

def
= d(OS1 , OS2) < θ (4.10)

where the distance between objects is defined as the minimal distance between their respec-

tive visual objects:

d(OS1 , OS2) = min
vi∈OS1

min
vj∈OS2

d(vi, vj) (4.11)

By keeping the same threshold as for visual object similarity, we have that object similarity

holds when two objects have at least two similar visual objects:

OS1 ' OS2 ⇐⇒ ∃vi ∈ OS1 , ∃vj ∈ OS2 : vi ' vj. (4.12)

Genus. We implement Genus as a Boolean function GEN which computes object similar-

ity:

GEN(OS1 , OS2)
def
= OS1 ' OS2 (4.13)

In other words, in this version of the algorithm we take object similarity to be a sufficient

condition to GEN to hold.

Differentia. We implement Differentia as a boolean function DIF which holds

for two objects with the same genusObj if there is no visual object, aside the ones in their

genusObj, which make the two objects similar, namely:
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DIF(OS1 , OS2)
def
= @vi ∈ OS1 \ GENOF(OS1)

@vj ∈ OS2 \ GENOF(OS2)

vi ' vj (4.14)

where GENOF is a function which computes the genusObj, as:

GENOF(OS1)
def
= {vi ∈ OS1 |∃OS2 ∈ M, ∃vj ∈ OS2 :

OS1 6= OS2 ∧ SG(OS1 , OS2) ∧ vi ' vj} (4.15)

The function SG(OS1 , OS2) returns true if the user in the past gave supervision (see

below), telling the algorithm that OS1 and OS2 share a genusObj. The way in which this

function computes the genusObj is the reason that limits the applicability of this algorithm

to hierarchies with just two levels. The unary function GENOF(OS1) enables to separate the

subset of the visual objects associated to the genusObj of OS1 from all the others, based

on the similarity of the visual objects of OS1 with the visual objects of all the other objects

seen so far. This obviously disallows to compute more than one genusObj per object,

and thus to encode deeper hierarchies. Figure 4.4 shows two objects with the same Genus

(green lines) but for which also DIF holds (red line, the two visual objects are different).

User feedback. We use two functions ASKGEN and ASKDIF which ask the user, when avail-

able, about Genus and Differentia. If this is not the case, they return GEN(O, E) and

DIF(O, E), respectively. Notice how the user intervention is exploited exactly and only in

the computation of Genus and Differentia, in order to consolidate object similarity

into object identity, as from the previous section. The user feedback collected by ASKGEN
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O(S2)

O(S1)

FIGURE 4.4: Two distinct objects which share the same genusObj.
The green lines connect similar visual objects, while the identifying visual

objects are highlighted in red.

and ASKDIFF is exploited by a function UPDATESIMILARITY(M) whose goal is to adjust

the diversity threshold θ, see Equation (4.9), based on the knowledge available so far. The

threshold is computed using the same strategy we adopted in the fully supervised algorithm

shown in Section 3.1.2 each time a new supervision is provided by the user. These supervi-

sions are stored as a set:

K = {〈δi, yi〉 | 1 < i < |K|}

where δi = d(Oi, Ei) is the distance between pairs of objects-encounters, coupled with a

boolean value yi = SG(Oi, Ei) containing the supervision of the user. The value of θ is

computed solving the following problem:

θ = argmax
λ

|K|

∑
i=1

1((δi < λ)⊕¬yi) (4.16)

where 1 is the indicator function mapping True to 1 and False to 0, and ⊕ is the exclusive

OR. Section 3.1.2 explains how to solve this problem efficiently.

The algorithm building the subsumption hierarchy is implemented as the infinite loop

shown in Algorithm 2. This algorithm is a direct implementation of the recursive construc-

tion of objects given in Equation (4.3) via the test for object equality and subsumption as
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Algorithm 2 Build subsumption hierarchy

1: procedure BUILDSUBSUMPTIONHIERARCHY
2: M← ∅;
3: while True do
4: E← PERCEIVE()
5: ifM = ∅ then
6: ADDOBJECT(M, E)
7: continue
8: O← GETMOSTSIMILAROBJECT(E,M)
9: if ASKGEN(O, E) then

10: if ASKDIF(O, E) then
11: ADDOBJECT(M, E)
12: else
13: UPDATEOBJECT(M, O, O ∪ E)
14: else
15: ADDOBJECT(M, E)
16: UPDATESIMILARITY(M)

from Equations (4.7) and (4.8) . We use a function GETMOSTSIMILAROBJECT which,

given an object and a cumulative memory M of all the objects perceived so far, returns

the most similar object. The implementation of this function is based on the considera-

tion that there are two possible cases. In the first, that same object was previously seen

and, therefore, this is the object to be selected. In the second, the object was not previ-

ously seen, in which case there may be no objects sharing visual objects (no objects with

the same genusObj) or there may be one or more similar objects, possibly including the

genusObj, which share the genusObj with the new object. Based on this intuition GET-

MOSTSIMILAROBJECT returns the nearest already seen instance that satisfies the similarity

constraint of Equation (4.12), if existing, otherwise it returns the most similar genusObj,

computed as described above. Notice that we make the further simplifying assumption to

ask the user, via ASKGEN, only for the most similar element. Thus the model is not guaran-

teed to keep a hierarchy always in line with the desires of the user. Ideally one should ask

for supervision for every similar object. This choice was made to limit the effort required to

the user. This problem is solved in the algorithm presented in the next chapter.

For what concerns lines 9–15 of the algorithm, we have the following: (i) in Line 11,
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it creates a new object because Differentia holds for an object with the same Genus

(as from Equation (4.8), this is the case when subsumption holds); (ii) in Line 13, it extends

an already existing object for which Genus holds but Differentia does not (as from

Equation (4.7), this is the case when we have object identity); in Line 15, it creates a new

object corresponding to an instance of a new genusObj. It is easy to see how the hierar-

chy satisfies, at any moment in time, the five conditions provided in the previous section.

The algorithm satisfies the requirements listed at the start of the chapter: (i) the hierarchy

is built autonomously and it becomes a hierarchy of classification concepts thanks to the

user feedback, (ii) no assumption is made about the input objects, (iii) the algorithm learns

objects never seen before and (iv) it incrementally learns how to recognize objects starting

from zero.

4.6 Experiments

In the following we report first qualitative and then quantitative results in terms of capac-

ity of the learning algorithm to recover the notions of Genus and Differentia of the

user. Below, we say that the answer is correct when this is the case, incorrect otherwise.

Figure 4.5 shows two cases of encounters that were correctly processed by the algorithm

with no user intervention. Each column represents the sequence of steps made to process

a new encounter (the visual objects in the purple box), namely perception, recognition and

memorization, and the two columns represent cases giving rise to different choices made by

the algorithm. The encounters already present in memory are represented by gray dashed

boxes, and the corresponding objects by black boxes. A box covering visual objects from

multiple objects represents the genus of that group of objects. The linked couples of blue

visual objects represent items that were recognized as similar by the machine. In the left

column, a new encounter is correctly recognized as having the same Genus of two objects
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already stored in memory. The genusObj is updated by incorporating the visual objects

of the encounter. This is all the algorithm can do, as the encounter does not have enough

visual information to allow for an instance-level recognition. In the right column, a new

encounter is correctly recognized as being the same as an object stored in memory. The

visual objects of the encounter are added to the retrieved object, while its genusObj is

updated with the visual objects that are found similar to it. Note how updating the object

enriches its representation by including a viewpoint that was never observed before (the one

showing the sockets).

