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Abstract

The Internet of Things (IoT) has deeply changed how we interact with our
world. Today, smart homes, self-driving cars, connected industries, and
wearables are just a few mainstream applications where IoT plays the role
of enabling technology. When IoT became popular, Cloud Computing was
already a mature technology able to deliver the computing resources neces-
sary to execute heavy tasks (e.g., data analytic, storage, AI tasks, etc.) on
data coming from IoT devices, thus practitioners started to design and im-
plement their applications exploiting this approach. However, after a hype
that lasted for a few years, cloud-centric approaches have started showing
some of their main limitations when dealing with the connectivity of many
devices with remote endpoints, like high latency, bandwidth usage, big
data volumes, reliability, privacy, and so on. At the same time, a few new
distributed computing paradigms emerged and gained attention. Among
all, Edge Computing allows to shift the execution of applications at the
edge of the network (a partition of the network physically close to data-
sources) and provides improvement over the Cloud Computing paradigm.
Its success has been fostered by new powerful embedded computing de-
vices able to satisfy the everyday-increasing computing requirements of
many IoT applications. Given this context, how can next-generation IoT
applications take advantage of the opportunity offered by Edge Computing
to shift the processing from the cloud toward the data sources and exploit
everyday-more-powerful devices? This thesis provides the ingredients and
the guidelines for practitioners to foster the migration from cloud-centric
to novel distributed design approaches for IoT applications at the edge of
the network, addressing the issues of the original approach. This requires
the design of the processing pipeline of applications by considering the sys-
tem requirements and constraints imposed by embedded devices. To make
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this process smoother, the transition is split into different steps starting
with the off-loading of the processing (including the Artificial Intelligence
algorithms) at the edge of the network, then the distribution of computa-
tion across multiple edge devices and even closer to data-sources based on
system constraints, and, finally, the optimization of the processing pipeline
and AI models to efficiently run on target IoT edge devices. Each step has
been validated by delivering a real-world IoT application that fully exploits
the novel approach. This paradigm shift leads the way toward the design
of Edge Intelligence IoT applications that efficiently and reliably execute
Artificial Intelligence models at the edge of the network.

Keywords: Edge Computing, Cloud-to-Thing continuum, IoT applica-
tion, Edge Intelligence, Edge AI, Artificial Intelligence, Embedded Intelli-
gence
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Chapter 1

Introduction

We are living in a fast-evolving world that is, every day, more connected
and intelligent. The physical world is embracing what we call “the vir-
tual world” enabling new immersive and exciting applications. Thinking
about smart speakers empowered with vocal assistants, connected houses,
self-driving cars, and many others, we are surrounded by many things that
allow us to interact with virtual entities as we interact with other humans,
transforming our devices into real commodities. Behind this technological
advancement, there is one of the Internet of Things’ promises: “connect
anything, anywhere, anytime”.

1.1 The origin of the Internet of Things

The term The Internet of Things is not a new expression and its first
appearance is dated back to September 1985 when Peter J. Lewis [1] gave a
talk at the Congressional Black Caucus Foundation 15th Annual Legislative
Weekend. He stated

The Internet of Things, or IoT, is the integration of people, pro-
cesses, and technology with connectable devices and sensors to
enable remote monitoring, status, manipulation, and evaluation
of trends of such devices.

In 1999, the second definition of IoT [2] was given by Dr. Kevin Ash-
ton, co-founder of the Auto-ID Laboratory at the Massachusetts Insti-
tute of Technology (MIT, Cambridge MA, US), during a presentation at

1



CHAPTER 1. INTRODUCTION

Procter&Gamble to emphasize the power of Radio-Frequency Identification
(RFID) technology to support supply chains and tracking goods without
the need of humans in-the-loop. He stated:

Today computers—and, therefore, the Internet—are almost wholly
dependent on human beings for information. [...] Conventional
diagrams of the Internet include servers and routers and so on,
but they leave out the most numerous and important routers of
all: people. The problem is, people have limited time, attention,
and accuracy—all of which means they are not very good at cap-
turing data about things in the real world.
And that’s a big deal. We’re physical, and so is our environment.
Our economy, society, and survival aren’t based on ideas or in-
formation—they’re based on things. [...] Ideas and information
are important, but things matter much more. Yet today’s infor-
mation technology is so dependent on data originated by people
that our computers know more about ideas than things.

A third definition has been provided, in 2014, by the International Telecom-
munication Union (ITU) and by the IoT European Research Cluster (IERC) [3]
and states

A dynamic global network infrastructure with self-configuring ca-
pabilities based on standard and interoperable communication pro-
tocols where physical and virtual “things” have identities, physical
attributes, and virtual personalities and use intelligent interfaces,
and are seamlessly integrated into the information network.

Many definitions have been provided in the last 35 years, however, we
have to come back to 2008/2009 to find the actual birth of the IoT. Accord-
ing to the Cisco Internet Business Solutions Group (IBSG) [6], the IoT era
started when the number of Internet-connected devices (e.g., computers,
smartphones, etc.) was greater than the number of humans on Earth. The
technological hype started a few years later, in 2011, when Gartner inserted
the term Internet of Things in its Hype Cycle of Emerging Technologies [4]
(Figure 1.1a) and IoT hit the top of the curve in 2014 [5] (Figure 1.1b).
At the same time, the need to process data, coming from IoT devices
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Figure 1.1: Hype Cycles for Emerging Technologies related to IoT in 2011 and 2014. Red
labels indicate the ”Internet of Things”.

and the strong limitations imposed by devices constraints, has pushed re-
search effort to design IoT applications by moving the computation to
remote entities by relying on the Cloud Computing paradigm [7], which
ideally provides infinite computational power, memory, and storage capa-
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Internet

CloudIoT devices

Figure 1.2: Two-tier architecture of a Cloud-centric IoT application.

bilities. In such a scenario, as depicted in Figure 1.2, the typical approach
is to collect data from the field using connected sensors or smart devices
and, then, send data to remote endpoints for computationally heavy tasks.
Cloud Computing allows executing computationally intensive routines, like
AI tasks (i.e., inference, training, validation, etc.), processing, data visual-
ization, asset monitoring, data storage, etc. Many research and industrial
players have invested a lot of effort to develop cloud products and solu-
tions to reliably collect data, process information, and extract knowledge.
This approach has enabled new classes of applications that may support
geographically distributed deployments, even across multiple continents,
of actuators and sensors. Moreover, the combination of Cloud Computing
with AI has enormous economical potential since it has been forecast that
AI on the cloud will reach a market size of 6.4 billion USD by 2026 [8].

1.2 Cloud Computing is not the answer for IoT

Cloud Computing based approaches, called Cloud-centric, are affected by
several issues related to the communication between IoT devices and cloud
endpoints. First, the distance between the devices and the cloud end-
points, which can be even thousands of km, introduces an unavoidable
latency that may become dangerous for people, the environment, or sim-
ply makes latency-sensitive applications unresponsive (e.g., AR/VR appli-
cations). On the other hand, the data volume produced by devices may
be too big to be sent to and processed by a cloud endpoint. It has been
forecast that overall IoT devices will produce 73.1ZB (1ZB, 1 zettabyte, is
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1.000.000.000.000 GB) of data1 by 2025. Moreover, sensible data, e.g., real-
time health data, should not be transmitted over the Internet to prevent
any possible interference, e.g., destruction, tampering, or eavesdropping of
information. Last, but not least, devices require an always-on connection
with the remote entity to work properly. If the cloud counterpart is unavail-
able, these connected devices become only useless “smart” commodities.
We usually assume that the cloud is always present and available, however,
a disaster (e.g., earthquake, fire, internal bug, etc.) may happen. And it
happened. Indeed, between December 2020 and March 2021, two cloud
platforms experienced major incidents that caused big outages. These
have risen many concerns about our strong dependency on the cloud.
The first incident happened on 14th December 2020, around 12 pm UTC,
when the UserID Service of Google, a service used to authenticate OAuth
requests, started to reject incoming requests due to an internal error in a
quota system2. This error had a cascade effect on all main Google ser-
vices that rely on OAuth, e.g., the Google Workspaces apps (Drive, Meet,
Docs, GMail, YouTube, Hangouts, Calendar, etc.), making them unavail-
able. This turns to a huge economical impact since people, all around the
globe, could not access their data for almost 1 hour. Even if this prob-
lem looks only affected people, this had a huge impact also on the Google
Home ecosystem, since smart devices use OAuth to authenticate their re-
quests. Many users reported on Twitter3 that they could not turn on their
light, their heating system, and they were reconsidering the full automation
of their houses based on products that require an always-on connection to
cloud services to work. The interested reader can find more details here [9].
A second main disaster happened on 10th March 2021, at 00.47 am CET,
when a fire started in the OVH SBG2 datacenter4, in Strasbourg, destroy-
ing hundreds of servers and affecting thousands of websites, platforms,
services, and so on. This incident was probably due to a failure of two
UPSes (Uninterruptible Power Supplies), one of them was under mainte-
nance and pushed back to service the day before SBG2 burnt down. As a

1https://www.idc.com/getdoc.jsp?containerId=prAP46737220
2https://status.cloud.google.com/incident/zall/20013
3https://twitter.com/alexdunsdon/status/1338461046785368067
4https://www.ovh.ie/news/press/cpl1786.strasbourg-datacentre-latest-information
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Figure 1.3: Hype Cycle for Emerging Technologies related to IoT in 2017 (adapted
from [12]). Red Labels indicate the“Edge Computing” and “Deep Learning” topics.

consequence, also part of the SBG1 datacenter was affected by the fire.
These incidents demonstrate that the idea/dogma “too big to fail”, when
referred to the cloud, does not work anymore. We need a strong change
of direction on how we, as practitioners, design and implement IoT ap-
plications since it is not reliable to completely rely on remote endpoint
to deliver main their functionalities. For instance, we can tolerate if we
cannot listen to our favorite playlist or get the latest weather forecast but
we should always able to heat-up our houses or dim our lights, even if the
connection to the cloud is not available. This can be extended also other
domains like transports, industry, e-health, or any other domain where the
IoT plays the role of enabling technology. For these reasons, a strong push
is required toward the design of applications that exploit more reliable,
by design, computing paradigms. A candidate paradigm is Edge Comput-
ing [10], even if it has been a niche for more than a decade [11], it has
become popular when entered in the Gartner Hype Cycle [12] (Figure 1.3).
Edge Computing has been defined by the Industrial Internet Consortium5

as

5https://www.iiconsortium.org/IIC-OF-faq.htm
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Distributed computing that is performed near the edge, where the
nearness is determined by the system requirements. The Edge is
the boundary between the pertinent digital and physical entities,
delineated by IoT devices.

Talking about “the edge”, we refer to the “edge of the network”, which
is a partition of the network close to data sources. Edge Computing, by
design, provides some improvements over Cloud Computing with respect
to communication latency, privacy, reliability, autonomy, and bandwidth
usage [13]. This approach reduces the communication latency required to
send data to the processing entity (i.e., an edge device) providing fast re-
sponses, improves the user experience enabling new classes of applications
(e.g., augmented reality and virtual reality applications), and reducing the
migration costs like the bandwidth usage. Since the computation is per-
formed at the edge of the network, a high level of privacy is guaranteed by
design even if the application manages sensible data (e.g., e-health data).
Moreover, the application should guarantee a minimum level of function-
alities if the cloud counterpart is not available.
The edge of the network is populated by “edge devices”, which are any
network resource or computing entity that stands between a cloud end-
point and a data source. It can be a home gateway and connected devices
in a smart home scenario, a cloudlet that supports heavy computations for
latency-sensitive applications (AR/VE), a smartphone and a smartwatch
in a wearable scenario, or the sensing device itself if powerful enough.
Moreover, an edge device can play two roles [14]: it can be a data pro-
ducer and a data consumer at the same time. It can continue to receive or
send data to a cloud entity but it can also execute tasks from the cloud.
Indeed, edge devices can run data processing, AI tasks, storage, caching,
off-loading, and so on. This is also possible to the recent development
of new embedded computing platforms that support fully-fledged operat-
ing systems (e.g., Raspberry Pi) or MCU-based devices that offer enough
computing resources for heavy tasks (e.g., ESP32). However, this requires
a proper design of the whole system to fulfill the application’s requirements.
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1.3 Toward new IoT application design approaches

In 2017, when the research for this thesis was started, Edge Computing
was getting popular and big Internet players were releasing their first ver-
sions of platforms to start design and implement IoT applications in the
network edge. However, applications were just a transposition of cloud-
scale functionalities (i.e., serverless functions like lambda functions) at the
edge of the network on fully-fledged devices, thanks also to the migra-
tion and orchestration functionalities offered by the Fog Computing [15]
paradigm6. Simultaneously, Artificial Intelligence (AI) was experiencing
its second spring and, especially, Deep Learning was at the very top of
the Hype Cycle [12] in 2017 (Figure 1.3). As a natural consequence, also
IoT practitioners have embraced the possibility to exploit AI [16] to ex-
tract knowledge from sensory signals, however, the strong computational
requirements have mainly forced the execution of AI algorithms in the
cloud. At this point, a few questions arise:

• How can the next-generation of IoT application take advantage by
passing from a cloud-centric approach to new design approaches where
the processing is not concentrated anymore in the cloud?

• How can processing (including AI tasks, firmware update, data-analytic,
storage, caching, etc.) be distributed between the cloud and the data-
sources by exploiting everyday-more-powerful computing devices?

