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Abstract

Multivariate location and scatter matrix estimation is a corner-
stone in multivariate data analysis. We consider this problem when
the data may contain independent cellwise and casewise outliers. Flat
data sets with a large number of variables and a relatively small num-
ber of cases are common place in modern statistical applications. In
these cases global down-weighting of an entire case, as performed by
traditional robust procedures, may lead to poor results. We highlight
the need for a new generation of robust estimators that can efficiently
deal with cellwise outliers and at the same time show good perfor-
mance under casewise outliers.

1 Introduction

QOutliers are a common problem for data analysts because they may have a
big detrimental effect on estimation, inference and prediction. On the other



hand, outliers could be of main interest to data analysts because they may
represent interesting rare cases such as rocks with an unusual composition of
chemical compounds and exceptional athletes in a major league. The main
goal in this article is robust estimation of multivariate location and scatter
matrix in the presence of outliers. The estimation of these parameters is
a corner stone in many applications such as principal component analysis,
factor analysis, and multiple linear regression. [Alqallaf, Van Aelst, Yohai,
and Zamar| (2009)) introduced a new contamination model where traditional
robust and affine equivariant estimators fail. To handle this new type of
outliers, we propose a new method that involves two steps: a first step of
outliers filtering, i.e., detection and replacement by missing values denoted
by NA’s, and a second step of robust estimation.

Classical contamination model

To fix ideas, suppose that a multivariate data set is organized in a table
with rows as cases and columns as variables, that is, X = (X4, ..., X,,)’, with
X, = (Xi1,..., Xip). The vast majority of procedures for robust analysis
of multivariate data are based on the classical Tukey-Huber contamination
model (THCM), where a small fraction of rows in the data table may be
contaminated. In THCM the contamination mechanism is modeled as a
mixture of two distributions: one corresponding to the nominal model and
the other corresponding to the outliers. More precisely, THCM considers the
following family of distributions:

A ={H = (1—€)Hy + €H : H is any distribution on R”} (1)

where Hj is a central parametric distribution such as the multivariate normal
N,(p,X) and H is an unspecified outlier generating distribution. We then
assume a case follows a distribution from the above family, that is X; ~ H
where H € 7. The key feature of this model is that when € is small we have
X; ~ Hy most of the time, therefore detection and down-weighting of outly-
ing cases makes sense and works well in practice. High breakdown point affine
equivariant estimators such as MVE (Rousseeuw), [1985)), MCD (Rousseeuw,
1985), S (Davies, [1987)), MM (Tatsuoka and Tyler, |2000) and Stahel-Donoho
estimators (Stahel, |1981; [Donoho, [1982) proceed in this general way.

Independent contamination model

In many applications, however, the contamination mechanism may be differ-
ent in that individual components (or cells) in X are independently contami-



nated. This is particularly so in the case of high dimensional data where vari-
ables are often measured separately and/or obtained from different sources.
For instance, pathology and treatment information of a patient can be ob-
tained from the cancer registry while epidemiological information on the
patients are normally obtained through a survey. The cellwise contamina-
tion mechanism may in principle seem rather harmless, but in fact it has
far reaching consequences including the possible breakdown of classical high
breakdown point estimators.

The new contamination framework, called independent contamination
model (ICM), was presented and formalized in Alqallaf et al,| (2009). In
the ICM framework we consider a different family of distribution:

4. ={H : H is the distribution of X = (I - B.)X, + BX}, (2

where Xo ~ Hy, X ~ H, and B, = diag(Bj, ..., B,), where the B; are inde-
pendent Bin(1,€). In other words, each component of X has a probability
¢ of being independently contaminated. Furthermore, the probability € that
at least one component of X is contaminated is now

e=1—(1—¢)?.

This implies that even if € is small, € could be large for large p, and could
exceed the 0.5 breakdown point of highly robust affine equivariant estimators
under THCM. For example, if ¢ = 0.1 and p = 10, then € = 0.65; if ¢ = 0.05
and p = 20, then € = 0.64 and if ¢ = 0.01 and p = 100, then € = 0.63.

Alqallaf et al.| (2009)) showed that for this type of contamination the break-
down point of all the traditional 0.5 breakdown point and affine equivariant
location estimators is 1 — 0.5/? — 0 as p — oco. It can be shown that the
same holds for robust and affine equivariant scatter estimators. Hence we
have a new manifestation of the curse of dimensionality: when p is large,
traditional robust estimators break down for a rather small fraction of inde-
pendent contamination.