Figure 4.6 shows two cases of encounters in which the algorithm made choices which

are not aligned with the user perspective. In the left column, the algorithm manages to

recognise the Genus of the new encounter, but fails to realize that the encounter is actu-

ally the same as one of the objects it has seen before. In so doing it wrongly creates a

new object in memory. This error can be avoided if user feedback is available to answer

an ASKDIFFERENT query (line 10 of Algorithm 2). The right column represents a case

in which the new encounter was mistakenly identified as a completely different object. In

this case, the availability of user supervision can prevent the algorithm from performing the

wrong match (and spoiling the representation in memory of the retrieved object). The algo-

rithm would in this case create a new object initialized with the encounter. Note however

that in case the encounter was indeed an instance of an already stored object (but different

from the one retrieved by the machine), or shared a Genus with it, asking feedback for

the most similar object only as done in Algorithm 2 would not suffice to discover it (see

discussion in Section 4.5.2 on the limitations of this choice). Indeed, the algorithm should

progressively ask for feedback on a sequence of objects (of decreasing similarity) until the

user confirms the match, which could end up being too demanding for the user. A possi-

ble solution is that asking the user to provide names for objects and genuses, thus making

the mapping between substance and classification concepts explicit. This however does not
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FIGURE 4.5: Examples of two correct choices made by the algorithm.
The left column depicts a case in which the machine correctly identified
the Genus of the new encounter (the encounter does not contain enough
information for instance-level recognition). The second column repre-
sents a case in which the new encounter was correctly identified as an
already seen object. The new visual objects were added to the matched
object. In addition, the genusObj was updated with the subset of visual

objects matching it.
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solve the problem entirely, as without full supervision the memory would contain objects

without names. Note also that a purely name-driven supervision cannot work, for the very

reasons that have been discussed when contrasting substance concepts with classification

concepts (e.g., the user could provide the name of a genus when the new encounter also has

a differentia).

What described above provides a qualitative view of the behaviour of the algorithm,

which largely depends on the availability of user feedback. We have also ran a quantitative

evaluation showing how recognition performance over time are affected by the amount of

supervision. The experiment is organized as follows. Sequences are showed one after the

other and at each iteration the user provides supervision with probability α. We have run

experiments for different values of α with α ∈ {1.0, 0.3, 0.2, 0.1} and where α = 1.0 is the

setting where supervision is always available. We have used a moving average with size

fifty and stride fifteen to create the visual objects. In all settings the model is provided with

a supervision for each of the first five sequences in order to bootstrap the estimation of the

diversity threshold θ. We ask the model to predict same and Different at each iteration

before receiving feedback from the user (if available, otherwise the algorithm prediction is

used to update the memory). The results of the experiment are depicted in Figure 4.7.

Figure 4.7(a) presents the accuracy computed for the prediction of Genus. A prediction

is correct if the new encounter shares a Genus with an object in memory and the algorithm

retrieves the correct genusObj, or the algorithm correctly identifies the encounter as a

completely novel object. The plotted results are computed as the mean accuracy of the

prediction over two thousand different runs, each with a different order of the sequences,

smoothing the curves using a moving average of length five. Surprisingly enough, in the first

half of the experiment the smaller the supervision the better the accuracy. This is due to the

fact that at the beginning, most sequences contain new objects, thus the more the supervision

the higher the bias of the model to predict a new sequence as unseen. This bias progressively
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FIGURE 4.6: Examples of two incorrect choices made by the algorithm.
The left column depicts a case in which the machine recognized the cor-
rect genusObj for the new encounter but not the correct instance. This
led to the creation of a new separate object with that genusObj. The
second column represents a case in which the new encounter (contain-
ing a wallet) was mistakenly assigned to a completely different object (a

smartphone).
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FIGURE 4.7: Accuracy of prediction for Genus (a) and Differentia
(b) respectively, for increasing number of iterations and different amounts

of supervision (curves for different values of α).

fades away proceeding with the experiment, and all models end up achieving similar results

on average. The model with less supervision, albeit obtaining high performance in the first

phase due to its bias on predicting the objects as seen, loses its advantage in the later stages

of the experiments. This is due to the fact that in the first iterations the pool of objects is

quite limited, but as the experiment progresses, more and more objects are added, making

the prediction tasks harder.

Figure 4.7(b) shows the accuracy of the prediction of Different, over the subset of

sequences for which the Genus is predicted correctly. In this case the greater the amount

of supervision, the better the model is capable of recognizing whether the new sequence

contains enough information to identify the correct instance. Apart for the setting with least

supervision (α = 0.1), for which the performance gap with respect to the fully supervised

case stays rather large, the different models end up achieving comparable performance.

Overall, these preliminary results indicate that the algorithm is capable of progressively

acquiring the notions of Genus and Differentia with reasonable accuracy despite see-

ing a small number of examples and receiving supervision on a fraction of them.
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4.7 Summary

In this chapter we have proposed a theory and an algorithm which enables to extend the

learning capabilities of the algorithm presented in the previous chapter, allowing the recog-

nition of instances as well as classes. Albeit enabling the learning of hierarchies of two

levels (e.g. instances as well as classes), the current implementations has a series of lim-

itations compared to the algorithm we presented in the previous chapter. The algorithm

described in Section 3.1.2 can determine when to elicit the supervision from the user, thus

allowing for a semi supervised execution. The one presented in this chapter can cope with

partial supervision, but is unable to decide when a supervision must be asked. Furthermore

the model we presented in this chapter (as well as the one presented in Chapter 3) does not

offer a clear way to build a hierarchy with more than two levels, while the theory allows for

hierarchies of any depth. The Algorithm we present in the next chapter is able to overcome

both these limitations, being able to handle hierarchies of any kind while having a mech-

anism to estimate the confidence in its own predictions, thus being able to increase new

knowledge base without constant human intervention.
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Chapter 5

Building the hierarchy

Chapter 4 introduced the theoretical bases to extend the learning framework described in

Chapter 3 to formalize the construction of classes from instances of objects. The fact that

there is no real difference between how classes and instances are handled enables to also

build classes on top of other classes, obtaining what is, in the end, a full-fledged hierarchy.

The algorithm presented in Section 4.5.2 still is not able to model hierarchies deeper

than two levels. This is partially due to the simplistic learning architecture inherited from

the algorithms described in Chapter 3, where the prediction was entirely based on distances

between representations and the unknown detection relied on a single global threshold. This

chapter presents a framework that overcomes the limitations of previous ones, by substitut-

ing the simple distance-based approaches with an engine capable of building distribution

probabilities for each of the objects in the hierarchy of the model. As for the model de-

scribed in Algorithm 1, this framework is able to learn in a partially-supervised setting,

eliciting the supervision of the user only when necessary.