This thesis answers the above questions by proposing and discussing a
paradigm shift from cloud-centric design approaches to more distributed
approaches exploiting the edge of the network, with the final goal to execute
as much as possible computations at the edge. However, a drastic change
from a cloud-based scenario to a fully distributed scenario at the edge of
the network requires, almost, a complete redesign of the application from
scratch. Thus, to simplify this transition, this thesis guides a potential IoT
practitioner to smoothly migrate toward better design approaches where

6Hereafter, the terms Edge Computing and Fog Computing will be used to indicate the same paradigm,
however, they are slightly different. The former focuses on the system design point of view, the latter
focuses on the infrastructure aspects of the edge of the network. More details about the difference are
available in Chapter 2.

8



1.4. STRUCTURE OF THE THESIS

Internet 
Of

Things

New
Distributed
Computing
Paradigms

Cloud-to-Thing
Continuum

Edge
Computing

Edge
Intelligence

What’s
Next?

Figure 1.4: Schema of the transition toward Edge Intelligence applications. The intro-
duction of the thesis presented the IoT, cloud-based applications, and the opportunity
offered by the edge.

the application core runs at the edge. This migration will take several steps
which are mapped on the chapters of this thesis.

1.4 Structure of the thesis

Every chapter opens with a “progress bar”, like Figure 1.4, that provides
an insight into the current position in the transition toward IoT applica-
tions that fully exploit the edge of the network. Moreover, each chapter
provides the ingredients and the guidelines to build new applications at
the edge and, then, uses the novel approach to implement a real-world IoT
application as validation. More in detail, this thesis is structured as fol-
lows: Chapter 2 provides a better overview of new distributed computing
paradigms (i.e., Edge Computing and Fog Computing) by presenting the
architectural, standard, product, and open-source community landscape.
Chapter 3 presents how to design an IoT application that embeds data
pre-processing routines and an AI algorithm on an edge device, i.e., an
IoT gateway, to provide its functionalities. Here, the improvement is on
the moving of cloud-scale routines to the edge, indeed, IoT devices act as
in a cloud-centric scenario with a different data-sync endpoint (i.e., the
IoT gateway). Then, Chapter 4 improves the previous design approach by
moving part of the data pre-processing routines from an edge device (i.e.,
the IoT gateway) to another (i.e., the sensing device) by fulfilling the sys-
tem requirements in terms of latency and bandwidth usage. As result, the
processing is distributed over multiple entities at the edge of the network.
Chapter 5 presents a novel class of chips, known as Edge AI accelerators,
properly designed to execute cloud-scale deep learning models at the edge.
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The chapter provides some key insight on how to design systems and the
AI models to fully exploit these new devices, which are an enabler of Edge
Intelligence or Edge AI. Chapter 6 presents an end-to-end framework to
design Edge Intelligence IoT applications, starting from data sampling to
the selection of the best AI model, passing through data pre-processing and
AI model optimization. It uses a set of bio-inspired AI methods to identify
the best parameters of the AI model that best tackle system requirements
and constrained. Finally, Chapter 7 concludes this thesis by providing a
recap on the contributions to the state-of-the-art and depicting some fu-
ture works and scenarios that will take advantage of Edge Intelligence in
the following years.

The research presented in this thesis is based on the contributions pre-
sented and discussed in the following publications:

• Chapter 1: Mattia Antonini and Massimo Vecchio. “IoT-Panic:
The Cloud Just Disappeared!” IEEE IoT Newsletter (January 2021),
Non-peer reviewed (Newsletter).
URL: https://iot.ieee.org/newsletter/january-2021/iot-panic-the-cloud-
just-disappeared

• Chapter 2: Mattia Antonini, Massimo Vecchio, and Fabio Antonelli.
“Fog computing architectures: A reference for practitioners.” IEEE
Internet of Things Magazine 2, no. 3 (2019): 19-25.
DOI: 10.1109/IOTM.0001.1900029

• Chapter 3: Zaffar Haider Janjua, Massimo Vecchio, Mattia An-
tonini, and Fabio Antonelli. “IRESE: An intelligent rare-event detec-
tion system using unsupervised learning on the IoT edge.” Engineering
Applications of Artificial Intelligence 84 (2019): 41-50.
DOI: 10.1016/j.engappai.2019.05.011

• Chapter 4: Mattia Antonini, Massimo Vecchio, Fabio Antonelli,
Pietro Ducange, and Charith Perera. “Smart audio sensors in the
internet of things edge for anomaly detection.” IEEE Access 6 (2018):
67594-67610.
DOI: 10.1109/ACCESS.2018.2877523
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• Chapter 5: Mattia Antonini, Tran Huy Vu, Chulhong Min, Alessan-
dro Montanari, Akhil Mathur, and Fahim Kawsar. “Resource charac-
terisation of personal-scale sensing models on edge accelerators.” In
Proceedings of the First International Workshop on Challenges in Ar-
tificial Intelligence and Machine Learning for Internet of Things, pp.
49-55. 2019.
DOI: 10.1145/3363347.3363363

• Chapter 6: Mattia Antonini, Andrea Gaiardo, and Massimo Vec-
chio. “MetaNChemo: A meta-heuristic neural-based framework for
chemometric analysis.” Applied Soft Computing 97 (2020): 106712.
DOI: 10.1016/j.asoc.2020.106712

Additional contributions, and not included in this thesis, have been pub-
lished in the following publications:

• Luca Davoli, Mattia Antonini, and Gianluigi Ferrari. “DIRPL: A
RPL-based resource and service discovery algorithm for 6LoWPANS.”
Applied Sciences 9, no. 1 (2019): 33.
DOI: 10.3390/app9010033

• Raffaele Giaffreda and Mattia Antonini. “IoT Technologies and
Privacy in a Data-Bloated Society: Where Do We Stand in the Fight
to Prepare for the Next Pandemic?.” IEEE Internet of Things Maga-
zine 3, no. 4 (2020): 2-3, Non-peer reviewed (Magazine column).
DOI: 10.1109/MIOT.2020.9319621
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Figure 2.1: This chapter presents how novel computing paradigms, like Fog Comput-
ing and Edge Computing, help to migrate from cloud-centric applications toward IoT
applications with Edge Intelligence.

2.1 Introduction

The first need of connected devices was to stream sensed data to powered-
enough entities able to process incoming data and deliver responses and
commands. As a natural answer, the cloud was the first option thanks to
theoretically infinite computing power, infinite storage capacity, and eas-
ily reachable (since the only requirement is an internet connection, e.g.,
ADSL subscription). This approach, known as the cloud-centric approach,

Part of this chapter appears in the following publication that I co-authored:
M. Antonini, M. Vecchio, and F. Antonelli, “Fog Computing Architectures: A Reference for Practition-
ers”. IEEE Internet of Things Magazine, vol. 2, no. 3, pp. 19-25, Sep. 2019. © 2019 IEEE. DOI:
10.1109/IOTM.0001.1900029.
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Cloud Layer

Fog Layer

Edge Layer

or Device Layer

Figure 2.2: The Fog Computing architecture presented in [15].

has been applied to smart-agriculture, smart-homes, smart-cities, and con-
nected industries, just to cite a few domains; and has been widely demon-
strated by Internet big players (e.g., Google, AWS, Microsoft, etc.). How-
ever, this approach suffers from many drawbacks as we presented in the
introduction of this thesis. A possible solution to alleviate these issues was
proposed by Flavio Bonomi (Cisco) in 2012 when he first introduced the
Fog Computing paradigm as an extension of the Cloud Computing capa-
bilities to the edge of the network [15].
In this chapter, we will give a wide overview of the state-of-the-art [17]
of architectures, paradigms, standard definitions, and software platforms
(both commercial and open-source) that support the extension of the Cloud
toward the edge of the network. We will present these concepts from the
perspective of practitioners that use these “tools” to design, build, and
deploy their own IoT applications at the edge. Finally, Figure 2.1 depicts
how this chapter is related to the transition from the design of cloud-centric
IoT applications to applications that fully exploit the concept of Edge In-
telligence.
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2.2 Fog Computing architectures

Fog Computing [15] aims to move the execution of tasks from the Cloud
closer to the data sources, by exploiting networking entities like gateways,
access points, and routers. The Fog Computing architecture that he orig-
inally proposed comprised three main layers, as depicted in Figure 2.2:
the bottom layer, containing IoT devices able to sense and act in the sur-
rounding environment; a middle layer, that is the Fog layer, responsible for
processing data locally and, if needed, able to forward them to a remote
cloud system; and the upper layer, that is the Cloud itself. Fog Computing
introduces the concept of Cloud-to-Thing continuum since the data pro-
cessing from the sensing device to a cloud endpoint can be distributed along
the way without discontinuity. This paradigm addresses, with a by-design
approach, some of the major issues of today’s cloud-based solutions with
respect to privacy, reliability, latency, and bandwidth, at the additional
cost of increasing the local computing power. This approach has the po-
tential to enable new classes of applications; just as an example, consider
a condition monitoring application, where some dedicated sensors sample
the current state of an engine and a software application takes suitable
actions based on the data acquired from the field. Here, we can have two
alternative approaches: a cloud-based and a fog-based approach. In the
first case, we deploy some sensors in the field that collect information about
the physical phenomenon and forward it to a cloud endpoint, in charge of
executing the required processing. If an anomalous condition is met, the
cloud application sends a command to some actuators to make an action
on the environment (e.g., halting the monitored engine). In this case, the
bandwidth required to stream the data might be too large, or the latency
too high to react sufficiently fast to avoid a dangerous event. Moreover, if
the connectivity fails and an anomalous event happens, then the end-to-end
application might not be able to react, causing even serious consequences.
The orthogonal possibility is to develop an application leveraging the Fog
Computing paradigm. In this case, the computation is done closer to the
sensors (e.g., on a gateway) and the application does not need to send all
the information to the cloud to react to anomalous events. In this sense,
the system is faster and more reliable with respect to the previous scenario.
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As we write, many efforts have been paid by different communities, both
academic and industrial communities, to define a standard architecture for
Fog Computing. Among all the definitions, the IEEE has adopted the
OpenFog architecture [18] as a reference architecture, as we will discuss in
Section 2.3. It is worth mentioning that, in the last few years, research
and development efforts have been focused on identifying the correct num-
ber of layers comprising the perfect Fog Computing architecture. More in
detail, based on the implementation details, the literature boasts of archi-
tectures composed of three [15, 19, 20], four [21], five [22], six [23], and even
eight [24] layers. Arkian et al. [21] proposed a four-layer architecture, where
the first three layers are those initially proposed in [15], while the fourth
one is a vertical layer, namely the Data Consumer layer, used to make re-
quests to the other layers. Dastjerdi et al. [22] introduced a five-layer stack,
where the IoT applications and the Software-defined resource management
layers are located on top of the three traditional ones. Aazam et al. [23] de-
fined a six-layer structure by highlighting the functionality that should be
implemented in the Fog. Recently, Naha et al. [24] described a detailed and
fine-grained architecture, where components are divided into eight differ-
ent groups based on their functionality that defines the layer. Specifically:
physical (sensors, actuators), Fog device (configuration and connectivity),
Monitoring, Pre- and Post-Processing, Storage, Resource Management (re-
source allocation, scalability, reliability), Security (encryption/decryption,
privacy, authentication), and Application layers. Another approach to Fog
Computing has been recently proposed by Sinaeepourfard et al. [25] that
uses Fog Computing as a building block for a distributed-to-centralized
data manager for smart cities. They identify three main layers: the Fog
layer that contains IoT devices and performs some on-site processing. The
Cloudlet layer is the mid-layer, it is located in the same city of the fog
layer and it is used as a communication layer among the different and dis-
tributed entities in the fog layer. The third layer is the (traditional) Cloud
layer. Notwithstanding this plethora of system architectures essentially re-
veals that a wide effort has been needed to fill the gap of consensus among
researchers, software architects, system integrators, and IoT practitioners
in general on a unified reference architecture for Fog Computing. It is im-
portant to take stock of the current, most mature, implementations from
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standardization, commercial, and open-source communities’ perspectives.
Indeed, this is what the remaining of this chapter will be all about.