To remedy this problem, some researchers have proposed to Winsorize
potential outliers for each variable separately. For instance, Alqallaf, Konis,
Martin, and Zamar| (2002) revisited Huberized Pairwise Covariance (Huber
and Ronchetti, |1981), which is constructed by using transformed correlation
coefficients calculated separately on Huberized data as basic building blocks.
Huberization is a form of Winsorization. Although pairwise robust estimators
show some robustness under ICM, they cannot deal with THCM outliers
and finely shaped multivariate data. Another approach to deal with ICM
outliers was proposed in|Van Aelst, Vandervieren, and Willems| (2012)). They
modified the Stahel-Donoho (SD) estimator (Stahel, |1981; |Donohol 1982)
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by calculating the SD-outlyingness measure and weights on Huberized data
instead of the raw data. In our simulation study this estimator performs very
well under THCM but is not sufficiently robust under ICM.

An alternative approach, called snipping in a recent paper by [Farcomeni
(2014)), consists of replacing cellwise outliers by NA. An interesting idea
introduced in [Farcomeni (2014) is the notion of optimizing over the snipping
set. The use of snipping to fend against cellwise contamination has also
been suggested by other authors (e.g., Danilov, [2010; [Van Aelst et al.,|2012).
Farcomeni (2014) gives a procedure for clustering multivariate data where
each cluster has an unknown location and scatter matrix. This framework can
be adapted to our setting by fixing the number of clusters to one. Farcomeni
(2014)) suggested to first fix the proportion of cells in the data table to be
snipped and then to use a maximum likelihood based procedure to obtain an
optimal set of snipped cells (of the same size) together with an estimate of
the location and scatter matrix for each cluster. In our simulation study this
estimator performs very well under ICM but is not sufficiently robust under
THCM.

A new generation of global-robust estimators that can simultaneously
deal with cellwise and casewise outliers is needed. In Section 2, we introduce
a global-robust estimator of multivariate location and scatter. In Section
3, we show that our estimation procedure is strongly consistent. That is,
the multivariate location estimator converges a.s. to the true location and
the scatter matrix estimator converges a.s. to a scalar multiple of the true
scatter matrix, for a general elliptical distribution. Moreover, for a normal
distribution the scalar factor is equal to one. In Section 4, we report the result
of an extensive Monte Carlo simulation study. In Section 5, we analyze a real
data set using the proposed and several competing estimators. In Section 6,
we conclude with some remarks. Section 7 is an Appendix containing all the
proofs and some additional numerical results.

2 Global-robust estimation under THCM and
ICM

The main goal of this paper is to emphasize the need for robust estimation
under ICM and THCM, that is, to define robust estimators that can deal
with cellwise and casewise outliers.

When preprocessing multivariate data, one could try to detect cellwise
outliers by applying, for instance, the “3-sigma” rule, and replace the flagged
cells by NA’s. Then, an estimate of multivariate location and scatter could



be obtained using the EM-algorithm to deal with the artificially created
incomplete data. One reason why this obvious preprocessing step is not
routinely employed in multivariate robust estimation might be the lack of
consistency of this procedure. Another reason might be that this approach
is incapable of dealing with casewise outliers. These two limitations are
addressed in our procedure by using an adaptive univariate filter (Gervini
and Yohai, 2002)) followed by Generalized S-estimator (GSE) (Danilov, Yohai,
and Zamar), 2012)).
More precisely, our procedure has two steps:

Step I. Eliminating large cellwise outliers. We flag cellwise outliers
and replace them by NA’s (this operation was called snipping
in [Farcomeni| (2014))). In our case, this step prevents cellwise
contaminated cases from having large robust Mahalanobis
distances in the second step. See Section [2.1]

Step 11I. Dealing with high-dimensional casewise outliers. We apply
GSE, which has been specifically designed to deal with in-
complete multivariate data with casewise outliers, to the fil-
tered data coming from Step I. See Section [2.2]

Full account of these steps is provided in the remaining of this section.

2.1 Step I: Eliminating large cellwise outliers

Consider a random sample of X = (Xy,...,X,,)’, where X; follows a distri-
bution from .Z, in . In addition, consider a pair of initial location and
dispersion estimator, Ty, = (Ton1, .-, Lonp) and Son = (Son1, .-, Sonp). A
common choice for Ty, and Sy, that are also adopted in this paper are the
coordinate-wise median and median absolute deviation (mad).

Instead of a fixed cutoff value, we introduce an adaptive cutoff (Gervini
and Yohai, [2002) which is asymptotically “correct”, meaning that for clean
data the fraction of flagged outliers tends to zero as the sample size n tends
to infinity. We identify potential outliers on each variable separately using
the following GY-univariate filter.