The rest of the chapter is divided as follows: Section 2.4 presents the major lines of

research that are related to hierarchical learning and classification. Section 5.1 details the

changes that were done in implementing Genus and Differentia functions with respect

to the implementations used in the previous Chapter (Section 4.5.2). Section 5.2 details the
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new hierarchical framework that is the core contribution of this chapter. In Section 5.3 we

present a series of experiments as well as a new dataset compatible with the setting. Finally,

in Section 5.4 we present some remarks on the whole work presented in the chapter.

5.1 The Setting

The way in which our algorithms work is similar to the one presented in the previous chapter

(Section 4.5.1). It consists of a cyclical procedure in which at each iteration a new encounter

(a sequence depicting an object) is shown to the model. The model then decides whether or

not to query the user for support. The interaction comes in a form of a series of queries over

the Genus and Differentia of the new encounter with respect to some of the objects

that were seen in the past by the algorithm (which are stored in its internal memory). Via

this interaction, the user can guide the algorithm to assign the new encounter to the correct

position inside the machine’s knowledge base.

The dataset we used in the experiments is composed of a collection of objects organized

in a perfectly balanced hierarchy of 4 levels. The visual objects are computed in the same

way as in the previous chapter. The environment in which the objects were recorded is still

a uniform blank background.

5.1.1 Practical considerations

The knowledge of the machine is organized following a tree-like structure, that encodes the

information about the relations among all the objects it encountered, using a hierarchical

tree-like structure. Each node in the hierarchy is a representation of a different object. The

root represents the "thing" object, while the leaves represent single instances of objects.

The internal nodes represent the various genusObj objects (which can be seen as classes).

Two nodes that are in a particular subtree have (among many) the genusObj of the node
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P

N1

C1 C2 N2

O1 O2 Octx GEN(O1, O2, Octx) GENOF(O1, O2, Octx)
C1 N2 null > P
C1 N2 P ⊥ null
C1 C2 P > N1
C1 C2 N1 ⊥ null
C1 N1 P > N1

FIGURE 5.1: Example of user’s target hierarchy (on the left) and the out-
put of gen and GENOF functions on a subset of target objects

that spans that particular subtree (for instance object "human" is a genusObj of Karl and

Franz). The "thing" object is the genusObj of all the objects inside the hierarchy, i.e. any

two objects have at least "thing" as common genusObj.

In order to identify and distinguish among the multiple genusObj between a couple of

objects in the notation of this chapter we make use of a third object Octx, referred as context,

whose role is to limit the scope of the evaluation to only knowledge contained in the context

object Octx. If we imagine the two target objects (for which we are evaluating if there exists

a genusObj) as two nodes in a tree, having both the context node as one of their ancestors,

asking if there is a genusObj with respect to the context node means checking whether

there is a descendant of the context node that is also an ancestor of the two target objects.

Figure 5.1 presents an exemplar hierarchy of objects (known only by the user) together with

some examples of this formalization. The function GEN(O1, O2, Octx) return > if there

exists a genusObj for O1, O2 in the context for Octx, i.e. a node Og that is a descendant

of Octx and an ancestor of O1 and O2. If so, The function GENOF(O1, O2, Octx) returns

the node Og (if there are multiple candidates, the highest in the hierarchy is returned). If

GEN(O1, O2, Octx) returns ⊥, then no genusObj exists in the hierarchy between O1, O2

(below Octx), thus GENOF(O1, O2, Octx) would return null. If no context node is selected

GEN always returns >, and GENOF always returns the root of the hierarchy (the "thing"

object).

For what concerns the DIF query, due to the fact that its role is to decide whether two

objects are distinguishable, it does not require a context, thus it is formalized with the same
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syntax used in the previous chapter. If DIF(O1, O2) does not hold, the two objects are

indistinguishable.

Algorithm 3 The main loop of the framework.
1: procedure MAIN
2: M← ∅
3: K ← ∅
4: H ← TREE()
5: while True do
6: E← PERCEIVE()
7: if ¬SEMISUPERVISEDMODE() then
8: Og ← ASKNAME(r)
9: if Og /∈ H then

10: Og ← ROOT(H)

11: ENCOUNTERFROMGENUS(Og, E)
12: else
13: SEMISUPERVISEDENCOUNTER(E)

5.2 The algorithm

The hierarchical framework is presented in Algorithm 3. It consists of an infinite loop that

takes as input a new sequence at each iteration.

The new sequence is first forwarded to an embedding algorithm that converts the video

sequence, currently encoded as a series of frames, in a collection of visual objects (i.e. the

encounter E). This procedure is done by the means of a deep neural network, pretrained on

a self-supervised class agnostic task [10]. The network used for this operation is the same

used in the previous Chapter (discussed in Section 4.5.2).

The rest of the loop is branched in two different conditional paths, depending on the type

of interaction that the algorithm must have with the user. In the first mode, the user has full

control over the categorization of the newly encountered object; the role of the algorithm is

to minimize the effort required to the user. This mode is useful to bootstrap the knowledge

and prediction capabilities of the machine (via interaction of the user or by the means of

an offline data resource) or when it is mandatory to keep perfect consistency between the
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hierarchy of concepts of the user and the hierarchy of objects seen by the machine. The

next phase is the actual research of the correct position in H in which the new information

must be inserted. This research is performed by the function ENCOUNTERFROMGENUS,

described in the next section. It is structured as an iterative procedure that starts from a

known genusObj of the new encounter. In order to speed up the interaction, the user can

optionally provide a name for the object (line 8). If the user provided a name associated to

a node inside the hierarchy, the research start from that particular node, If not, the research

will start from the root ofH.

The second mode enables the machine to completely bypass the user, predict its class

and fully autonomously integrate the new object in its current knowledge base. This al-

lows for a drastic reduction of the effort required by the user, albeit potentially leading to

misalignment between the machine’s knowledge and the user’s will.

The knowledge inside the machine is organized by the means of three different data

structures. The first data structure H represents the hierarchy of all the objects currently

seen by the machine. It is encoded as a tree whose leaves are single instances of objects,

and the internal nodes are the various genusObj used to organized the instances. The root

of the tree represents the "thing" object, which represents any kind of object. Any object

that will be ever seen is assumed to have at least "thing" as genusObj. This formulation

enables the encoding of multiples layers of nested genusObj for each instance, each of

them representing concepts that are more abstract and general the higher their position in

the hierarchy. The second data structure M links each visual object extracted from each

encounter with a specific node inside the hierarchyH. This data structure enables to link the

visual representations extracted from the video streams to the hierarchy of concepts hosted

inside the machine’s hierarchy. Its size is equal to the number of visual objects. Currently

no solution is implemented to bound the memory footprint of M. But this is necessary if

the pool of objects must continuously increase. A solution could be the introduction of a
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selective forgetting mechanism. This option will is discussed as one of the possible future

directions in the next chapter.

The last data structure K is used to store and organize the supervision received from

the user and it is almost identical to the one described in Section 3.1.2. The supervision

memory K is updated each time the user decides that the new encounter contains an unseen

object and each time she decides that the new encounter E is the same as one object that

was previously seen by the machine. The way in which this structure is updated resembles

the one used in the algorithms shown in Chapter 3. Its size is equal to the number of times

the user gave a supervision.