2.3 Standard Initiatives

Some big names of industry and academia have already joined efforts, form-
ing consortia to formalize possible architectures for Fog Computing. One
of the main initiatives in this respect was the OpenFog consortium, es-
tablished in November 2015 by ARM, Microsoft Corp., Intel, Cisco, Dell,
and Princeton University and now incorporated into the Industrial In-
ternet Consortium (IIC). OpenFog Consortium defined Fog Computing as
”a horizontal, system-level architecture that distributes computing, storage,
control, and networking functions closer to the users along a Cloud-to-
Thing continuum” [26]. This consortium formally aimed to fill the gap [15]
present in the design of IoT applications that are built using a “cloud-
only” architecture. More in details, OpenFog had identified some “pillars”
to distinguish Fog Computing from Cloud Computing, namely: 1) low
latency, deployments, and computations near the data-sources (i.e., IoT
devices); 2) avoid migration costs (i.e., bandwidth); 3) local communica-
tions instead of communications with remote end-nodes; 4) management,
network configuration and measurement deployed in fog nodes; 5) support
for telemetry and analytics that should be sent to a remote system for
orchestration and additional analytics. The proposed architecture follows
Bonomi’s (Cisco) [15] one: a three-layer stack where the Fog layer, com-
posed of nodes called Fog Nodes, is split into four main sub-layers, namely
Platform Hardware, Node Management, and Software Backplane, Appli-
cation Support, and Application Services. The lower layer is the Platform
Hardware that is the physical hardware of the Fog device. The Node Man-
agement and Software Backplane layer is in charge of the general manage-
ment of nodes and communications among endpoints (e.g., remote cloud
systems, edge devices, other Fog nodes). The Application Support layer
is a collection of micro-services that are not application-specific. These
modules comprise databases, storage managers, networking stacks, secu-
rity modules, message/event buses, runtime engines, analytic tools, etc.
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The last module is the Application Services layer that offers many services
to applications like Fog Connector services, Core services, Supporting ser-
vices, Analytic services, Integration and User Interface services.
It is important to notice that this architecture had been conceived for
quite powerful devices that are capable to offer both reactive and predic-
tive capabilities. More in detail, reactive capabilities analyze the incoming
data (e.g., vibrational signals) to discover if something is happening in the
surrounding environment. This set of capabilities includes, for instance,
Anomaly Detection, Rule Engines, Event processing, Sensor fusion and
meta-sensors, supervisory control. On the other hand, predictive capabil-
ities, also referred to as forecasting capabilities, comprise Artificial Intel-
ligence and Machine Learning based techniques that can identify patterns
and forecast future behaviors based on the incoming data. These predictive
models may be directly inferred locally by the Fog node or, if required, in a
hybrid fashion among different Fog nodes and Cloud systems. Since some
operations over such models can be more demanding in terms of computa-
tional and memory power (e.g., model training) than others, these can be
executed on more powerful remote cloud systems; after the training phase,
such models are downloaded from the Cloud and deployed in the Fog nodes.
In August 2018, the Institute of Electrical and Electronics Engineers (IEEE)
adopted the OpenFog Architecture as the reference architecture for Fog
Computing for the IEEE 1934-2018 standard [18]. This should allow de-
velopers and companies to build their own Fog-oriented applications using
a standardized approach. However, as we write, an open-source project
implementing the whole IEEE 1934-2018 architecture, or that is at least
fully compliant with all its specs, does not exist yet.
Then, in January 2019, the OpenFog Consortium and the Industrial Inter-
net Consortium1 (IIC) announced that they had finalized the agreement
to join forces and merge the OpenFog consortium (and all of its work-
ing groups) under the umbrella of the IIC. This has been done since the
two consortia were working on the common objectives and, in this way,
they could boost the development and the deployment of Fog Computing
applications for the Industry 4.0 scenarios. Interestingly, as part of the

1https://www.iiconsortium.org/
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agreement were the formal definitions of the terms Fog Computing and
Edge Computing [27]. In more detail, Fog Computing, as defined by the
OpenFog Consortium, is “a system-level horizontal architecture that dis-
tributes resources and services of computing, storage, control and network-
ing anywhere along the continuum from Cloud to Things”. On the other
hand, the IIC defined Edge Computing as “distributed computing that is
performed near the edge, where the nearness is determined by the system
requirements. The Edge is the boundary between the pertinent digital and
physical entities, delineated by IoT devices”. So, while the terms Edge
and Fog Computing are often used interchangeably, the above definitions
shed light on their conceptual differences. Specifically, Edge Computing
leverages on processing resources already located at the edge of the network
(i.e., closer to end-users and IoT devices), while Fog Computing shifts typ-
ical cloud capabilities toward the edge of the network, leveraging on the
edge’s resources (e.g., gateways, local servers, etc.), also facilitating the
distribution of application logic in a Cloud-to-Thing continuum.

On another front, in January 2019, the Linux Foundation has started
a new initiative, known as LF Edge2. In this case, the declared ob-
jective is “to establish a unified open-source framework for the edge [...]
contributing a new agnostic standard edge architecture” [28]. This sub-
foundation aims to create an open and interoperable ecosystem of software
frameworks for fog/Edge Computing platforms, constrained to be vendor-
neutral, hardware-independent, and technology-agnostic (i.e., cloud- and
OS- independent). This would create a unified and aligned vision for the
fog/Edge Computing paradigm by creating communities that will drive
a better and more secure development of applications at the edge of the
network. As declared in the “The State of the Edge Report 2018” [29],
the LFEdge identified four pillars that we report in the following list: 1)
Edge is not a thing, it is a location; 2) there is not only one edge, however,
the LF Edge is now focusing on the last-mile network; 3) the edge is the
combination of infrastructure and devices; 4) edge will continue to work
coordinately with centralized cloud counter-part. At the time of writing,
the LF Edge Foundation counts nine different projects3 under its umbrella

2https://www.lfedge.org
3https://www.lfedge.org/projects/
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partitioned into three different maturity stages.
At Large Stage belongs projects that have the potential or the Techni-
cal Advisory Council (TAC) believes that they will become important for
other more mature projects or the whole edge ecosystem. At Growth Stage
we find projects that aim to reach the higher stage and have found the
plan to do that. They receive direct mentorship from the TAC and they
have to develop their governance and community of developers, contribu-
tors, supporters, and so on. Finally, at Impact Stage we find projects that
have achieved their growth goals and now have a self-sustaining life-cycle
for maintenance, release, and so on. More details about the development
stages of LF Edge projects can be found here [30]. Starting from the “at
Large Stage” projects, we find

1) Baetyl4, originally known as OpenEdge by Baidu [31], is an open-
source project that enables developers to build edge applications ex-
tending the Cloud Computing counterpart seamlessly. It relies on
the design concepts of serverless and containerized applications, it ab-
stracts different hardware capabilities into a built-in set of APIs and a
runtime environment, reducing the difficulties of developing applica-
tions that can run on a wide range of platforms, from embedded IoT
devices to clusters of cloud machines.

2) Open Horizon5, originally known as Blue Horizon by IBM, enables
the autonomous management of machine learning assets (e.g., trained
models) and of the containerized workloads over fleets of Edge Com-
puting nodes, which might contain even more than 10.000 devices.
Moreover, the management of fleets does not require administrators
close to the deployments allowing the automatic hand-free manage-
ment of edge nodes. Developers that adopt Open Horizon can deploy
and replace capabilities of single-purpose devices also based on policies
and negotiated agreements.

3) Secure Device Onboard6, or SDO, was originally released by Intel
Corp. as an open-source project. SDO aims to provide an automatic

4https://www.lfedge.org/projects/baetyl/
5https://www.lfedge.org/projects/openhorizon/
6https://www.lfedge.org/projects/securedeviceonboard/
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and secure (i.e., without using unsafe default passwords) zero-touch
method to provision new edge IoT devices, reducing deployment costs
and simplifying the installation procedures (i.e., plug&play). This
should also enlarge the Total Available Market (TAM) since it en-
ables high volume production of IoT devices and, consequent, wider
adoption by customers.

Then, “at Growth Stage” we find:

4) Edge Virtualization Engine7, or EVE project, aims to build the EVE-
OS, a Linux distribution for distributed Edge Computing. The ob-
jective is to simplify the design, deployment, and orchestration of
edge nodes and at the same time guarantying a high level of secu-
rity by keeping a technology-agnostic approach (i.e., any combination
of hardware, applications, and cloud providers). Access to hardware
capabilities, orchestration, and other applications is guaranteed via
EVE APIs.

5) Fledge8 is an open-source framework developed to build industrial
edge IoT applications. The aim is to tackle verticals like predic-
tive maintenance, critical operations, safety (e.g., hazardous environ-
ment), and many others. Fledge has been designed to eliminate data
silos, usually found in many industrial settings, by supporting legacy
and industrial-level ecosystems and equipment like SCADA, PLC,
DCS. The fragmentation issues and complexity of applications are
overtaken by implementing a well-defined set of APIs for applications
and administrative purposes. This project is usually accompanied by
the EVE project, which provides orchestration and other services.

6) Home Edge9 is a Fog/Edge Computing framework for home automa-
tion, offering an open-source, robust, flexible, and interoperable en-
vironment where devices can be simply integrated through a set of
APIs, libraries, and runtimes. Home Edge, thanks to its orchestrator,
allows flexible and agnostic deployments given the usage of Docker as

7https://www.lfedge.org/projects/eve/
8https://www.lfedge.org/projects/fledge/
9https://www.lfedge.org/projects/homeedge/
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containerization technology. Containers can, then, be easily deployed
and off-loaded (Home Edge support dynamic load balancing) over the
infrastructure.

7) The State of the Edge (SOTE) 10 is an ambitious vendor-neutral plat-
form to foster the development of open research on fog and Edge
Computing. The research developed within the project is freely shared
among partners and used to propose, discuss, and define solutions that
will drive the evolution of Edge Computing and next-generation inter-
net (NGI). Under the umbrella of this project, three assets have been
developed: the SOTE reports, the open glossary of Edge Computing,
and the landscape of Edge Computing.

Finally, “at Impact Stage” we find:

8) Akraino11 is an open software stack that enables edge-cloud infras-
tructures (with VMs, containers, microservices, ...) by keeping the
focus on the pillars of Edge Computing like low latency and local
processing. Akraino delivers a set of application blueprints created
and tested by its community that tackles edge use-cases for both en-
terprise and provider domains. These can be used as-is or to derive
other blueprints. Akraino blueprints have been created following dif-
ferent principles: design principles (availability, continuity, security,
and capacity), build principles (low-latency deployment and process-
ing, and plug&play architecture), run principles (zero-touch provision-
ing, lifecycle, and operations), and community principles(organization
and oversight of the project by the community that also pushes the
development of blueprints over sponsored hardware).

9) EdgeX Foundry12 is an open-source and modular framework for Fog/Edge
Computing applications. EdgeX Foundry enables the interoperability
of applications and heterogeneous devices directly in the IoT Edge,
along with a strong foundation for security, management, and so on.
It allows to plug modules and create custom functional blocks in a

10https://www.lfedge.org/projects/stateoftheedge/
11https://www.lfedge.org/projects/akraino/
12https://www.edgexfoundry.org/
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simplified way. Given its maturity, this project will be separately
presented with more details in Section 2.4.1.

The nature and the philosophy behind the LF Edge Foundation drive the
open-source soul of this consortium. It is open to contributors, thus every-
one can contribute to existing projects and can ask to incubate new ideas,
while only the membership to the group requires the payment of an annual
fee.

Other standardization initiatives are currently under development by
different working groups in the Internet of Things ecosystem.
The Alliance for the Internet of Things Innovation (AIOTI) has proposed
the AIOTI High Level Architecture (HLA) [32], with the aim to propose
a deployment- and technology-agnostic architecture oriented to IoT appli-
cations. It is possible to host AIOTI HLA functionalities on top of Fog
nodes. However, this architecture does not target Fog Computing but more
in general IoT applications, thus we will not further discuss this initiative.
In 2012, the ITU-T has published the “Recommendation Y.2060” [33],
renumbered as Y.4000, that describes the general architecture for IoT ap-
plications. The document aims to define how an IoT application should be
designed by defining a set of layers and corresponding capabilities. How-
ever, it assumes that the devices have simple and limited capabilities re-
lated to sensing, node management, and networking; a device may overlap
with the gateway and it assumes that there is a remote entity that manages
and runs the IoT application.
The European Telecommunication Standard Institute (ETSI) has proposed
the oneM2M Architecture [34], which defines a software architecture for
IoT and Machine-to-Machine (M2M) applications. This document splits
the architecture into three different layers (Application Layer, Common
Service Layer, and Network Service Layer), it defines many different types
of nodes and their role in the architecture. It is possible to map some
functionalities along the Cloud-to-Thing continuum. Moreover, ETSI has
recently published a technical report [35] in which they are evaluating pos-
sible changes of the oneM2M architectures to introduce the concepts of Fog
and Edge Computing.
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2.4 Fog Computing Platforms

In addition to the effort paid to define a standard Fog Computing architec-
ture, many communities and private companies are also actively involved
in designing and developing full-fledged software platforms able to cope
with the unique requirements of this challenging computing paradigm. In
the remainder of this section, we introduce some of the main actors playing
on this stage.

2.4.1 Frameworks for Fog/Edge Computing

This section introduces two frameworks that are currently used in many
applications, namely Apache Edgent and EdgeX Foundry.
Apache Edgent13 is a Java-based framework for edge stream analytics in-
cubated by the Apache Foundation. Mainly, it enables a data flow-based
programming model suitable for fog/edge devices. Moreover, it provides a
lightweight micro-kernel run-time environment embeddable in several off-
the-shelf gateways and on other constrained devices able to execute a Java
Runtime Environment (JRE). It also supports local and real-time analyt-
ics on data streams from the surrounding environment, such as vehicles,
appliances, equipment, and so on. More in details, a fog application can
integrate Apache Edgent in the fog layer and the framework uses analytics
(e.g., split, union, filters, windowing, aggregations, etc.) to identify which
data have to be streamed from the edge of the network to another com-
puting entity (i.e., a cloud endpoint). This reduces the overall network
bandwidth (and the associated cost of transmission, especially high in IoT
contexts) and storage needs, also guaranteeing faster feedback toward local
devices. Here, a developer can easily decide how data streams are managed
inside his application and which computations have to be applied to which
data. However, Apache Edgent provides only a few more capabilities than
a stream manager, thus it does not come with a complete architecture to
design an entire application. It can be easily integrated using the provided
SDK and it can communicate with the outside world using well-known
protocols such as, for instance, MQTT.

13https://edgent.apache.org
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A more complete and mature platform for Fog Computing is EdgeX
Foundry. The latter is a project originally donated by Dell Technologies
to the open-source community in October 2017 and since then hosted un-
der the umbrella of the LF Edge Foundation. Currently, EdgeX Foundry is
supported and developed by more than 60 members coming from academia
and industry. Since this project is constrained to be vendor-neutral, it
provides a software solution that is not tied to any specific hardware or
software supplier. The project aims to accelerate the deployment of IoT
solutions by creating a unified and plug-and-play ecosystem that relies on
an interoperability framework. This framework is implemented through
an OS- and hardware-agnostic software platform for Fog and Edge devices
that allows developers and companies to design new interoperable appli-
cations by combining standard connectivity interfaces (e.g., Wi-Fi, Blue-
tooth, BLE, etc.), common software modules, and proprietary extensions.
Moreover, the project leaderboard aims to contribute to create a common
standard for IoT interoperability and to create a certification program for
hardware and software components to guarantee compatibility and inter-
operability.