We first fix a variable (Xj;, Xo;, ..., X,,;) and denote the standardized
version of X;; by Z;; = (Xij — Ton,;)/Sonj- Let F; be a chosen reference
distribution for Z;;. An ideal choice for a reference distribution would be
Foj, the actual distribution of (X;; — po;)/00;. Unfortunately, the actual
distribution of Z;; is never known in practice. Thus, we use the standard
normal, F; = ®, as a good approximation.



The adaptive cutoff values are defined as follows. Let ﬁj ; be the empirical
distribution function for absolute standardized value, that is,

~ 1 <
Bt =~ > 1( 2yl < ).
=1

The proportion of flagged outliers is defined by

~ +
g =sup {F (1) = By}

t>n;

— max {Ff(lzl(i)j) - Lnl)}+

1>10

(3)

where in general {a}" represents the positive part of a and F7 is the dis-
tribution of |Z| when Z ~ F. Here |Z|;); is the order statistics of |Z;;],
io = max{i : |Z|u; <n;}, and n; = (F;")"!(a) is a large quantile of F*. We
use a = 0.95 throughout this paper, but other choices could be considered.
Then we flag |nd, ;| observations with the largest standardized value as cell-
wise outliers and replace them by NA’s (here |a| is the largest integer less
than or equal to a). Finally, the resulting adaptive cutoff value for Z;;’s is

tog = min{t: B(0) 21— dus (4)

that is, t,; = Z, ,); With i, ; = n — [nd,;|. Equivalently, we flag the X;;’s

The following proposition states that even when the actual distribution is
unknown, asymptotically, the filter will not wrongly flag an outlier provided
the tail of the chosen reference distribution is heavier (or equal) than that of
the actual distribution.

Proposition 2.1. Consider a (univariate) variable X and a pair of location
and dispersion estimator Ty, and Sp,. Suppose that X ~ Fy((x — p) /o) with
Fy continuous. If the reference distribution F'* satisfies:

N
max { F*(u) = Ff (u)} <0, (5)
Ton — 1 and Sp, — 0 > 0 a.s., then
1o — 0 a.s.,
n
where
ng = |nd,|.

Proof: See the Appendix.



2.2 Step II: Dealing with high-dimensional casewise
outliers

This second step introduces robustness against casewise outliers that went
undetected in Step I. Data that emerges from Step I has holes (i.e., NA’s) that
correspond to potentially contaminated cells. To estimate the multivariate
location and scatter matrix from that data, we use a recently developed
estimator called GSE as briefly reviewed below.

Let X; = (Xi1, ..., Xip)'s 1 <@ < n be p-dimensional i.i.d. random vectors
that follow a distribution in an elliptical family &€ (p,, £o) with density

Fx (%, 9, To) = ﬁfo(d(x, o, ) (6)

where |A] is the determinant of A, fj is non-increasing and strictly decreasing
at 0, and

d(x,m,C) = (x —m)'C!(x — m) (7)
is the squared Mahalanobis distance. We also use the normalized squared
Mahalanobis distances

d*(x,m,C) = d(x,m, C"), (8)

where C* = C/|C|*/?, so |C*| = 1.

Related to X = (X4, ..., X,,)’ we form the auxiliary data table of zeros and
ones U= (Uy,...,U,)". For1 <i<n, U, = (Ua,...,U;,) is a p-dimensional
random vector of zeros and ones, with ones indicating the observed entries of
X;. Let p; = p(U;) = ;’:1 U;; be the actual dimension of the observed part
of X;. Given a p-dimensional vector of zeros and ones u, a p-dimensional
vector m and a p x p matrix A, we denote by m™ and A™ the sub-
vector of m and the sub-matrix of A, respectively, with columns and rows
corresponding to the positive entries in u.

Let €2 be a p x p positive definite initial estimator for 3. Given the
location vector g € RP and a p x p positive definite matrix 3, we define the
generalized M-scale, sgs(p, 2, 2, X, U), as the solution in s to the following
equation:

n J* (XZ(UZJ, p(U9) g(tm) n
Z Cp(Un)P oy | =0 Z Ep(U3) (9)
=1

; ~ (U
=1 S Cp(uy) ‘Q

i)

where p(t) is an even, non-decreasing in |¢| and bounded loss function. The
tuning constants ¢, 1 < k < p, are chosen such that

s (p (”X”Q)) — b X~ Ny(0,1). (10)

Ck

7



to ensure consistency under the multivariate normal. We consider the Tukey’s
bisquare tho function, p(u) = min(1,1 — (1 — «)3), and b = 0.5 throughout
this paper. R
The inclusion of €2 in @ is needed to re-normalize the distances d* to
achieve robustness. A heuristic argument for the inclusion of §2 is as follows.
Suppose that g ~ p, and X ~ Q =~ ¥;. Then given U = u,
d*<X(u)7ﬁ(u)’§(u)) N d*(X<“>,ué“’,Eé“)) ||Y(u)“2

~

Q)

p(u) Cp(u)

where Y™ is a p(u) dimensional random vector with an elliptical distribu-
tion. Hence, ||[Y™|[?/c,w) has M-scale of 1 for the given p function if Y is
normal, and large Mahalanobis distances can be down-weighted accordingly.
Here, we use extended minimum volume ellipsoid (EMVE) for €2 as suggested
in Danilov et al.| (2012).