If the object was not seen before and the encounter would have been misclassified by the

machine, a tuple < pi,⊥ >, being pi the probability associated with the wrong prediction,

is inserted in K.

If instead the user decides that the encounter contained an already seen object Oo (that

was correctly predicted by the machine), then a tuple < pk,> > is inserted in K, with pk

being the probability, estimated by the machine, that Oo and E are the same. If the machine

predicts a node that is not Oo or an ancestor of Oo, no tuple is added.

The procedures that make predictions and estimates these probabilities will be discussed

in detail in Section 5.2.2. The supervision memory K is used to train and refine the predic-

tion engine.

5.2.1 Encounters

During the encounter procedure the machine, guided by the supervision of the user, walks

through the hierarchy H searching for the right position for inserting the information pro-

vided by the new encounter. The procedure , aside from the new encounter E, takes as

input a node Og inside H that is considered for sure a valid genusObj for E (called the

current genusObj). In the simplest case, Og can be the root of H (i.e. the genusObj
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C1,S2 C2 S1 ...

S3 Create a new genus
between the child

and the parent.
Add the new object

as a leaf. C1,S2 C2 S1
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Preconditions Action

¬ ISLEAF( a ) ∧¬DIF( a , GENOF(S1, C1, a ))

¬GEN(S1, C1, a ) ∧ ¬GEN(S1, C2, a )

¬DIF(S2, C1)

GEN(S3, a , a ) ∧ DIF( a , GENOF(S3, C1, a ))

FIGURE 5.2: Representation of four possible choices that can be taken
during the iterative encounter procedure. On the top the ideal hierar-
chy for the user is depicted. The current genusObj (i.e. most specific
genusObj of the new encounter known so far) is depicted in cyan. The
candidate node that is being evaluated is depicted in green. The new en-
counter is depicted in red. The table shows both preconditions and effects
of each of the four actions. The preconditions (in the first column) are
depicted as formulas. They are coupled with the portion of the hierarchy
known to the machine up to that point. The effects are shown in the sec-
ond column in the form of the structure of the hierarchy of the model after

the action was taken.

"thing"). Then the machine starts moving down to find the correct node. Given Og as the

current genusObj, the algorithm must take one out of four possible actions. Figure 5.2

presents a graphical representation of all the four cases. On the top left it is depicted the
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ideal hierarchy of concepts for the user. The new encounter is depicted in red. The current

genusObj (i.e the node that at the previous iteration was decided as being a genusObj

of the new encounter) is depicted in cyan, the node in the hierarchy for which the machine

is asking queries is depicted in green. For each of the possible actions, each row in the table

shows the preconditions that must be met (described in formulas and depicted as the portion

of the hierarchy currently known to the machine) and the effect that each action has on the

inner hierarchy of the machine. The four actions that can be taken are:

1. Iteratively repeat the search over one of the children of the current genusObj. This

action requires the candidate not to be a leaf in the hierarchy and that the genusObj

between the new encounter and one of the children of the candidate, given the current

genusObj as the context, is equal to the candidate. This second condition is the

one that determines that the candidate is a genusObj of the new encounter, thus

enabling the candidate to become the new current genusObj.

2. Add the new encounter as a new object. This happens if none of the children of the

current genusObj has a genusObj in common with the new encounter (except the

current and all its ancestors)

3. Recognize the encounter as an object in the existing hierarchy. This happens if DIF

between the candidate and the new encounter does not hold. The information in the

new encounter is added to the representation of the candidate node.

4. None of the conditions above hold. The user decided that the new encounter and the

candidate shares a genusObj that is currently not in the hierarchy. A new internal

node is added, having as parent the current genusObj and as children the candidate

and the new encounter (which is treated as a new object).

Algorithm 4 presents the whole encounter procedure for a new encounter E, starting

from a current genusObj Og. The procedure is built around two nested loops. The outer
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Algorithm 4 The encounter procedure
Input : a genus g in the current hierarchy
Input : a new encoutered object E

1: procedure ENCOUNTERFROMGENUS(Og, E)
2: continue← >
3: while continue do
4: continue← ⊥
5: found← ⊥
6: for Oc ∈ GETCHILDREN(Og) do
7: if GEN(E, Oc, Og) then
8: found← >
9: On ← GEFIRSTCHILD(Oc)

10: if ¬ISLEAF(Oc) ∧ ¬DIF(Oc, GENOF(E, On, Og)) then
11: Og ← Oc
12: continue← >
13: else if ¬DIF(Oc, E) then
14: UPDATE(Og, E)
15: else
16: create a new genus for Oc and E
17: break
18: if ¬found then
19: add E as new child of Og

loop cycles vertically, moving one level deeper inside the hierarchy H at each iteration,

while the inner loop cycles horizontally on each child of the current genusObj. The

first interaction of the user is in line 7. Here the machine must determine if there exists a

genusObj between the new encounter E and one of the children of the current genusObj

Og that is more specific than Og itself, i.e. that must lie in the subtree of Og. If this condition

does not hold for any of the children of Og , then the encounter is considered to belong to

an object never seen before and is then added toH as a new leaf, below Og (line 18).

If a node Oc (son of Og) makes the query at line 7 hold, then the exploration must

continue, starting from the edge that links Og and Oc. At line 10 the procedure queries the

user to verify if it is necessary to continue the search into the subtree of Oc, (i.e. setting

Og = Oc and performing another iteration on the outer loop). Two conditions must be met

for the search to proceed: first Oc can not be a leaf, due to the fact that an instance can

only be the genusObj of itself. The second condition is that Oc must be a genusObj of
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Algorithm 5 The predict/encounter procedure
Input : a new encouter E

1: procedure PREDICTENCOUNTER(E)
2: Og, prob← PREDICT(GETROOT(H), E, 1.0)
3: while ¬GEN(E, Og, PARENT(Og)) do
4: Og ← PARENT(Og)

5: ENCOUNTERFROMGENUS(Og, E)

E. The second conjunct at line 10 verifies exactly this. It checks whether the genusObj

between one of the children of Oc and E (in the context of Og) is visually equal to Oc, i.e.,

if DIF between the two does not hold.

If Oc is not a genusObj of E, but still the user states that it has a genusObj (aside

from Og) in common with E, then the model asks at line 13 whether for the user DIF

between Oc and E does not hold (i.e. the two objects are the same). If so it merges E in Oc.

If neither the condition at line 10 nor the one at line 13 hold, then the only remain-

ing possibility is that E and Oc must be siblings but their direct parent is not Og, but a

genusObj that is currently missing from the machine’s hierarchy H and must be added;

this node will then have Og as parent (E and Oc will become the grandchildren of Og).

A refined variant of the procedure described above is presented in the algorithm 5. In

this variant, the machine tries to predict the optimal point Og ∈ H to start the encounter

procedure. This approach has the potential to reduce the effort required to the user, but it

is prone to errors. For this reason, this variant must check that the predicted node Og is a

genus of the new encounter E. If this is not the case the machine moves up of one level in

H until the condition is not satisfied. The procedure that performs the prediction will be

detailed in the next section.