The EdgeX Foundry Architecture relies on the well-known three-layer
Fog Architecture [15], as depicted in Figure 2.3, where edge devices and
cloud systems are located below (”southbound”, or edge layer) and above
(”northbound”, or cloud layer) the EdgeX Foundry software architecture,
respectively. More in detail, the EdgeX Foundry software architecture is
located in the middle layer (i.e., fog layer), being composed of many sub-
layers, as described in the following. Such architecture has been conceived
starting from the micro-service paradigm [37] that enables modular, scal-
able, secure, and technology-agnostic applications. Specifically, the chosen
approach is the loosely-coupled micro-services architecture that requires a
common layer to enable communications and data exchanges among mod-
ules using Inter-Processes Communications (IPC) APIs (i.e., REST APIs).
This layer may be also distributed over more than one device if different
services run on many Fog nodes. EdgeX Foundry can run on any edge/fog
device such as gateways, routers, industrial PCs, servers, hubs, etc.
The EdgeX Foundry software architecture [38], which is located in the
fog layer (see Figure 2.3), is composed of four horizontal sub-layers for
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Figure 2.3: The EdgeX Foundry platform architecture (source [36], license: CC BY 3.0).

the business logic definition, and two vertical sub-layers for security and
management functionalities. The horizontal sub-layers are Device Services,
Core Services, Supporting Services, and Application Services. The Device
Services layer comprises communication protocols and schema to inter-
act with heterogeneous IoT Edge devices (e.g., BLE, MQTT, BACNET,
MODBUS, REST, and so forth). It is also possible to integrate any miss-
ing protocol, by developing a micro-service that integrates such protocol
through libraries. This allows companies to integrate their own proprietary
technologies and protocols within EdgeX Foundry. Core Services layer im-
plements the Interoperability Foundation that is a set of micro-services
(Core Data, Command, Metadata, Registry&Configuration) required to
build an application. The Supporting Services layer exposes functionalities
that are useful for all the applications defined at higher layers. It comprises
Rule Engine, Scheduling Engine, Logging services, and Alert&Notification
system. Similar to protocols, it is possible to add new modules and ser-
vices by developing a micro-service exposing the functionalities through an
API. The Application Services layer provides the functionalities to manage,
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process, deliver data from EdgeX to other endpoints or processes. These
services are designed by following the idea of “function pipelines”, it is a
sequence of routines that process data one function after the other. The
first element of each pipeline is a trigger, e.g., a message from a device,
that initializes the data processing. An SDK is currently available to en-
able developers to build their own services, e.g., a module to connect to
a specific cloud provider. Finally, the two vertical sub-layers, the Security
and the Management layers, expose micro-services that interact with all
four horizontal layers. The Management layer contains a micro-service to
deploy new modules in the system and the Security module manages all
the security operations like encryption, decryption, access, policies, and so
on.
The EdgeX Foundry project and Architecture has been designed to create
Edge/Fog applications for the Industrial IoT. Some of the main contribu-
tors (e.g., Dell) of this project have already commercialized some industrial
computers that natively run EdgeX Foundry.
At the time of writing, the latest version of EdgeX Foundry is 1.3.0-Hanoi.
A new version, 2.0-Ireland, is expected in Spring 2021.

2.4.2 Nebbiolo Technologies

Commercially, some companies are offering products that implement the
Fog Computing architecture. One of them is Nebbiolo Technologies that
has been co-founded by Bonomi, i.e., one of the Fog Computing pioneers.
Nebbiolo Technologies produces a complete Fog solution composed of nodes
(i.e., fogNode14), an operating system (i.e., fogOs15), and a system man-
ager (i.e., fogSM16). Focusing on fogNodes, these are powerful machines
built for industrial environments and equipped with powerful CPUs (In-
tel i5, i7, or Atom), solid-state disks (from 32 GB up to 512 GB), large
RAM banks (from 4 GB to 16 GB), and networking interfaces (Ethernet,
WiFi, and 3G/LTE). These machines support many functionalities and

14https://www.nebbiolo.tech/wp-content/uploads/NFN-300-Datasheetv1.8FINAL-C-2018-

Pantone.pdf
15https://www.nebbiolo.tech/wp-content/uploads/fogOS-Datasheetv1.5a-2018-Pantone.pdf
16https://www.nebbiolo.tech/wp-content/uploads/NFN-300-Datasheetv1.8FINAL-C-2018-

Pantone.pdf
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address many requirements of Fog Computing. However, these products
are quite expensive and they are not as flexible as an open-source project
could be, as all the code is developed by the company and it does not exist
a community that supports and improves these products.

2.4.3 Fog/Edge Computing-as-a-Service

Another approach to Edge/Fog Computing is offered by Internet big play-
ers like Amazon Web Services (AWS), Microsoft, and so on. They are
proposing solutions to implement Fog nodes with a cloud back-end and with
support for computing capabilities like machine learning algorithms. Using
this approach, providers can implement and offer an edge/Fog Computing
infrastructure as a service (IaaS). This allows developers and customers to
put effort only on their fog/edge application removing the management,
orchestration, and deployment complexity.

AWS offers Greengrass (AWS-GG) [39], a software that extends the
cloud capabilities of AWS Cloud closer to edge devices by directly en-
abling data collection and analysis on the edge of the network. At the
time of writing, AWS has recently rolled-out Greengrass V2 that delivers
new capabilities and functionalities with respect to Greengrass V1. Devel-
opers can create, deploy and manage, via AWS-GG Cloud APIs, software
components on edge devices for local execution. AWS Greengrass runs on
edge devices that may be full-fledged computers, servers, virtual machines,
but even single-board mini-PC like Raspberry Pis. Moreover, these devices
can securely communicate among them, using authentication and autho-
rization mechanisms, on the same network without any mediation with the
remote cloud back-end. Running applications can continue their execution
even in absence of connectivity. Furthermore, AWS-GG caches outbound
and inbound messages using a local publish/subscribe message manager,
based on MQTT, to preserve undelivered messages.
AWS-GG is composed of a modular core software, namely the nucleus and
other optional components provided by AWS, an SDK to implement edge
nodes, an SDK to manage data streams, cloud APIs to manage devices and
orchestrate deployments, and the integration of many other AWS prod-
ucts/services like Machine Learning Inference, Shadows implementation,
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Figure 2.4: The AWS Greengrass application architecture with machine learning func-
tionalities (adapted from [39]).

group management, Lambda runtime, message manager, secure over-the-
air updates, local resource access and so forth. Other components may
run on the edge device and implement functionalities. Each component is
composed of three entities: the recipe, which contains the parameters, the
configuration, metadata needed to run the component; the artifact that is
the source code/binaries of the component, which might be Lambda func-
tions, Docker containers, and so on; the dependencies that describe how
different component are dependent one with respect to the others. For
instance, Lambda functions can be used to build IoT devices that can be
triggered by events, messages from the cloud, or other components.

Additionally, AWS Greengrass offers the possibility to embed and infer
machine learning models in two different flavors: using Amazon SageMaker
Neo DLR components and models for computer vision, or embedding Ten-
sorFlow or other frameworks in the component that will run on the edge
device. Models, embedded within components, are automatically deployed
by Greengrass. This approach (Figure 2.4) enables more intelligent edge
applications that can reduce latency, costs (i.e., bandwidth and energy),
and exploit powerful cloud systems to train models. Models can be built
and trained using AWS SageMaker17, a cloud service developed to train
deep-learning models using common frameworks like Tensorflow18, Keras19,
PyTorch20, Caffe221, and so on. Furthermore, components, which infer

17https://aws.amazon.com/sagemaker/
18https://www.tensorflow.org/
19https://keras.io/
20https://pytorch.org/
21https://caffe2.ai/
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Figure 2.5: The Azure IoT Edge application architecture (adapted from [40]).

models, can forward back incoming data to AWS S322 (AWS cloud storage
service) to provide new data samples to update or re-train models.

Another suite of products for Fog Computing has been developed by
Microsoft, namely Azure IoT Edge [40]. As AWS Greengrass, it allows
developers to deploy their own business logic closer to data sources in or-
der to reduce latencies, bandwidth, and increase reactiveness. Figure 2.5
depicts the typical architecture of an Azure IoT Edge application. Azure
IoT Edge is a service developed over Azure IoT Hub and it is composed
of three main components: containers that locally run Azure, user, or
3rd parties modules; Azure IoT Edge runtime that is executed on each
device and manages all the other modules; a cloud-based interface to re-
motely monitor and manage a fleet of Azure IoT Edge devices. Azure IoT
Edge runs on many different hardware architectures including Raspberry
Pi, full-fledged computers, industrial computers, servers, and so on. It has
been designed by following the micro-service architecture [37] to imple-
ment modules, which are Docker-compatible containers. Modules can be
interconnected through pipelines to exchange data. Additional modules
may add new classes of supported devices by exploiting the edge node’s
networking interfaces. Moreover, it enables machine learning applications
by combining user-developed containers to run custom code, i.e., Feature
Extraction, and Azure Machine Learning.
Concurrently, Microsoft is also developing a new set of tools for data an-

22https://aws.amazon.com/s3/
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alytics at the edge of the network known as Azure SQL Database Edge23.
As we write, this toolkit enables local data processing on devices that sup-
port containerization, e.g., Linux- or Windows-based systems. It offers the
possibility to execute graph-based local analytics, data-stream, and time-
series processing (e.g., data filtering, windowing, aggregation, etc.) before
forwarding information to another entity, like a cloud endpoint, optimiz-
ing bandwidth and money. Moreover, it can locally execute in-database
machine learning algorithms to identify patterns, anomalies, classify in-
stances, and so on. The model might be trained in the cloud and then
locally deployed to be able to execute it offline and to minimize the infer-
ence latency. Finally, other Azure services, i.e., Azure Streaming Service
(ASA)24, can be easily deployed on edge devices to support new function-
alities and deliver a better service.

2.5 Comparisons and Considerations

All of the described solutions deal with the Fog Computing paradigm with
very specific approaches, sometimes offering peculiar services and/or capa-
bilities and hitting the market with different sales models and prices.

On the one side, Internet giants like Amazon, Microsoft, and Google
provide cloud-assisted digital products targeting vertical domains like in-
dustry, home automation, buildings, vehicles, and so on. Essentially, they
are comfortable playing the role of enablers for several novel applications
within this framework, given the unique degree of integration with other
cloud services they are already offering to their millions of users. How-
ever, Fog/Edge Computing has also the clear mandate to embed Artificial
Intelligence closer to the data sources, meaning (among the other things)
enabling the integration of some machine learning services and modules
inside tinier IoT devices. On the contrary, these companies’ products are
not always available for embedded architectures (e.g., ARM-based boards)
and sometimes they are not even publicly available yet. Moreover, even if
such products are in general very flexible, they are also closed-source and
often based on a cloud-centric approach. This means that the management

23https://azure.microsoft.com/en-us/services/sql-database-edge/
24https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-edge
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and the orchestration of users’ resources, models, and data are performed
at the cloud side. As said, this approach suffers from major issues, such
as reliability, privacy, bandwidth, and so forth. Since these frameworks
depend on a cloud back-end, the system may have unpredictable behavior
if connectivity fails. Furthermore, data coming from devices are usually
streamed to cloud endpoints to build a historical database and to update
their predictive models. The amount of data might be too high to be
streamed by the producers and/or stored by the cloud service (because of
its volume, cost of the service, etc.). Typically, the billing of these products
is based on batches of messages or per bunch of data. Finally, depending on
the application, data might be sensitive, hence it should not be streamed.

On the other side, solutions like those offered by EdgeX Foundry and
Nebbiolo tackle Fog Computing with a different approach: in principle,
applications do not need to rely on any cloud infrastructure or remote
service to implement their functionalities, but they can occasionally use
cloud-based support to more efficiently tackle specific operations (usually
the most demanding ones, in terms of computational and memory power).
In this way, fog/edge devices may be empowered with high-performance
computing units and big storage devices that allow applications where com-
putation is pushed as much as possible closer to the edge of the network.
For example, it is possible to train and execute machine learning and Ar-
tificial Intelligence algorithms directly on the edge. The developers can
thus create modular applications keeping full control on the entire data-
flow processing and of the devices. The typical approach is to exploit the
micro-service paradigm [37] as a reference methodology.

Concluding, this latter type of solutions are most suitable to meet re-
quirements like 1) low latency and reactiveness (e.g., anomalies and faults
are detected as fast as possible); 2) reliability and cloud-independence
(e.g., the system is not dependent on any specific cloud endpoint or ser-
vice provider); 3) guarantee privacy (e.g., sensitive data like machinery
vibrational data or e-health data are processed only locally); 4) reduced
bandwidth (e.g., it is to be considered unfeasible to stream all raw data
generated by all sensing devices, thus aggregation, feature extraction, and
fusion are tasks to be resolved locally within the edge of the network). It
goes without saying that this approach initially has higher economic costs

32



2.6. REMARKS

with respect to cloud-centric approaches. However, these costs pay off later
when no periodical payments of fees based on data volumes or transactions
will be required.