Generalized S-estimator is then defined by

(ﬁGS?iGS') = arg%gSGs(u,E,ﬁ,X, U) (11)
subject to the constraint
Sgs(M,E,E,X,U) =1. (12)

Under mild regularity assumptions, in the case of elliptical data with U;
independent of X; (missing completely at random assumption) any solution
to is a consistent estimator for the shape of the scatter matrix. Moreover,
in the case of normal data, any solution to satisfying is consistent
in shape and size for the true covariance matrix. Proofs of these claims, as
well as the formulas and the derivations of the estimating equation for GSE,
can be found in Danilov et al.| (2012)).

Finally our two-step location and scatter estimator is defined by

T, = i)’GS(X7 U(tn)>
Ci = EGS(X7U(tn))
where t, = (tp1,....tnp) (fn; is defined in (@) and

“huy).

Xij — Ton,
Uij(tn) =1 (’—J ol
Son,j




3 Consistency of GSE on filtered data

The missing data created in Step I is not missing at random because the miss-
ing data indicator, U, depends on the original data X (univariate outliers are
declared missing). Therefore, the consistency of our two-step estimator can-
not be directly derived from Danilov et al. (2012). However, as shown in
Theorem below, our procedure is consistent at the central model pro-
vided the fraction of missing data converges to zero. We need the following
assumptions:

Assumption 3.1. The function p is (i) non-decreasing in |t|, (ii) strictly
increasing at 0, (iii) continuous, and () p(0) =0 and (v) lim,_o p(v) =1
(e.g. Tukey’s bisquare rho function).

Assumption 3.2. The random vector X follows a distribution, Hy, in the
elliptical family defined by ([6])

Assumption 3.3. Let Hy be the distribution of X and denote o(u,3) the
solution in o to the following equation

e o (522) -0

and consider the minimization problem,

min o(p, ). (14)

1Z|=1

We assume that has a unique solution, (py, Xoo), where Xog is positive
definite. We also put o9 = o (g, Xo00)-

Assumption 3.4. The proportion of fully observed entries,

¢n = #{i,1 <i <n:p; =p(Ui(t,)) = p}t/n,

tends to one a.s. as n tends to infinity. Recall that t, is the vector of cutoff
values and U;(t,,) is the corresponding indicator of observed entries in X;.

Remark 3.1. |Dawvies (1987) showed that Assumption implies Assump-
tion with 200 = Eo/'E()’

Remark 3.2. By Proposition[2.1], the procedure described in Step I satisfies
Assumption 3.4, provided that the marginal distributions for the distribution
that generated the data have tails which are lighter than or equally light to
those of the reference distribution. That is, they satisfy equation (@



Theorem 3.1. Let Xy, ..., X,, be a random sample from Hy and U4, ..., U,
be as described in Section [2.4  Suppose Assumptions hold.  Let
(Figs, Sas) be the GSE defined by (11)-(1d). Then

(i) Bgg — Ky a.s. and

(i1) EGS — 00200 @.S..
(111) When X ~ N (g, Xo), we have ogXgg = Xo.
Proof: See the Appendix.

4 Monte Carlo results

We conduct a Monte Carlo simulation study to assess the performance of
the proposed scatter estimator. We consider contaminated samples from
a Np(po, Xo) distribution. The contamination mechanisms are described
below. The sample sizes are n = 100 for dimension p = 10 and n = 200 for
dimension p = 20.

Since the contamination models and the estimators considered in our sim-
ulation study are location and scale equivariant, we can assume without loss
of generality that the mean, p,, is equal to 0 and the variances in diag(3)
are all equal to 1. That is, 3 is a correlation matrix. To account for the lack
affine equivariance of the proposed estimator we consider different correlation
structures. For each sample in our simulation we create a different random
correlation matrix with condition number fixed at CN = 100. Correlation
matrices with high condition number are less favorable for our proposed es-
timator. We use the following procedure to obtain random correlations with
a fixed condition number C'N:

1. For a fixed condition number CN, we first obtain a diagonal matrix
A = diag(A1, ..., Ap), [M1 < Ay < -+ < \,] with smallest eigenvalue
A1 = 1 and largest eigenvalue A\, = CN. The remaining eigenvalues
A2, ..., A\p—1 are p — 2 sorted independent random variables with a uni-
form distribution in the interval (1, CN).