5.2.2 Predictions

One of the pillars of the framework resides in its ability to perform Continuous Open World

recognition over its ever-expanding hierarchy of categories H. This feature is achieved via
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Algorithm 6 The prediction procedure
Input : a new encouter E
Output : a (most specific) node in the hierarchy and its inclusion probability for E

1: function PREDICT(E)
2: Oc ← GETROOT(H)
3: pr ← 1.0
4: for v ∈ E do
5: Ov, pv = PREDICTVISUALOBJECT(v, GETROOT(H), 1.0)
6: if Oc = GETROOT(H) ∨ pr < pv then
7: Oc ← Ov
8: pr ← pv

9: return 〈Oc, pr〉
10:
11: function PREDICTVISUALOBJECT(v, Og, pg)
12: λ← GETREJECTIONTRESHOLD(K)
13: C ← GETCHILDREN(Og)
14: pb ← max Oc∈C PROBABILITY(Oc, v)
15: Ob ← arg max Oc∈C PROBABILITY(Oc, v)
16: if pb > λ then
17: return PREDICTVISUALOBJECT(v, Ob, pb)
18: else
19: return 〈Og, pg〉

a subroutine that is capable of moving through the hierarchy, identifying the best node for

a new encounter, predicting the probability that the new encounter belongs to the selected

node and finally deciding whether this probability is high enough to trust the prediction.

The prediction procedure is shown in Algorithm 6. It takes as input the current encounter

E and returns the most specific node in the machine hierarchy to which E is predicted to

belong, together with the corresponding probability. The procedure computes a prediction

for each visual object v ∈ E. Remember that E is a collection of representations extracted

from a stream, as discussed in Section 4.2 and depicted in Figure 4.2. Among all the predic-

tions for each visual object, the one that is returned is the one whose probability is maximal,

excluding all the predictions that return the root node (which has always probability 1.0).

The core of the procedure is the routine that computes the prediction for a single visual

object, represented in Algorithm 6 as the function PREDICTVISUALOBJECT. At a high

level, the prediction procedure starts at the root of the hierarchy H and as a first operation
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decides which of the children of the "thing" node (the root) is the most likely valid prediction

Ob for the visual object v. In this context a node is valid if the probability that the visual

object v belongs to that node is greater than a threshold λ. If such node exists, then the

procedure repeats looking at the children of Ob. The procedure terminates when either no

valid node is found or the most likely valid node is a leaf. It is structured as a recursive

function that takes as arguments the visual object v to be predicted, the current genusObj

Og (for which the algorithm decided in the previous recursion that the new object belonged

to it), and the probability that v belongs to Og, that we will call probability of inclusion.

The procedure starts with the computation of the threshold λ. The estimation of the

correct λ is computed by solving the following optimization problem:

λr = argmax
λ

|K|

∑
i=1

1((pi > λ)⊕¬yi) (5.1)

where 1 is the indicator function that is used to map the boolean value > to to 1 and ⊥ to

0, and ⊕ is the exclusive OR. The problem is basically the same as the one presented in

Equation 4.16, only applied to probabilities rather than distances.

As show in Section 3.1.2, this problem can be solved with a number of evaluations linear

in the size of K, by just keeping K sorted by pi and testing all thresholds λi =
pi+pi+1

2 for

i ∈ [0, |K|] (where p0 = p1 − ε and p|K|+1 = p|K| + ε for an arbitrary small ε).

After computing the threshold λr, the procedure continues by computing the probability

of inclusion for all the children of Og, and selecting the node Ob with the highest value. If

the probability of inclusion of Ob is higher than the threshold λ, then the recursive step is

taken and the whole procedure is computed again, starting from Ob. If the probability is

lower than λ, the procedure returns Og as the predicted node.

The estimation of the probability of inclusion can be done with any technique that is

capable of estimating the probability that an element belongs to a set. Here we choose to use
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Algorithm 7 Semi supervised encounter procedure
Input : a new encounter E

1: procedure SEMISUPERVISEDENCOUNTER(E)
2: λl , λu ← GETCONFUSIONTRESHOLDS()
3: Og, pc ← PREDICT(GETROOT(H), E, 1.0)
4: if pc > λu then
5: if ISLEAF(node) then
6: UPDATE(Og, E)
7: else
8: add E as a new child of Og

9: else
10: while ¬GEN(E, Og, PARENT(Og)) do
11: Og ← PARENT(Og)

12: ENCOUNTERFROMGENUS(Og, E)

the Extreme Value Machine (EVM) framework proposed by [79]. This framework works

by selecting a subset of examples for each class it has to classify. Each of these examples,

called extreme vectors, are associated to a Weibull distribution that is, at test phase, used to

compute the probability of inclusion of a new point (based on its Euclidean distance from

the closest extreme vector). Each node has its own classifier, trained by using as examples

all the visual objects associated with any of the nodes in the subtree span by that node.

5.2.3 Partially-supervised Encounters

The encounter procedure described in Section 5.2.1 is based on the assumption that the user

will always be queried and the correct target node inside the hierarchy H will always be

identified. This obviously requires a lot of effort from the user. As explained in previous

sections, asking or providing an entry point for the encounter procedure can lower the num-

ber of queries that the algorithm must make, but this entry point (selected by the user in line

8 of the Algorithm 3), is not guaranteed to always be present. In this section we will present

a variation of the encounter procedure that enables the machine to autonomously classify

and add a new encounter, bypassing the user.

The rationale of the procedure is that if the user should be queried if and only if the
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machine is not secure enough of its prediction. If this is not the case, it must ask the user,

as in the standard fully supervised procedure. If on the other hand it is confident enough, it

can proceed to autonomously add the new knowledge insideH. While acting unsupervised,

the machine has not enough information to distinguish all the four cases presented in Figure

5.2. Specifically, it is not able to model case 4, in which it is necessary to add a new

genusObj inside the hierarchy (and thus make it deeper). This is due to the fact that

from the point of view of the algorithm a new internal node is redundant (the new object

could be simply added as a new child of the parent node). For this reason the algorithm

presented in this section is capable of handling only the other three cases (rows 1,2,3 in

the table of Figure 5.2), namely the search step (in which the exploration continues in the

subtree of the current genusObj), the addition of the new encounter (as an already seen

object) to a node in the hierarchy and the creation of a new leaf in H. The decision is done

by computing a confusion threshold λu that determines the minimum probability value for

which the machine is confident in the accuracy of the prediction. As in Equation 3.1 , this

probability boundary is computed solving the following optimization problem:

argmax
λl ,λu

H(Yλu
λl
)− H(Yλl )− H(Yλu) (5.2)

subject to: Yλu
λl

= {y|〈y, p〉 ∈ K ∧ λl ≤ p ≤ λu}

Yλl = {y|〈y, p〉 ∈ K ∧ p ≤ λl}

Yλu = {y|〈y, p〉 ∈ K ∧ λu ≤ p}
|K|

∑
i=1

1(λl ≤ pi ≤ λu) = dα|K|e (5.3)

Where Yλu
λl

is the set of user answers related to objects with a probability within the two

thresholds, while Yλl and Yλu are the sets related to objects below λl and above λu respec-

tively. The function H returns the entropy of a given set. Eq. 5.3 imposes the constraint that
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the user is queried on average at most with probability α, where the probability is estimated

using the currently available feedback. The objective function is chosen in order to set the

two thresholds in the area where the algorithm is maximally confused, adjusting the size of

the area to the effort the user is willing to provide. Due to its formulation, the problem must

be solved only when K changes, i.e. when the user provides a new supervision.