2.6 Remarks

The rise of Fog Computing is remarkably changing the way IoT applica-
tions are designed. In this chapter, we have provided an overview of this
novel computing paradigm from different perspectives. We have started
our journey from the origins, trying to reconstruct the most pioneering
steps made by the research community in this field. Then, we have dived
into the main standardization initiatives, the most mature open-source
solutions and the most advanced products/services already available on
the market. In this latter case, we focused on the Fog/Edge Computing
paradigm offered with an as-a-Service model. As we will present in the
next chapters of this thesis, we expect that Fog and Edge Computing will
play a key role in the development of the IoT solutions of the future, mainly
because of its by-design capabilities of enabling lower-latency, more secure,
more cost-effective, and more complex applications, hence unleashing the
true potential of the AI.
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Chapter 3

Design and deployment of an IoT
application into the Cloud-to-Thing
continuum

Internet 
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New
Distributed
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Cloud-to-Thing
Continuum

Edge
Computing

Edge
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What’s
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Figure 3.1: This chapter describes how to design, implement, and deploy an intelligent IoT
application along the Cloud-to-Thing continuum. More in detail, this application makes
use of a machine learning technique to perform data stream analytics at the edge without
relying on remote cloud endpoints. This is a further step toward Edge Intelligence.

3.1 Introduction

The Cloud-to-Thing continuum and the Edge Computing paradigm [10]
have gained much attention in recent years due to improved resources and

Part of this chapter appears in the following publications that I co-authored:
- Z. H. Janjua, M. Vecchio, M. Antonini, and F. Antonelli, “IRESE: An intelligent rare-event detection
system using unsupervised learning on the IoT edge. Engineering Applications of Artificial Intelligence,
vol. 84, pp. 41-50, Sep. 2019. Copyright Elsevier (2019). DOI: 10.1016/j.engappai.2019.05.011.
- M. Antonini, M. Vecchio, F. Antonelli, P. Ducange, and C. Perera, “Smart Audio Sensors in the
Internet of Things Edge for anomaly detection”. IEEE Access, vol. 6, pp. 67594-67610, 2018. DOI:
10.1109/ACCESS.2018.2877523.
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increased processing power of edge devices available on the market. Today,
this paradigm is extensively adopted in various applications such as smart
homes, smart cities, smart health, and smart transportation. In these ap-
plications, data are directly processed by edge devices (i.e., IoT gateways)
with the aim to extract meaningful information, gain knowledge, and, fi-
nally, take the right action at right time without the support of any other
remote entity. A real example is represented by Boeing 787 aircraft that
generate around 5 GB of data every second [14]: it is unfeasible to move
such an amount of data to cloud endpoints, indeed, these data are directly
processed by the on-board avionics. Only a small amount of such data are
streamed to remote entities (e.g., health status of components). There-
fore, one can assert that Cloud Computing alone is not efficient enough
to handle the enormous amount of IoT data that will be generated in the
coming years [41]. It is delineating the necessity to perform processing on
edge IoT devices; near the source. The edge devices are becoming more
powerful and resource-friendly with optimal utilization of resources such
as memory and energy.
In many IoT applications, devices generate data streams that may contain
interesting information thus data stream analytics plays a crucial role to
discover interesting hidden patterns in disorganized and unbounded data
streams. One of the most demanding tasks is to discover patterns reflect-
ing short-duration abrupt changes in a data stream, which may indicate
an unusual situation or event [42]. In literature, different terms are used
for such short-duration abrupt changes including rare-event, anomaly, or
outlier. Summarizing various definitions of these terms given in the liter-
ature [43, 44, 45], we can formally define a rare-event as follows:

Definition 1 A rare-event, or an outlier, is an observation (or set of few
observations) that occurs infrequently, deviates or, is inconsistent with re-
spect to other observations so much that becomes suspicious. It may indi-
cate an irregularity or an anomaly in the given set of observations.

It is extremely important to detect rare-events occurring in data streams,
as it may be helpful in detecting potentially hazardous situations. For ex-
ample, a microphone is deployed in an outdoor environment (e.g., a park),
receiving typical city-related sounds (e.g., cars, horns, birds, etc.). All of a
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sudden, a siren is heard; this sound is very different from the background
audio, and for this reason, it is considered a rare-event with respect to its
background environment. Consider another example, a vibration sensor
is deployed on a machine located in an industrial plant to continuously
measure the vibrations generated by its motor(s); when the machine will
start malfunctioning, an abnormal vibration pattern may be registered by
the attached sensor, representing this a rare-event in the context of normal
working conditions of that machine. Again, due to the network bandwidth
vs. data production rate bottleneck, Cloud Computing may not be the
right solution since it has limitations in rare-event detection, especially in
time-critical applications. It may not be able to generate timely alerts. On
the other hand, in Edge Computing, IoT data can be locally processed by
an intelligent gateway.

In this chapter, we continue the migration (Figure 3.1) toward Edge
Intelligence by presenting how to design a data streaming IoT applica-
tion, which usually runs in the cloud, by executing almost all the required
processing at the edge of the network without relying on remote cloud in-
stances by exploiting the concept of IoT gateway [46]. We will describe
the design process of IoT applications that need to locally process data
streams, execute machine learning algorithms, infer AI models, and take
actions. This will include also how to choose the main parameters of the
application.
In order to support our design approach and provide a complete proof-of-
concept, we propose an intelligent rare-event detection system suitable for
the IoT Edge, which we called IRESE 1 [47]. The system uses unsupervised
machine learning techniques to detect rare-events occurring in the incom-
ing data streams. Figure 3.2 illustrates the overall concept of IRESE :
the IoT devices continuously sense the environment, while an edge device
(intelligent gateway) processes the incoming data streams with the goal of
detecting rare-event instances and then transmit them to a cloud endpoint.
As we will highlight also later, all the intelligence and the processing can
be concentrated over one or more edge devices.

1The name IRESE recalls the name of the flower Iris, which is also the name of one of the most
famous data-set used by entry-level data scientists to learn multivariate analysis techniques.
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Figure 3.2: The conceptual diagram of IRESE (source: [47], p. 43).

3.1.1 Additional Contributions

Besides the main contribution to the design of IoT applications along the
Cloud-to-Thing continuum, this chapter provides additional contributions
as follows:

• IoT data stream analytics: we have strictly considered the limitations
of IoT data stream analytics in the proposed model since they are con-
tinuous, high-speed, and unbounded. Given these unique characteris-
tics, data streams need quick data processing without storing the data.
We have used data stream processing machine learning algorithms
that work in two stages: micro-clustering and macro-clustering [48]. In
a nutshell, micro-clustering enables an edge device to quickly get sum-
maries of the high-speed incoming data stream in real-time without
storing it, whereas macro-clustering further processes micro-clusters to
discover separate clusters of rare-events and normal events. We have
practically deployed IRESE on an IoT gateway that continuously re-
ceives audio streams from microphones and detects rare-events that
happened in an environment, e.g., a gunshot.

• Detecting rare-event without prior knowledge: IRESE relies on a com-
bination of unsupervised machine learning techniques. One of the
challenging tasks in machine learning is to label data and provide it
as training examples to a supervised machine learning algorithm. To
overcome this problem and save the effort to manually label data,
we adopted unsupervised machine learning techniques, which do not
require labeled data and, once a rare-event is detected, we can fur-
ther investigate its type. Unsupervised machine learning techniques
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allow us to automatically detect hidden patterns of interest in data
without having prior knowledge about these patterns. Given the po-
tentially enormous amount of data generated by IoT and edge devices,
this feature is quite appealing. We applied two techniques: BIRCH
(Balanced Iterative Reducing and Clustering using Hierarchies) algo-
rithm [49] to get micro-clusters and Agglomerative Clustering [50] is
used to get macro-clusters from the input data stream. More details
on the applied techniques are presented in Section 3.3.4.

Finally, this chapter is structured as follows: we present a literature
review about anomaly detection, both in IoT and traditional contexts, with
a focus on audio events in Section 3.2. We describe the principles behind
IRESE in Section 3.3. Section 3.4 presents the experiments conducted to
validate IRESE. Finally, we draw some final remarks in Section 3.5.

3.2 Literature review on anomaly detection

Several Anomaly Detection (AD) techniques have been proposed in the lit-
erature using different machine learning approaches based on unsupervised,
supervised, and semi-supervised training algorithms.

Generally speaking, when dealing with unsupervised training algorithms,
no labeled training datasets are adopted for building the models. Usually,
only patterns describing normal behavior are available, while additional
information regarding anomalies is not available. In these situations, al-
gorithms based on clustering, data density and proximity, and one-class
detection models may be adopted [51, 52, 53]. Among these algorithms,
the one-class support vector machine (1-SVM) algorithm still continues to
be one of the most adopted for unsupervised anomaly detection [54, 55]: a
kernel model, namely a decision function, is derived by using normal data
patterns, while new patterns projecting too far from the model are marked
as anomalies. Moreover, also frequent pattern and association rule mining
algorithms have been adopted for unsupervised anomaly detection: nor-
mal data vectors can be considered as transactions and frequent patterns
and association rules can be mined. New transactions (i.e., new measured
data) that cannot be projected into the frequent patterns or the mined
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rules are marked as anomalies [56, 57].

When a sufficient number of labeled training patterns is available, in-
cluding both normal and anomalous situations, supervised learning algo-
rithms can be employed. More in detail, multi-class classification models
can be trained using a fully labeled training set. Classification models, such
as decision trees [58], multi-class SVM [59], and Bayesian classifiers [60],
have been successfully employed for different kinds of anomaly detection.
A recent survey [61] compares a number of classification algorithms for a
specific anomaly detection framework, namely intrusion detection in net-
works.

Finally, there exist specific situations in which only a low number of
anomalous labeled patterns are available. In such cases, a semi-supervised
training algorithm can be employed for learning the models for detecting
anomalies. These kinds of algorithms usually are based on the hybridiza-
tion of unsupervised and supervised algorithms [62]. As recently discussed
by the authors of [63], a classification model (specifically, a neural net-
work) is trained using the labeled patterns. Then, the unlabeled patterns,
appropriately pre-elaborated using a fuzziness function, are classified and
exploited for reinforcing the structure of the models. The work in [64] dis-
cusses the use of the so-called deep auto-encoder (DAE), a kind of deep
belief network followed by an ensemble of K-NN classifiers. In particu-
lar, unlabeled data are used for training the DAE in order to reduce the
dimensionality of the data [65]. The subset of labeled data, transformed
by using the DAE, is used for training the ensemble of K-NN classifiers.
New patterns are filtered by the DAE and then classified by means of the
ensemble.

3.2.1 Audio anomaly detection and rare event detection

Focusing on audio anomaly and rare event detection, several novel tech-
niques have been proposed within Task 2 of the DCASE 2017 Challenge [66].
Many submitted techniques adopt deep neural network architectures [67,
68, 69, 70] to create classifiers able to detect the on-set time instant of
rare-events (e.g., gunshots, glass breaks, baby cries) over background au-
dio. However, supervised algorithms can be adopted if and only if a labeled
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dataset is available. Usually, these datasets are manually generated (i.e.,
labeled) by researchers, but this is arduous and tedious work. Apart from
being not affordable from time and money perspectives, this approach is
not always feasible because some events are either extremely rare or un-
known. For this reason, wherever possible, unsupervised approaches (e.g.,
learning algorithms that can be trained using unlabeled datasets, because
they can identify, extract, and learn patterns directly from data) are always
advisable.

Oh et al. [71] propose an AD strategy based on an auto-encoder to detect
audio anomalies produced by a Surface-Mounted Device (SMD) machine
that places components on top of a Printed Circuit Board (PCB). The
algorithm creates an auto-encoding manifold able to measure differences
among instances and the manifold, signaling an anomaly if such distances
are too large. Koizumi et al. [72] propose a similar AD approach based on
an auto-encoder. They trained the unsupervised algorithm by optimizing
an objective function formulated by starting from the Neyman-Pearson
lemma. In order to pursue this way, they assumed that the AD task was
a statistical hypothesis test.

Recently, Bose et al. [73] proposed a novel approach to Anomaly De-
tection on the IoT Edge. There, the authors describe a new comput-
ing schema, called Anomaly Detection based Power Saving (ADEPOS), to
adaptively update an anomaly detector, through time, without losing de-
tection accuracy. The authors validated their approach by implementing a
system to detect anomalies and failures of rotating bearing equipment by
analyzing some time-based features extracted from vibrations. This tech-
nique consists of a group of one-class classifiers, which detect if an anomaly
happened or not, followed by a majority voting strategy. ADEPOS is used
to vary the number of detectors in the ensemble. Moreover, they evaluated
the power saving of ADEPOS by simulating it in a Very Large Scale In-
tegration (VLSI) hardware architecture. However, ADEPOS and IRESE
have two different targets: the former aims to create adaptive anomaly
detection systems, based on edge devices, that require a small amount of
energy. IRESE aims to create an Audio Rare-Event Detection system (Au-
dio Anomaly Detection system), based on unsupervised machine learning,
that runs on an IoT Gateway.
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Another class of techniques that allow anomaly detection in audio streams
is the semi-supervised learning algorithms. Aurino et al. [74] propose a
1-SVM approach within an automatic surveillance framework to detect
burst-like audio events, namely screams, gunshots, and glass breaks. Such
an approach uses a two-stage classification scheme: the first stage classifies
short audio segments (200 ms) through an ensemble of 1-SVM classifiers,
while the second stage composes and re-classifies the first stage’s decisions
using a majority strategy, in order to take one decision per second. Elizalde
et al. [75] present a framework to train audio event detectors using a semi-
supervised self-training approach. Audio Event Detectors have to be firstly
trained on the UrbanSound8K dataset [76], then have to run on unlabeled
audio streams extracted from YouTube videos. If the detector recognizes a
known sound with a high level of confidence, it uses that sound to re-train
the model. This approach helps to train models with acoustic diversity
even if the original dataset is relatively small.