2. We first generate a random p X p matrix Y, which elements are indepen-
dent standard normal random variables. Then we form the symmetric
matrix Y'Y = UVU’ to obtain a random orthogonal matrix U.

3. Using the results of 1 and 2 above, we construct the random covariance
matrix by ¥y = UAU’. Notice that the condition number of ¥ is
equal to the desired C'N.
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4. Convert the covariance matrix X, into the correlation matrix Ry as
follows:
RO _ D—I/QEOD—I/Q

where
D = diag(oy, ..., 0}).

5. After the conversion to correlation matrix in step 4 above, the condition
number of Ry is no longer necessarily equal to CN. To remedy this
problem, we consider the eigenvalue diagonalization of Ry

Ry = UpAoU),. (15)

where
Ag = diag(Afe, ., M), A < Afo < A

is the diagonal matrix formed using the eigenvalues of Ry. We now
re-establish the desired condition number C'N by redefining

Ao = CN x A
and using the modified eigenvalues in (15)).

6. Repeat 4 and 5 until the condition number of Rg is within a tolerance
level (or until we reach some maximum iterations). In our Monte Carlo
study convergence was reached after a few iteration in all the cases.

Two types of outliers are considered: (i) generated by THCM and (ii)
generated by ICM. When the outliers are generated using THCM, we ran-
domly replace 5% or 10% of the cases in the data matrix by kv, where
k=1,2,...,100 and v is the eigenvector corresponding to the smallest eigen-
value of Xy with length such that (v — p,) 25" (v — py) = 1. Monte Carlo
experiments show that the placement of outliers in this direction, v, is the
least favorable for the proposed estimator. When the outliers are generated
using ICM, we randomly replace 5% or 10% of the cells in the data ma-
trix by the value k where k£ = 1,2,...,100. The number of replicates in our
simulation study is N = 500. R

The performance of a given scatter estimator X is measured by the
Kulback-Leibler divergence between two Gaussian distribution with the same
mean and covariances X and Xg:

D(X, %) = trace(EX3; ") — log(|Z3!|) — p.

This divergence also appears in the likelihood ratio test statistics for testing
the null hypothesis that a multivariate normal distribution has covariance
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matrix 3 = ¥g. We call this divergence measure the likelihood ratio test
distance (LRT). Then the performance of an estimator ¥ is summarized by

A~
)

N
— 1 ~
D(X%, %) = ¥ E D(%;, %)
=1

where f]l is the estimate at the i-th replication.
We compare the following estimators:

(a) MVE-S, the estimator proposed by Maronna, Martin, and Yohai| (2006,
Section 6.7.5). It is an S-estimator with bisquare p function that uses
as initial value of the iterative algorithm, an MVE estimator. The
MVE estimator is computed by subsampling with concentration step.
Once the estimator of location and covariance corresponding to one
subsample are computed, the concentration step consist in comput-
ing the sample mean and sample covariance of the [n/2] observations
with smallest Mahalanobis distance. MVE-S is implemented in the R
package rrcov, function CovSest, option method="bisquare";

(b) FS, the S-estimator with bisquare p function, computed with an itera-
tive algorithm similar to the Fast S-estimator for regression proposed
by |Salibian-Barrera and Yohai (2006)). FS is implemented in the R
package rrcov, function CovSest, option method="sfast";

(c) MCD, the fast Minimum Covariance Determinant proposed by |[Rousseeuw
and Van Driessen| (1999) ( see also Maronna et al. (2006, Section 6.7.5)
). MCD is implemented in the R package rrcov, function CovMcd;

(d) HSD, Stahel-Donoho estimator with Huberized outlyingness proposed
by [Van Aelst et al.|(2012). We use a MATLAB code kindly provided by
the authors. The number of subsamples used in HSD is 200 x p;

(e) SnipEM, the procedure proposed in Farcomeni (2014). We use the R
code kindly provided by the author. This method requires an initial
specification of the position of the snipped cells in the form of a binary
data table. We compared (using simulation) several possible choices for
this initial set including: (a) snipping the largest 10% of the absolute
standardized values for each variable; (b) snipping the largest 15% of
the absolute standardized values for each variable; and (c) snipping
the standardized values that are more than 1.5 times the interquartile
range less the first quartile or more than 1.5 times the interquartile
range plus the third quartile, for each variable. We only report the
results from case (b) as it yields the best performances.
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(f) 2SGS, the two-step procedure proposed in Section This estimator is
available as the TSGS function in the R package GSE.