The semi supervised procedure is presented in Algorithm 7. After computing the con-

fusion threshold and predicting the most specific node to which the encounter belongs, the

algorithm checks whether the probability associated with the prediction is greater than the

threshold λu. If this is the case, the algorithm autonomously adds the encounter to its hierar-

chy. This can happen in two ways. If the predicted node is a leaf, the encounter is considered

containing an object already seen and the new information is added to that leaf. Otherwise,

the object is considered as a new unseen object, and a new leaf is added as a child of the

predicted node. If the probability associated with the prediction is lower than λu, then the

user is queried to find the suitable starting point in the hierarchy, and the standard encounter

procedure is executed from that.

5.3 Experiments

The dataset we used in the experiments is composed of a collection of objects organized in

a perfectly balanced hierarchy of 4 levels, such that each node (except for the leaves) inside

the hierarchy has 3 children, leading to a total of 34 = 81 leaves. Each object was recorder

5 different times while rotated or deformed against a uniform background. The total number

of video sequences is 405. The hierarchy was used to simulate the supervision of the user.

To compute the visual objects, starting from the output of the embedding network, we

have used a moving average with size 50 and stride 25. In all settings the model is provided
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with a supervision for each of the first 10 sequences in order to bootstrap the estimation of

the thresholds.

The experiments are performed by showing the sequences to the machine, one after the

other. Before the supervision the models are queried for a prediction on the current object,

which is then used to build the plots shown in the following sections. The whole operation

is performed 100 times, each time changing the order in which the sequences were shown to

the model. The results are averaged in order to obtain more robust estimates of performance

measures.

The user is simulated by an agent that provides supervision to the model by comparing

the hierarchy of the dataset against the hierarchy of the machine, and replying to the queries

of the algorithm accordingly. As the user is simulated in our experiments, we skip the step

of asking the user to suggest a name for the new encounter (as in line 8 of Algorithm 3); the

encounter procedure always start at the "thing" node (the root of H) or at a node suggested

by the machine. All the code used to implement and evaluate the algorithm, as well as the

dataset, is available in a early release form1.

5.3.1 Full supervision

The first series of experiments were conducted in a fully supervised setting. The goal of

the algorithm in this setting is to aid the user in the task of categorizing all objects she

encounters, by suggesting the correct point in the hierarchy H in which each object should

be placed.

In this setting, the algorithm has the sole role of speeding up the identifications of the

correct location of the new encounter int the hierarchy, thus minimizing the effort of the

user. The hierarchy of objects that will be constructed at the end, as well as the intermediate

ones, will always be consistent with the ground truth. As explained in section 5.2.1, the

1Early release: https://github.com/lucaerculiani/hierarchical-objects-learning



5.3. Experiments 95

FIGURE 5.3: Average geodesic distance between the predicted and the
correct node in a setting with complete supervision, during the course of
the experiment. The blue line represents the naive model (that always
predict the root node), while the red line represents the model described

in algorithm 5.

machine aids the user by predicting the starting node, in H, from which the user navigates

the hierarchy in search of the correct node. The more closer the prediction of the machine

(to the correct node), the lower the effort of the user.

The performance metric used in this set of experiments is the geodesic distance (the

number of edges in the shortest path) between the node predicted by the machine and the

target node selected by the user. If the algorithm predicts the correct node, the cost is 0,

the more distant the prediction in H, the greater the cost. Even if this measure is affected

by the size of the hierarchy (the deeper the tree, the greater the average distance between

couples of nodes), due to the fact that the evolution of the hierarchy is completely guided

by the user, any fully-supervised model has always its hierarchy updated in the same way.

This fact keeps this performance measure unbiased in the context of this experiment.

Figure 5.3 presents the average geodesic distance between predicted and correct node

for a model (the red line) using Algorithm 5, compared with a naive algorithm (in blue) that

always suggests the root of H as a starting node. The objects were presented in a random

order, and the experiments were repeated 100 times, averaging the results at each iteration.
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This experiment can be seen as an ablation study to determine whether the prediction frame-

work is actually useful to the user. A badly behaving predictor could in principle do worse

than the naive algorithm, by predicting a node in a subtree that is more distant than the root

node.

Our model substantially outperforms the naive algorithm in this fully-supervised task.

After an initial phase in which the cost increases due to the rapid expansion of the hierarchy,

the average geodesic distance starts decreasing. This is due to the fact that the algorithm

starts accumulating more and more encounters for each of the objects, and this enables it to

more accurately model each class. Meanwhile, as expected, the naive algorithm converges

toward an average cost that is equal to the average distance between the root nodes and the

leaves (the hierarchy of the dataset is composed by four levels).

5.3.2 Partial supervision

The next series of experiments are aimed at evaluating the performance of the machine in

a partially-supervised setting, in which the machine is required to classify and add to its

knowledge base new encounters without asking to the user, whenever possible. This setting

aims to evaluate the trade-offs between the loss in recognition performance and the amount

of times the user is spared from the task of actively classifying the new encounter.

Due to the intermittent supervision of the user, there is no guarantee that the hierarchy

H remains consistent with the desires of the user. If the machine makes a mistake that is

not corrected, the hierarchy will lose consistency with respect to the one of the user.

Different variants of the algorithm will thus produce different hierarchies. This fact

limits the applicability of the geodesic distance as the performance metric of choice. In a

balanced tree of depth n, the maximum geodesic distance between nodes is the one between

two leaves at the opposite sides of the tree, and it is equal to 2n. Due to this fact, the metric
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tends to downplay errors made on shallow hierarchies, thus penalizing deeper hierarchies,

over things being equal.

In order to avoid this bias, as suggested by [89], we used the hierarchical F-score (hF)

as performance measure. The hF-score, analogously to the standard f-score, is defined from

two measures called hierarchical precision (hP) and recall (hR). Given a set of i couples of

predicted and true node, and being Ti the set of all nodes in the path from the root to the true

target node (root and target node included), and Pi the set of all nodes in the path from the

root to the predicted node node (extremes included), hP, hR, and hF score are defined as:

hP = ∑
i

|Ti ∩ Pi|
|Pi|

(5.4)

hR = ∑
i

|Ti ∩ Pi|
|Ti|

(5.5)

hF =
2 ∗ hP ∗ hR

hP + hR
(5.6)

Figure 5.4(a) presents the average hF score at each iteration, averaged over 100 repe-

titions, of several models using the partially-supervised encounter procedure described in

Algorithm 7. The plot presents different instances of the same model with different levels

of α (0.95 in red, 0.9 in green and 0.8 in cyan), compared with the fully-supervised model of

Algorithm 5. For the same models, Figure 5.5(b) presents the probability of requesting su-

pervision, estimated counting the fraction of times in which the model required supervision

over the 100 runs.