3.2.2 Audio Anomaly Detection in IoT contexts

Anomaly Detection algorithms have been adopted also in IoT contexts,
by creating more intelligent, reactive, and secure environments. Hilal et
al. [59] present and describe a Sensor Management framework called Intel-
liSurv. It realizes an acoustic surveillance system that follows the pervasive
IoT paradigm, being able to detect and localize anomalous audio events us-
ing different kinds of distributed devices: smart sensors for environmental
monitoring, and delegate sensors devoted to sensor management, local-
ization, and identification of anomalous events. Moreover, all the smart
sensors have enough computing capabilities to locally execute the abnor-
mality detection. At the classification stage of events, the authors adopted
SVM and LDA models.
Socoró et al. [77] propose an Anomalous Noise Event Detector (ANED)
algorithm to map the traffic noise in urban and sub-urban areas using
low-cost wireless sensor networks. These networks are composed of smart
devices that perform simple signal pre-processing, then execute event de-
tection using machine learning algorithms and, finally, they send labels
to a central server that updates and draw noise maps. The authors there
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adopted a two-class classification scheme to distinguish the anomalous traf-
fic noise (e.g., jammed or semi-jammed traffic) from the normal traffic
noise. They discovered that this approach performs better than the one us-
ing the one-class classifier, but they had to manually annotate the dataset.
This system has been conceived using some outcomes from the European
Project called DYNAMAP2.
Alsina-Pagés et al. [78] present an Ambient Assisted Living (AAL) system,
called homesound, that is able to detect and recognize different audio rare
events happening in an everyday environment. This system uses a wireless
sensor network to record audio from the environment; then the sensors for-
ward the sampled audio streams to a GPU-based central device, which has
two roles: first, it performs feature extraction from the raw audio stream,
by computing 48 Mel Frequency Cepstral Coefficients (MFCC) and con-
sidering only the first 13 coefficients; then, it executes the inference of data
using the trained model that is based on a classification algorithm (SVM)
and clustering algorithm. The model response is finally sent to a remote
system, where the medical staff can monitor the patient status.
Finally, even though the work is not properly focused on IoT architec-
ture, it is worth discussing the issues regarding AAD arisen in [79]. This
work deals with important challenges in AAD, namely intra-class varia-
tions, such as the different duration for the same sound type, and spectral-
temporal properties across classes, which include impulse-like sounds, tonal
events, and noise-like events. Among the latter types of sounds/events, we
can found, respectively, door slams, phone rings, and printer sounds. In
particular, the authors propose the use of both contextual information and
prior knowledge of the event category and the event boundary. Random
forests are employed as models for anomaly detection.

3.3 The IRESE framework

In principle, the proposed model involves IoT devices that are deployed in
an environment to measure signal energy through its transducer. The con-
sidered environment could be indoor or outdoor and it should have uniform

2http://www.life-dynamap.eu/
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characteristics and does not suppose to have frequent abrupt changes. We
considered sensors that can produce a continuous waveform from measured
quantities such as acoustic events, vibrations, or accelerations. Measured
quantities must be represented as a waveform as IRESE performs complex
spectrum analysis to detect rare-events. Figure 3.3 shows the overall ar-
chitecture of the rare-event detection system which is deployed on an edge
device. IoT devices (for example, sensing devices) generate a data stream
D[n] sampled at sampling frequency fs, where fs satisfies Nyquist-Shannon
sampling theorem: fs ≥ 2fmax, fmax represents the maximum frequency
that occurs in the signal. An unbounded time-series data stream is rep-
resented as a discrete signal: D[n] = xn, xn−1, ..., xn−t, ..., where xn is the
current sample, and xn−t is the t − th recorded sample. Since the data
stream is unbounded, we need to buffer it to hold it for a small duration
for further processing.

Figure 3.3: Logical schema of the rare-event detection system proposed in the IRESE
framework (source: [47], p. 44).

3.3.1 Data Buffering

The incoming data stream D[n] is periodically buffered in the local memory
of an edge device. Each cycle has a fixed duration, in which data are
buffered during a short interval of η seconds, for example, 60 or 120 seconds.
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Data buffering is required because it allows applying IRESE on a longer
time window instead of on each sample data. Single sample processing
may not be feasible since IRESE requires some time to process samples.
We will deeply discuss this problem in Section 4.4.
The buffering time η could vary according to the type of data generated by
IoT devices, however, it remains fixed for a given setup. The buffered data
stream is, then, supplied to the Data Framing module that splits data into
small frames suitable for subsequent feature extraction techniques.

3.3.2 Data Framing

The data framing module takes buffered data and breaks them into smaller
frames of duration ∆ seconds, where ∆ << η, for example, ∆ is 1 second
when η is 60 seconds. For data framing, we defined a fixed-length rectangu-
lar window of ∆ seconds. The rectangular window function is represented
in Formula (3.1). It is a tumbling window that moves over the buffered
data stream in a way that two consecutive windows do not overlap with
each other. For example, the buffer holds data for 60 seconds then the
data framing module breaks this buffered data into 60 equal-sized frames
by using a fixed window of size ∆ = 1 second.

Π(n) =

{
1 if 0 ≤ n < i ·∆ · fs
0 otherwise

(3.1)

By multiplying the data stream D[n] with the rectangular window func-
tion Π(n) of Formula (3.1) (element-wise multiplication), we obtain the ith

frame Fi[n], also represented as:

Fi[n] = D[n] · Π (n− (i− 1) ·∆ · fs) (3.2)

where Fi[n] = xn−(i−1)·∆·fs, ..., xn−i·∆·fs+1 contains a sequence of samples
selected during the interval starting at n − i · ∆ · fs + 1 and ending at
n − (i − 1) · ∆ · fs time instant. If we consider the first frame (i = 1),
F1[n] = xn, ..., xn−∆·fs+1. Clearly, each frame contains ∆ ·fs samples, where
fs is the sampling frequency.
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3.3.3 Feature Extraction

We have considered both time and frequency domain features to effec-
tively and accurately detect abrupt changes visible in time or frequency
domains. In order to preserve the time-domain envelope of the signal,
we have used Linear Predictive Coding (LPC) [80], which is a well-known
technique used for feature extraction from audio and speech signals [81].
For the frequency domain analysis, we selected Mel-frequency cepstral co-
efficients (MFCCs) [82, 83] and Gammatone frequency cepstral coefficients
(GFCC) [84]. MFCC and GFCC filter banks uniquely characterize the in-
put signal to detect a rare event. Thus, the feature vector ν is a tuple that
is composed of subset features: Lp(LPC), Mf(MFCC), and Gf(GFCC),
which can be represented as

ν = {Lp1, Lp2, ..., LpI ,Mf1,Mf2, ...,MfJ , Gf1, Gf2, ..., GfK}

where I, J , and K are the numbers of LPC, MFCC, and GFCC coefficients
in each tuple ν.

3.3.4 Unsupervised Machine learning

In Section 3.2, we have discussed in detail the application of machine learn-
ing techniques in anomaly detection. However, in this chapter, we want
to design a data stream IoT application that able to automatically extract
patterns of rare-events occurring in an IoT data stream using an edge de-
vice. If we would apply a supervised machine learning technique, we should
individually label patterns of rare-events exhibited by extracted features.
However, data labeling is a difficult, tedious, and time-consuming task
since it requires a domain expert who closely observes incoming instances
and assigns them meaningful labels [85].

In order to avoid wasting the effort involved in data labeling and to
automatically find the patterns of rare-events hidden in a data stream,
we have used a two-stage rare-event detection strategy that relies on a
combination of state-of-the-art unsupervised machine learning techniques.
As shown in Figure 3.3, the unsupervised machine learning module takes
stacked feature instances as input and processes them using a two stages
technique to detect the occurrence of a rare event. Here it is important

46



3.3. THE IRESE FRAMEWORK

to highlight the working of an unsupervised machine learning technique,
which basically aims to partition data instances in a way that similar in-
stances are assigned to the same cluster [86]. On the other hand, dissimilar
instances belong to different clusters. Exploiting the fact that patterns of
rare events are reasonably different from normal events, IRESE tries to find
two separate clusters in the incoming data stream. One cluster, i.e., the
normality cluster, should contain instances of normal events whereas the
other cluster, i.e., the outlier cluster, should contain instances associated
with rare events.

The two-stage strategy is used due to the one-pass constraint of a
high-speed incoming data stream [87]. It is not possible to store such
a high-speed data stream due to a lack of resources and the amount of
data produced. The incoming data stream is processed in two stages: the
online micro-clustering stage and the subsequent offline macro-clustering
stage [48, 88]. In the first stage, online micro-clustering, the high-speed
data stream is processed in real-time to quickly extract statistical informa-
tion from it in the form of micro-clusters. Micro-clusters could indicate the
presence of rare-event patterns in the data stream. Therefore, instances
belonging to such clusters are further processed in the second stage, i.e.,
offline macro-clustering, that extracts rare-events from the incoming data
stream. As mentioned above, the final output is in the form of two clus-
ters: the normality cluster is dense and containing data points reflecting
normal behavior, whereas the outlier cluster containing a rare-event (if it
exists) which is an outlier and different from other events occurring in that
specific interval of buffered data. Further detail of both stages is described
in the following subsections.

Micro-Clustering

Since data streams are unbounded and having a large amount of data, an
efficient method is required to extract important statistics from the data
in real-time. An online micro-clustering [48, 88] technique considers the
one-pass nature of streaming data and attempts to quickly and efficiently
collect the useful summary of data. One-pass means that it is not suitable
to store raw data and it must be efficiently processed in the first attempt
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to get meaningful information from it. The outcome of micro-clustering
is several small clusters having unique properties due to the similarity be-
tween instances observed during the small time duration. There are several
stream clustering techniques available for online micro-clustering which are
compared in [88]. We have used the BIRCH (acronym of Balanced Iter-
ative Reducing and Clustering using Hierarchies) algorithm, which is a
tree-based stream clustering algorithm proposed in [49]. The algorithm
constructs a clustering feature (CF) tree for incoming data instances, in
which leaf nodes are micro-clusters. BIRCH is a fast and memory-efficient
algorithm and these characteristics make it suitable to be executed by an
edge device.

Macro-Clustering

In the offline macro-clustering phase [48, 88], micro-clusters are further
processed and merged to produce bigger clusters. The merging of clusters
is based on the distance between the cluster centroids. Hence, the clusters
having centroids close to each other are merged to form a single bigger
cluster. Keeping in mind that a rare-event has distinctive features, the
outlier cluster remains isolated from the other clusters. We have used the
Agglomerative Clustering [87, 89] method and the Ward method [50] to
recursively merge micro-clusters by minimizing variance among them.

Figure 3.4 shows the overall process of cluster merging. Following the
Ward algorithm, note that d is the squared Euclidean distance between
the centroids of any two given micro-clusters. A low value of d shows that
two micro-clusters are close to each other having similar characteristics,
whereas a high value of d means that two clusters are far from each other
due to their varying characteristics. The algorithm recursively merges any
two given micro-clusters at each step while optimizing the objective func-
tion, which tries to minimize the total with-in cluster variance. The algo-
rithm continues the merging process until only two clusters remain: the
normal events (normality cluster) and rare-events(outlier cluster), which
may not exist. The objective function considers a threshold value Th that
decides whether two micro-clusters are close enough to be merged into a
bigger cluster or not. Theoretically, increasing the value of Th expands
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Figure 3.4: Macro-cluster formation in IRESE (source: [47], p. 46).

the size of a recursively merged cluster while reducing the detection rate
of a rare-event, whereas decreasing the value of Th results in recognizing
a normal event as a rare-event. The Th value is strictly related to the
environment where the algorithm is deployed and the type of rare-event
we want to detect. We have performed (Section 3.4) some empirical anal-
ysis of received data in order to identify the best value of Th for different
rare-events: gunshot, scream, siren, and glass breaking.

3.4 Experimentation

In this section, we quantitatively assess our proposed approach, thus we
have conducted experiments with a typical use case involving the processing
of audio data containing rare-events. We can safely extend our hypothesis
that IRESE can be applied in other similar use cases that involve data
streams from IoT devices having similar temporal and spectral character-
istics. For example, another suitable scenario is the detection of faults in
the machines using vibration and acoustic sensors. This section presents
experiments conducted to detect various types of rare-events.
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3.4.1 Experimental setup

In this chapter we are trying to deploy a data stream IoT application along
the Cloud-to-Thing continuum where, typically, devices have constrained
computing and networking capabilities, allowing to reduce costs and energy
consumption since they are often battery-powered. In many scenarios, IoT
devices need an external entity deployed at the edge of the network, called
IoT gateway, that is able to execute computing- and networking-intensive
operations, e.g., bridging different networking stacks like Bluetooth and
Wi-Fi. One of the players in the open-source landscape is the Adaptive
Gateway for dIverse muLtiple Environment (AGILE) [46]. AGILE is a
modular software framework for IoT gateways with wide support for many
network stacks and devices. Moreover, AGILE has been designed by fol-
lowing the micro-service paradigm [37] that was initially conceived for dis-
tributed systems. This paradigm defines that all modules of the system
are independently designed and implemented and they are able to interact
among them using a well-defined set of Application Programming Inter-
faces (APIs). This enables strong modularity, resiliency against failures,
scalability, reliability, and simpler maintenance of the whole system. The
paradigm has been successfully applied to different domains (e.g., Cloud
Computing). The AGILE software framework will be presented in detail
in Section 4.3.2.