The tuning parameters for the high breakdown-point estimators MVE-S, F'S,
and MCD are chosen to attain 0.5 breakdown point under THCM. We have
also considered pairwise scatter estimator obtained by combining bivariate
S-estimator and found that this approach did not perform well in our settings
(not shown here).

Table [ shows the maximum average LRT distances from the true corre-
lation matrices among the considered contamination sizes and both contam-
ination models. The average LRT distances behavior for different contam-
ination sizes k are displayed in Figures 1| and We notice 25SGS has the
best performance under ICM. Not surprisingly, MVE-S has the best behavior
under THCM. However, 2SGS has an acceptable performance, comparable
with that of main stream high breakdown point estimators designed for good
performance under THCM.

Table 1: Maximum average LRT distances. Sample size is 10 x p. Results
are based on 500 replicates.

ICM THCM
Dim 10 Dim 20 Dim 10 Dim 20
Estimator 5% 10% 5% 10% 5%  10% 5% 10%
MLE >500 >500 >500 >500 | >500 >500 >500 >500
MCD 368.4 >500 >500 >500 1.8 10.0 5.8 130.9
FS >500 >500 >500 >500 1.2 8.7 7.2 204.8
MVE-S >500 >500 >500 >500 1.2 3.3 3.4 7.9

Table [2| shows the finite sample relative efficiency under clean samples
for the considered robust estimates, taking the MLE average LRT distances
as the baseline. Results for larger sample sizes, not reported here, show an
identical pattern, except for MCD which efficiency increases with the sample
size.

We also consider the barrow wheel contamination setting
Maechler| [2009; Vakili, Hubert, and Rousseeuw, 2012) as suggested by an
anonymous referee. The barrow wheel outliers are generated from a distribu-
tion that could create a large shape bias. The performance 2SGS is similar
to the performance of the THCM high breakdown point estimators. The
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Figure 1: Average LRT distances for various contamination values, k, from
ICM.
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Figure 2: Average LRT distances for various contamination values, k, from
THCM.
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Table 2: Finite sample efficiency for several estimators measured by relative
average LRT distances taking MLE as baseline. Sample size is 10 X p. Results
are based on 500 replicates.

Estimator p=10 p =20

MLE 1.00 1.00
MCD 0.47 0.66
FS 0.90 0.96
MVE-S 0.89 0.96
HSD 0.73 0.90
SnipEM 0.11 0.28
25GS 0.81 0.84

results from this simulation as well as the computing times for our estimator
(for several sample sizes and dimensions) are shown in the Appendix

5 Application to Chemical data

We use 20 variables from a data set analyzed by Smith, Campbell, and
Licheld, (1984). These variables measure the contents (in parts per million)
for 20 chemical compounds in 53 samples of rocks in Western Australia. We
compute several multivariate location and scatter estimates for this data.

Since we suspect the occurrence of independent contamination, we com-
pute the N = 53 x 20 = 1060 squared standardized cellwise distances and
the

N =53 x 20 x 19/2 = 10070

squared Mahalanobis distances for all the pairs (z;;, z;), 7 = 1,2,...,53,1 <
j < k < 20 using the different estimates. To account for multiple com-
parison, cellwise and pairwise distances are compared with the thresholds
(x3)71(0.99)) and (x2)~1(0.99%/(PP=1)) " respectively. To illustrate the
phenomenon of outliers propagation, full Mahalanobis distances (using all the
variables) are also computed and compared with the threshold (x2)~" (0.994/m).
All distances are computed using the appropriate parts from the multivari-
ate location and scatter matrix estimates. Table [3| shows the proportion of
outliers identified using the different approaches. The proportions of identi-
fied cellwise, pairwise and casewise outliers are higher for robust estimators
in the third generation. In addition, the non-robust MLE flags the smallest
proportions of cellwise and pairwise outliers, and zero casewise outliers.
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Table 3: Contamination summary in Chemical data based on different esti-
mates

Estimators Proportion of outliers
Cell Pair  Case

MLE 0.007 0.008  0.000
Tyler 0.016 0.024  0.170
Rocke 0.017 0.027  0.302
MCD 0.016 0.028  0.283
MVE 0.024 0.036  0.283
FS 0.015 0.027  0.170
MVE-S 0.018 0.030  0.208
HSDE 0.025 0.038  0.302
25GS 0.021 0.033  0.415

6 Conclusions

Affine equivariance, a proven asset for achieving THCM robustness, becomes
a hindrance under ICM because of outliers propagation.