As expected, the best performance are obtained by the fully supervised model, and de-

crease in the amount of supervision translates in a decrease of hF score. However, even

when the amount of supervision is provided in less than half of the encounters, as it is the

case with the model with α = 0.8, the model is still able to converge to a stationary value of

hF score that is 66% of the fully supervised hF score. According to the needs of the setting
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(a)

(b)

FIGURE 5.4: Plot (a) presents the average hierarchical F-score of a model
that receives full supervision, in blue, compared with a series of partially-
supervised models with different values of α. Plot (b) presents the average
estimated probability of receiving supervision, at each iteration during the

experiment.

the model can be tailored to reach certain levels of performance (at the cost of an increase

in the effort of the user) by tuning the α parameter.

5.3.3 A developmental approach

The inquiries made in Chapter 3 about the order in which the new objects were introduced to

the machine led to the conclusion that a developmental approach, in which the new objects

were introduced gradually, aided the machine. In that setting this was implemented by

keeping track of all the objects the machine had already seen, and at each new encounter

showing an unseen object with a probability equal to 0.3. In this way the introduction of

new object was spread more evenly through the entire experiment.
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(a)

(b)

FIGURE 5.5: Plot a presents the average hierarchical F-score of two
partially-supervised models, exposed to the objects in a random order (in
blue), compared with one exposed to the objects using the devel policy.
Plot b presents the average estimated probability of receiving supervision,

at each iteration during the experiment.

The experiments seen so far in this chapter use a random order instead. The effect

of this is that at the start of the experiment the probability of seeing a new object at each

encounter is quite high. In order to verify whether the findings in Chapter 3 carry over to the

hierarchical case, we also implemented a developmental experimental setting (referred to as

devel) and compared the performance of the algorithm in that setting with those achieved

in the random setting. Due to the hierarchical nature of our dataset, we decided to use a

different strategy than the one used in Chapter 3 in implementing the developmental setting.

At each iteration, the next encounter that is presented is the one whose geodesic distance

with respect to the last encountered object is minimal. With this policy, the machine is

initially exposed to a minimal subtree of objects in the hierarchy of the dataset, and then



100 Chapter 5. Building the hierarchy

gradually new objects coming from sibling subtrees are introduced.

Figure 5.5(a) presents the hF score of our partially-supervised algorithm in the random

(red) and devel (blue) setting respectively. For the sake of a fair comparison, we set the

value of alpha in each setting in order for the two settings to get a similar level of supervision

(α = 0.95 for random and 0.9 for devel), as shown in figure 5.5(b). Despite requiring a

slightly lower amount of supervision on average (64% for devel vs 69% for random), the

performance of the devel setting are consistently higher than those of the random one

across all iterations, with an average hF score of 0.66 as compared with 0.54 achieved by

the random setting. The zig-zag nature of the devel line in Figure 5.5(a) is due to the order

of the objects in this setting. In particular, these peaks arise when all objects in the current

subtree have already been seen and a new object from a different subtree is shown to the

model. This momentarily boosts the recognition capabilities of the model due to the fact

that the new object is completely different from the previous encounters, making it easier

to classify. As more and more objects are shown, these fluctuations of performance tend to

fade.

The results of this set of experiments confirm what was postulated in Chapter 3. In

this type of continuous Open World scenarios, the policy that is used to introduce new

knowledge has a strong impact on the performance of the model. A gradual introduction

of new objects allows the algorithm to build better class representations faster, that in turn

boosts its performance both in the short term (when the knowledge is still partial) and in the

long run.

5.4 Summary

In this chapter we detailed a first complete implementation of an algorithm that is capable

of performing the task of continuously learning hierarchies of objects closely following the
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desires of a given human. The algorithm extracts information from a continuous stream of

visual data, and does not require a fixed ontology of concepts, while at the same time being

able to recognize and add previously unknown objects even without supervision.

The experiments presented in Section 5.3 demonstrate the capability of the framework,

and show that, consistently with the findings obtained in Chapter 3, the order in which new

and old knowledge is interleaved during the learning process can have a substantial role in

boosting performance. Many lines of research still remain open, and many aspects of the

current architecture can be refined with further research. Some of these directions for future

works will be detailed in the next chapter.
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Chapter 6

Conclusion

In the last decade the whole field of Machine Learning has witnessed an explosive surge

in popularity, mainly led by the success of Deep Neural Networks. At the same time new

and ever-increasing data sources were made available, in order to accommodate the train-

ing requirements of this kind of architectures. Over the last few years many have started

questioning this growth in the complexity of neural architectures. Many new tasks arose,

whose goal being explicitly to try to overcome the dependency of these algorithms on huge

immutable data sources. From Few-Shots to Open World learning, many new challenges

were proposed and corresponding technique were developed.

Despite this surge of attention, no model found in literature was able to learn in a setting

which is similar to the one in which humans learn. Moreover, these algorithms rely on a

kind of information that is structured in the same static class-based way. Example are still

categorized in fixed classes, while humans perceive the world as a continuous stream of

stimuli, and build a semantic meaning to what they see only afterwards.

The focus of this thesis has been to develop techniques to increase the similarity be-

tween the learning setting of the machine and the one of its user. We tackled this challenge

in a series of steps, that lead us to build a full-fledged Continuous Open World learning

algorithm without giving away the basic properties we identified during the course of the
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last three years.

In Chapter 3 we started postulating a first approach to the task. The setting we proposed

can be seen as a combination of the Open World and Few-Shots learning tasks. In order to

avoid the pitfalls of the class-based supervision, we decided to limit the recognition to just

instances of objects. The fact that an object is equal to itself always holds, without requiring

to semantically interpret what that object is (i.e labeling it). In that line of research we

decided to experiment with some policies to control the rate at which new objects were

shown to the algorithm, and we found out that a developmental strategy is indeed beneficial

to boost the performance of the model while reducing the supervision effort of the user.

In order to extend our framework beyond the recognition of instances, in Chapter 4 we

developed a new theory to allow the creation of class representations without the need to

introduce and ontology-based labeling system. Our theory revolves once again around the

perception, defining instances (and classes) of objects in terms of what made them visu-

ally distinguishable (and indistinguishable) from other objects. Together with the theory,

we provided a first implementation in the form of an algorithm that, borrowing from the

structure of the algorithm developed in Chapter 3, is capable of recognizing hierarchies of

objects of two levels (i.e. instances and classes). Due to the fact that the core of the algo-

rithm is shared with its ancestor, some compromises had to be done. The new algorithm

loses the ability to elicit supervision from the user and is more susceptible to input noise.

Chapter 5 detailed our first model that is able to dynamically learn an indefinitely deep

hierarchy of objects, while keeping, as it was for the algorithm in Chapter 3, the ability to

actively elicit supervision. Among the many improvements, this was made possible by a

newly redesign interaction with the user (that still happens inside the framework defined

in Chapter 4), as well as the switch from a nearest-neighbor prediction to a model that

estimates probability distributions for each of the nodes in the hierarchy of objects. A series

of experiments showcases the capabilities of the model, while confirming the beneficial role
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of a developmental policy in boosting its performance.