The framework for audio rare-event detection presented in this chapter
has been implemented as an independent micro-service within the AGILE
gateway framework. Since this module requires a raw audio stream in
order to extract features, the AGILE gateway board, i.e., a Raspberry Pi, is
connected to a USB microphone. This microphone is recognized as a classic
microphone by the gateway operating system. The micro-service records
the audio stream from the microphone, then it performs data buffering
(Section 3.3.1) and windowing (Section 3.3.2). Thus, it extracts features
over a temporal frame by computing MFCC, LPC, and GFCC coefficients.
Consequently, the module feeds the algorithm with the feature vector and
finally verifies if the anomaly happened or not by checking which cluster,
normality or outlier, contains the audio frame.

This module can be used with two different data sources: recorded (from
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AGILE GW
+

Rare Event Detection Module

Normality

AnomalyValidation

Figure 3.5: Functional schema, implementation of IRESE with AGILE (source: [47], p.
48).

microphone) audio stream and validation audio stream. Figure 3.5 shows
how it is possible to choose the data source. If we select the recorded audio
stream, the system behaves as presented above. If we choose the latter
stream, the module loads the audio stream from WAV files stored in the
SD card of the gateway. Using this data source, we can evaluate the system
performances as will be described in Section 3.4.4.

3.4.2 Software tools

The overall system is implemented in Python. Three types of features are
extracted using three python libraries: 1) LPC features are extracted using
audiolazy3 python library; 2) MFCC are extracted using librosa [90]; 3)
GFCC are extracted using gammatone python library4. We have adopted
the implementations of BIRCH and Agglomerative Clustering available
within the scikit-learn [91] library.

3.4.3 Dataset

There are several datasets available for various audio events — Urban-
Sound8K [76], TUT Sound Events [92], and Audio set by Google [93], just
to cite a few. In [93], authors have provided a resourceful compilation
of various audio datasets which include tagged and mixed audio events.
Since we are using unsupervised machine learning to detect rare-events,
we need a dataset with labeled time stamps of various rare-events over

3https://pythonhosted.org/audiolazy/
4https://github.com/detly/gammatone
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normal background audio signals. In DCASE 2017 Challenge [66], authors
produced a dataset with various backgrounds for three events: gunshot,
glass break, and baby cry. However, in our understanding, their mixture
model is not suitable for our case study, as we are looking for relatively
more prominent rare-events from different sources and having varying char-
acteristics that could highlight the seriousness of the situation. For this
purpose, we crafted a dataset by mixing various rare-events, from multi-
ple sources, with different backgrounds. To ensure the relatedness of this
chapter with the state-of-the-art research happening in the domain, we rely
on already published datasets to produce our mixture models. Therefore,
we collected background sounds from DCASE 2017 Challenge dataset [66],
and selected a subset, containing several variations, of rare-events from
UrbanSound8K [76] or downloaded directly from the Freesound5 search
engine. We have considered four types of rare-events: gunshot, glass break,
scream, and siren. Furthermore, the sounds in each type of rare-event are
also different from each other. We created a dataset of 160 samples per rare
event resulting in an overall dataset of 640 audio samples. We used the Py-
dub6 library to create each sample by mixing rare-events and background
sounds. Each sound clip contains exactly one rare-event and the insertion
point of the rare event is randomly selected. We resampled samples at
44.1 kHz, which meets the standard audio sampling rate of compact-disks
(CDs). Since we are simulating an IoT environment, we can safely assume
that these sounds are similar to those received by a microphone deployed
in the environment. As illustrated in Figure 3.3, the data received from
the IoT devices are temporarily stored in a buffer for few seconds. The
buffer size is variable, however, it remains fixed for a given environment.
In these experiments, we have considered the buffer size equals 30 seconds,
which is simulated by taking 30 second sound clip each time. The 30 sec-
onds sound is further split into frames, and for each frame, features are
extracted. We already discussed in detail the feature extraction method
in Section 3.3. However, here it is important to mention the number of
coefficients, we have considered for each of three types of feature extraction
methods: LPC, MFCC, and GFCC. We have taken 10 coefficients of LPC,

5https://freesound.org/
6https://pydub.com
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40 MFCCs, and 40 GFCCs. Thus, in total, the length of the feature vector
is 90 and each value is represented as a floating-point variable.

3.4.4 Experimental results

In this section, we will explain empirical results obtained while conducting
experiments using IRESE on the dataset described above. The two-staged
unsupervised machine learning strategy of IRESE ultimately produces two
clusters: a cluster of normal events, and a separate cluster of rare-event,
if it exists. As mentioned in the previous section, we have synthetically
constructed the dataset, in which we have added a rare-event sound at a
random time instant in a background sound of relatively longer duration.
For the sake of the evaluation, we recorded the time instant at which we
added a rare-sound in a background sound clip. The recorded information
is used to evaluate the performance of IRESE by comparing the time in-
stant, called “On-Set” time, at which IRESE detects a rare-event to the
actual time instant when the rare-event occurred according to records.

In order to evaluate the model, we have used matching matrix val-
ues: True Positive (TP), False Positive (FP), and False Negative (FN). In
these experiments, a TP occurs when IRESE correctly separates a rare-
event observation from the rest of the observations. A FP occurs when
IRESE wrongly detects a background sound or a normal event as a rare-
event, whereas a FN occurs when IRESE fails to distinguish between a
rare-event and background sounds. Additionally, we have also calculated
precision (P), recall (R), and f-measure (F1) values, where P gives us the
positive predictive value, R gives us true positive rate, and F1-score gives
us the harmonic mean of P and R values. In conclusion, the value of P
decreases with an increase in the number of FP and, similarly, the value of
R decreases as the number of FN increases. Following equations are used
to calculate these measures:

P =
TP

TP + FP
(3.3)

R =
TP

TP + FN
(3.4)
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(a) Rare event: gunshot.
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(b) Rare event: glass break.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold (Th)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

, R
ec

al
l, 

an
d 

F-
M

ea
su

re

Gun shot (Window Size = 0.5 second)

Precision
Recall
F-Measure

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold (Th)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

, R
ec

al
l, 

an
d 

F-
M

ea
su

re

Glass break (Window Size = 1 second)

Precision
Recall
F-Measure

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold (Th)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

, R
ec

al
l, 

an
d 

F-
M

ea
su

re

Scream (Window Size =1.5 seconds) 

Precision
Recall
F-Measure

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold (Th)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Pr

ec
isi

on
, R

ec
al

l, 
an

d 
F-

M
ea

su
re

Siren (Window Size = 1.25 seconds)

Precision
Recall
F-Measure

(c) Rare event: scream.
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(d) Rare event: siren.

Figure 3.6: These plots present the precision, recall, and F-measures computed at dif-
ferent value of Th for four different rare-events: gunshot, glass break, scream, and
siren (source: [47], p. 48).

F1 = 2 · P ·R
P +R

(3.5)

Figure 3.6 shows different plots of P , R, and F1-score values against the
threshold (Th) values discussed in Section 3.3.4 using a specific window
size. It is clearly observable that as threshold Th increases the precision
increases and recall decreases. It confirms the trend that the rare-event
detection rate decreases with the increase in Th value, whereas more false
predictions are produced with low values of Th. The reason is that the
boundary of the cluster defining normal events grows with the value of Th.
Consequently, at a certain point, the size of the normal cluster grows so
much that even an anomalous observation (occurring at a relatively larger
distance) becomes part of the normal cluster which increases the number of
FN. We have selected an optimum value of Th, which could be observed in
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the graphs, where the combination of all three values (P , R, and F1-score)
is highest. Thus, for gunshot the optimum value of Th is 0.4 by using a
window size of 0.5 seconds, for glass break the optimum value of Th is 0.45
by using a window size of 1 second, for siren the optimum value of Th is
0.3 by using a window size of 1.25, and for scream event the optimum value
of Th is 0.4.

Table 3.1: Detection of different rare-events against different window sizes performed by
IRESE over the dataset (source: [47], p. 48).

Window Size (s)

Gun shot (Th=0.4) Glass break (Th=0.45) Siren (Th=0.3) Scream (Th=0.4)

TP FP FN TP FP FN TP FP FN TP FP FN
0.25 151 21 9 156 36 4 156 11 4 157 46 3
0.5 148 10 12 153 32 7 155 11 5 157 28 3
1 143 11 17 149 12 11 154 6 6 157 20 3

1.25 125 27 35 136 18 25 154 6 6 151 19 9
1.5 116 28 44 124 27 36 152 7 8 151 16 9
2 103 26 57 102 23 58 152 6 8 145 13 15

Table 3.1 shows the values of TP , FN , and FP metrics for the four
types of events. Each row in the table represents the results obtained for
the given window size. Notice that window size is the size of an individual
frame, as defined in Equation (3.1). We can observe a trend in values
that TP decreases as window size increases, and it is true for all the cases.
Consequently, FN increases as the window size increases, whereas FP does
not follow a specific trend; it is probably due to using different background
sounds which may contain some sounds similar to the rare-events.

Table 3.2: Performance evaluation results using IRESE for rare-event detec-
tion (source: [47], p. 49).

Window Size

Gun shot (Th = 0.4) Glass break (Th =0.45) Siren (Th=0.3) Scream (Th=0.4)

P R F1 P R F1 P R F1 P R F1
0.25 0.87 0.94 0.91 0.81 0.97 0.88 0.93 0.97 0.95 0.77 0.98 0.86
0.5 0.93 0.92 0.93 0.82 0.95 0.88 0.93 0.96 0.95 0.84 0.98 0.91
1 0.92 0.89 0.91 0.92 0.93 0.92 0.96 0.96 0.96 0.88 0.98 0.93

1.25 0.82 0.78 0.8 0.88 0.85 0.86 0.96 0.96 0.96 0.88 0.94 0.91
1.5 0.8 0.72 0.76 0.82 0.77 0.79 0.95 0.95 0.95 0.9 0.94 0.92
2 0.79 0.64 0.71 0.81 0.63 0.71 0.96 0.95 0.95 0.91 0.9 0.91

While looking at Table 3.2, we can estimate a suitable window size to
detect a particular type of rare event and using an optimum value of Th.
The precision (P ) increases as the number of FP decreases, whereas recall
(R) increases as the number of FN decreases. In general, we can observe
that the suitable window size varies from one event to another and it
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depends on the duration of occurrence of a particular event. In summary,
window size 0.5 seconds show the optimum detection performance with
P = 0.93, R = 0.92, and F1 = 0.93. For the glass break, the optimum
window size is 1 second with a P = 0.92, R = 0.93, and F1 = 0.92.
Detection of sirens performs better with a window size of 1.25 seconds
with all P , R, and F1-score equals to 0.96. The largest suitable window
size is observed for scream which is 1.5 seconds with a P = 0.9, R = 0.94,
and F1 = 0.92.

Table 3.3: Performance evaluation using only macro-clustering (no IRESE ) for rare-event
detection (source: [47], p. 49).

Window Size

Gun shot Glass break Siren Scream

P R F1 P R F1 P R F1 P R F1
0.25 0.66 0.96 0.79 0.63 0.98 0.77 0.9 0.97 0.93 0.66 0.96 0.78
0.5 0.76 0.94 0.84 0.72 0.97 0.83 0.95 0.97 0.96 0.78 0.96 0.86
1 0.76 0.91 0.83 0.83 0.95 0.89 0.94 0.97 0.95 0.81 0.98 0.89

1.25 0.63 0.84 0.72 0.76 0.88 0.82 0.95 0.97 0.96 0.83 0.96 0.89
1.5 0.64 0.81 0.72 0.73 0.86 0.79 0.96 0.95 0.95 0.79 0.92 0.85
2 0.68 0.74 0.71 0.71 0.78 0.75 0.96 0.95 0.95 0.8 0.9 0.84

In our understanding, this variation in optimum window sizes is due to
the duration of rare events. For example, a gunshot sound is sudden and
exists for a very short duration such as between 0.5 seconds to 1 second.
On the other hand, the sound of a scream normally lasts longer (up to a
few seconds) such as 1.5 seconds or 2 seconds, which is also obvious from
the results.

In order to prove the significance of IRESE, we have also calculated
the results of rare-event detection using only the Agglomerative Clustering
technique (i.e., macro-clustering stage). Note that the two-stage strategy,
micro-clustering followed by macro-clustering, improves the rare-event de-
tection rate, which is obvious by comparing the results presented in Ta-
ble 3.2 and Table 3.3. While using IRESE, we can see an improvement in
all three calculated (P , R, and F1-score ) values for different rare-events
with different window sizes. Besides this improvement, the major benefit
we achieve with IRESE is its suitability to be used in data stream IoT
applications deployed along the Cloud-to-Thing continuum. The micro-
clustering stage of IRESE is able to quickly extract the statistical infor-
mation from an incoming high-speed data stream, without storing the data.
Later on, this statistical information is further processed to make macro-
clusters, which eventually indicates the presence of rare-events in the in-
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coming data stream. Hence, IRESE is an effort to provide a solution to
detect rare-events without storing incoming data on an edge device and
it also empowers an edge device with Artificial Intelligence to reduce the
burden on a cloud; sending only the patterns of interest to the cloud.