We advocate the practical and theoretical importance of ICM and point
to the perils and drawbacks of relying solely on the THCM paradigm. ICM
promotes a less aggressive cellwise down-weighting of outliers and becomes
an essential tool for modeling contamination in flat data sets (large in p but
relatively small in n). Moreover, many low/moderate dimensional data sets
may also be well modeled by ICM.

We introduce a two-step procedure to achieve robustness under ICM and
THCM. The first step in our procedure is aimed at reducing the impact of
outliers propagation and overcome the curse of dimensionality posed by ICM.
The second step is aimed at achieving robustness under THCM. Our proce-
dure is not affine equivariant but nevertheless provides fairly high resistance
against both ICM and THCM outliers. Our procedure exhibits some loss of
robustness under THCM, when compared with the best performing robust
affine equivariant estimators in this setting.

We conjecture that the influence function of our estimator is the same as
the influence function of the S-estimator for complete data. This conjecture
is based on a similar result in (Gervini and Yohai (2002)). They showed that
the similarly derived robust regression estimator has the same influence func-
tion as the least squares estimator (they used a weighted least squares in the
second step and showed that the asymptotic weights are equal to one under
the central normal model). The derivation in our case seems rather involved
because of the added complexity introduced by the independent contamina-
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tion model. Moreover, we believe that in general the influence function is not

a very informative robustness measure. A bounded influence function is not

a necessary nor sufficient condition for robustness under THCM and ICM.
There is a need for further research on these topics.

7 Appendix: Proofs

7.1 Proof of Proposition [2.1

Let ﬁj be the empirical distribution |Z| and Z as defined by replacing y and
o with Tp, and Sy, respectively in the definition of Z.

Note that
~ X — X — Ty,
|Z—Z|§’ h_ -
g E%n
B A el Bl
<A+ B

where 4 — 0 a.s and B — 0 a.s.. By the uniform continuity of F'*, given
e > 0, there exists 0 > 0 such that |F*(z(1 —4§) — ) — F*(2)| <e/2. With
probability one there exists n; such that n > ny implies [A] < § and |B| < 4.
By the Glivenko-Cantelli Theorem, with probability one there exists ny such
that n > ny implies that sup, |F,/(z) — F7(z)| < /2. Let ng = max(ny,ng),
then n > ng imply

Ef(z) > FF(2(1-6) - 6)
= (B 0=0) = 6) = Ff (:(1-0) - 9))
+ (B (2(1 = 8) = 8) = Fy' (2)) + (Fyf (2) — F*(2)) + F*(2)
and then

sup(F*(2) — Fif (2)) < sup

F(2(1—8) —8) — Fr(z(1—0) — 5)‘

z>n z>n
+sup | Fy (2(1 = 8) — 6) — Ff (2)]
z>n
+sup(F(2) - Fy' (2))
z>n
<e

This implies that ng/n — 0 a.s..
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7.2 Proof of Theorem [3.1]
We need the following Lemma proved in Yohai (1985)).

Lemma 7.1. Let {Z;} be i.i.d. random vectors taking values in R¥, with
common distribution Q. Let f : R¥ x R" — R be a continuous function and
assume that for some § > 0 we have that

Eq | sup |f(Z, M)

[[A=Aol|<é

Then if Xn — Ao @.S., we have
1< ~
- Z [(Zi, M) = EQ[f(Z, N)] a.s..
1=1

Proof of Theorem
Define

(ﬁ’GS’:iGS) = arg I‘Tél‘l'i SGS(IJ’vzvﬁ)' (16)

We drop out X and U in the argument to simplify the notation. Since
sas(p, AX Q) = sgs(p, X Q) to prove Theorem . 1|it is enough to show

(a) N
(Bas, Xas) = (g, Xoo) a.s., and (17)
(b)

SGS(ﬁG57 igs, i@s) — 0( a.s.. (18)

Note that since we have

d (X7 Mo, 20)
E SR Ho =000 )
Hp (p ( UOCp )

then part (i) of Lemma 6 in the Supplemental Material of Danilov et al.
(2012) implies that given ¢ > 0, there exists § > 0 such that

n

lim inf 1 Z Cpp (M) > (b+0)cy, (19)

n—oo (1,X)ECC |Z|=1 N oocp (14 6)

where C. is a neighborhood of (g, Xo9) of radius € and if A is a set, then
A® denotes its complement. In addition, by part (iii) of the same Lemma we
have for any § > 0,

Xza Mo, 200)
li bc,. 20
nl—{{olon Zcp ( 0'on 1 +($) < K ( )