6.1 Future lines of research

During the course of the last three years, we have been developed a framework that learns

and reasons in a setting that is the closest in the field to the setting in which humans learn.

Still, the road to human-level learning capabilities is quite long. Due to the limited time of

a PhD scholarship, many lines of research we envisioned still remain unexplored. In this

Section we will hint the most prominent ones.

Experiments with real users

In all the variations of the framework we developed, the continuous interaction of the ma-

chine with the user has a central role. The key missing element in our evaluation procedures

are experiments with real users. These would be especially useful to test the ability of our

most complete model (described in Chapter 5), to adapt and capture the different user’s

needs, in particular concerning the structure of the hierarchy they are interested in. Another

useful experiment would be comparing the predictions of the machine with the one of the

user in all the cases in which the encounter does not contain enough information to associate

it with a leaf in the hierarchy (e.g person that is too far to be identified).

Knowledge consolidation and forgetting

One key element that empowers humans is the ability to continuously learn new information

without interfering with their previous knowledge. This does not mean that the knowledge

of a person always increases monotonically. Instead, selectively forgetting useless informa-

tion is an integral part of the learning process. We think that our models too could benefit

from a forgetting mechanism. This could help both to boost the recognition performance of
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the subset of objects that are of interest for the user, and allow to more easily scale with the

number of recognized objects by removing duplicate information.

Learning visual features

The current architecture makes use of a pretrained Neural Network to extract higher level

representations from raw visual data (the sequence of frames). This technique is based on a

model trained to match general visual features extracted from a large collection of random

images (at least for the algorithm described in Chapter 4 and 5). This decision was made due

to the difficulty of training an embedding network using few (and highly correlated) images.

Future research on this topic could enable the specialization of the embedding network to

the environment in which the machine operates, as well as to the subset of objects that are

of most interest for the user.

Horizontal relations in the hierarchy of objects

The current theory that supports our approach of learning hierarchies of objects accounts

for vertical relations among nodes (i.e. the genusObj), but does not specify any kind of

framework to capture horizontal relations among concepts. An example of this is the part-of

property. This would enable to lay a well-defined foundation to model for instance objects

that are composed by groups of objects, arranged in a meaningful way. This could open the

possibility to tackle other problems too, like the distinction between the target object and

the background that appears around it.

Information fusion

The relation between the perception of the human and the one of the machine is a key aspect

of this research. Due to the novelty of this work, we have been able to focus only on visual

perception. An important step forward would be shifting the focus towards including other
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forms of perception, such as the acoustic one, in order to exploit information across multiple

senses.

Many other questions still remain open. How can we cope with the natural noise and

randomness that characterize the visual appearance of objects (and that if not accounted for

can disrupt the learning process)? How can the past information, obtained in a time in which

the model had not received enough training, coexist with newer (and more refined) object

representations? How should the machine deal with inconsistent users? We leave them to

the reader, hoping to foster further research on this ambitious and challenging goal.
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heide, N. Hawes, T. Keller, M. Zillich, et al. “A system for interactive learning in

dialogue with a tutor”. In: IROS. IEEE. 2011, pp. 3387–3394.

[92] Arnold Smeulders, Marcel Worring, Simone Santini, and Ramesh Jain. “Content-

based image retrieval at the end of the early years”. In: IEEE Transactions on PAMI

22.12 (2000), pp. 1349–1380.

[93] L. B. Smith and L. K. Slone. “A Developmental Approach to Machine Learning?”

In: Frontiers in Psychology 8 (2017), p. 2124.

[94] J. Snell, K. Swersky, and R. Zemel. “Prototypical networks for few-shot learning”.

In: NIPS. 2017, pp. 4080–4090.

[95] E. Triantafillou, R. Zemel, and R. Urtasun. “Few-shot learning through an informa-

tion retrieval lens”. In: NIPS. 2017, pp. 2255–2265.



Bibliography 119

[96] O. Vinyals, C. Blundell, T. Lillicrap, and D. Wierstra. “Matching networks for one

shot learning”. In: NIPS. 2016, pp. 3630–3638.

[97] T. Wang, S. Gong, X. Zhu, and S. Wang. “Person re-identification by video rank-

ing”. In: ECCV. Springer. 2014, pp. 688–703.

[98] H. Wersing, S. Kirstein, M. Götting, H. Brandl, M. Dunn, I. Mikhailova, C. Goer-

ick, J. Steil, H. Ritter, and E. Körner. “Online learning of objects in a biologically

motivated visual architecture”. In: Neural Systems 17.04 (2007), pp. 219–230.

[99] Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer, and Bogdan Radu-

canu. “Memory replay gans: Learning to generate new categories without forget-

ting”. In: Advances in Neural Information Processing Systems 31 (2018), pp. 5962–

5972.

[100] Y. Wu, Y. Lin, X. Dong, Y. Yan, W. Ouyang, and Y. Yang. “Exploit the unknown

gradually: One-shot video-based person re-identification by stepwise learning”. In:

CVPR. 2018, pp. 5177–5186.

[101] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. “Re-

thinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classi-

fication”. In: Proceedings of the European Conference on Computer Vision (ECCV).

2018, pp. 305–321.

[102] J. Xu, R. Zhao, F. Zhu, H. Wang, and W. Ouyang. “Attention-Aware Compositional

Network for Person Re-identification”. In: CVPR. 2018.

[103] J. Yoon, E. Yang, J. Lee, and S. J. Hwang. “Lifelong Learning with Dynamically

Expandable Networks”. In: ICLR. 2018.

[104] F. Zenke, W. Gerstner, and S. Ganguli. “The temporal paradox of Hebbian learning

and homeostatic plasticity”. In: Neurobiology 43 (2017), pp. 166–176.



120 Bibliography

[105] F. Zenke, B. Poole, and S. Ganguli. “Continual Learning Through Synaptic Intelli-

gence”. In: ICML. 2017, pp. 3987–3995.

[106] Junting Zhang, Jie Zhang, Shalini Ghosh, Dawei Li, Serafettin Tasci, Larry Heck,

Heming Zhang, and C-C Jay Kuo. “Class-incremental learning via deep model con-

solidation”. In: WACV. 2020, pp. 1131–1140.

[107] Yu Zheng, Qiuyu Chen, Jianping Fan, and Xinbo Gao. “Hierarchical convolutional

neural network via hierarchical cluster validity based visual tree learning”. In: Neu-

rocomputing 409 (2020), pp. 408–419.


	Motivations
	Research issues and contributions
	Outline
	Availability

	Related Work
	Human learning
	Continuous Learning
	Learning from few data
	Hierarchical learning
	Knowledge Representation

	Continual Egocentric Learning
	The framework
	Experiments
	Summary

	A new hierarchical theory
	Objects as Classification Concepts
	Objects as substance concepts
	Building Substance concepts
	Object Subsumption and Identity
	The Framework
	Experiments
	Summary

	Building the hierarchy
	The Setting
	The algorithm
	Experiments
	Summary

	Conclusion
	Future lines of research

	Bibliography