Let

Qi(p, ) = cpp (M)

aocp(1+9)
and
d* (XgUi)’ (Y9, E(Ui)>

1/p(U;) ’

U
QE )(IJH E) = CP(Ui)p ,\(U.)
Scp(Uz‘) ’Q

Now if || = 1 and S = oo(1 + 6)/|Q|"/?, we have

% > Q7 (m® Z Qi(p, T Z QA (1. 2). (21)

pz #p
We also have

Z QP (1, 2) < (1 —t,) (22)

pz #p

and therefore by Assumption we have

1
lim sup — Z QEU)(M, 3) =0 as.. (23)
T wm=L T
Similarly we can prove that
lim sup — Qi(p,X) =0 as. (24)
n—oo , |2| 1 ];;
and
——Zch)—>O a.s.. (25)
Then, from ({ . and . . we get
lm inf ) (b+0) li (b+34
B A3 00 = 000 i Sy 450,00
(26)
Using similar arguments, from (20) we can prove
limliQ(U)(u by )<bhmlzn:c =bc, as (27)
n-yco M, — 1 0 00 300 1 — p(U,L) p D
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Equations f imply that

lim inf S ,E,ﬁ > S a.s.
nooo (1,X)€CE |B|=1 as(p )

and

~

lim sgs (g, Xoo, 2) < S a.s..
n—oo
Therefore, with probability one there exists ng such that for n > ng we have

(ﬁc& 2GS) € Cec- Then (ﬁ’G’S? fJGS) - (No, E00) a.s. proving (a).

Let
d (Xu M, Z)
Cp S

Pi(p, %, s) = cpp<

and
d <X£Ui)7 u(Ui), E(U¢)>

Cp(u;) S

Pz(U) (lJ’a Ev S) = CP(Ui)p

Since ]f]GS] = 1, we have that sgs(Hag, EIGS, igs) is the solution in s in the
following equation

1 Zn OIPE b Zn

- P » E— . 28

n <  (Bas, Xas: S) n & Cp(Uy) (28)
Then, to prove (18) it is enough to show that for all € > 0

I pU
nh_)rgoﬁ ;PZ (Bas, Xas, 00 +€) <bc, as.  and

1 (29)
N U) i~ _
nh_)ngo - ;PZ (Bas, Xas, 00 —€) > b, as.
Using Assumption , to prove it is enough to show
I s o
lim — Zpi(lics? Yas,00+¢€) <bc,as. and
n—00 1} 4=
1 z;l (30)
nh_g)lo - ;Pi(“as» Yas,00 —€) > be, as.

It is immediate that

USR5 -
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(O (22)- (252

Then equations follow from Lemma [7.1| and part (a). This proves (b).

7.3 Investigation on the performance on the barrow
wheel outliers

An anonymous referee suggested considering the performance of 25GS under
the barrow wheel contamination setting (Stahel and Maechler, 2009; Vakili
et al., 2012)). We conduct a Monte Carlo study to compare the performance
of 2SGS with three second generation estimators under 5% and 10% of out-
liers from the barrow wheel distribution. The data is generated using the
R package robustX with default parameters. The three second generation
estimators are: the fast Minimum Covariance Determinant (MCD), the fast
S-estimator (FS), and the S-estimator (S), described in Section [ The sam-
ple size are n = 10 x p, for p = 10 and 20. The results in terms of the LRT
measure are graphically displayed in Figure [3]

124 5% Contam. 10% Contam.

=d

%..
{I}
{I}.

d

o
|
0c=

e o =

0- i i i i i i i i
MCD FS MVE-S  2SGS MCD FS MVE-S  2SGS
Estimator

Figure 3: LRT distances under barrow-wheel contamination setting.
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7.4 Timing experiment

Table 4| shows the mean time needed to compute 25GS for data with cellwise
or casewise outliers as described in Section 5. We consider 10% contamination
and several sample sizes and dimensions. We use the random correlation
structures as described in Section 4. For each pair of dimension and sample
size, we average the computing times over 250 replications for each of the
following setups: (a) cellwise contamination with k generated from U/(0, 6)
and (b) casewise contamination with & generated from U(0, 20).

Table 4: Average “CPU time” — in seconds of a 2.8 GHz Intel Xeon — evalu-
ated using the R command, system. time.

P n Cellwise Casewise
5 50 0.03 0.03
100 0.04 0.04
10 100 0.12 0.10
200 0.17 0.13
15 150 0.40 0.28
300 0.60 0.40
20 200 1.03 0.73
400 1.88 1.06
25 250 2.52 1.62
500 4.58 2.45
30 300 5.08 3.26
600 8.47 5.16
35 350 9.30 6.13
700 15.64 9.79
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