3.5 Remarks

This chapter shows how to deploy intelligence along the Cloud-to-Thing
continuum, or better close to the data sources at the edge of the network.
Moreover, it enables faster and more reliable IoT applications that con-
sume high-speed data streams. In this context, rare-event detection using
an edge device is a promising research area. We proposed IRESE that
has shown a significant performance to detect various types of rare-events:
gunshot, glass break, siren, and scream. We have used a two-stage un-
supervised machine learning strategy, deployed on an IoT gateway, that
allows the system to detect interesting patterns in the form of rare-events
without having any prior knowledge.
This is just an example of what is possible to design and implement on the
Cloud-to-Thing continuum. This approach allows to create new applica-
tions and tackle different issues that usually affect cloud-based applications.
First of all, considering that we are dealing with an audio stream, privacy
is preserved by design since all the processing is locally done. Eventu-
ally, only the information ‘a rare-event happened‘ may be streamed to a
cloud endpoint instead of the entire audio stream/sample. Moreover, given
the local processing, the application does not require to send data to an-
other entity and this saves bandwidth, energy and reduces the latency. For
instance, the gateway may be connected to the Internet via LoRAWAN
technology that permits streaming only a few bytes per day, e.g., the rare
event flag or timestamp. Additionally, intelligence deployed at the edge
of the network can be fine-tuned to the target environment and specific
deployment.
This chapter does not aim at providing all the details about the design
of intelligent IoT applications at the edge of the network but only to es-
tablish the foundations for the next chapters. Indeed, this is just the tip
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of the iceberg. In the next chapter, we will make a further step toward
Edge Intelligence. We will present how to design an IoT application that
will perform processing also at the very edge of the network, i.e., on the
device/sensor. This will allow to fine configure data-sampling, processing,
and networking parameters (e.g., sampling frequency, windowing, number
of features, I/O baud-rate, etc.). In this way, we will save even more en-
ergy, bandwidth, reduce the latency. To provide scientific validation of our
proposed framework, we will validate our methodology on another audio
rare-event application where the processing is more spread at the edge.
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Chapter 4

Design of an IoT device for Edge
Computing applications
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Figure 4.1: This chapter describes how to design an IoT application at the very edge of
the network. Here, the processing is pushed even toward the very edge of the network,
i.e., the device. This unlocks new dimensions of design since allows to distribute the
workload on many entities based on constraints, with subsequent savings of energy and
bandwidth, the possibility to reconfigure the device processing algorithms without any
human intervention, enabling also deployment in hazardous (e.g., industrial) or sparse
environments (e.g., agriculture). Here, the intelligence is still resident on the gateway,
however, small portions of it may be deployed on the device itself.

4.1 Introduction

Edge Computing is revolutionizing the Internet of Things and how we inter-
act with the physical and virtual, world. Unlocking new design dimensions,
like the possibility to deploy intelligence closer to the data sources, Edge

Part of this chapter appears in the following publication that I co-authored:
M. Antonini, M. Vecchio, F. Antonelli, P. Ducange, and C. Perera, “Smart Audio Sensors in the In-
ternet of Things Edge for anomaly detection”. IEEE Access, vol. 6, pp. 67594-67610, 2018. DOI:
10.1109/ACCESS.2018.2877523.
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CHAPTER 4. DESIGN OF AN IOT DEVICE FOR EDGE COMPUTING
APPLICATIONS

Computing enables new scenarios and new applications even if it is not a
novel paradigm [10].
In previous chapters, we introduced the definitions of Edge Computing,
Fog Computing, and Cloud-to-Thing continuum; the technological land-
scape (Chapter 2) from the academic point of view, standard definitions
perspective, commercial products, open-source projects, etc.; and how to
design an IoT data stream application at the edge of the network (Chap-
ter 3). We also presented how to empower the edge with AI by deploying
a machine learning technique on an edge device to perform anomaly detec-
tion over an audio stream proving. In such an application, the edge device,
i.e., an IoT gateway, was in charge of all the processing and acting as the
core of the application, instead, other IoT devices were simply data collec-
tors pushing data to a sink. Up to now, we have moved the computation
from the cloud to the edge of the network.
In this chapter, we push forward the design of Edge Computing IoT appli-
cations by spreading the computation on multiple entities: devices, gate-
ways, and so. We also move toward the concept of “embedded intelligence”,
the deployment of AI methods on embedded devices. Figure 4.1 provides
a snapshot of where we stand with respect to Edge Intelligence.
To support our transition, we consider three new different aspects:

• the possibility to design and deploy processing algorithm on the very
edge of the network, i.e., on IoT devices and not only the gateway
(which is still at the edge);

• the distribution of the computational workload (processing algorithm,
AI algorithms, etc.) on different entities (i.e., devices and gateways)
based on the computational (CPU, memory, storage, ...), networking,
and energy constraints. For the sake of this chapter and to provide
the foundations, we will consider a static allocation based on some
system constraints;

• the possibility to simply reconfigure IoT devices in order to change
and adapt their behavior to the application’s requirements (e.g., level
of accuracy or detection rate, energy budget, etc.).

Again, the aspects presented in previous chapters, like reduction of latency,
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improvement of privacy, flexibility, reliability, saving of bandwidth, and so
on are still valid and we will build our new concepts on top of these pillars.
Here, we will develop the key elements to move a step in the directions
presented above by presenting a framework to design Edge IoT devices for
Edge IoT applications. To support our framework, we introduce a cost-
effective, smart IoT device to autonomously perform anomaly detection on-
site, called Smart Audio Sensor or SAS [41]. This device samples an audio
stream from a transducer, i.e., a microphone, executes some algorithms
over incoming data (e.g., compress information) before sending them to
an edge device, i.e., a gateway, which is in charge to execute an anomaly
detection algorithm [94]. In the architecture we are going to present, the AI
algorithm will still be resident on the gateway, however, part of the feature
extraction processing is deployed over multiple devices, allowing scalable
and resilient deployments. Only pre-processed data will be streamed to
the IoT gateway.

This chapter, whose main goal is to prove the effectiveness of distribut-
ing the intelligence of a real Edge IoT application comprising several tech-
nological entities (e.g., sensors, embedded devices, gateways, software plat-
forms, etc.), provides the following main contributions that can be sum-
marized as follows:

• Design Framework for Smart Audio Sensors : in this chapter, we ana-
lyze the bandwidth constraints imposed by a Bluetooth-UART inter-
face. Since one of the main features of a Smart Audio Sensor (SAS)
device is wireless connectivity, we introduce a theoretical framework
to tune its parameters, taking into consideration both latency and
bandwidth constraints. Thus, based on the specific requirements of
the application scenario at hand, the SAS can be dynamically re-
configured to meet these requirements, without breaking any technol-
ogy constraint.

• Distribution of processing at the edge: SASs autonomously sample
the surrounding audio environment using cheap onboard microphones.
Then, instead of transferring the digitized version of the acquired sig-
nal as is (as a “dumb” data producer would do), they first preprocess
the signal in real-time by transforming it into the frequency domain
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and by computing some state-of-the-art features in this domain. The
processing output is a more compact, though unrecoverable, repre-
sentation of the original signal in the feature domain. This approach
has several advantages with respect to sending the raw audio stream
over the network: the signal is compressed to a factor of 8 with re-
spect to the original time-domain representation. At the network
level, this means reduced network traffic, reduced radio utilization,
less complex access policies to the wireless channel, reduced number
of re-transmissions, etc. [95]. At the application level, since the signal
transformation is partially irreversible (e.g., once transformed into
the feature domain, the original signal cannot be completely recon-
structed), reasonable levels of privacy are guaranteed by design.

• Full integration with the AGILE ecosystem: the SAS and the whole
design framework have been fully integrated within the AGILE IoT
gateway ecosystem [46], in order to validate their applicability. More
in detail, we propose a proof-of-concept scenario that describes how
SASs can interact with the AGILE gateway and which modules we de-
veloped. Such modules allow developers and users to simply connect,
configure and use the SASs, without much integration effort.

• Modular, maintainable and scalable software architecture: obeying the
AGILE’s software design and architectural principles, the developed
modules follow the micro-service philosophy [37], thus they were in-
dependently implemented. Given that every module is independent
of each other, the system allows simple updates. Then, if a module
fails or crashes for some reason, the system is resilient and remains
up, eventually with a limited set of capabilities. Moreover, the system
is scalable by design: if several devices have to be managed, then the
system can dynamically instantiate resources and modules, in order
to cope with the increased load, and vice-versa. Last, but not least,
we are distributing the computational load among different devices.
In fact, the SASs perform feature extraction, while the IoT gateway
only runs the trained model.

• Detection of audio anomalies in an office environment : as a proof of
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concept and to provide scientific validation of our approach in a real
use case, we deployed a SAS in an office environment to detect anoma-
lies using a cheap microphone. The SAS is connected via Bluetooth
to an AGILE gateway that infers, using an Anomaly Detection algo-
rithm, over the features stream. Detection models have been trained
using a pre-recorded audio stream coming from the same SAS. We
evaluated two different aspects: firstly, the detection delay from the
first recorded sample to the algorithm output, and then the CPU load
of our module with respect to the AGILE CPU load.

Finally, given that this chapter will describe how to build an anomaly
detection application at the edge of the network, Section 4.2 reviews the
recent works related to Anomaly Detection in different IoT architectures,
with also a few examples on audio anomaly detection. Section 4.3 presents
the key elements that we use to build our design framework for Edge IoT
applications, while our IoT edge devices are presented in Section 4.4. We
describe the Proof-of-Concept scenario in Section 4.5, then we outline some
remarks in Section 4.6.

4.2 Anomaly Detection in IoT-based architectures

In the following, we summarize some recent contributions in the framework
of anomaly detection carried out considering an IoT-based architecture.
Islam et al. [96] discuss the application of a novel association rule-based
approach for handling uncertain, vague, and noisy data in anomaly de-
tection. Authors envision that data from sensors feed a web-based expert
system able to predict flooding using rainfall and temperature measure-
ments. The expert system employs a database of belief association rules
that allows to identify the anomalies in the level of rainfall and temperature
and to predict a flooding event.

Trilles et al. [97] present a classical cloud-based methodology for hand-
ing, in a real-time fashion, heterogeneous sources of data streams. As a
proof-of-concept, they discuss the application of their methodology for en-
vironmental anomaly detection using meteorological data. The proposed
methodology considers a logical architecture that comprises three layers,

63



CHAPTER 4. DESIGN OF AN IOT DEVICE FOR EDGE COMPUTING
APPLICATIONS

namely content, services, and application layers. The content layer is com-
posed of different sets of heterogeneous sensors which are deployed in a
specific scenario and send streams of information to the service layer. The
services layer includes 1) connectors for handling the streams coming from
different data sources, 2) a brokering system for allowing access to data
coming from sources that use different communication protocols and mes-
sage encoding techniques, and 3) algorithms that elaborate data. The
application layer includes all users’ applications. The different layers com-
municate by means of real-time massage services. In the discussed proof-
of-concept, a simple CUSUM (cumulative sum) statistical algorithm has
been adopted, which is a nonparametric and univariate method for anomaly
detection.

Lyu et al. [98] discuss a Fog Computing architecture for anomaly de-
tection. Raw data are collected by the end nodes and sent to the fog
nodes which are in charge of building the model for detecting the anoma-
lies, performing both sensor layer and fog layer clustering. The results of
these clustering steps are sent to the cloud in order to be merged. The
cloud layer sends the merged clusters to the fog layers which carry out the
anomaly detection steps. The identification of the clusters is based on a
hyper-ellipsoidal clustering algorithm that adopts a scoring mechanism for
distinguishing normal and anomalous events [99]. The proposed architec-
ture is compared with both a centralized architecture and a distributed
architecture in the same Fog Computing framework. Similar architectures
have been previously introduced by Rajasegarar et al. [99] considering a
multi-level hierarchical topology of Wireless Sensor Networks (WSNs). In
the centralized architecture, sensor nodes just sent data to the cloud server
that carries out all the data elaboration. In the distributed architecture,
end nodes conduct a clustering step at the sensor layer, send the results of
the clustering to the fog and cloud layers, and receive the results of fog and
cloud layers clustering. Fog and cloud layers receive the clustering results
from the lower layers, merge the clusters and send back to the end nodes
the results of the merging. The fog layers are also in charge of the anomaly
detection task. As an application scenario, the authors present a smart
traffic light system, where the traffic light acts as a fog node and receives
signals from different devices such as sensors mounted on cars and pedes-
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trians, flashing lights of the ambulances. The smart traffic light process all
the data coming from the street in order to maintain a smooth and safe
traffic flow.

A Fog Computing architecture for anomaly detection in smart cities
has been recently presented in [52]. Pereira dos Santos et al. [52] discuss
the application of their approach for monitoring the air quality in the
city of Antwerp, Belgium, considering Low Power Wide Area Network
(LPWAN) technologies for communications. Even in this case, end nodes
send raw data to the fog resources which perform the anomaly detection
in a distributed fashion. Fog layers may send alerts to both end nodes
and cloud servers, whenever anomalies have been detected. The cloud
layer combines the results of the anomaly detection in order to update in
real-time the status of the entire network. Moreover, the cloud layer can
also perform global anomaly detection operations and show the results to
the central dashboard of a control room of the smart city. The anomaly
detection procedure has been carried out using an unsupervised approach
based on clustering algorithms.

Rathore et al. [100] discuss a real-time geo-visualization framework. The
framework is fed by micro-climate data sensed and transmitted by low-
cost multi-sensors. These sensors send raw data to the gateway using
the Zig-Bee transmission protocol. Then, by means of a 3G/4G wireless
modem, data are transferred to a cloud server for persistent storage. The
anomaly detection process and the interactive geo-visualization have been
implemented as a web application. The application gets data by means
of SQL queries toward the data cloud server. Hyper-ellipsoidal clustering
algorithms have been adopted for anomaly detection.

Finally, a few papers have been published about IoT architectures and
acoustic anomaly detection. Hilal et al. [59] introduce a pervasive IoT-
based indoor acoustic surveillance architecture that detects and localizes
anomalous sounds associated with abnormal events. The anomaly detec-
tion process is carried out in a distributed fashion: the proposed architec-
ture includes both smart sensors, devoted to monitoring the environment,
and delegate sensors, which are in charge of assisting the management of
the sensors, the identification and the localization of anomalous events.
Smart sensors are equipped also with resources capable to carry out local

65



CHAPTER 4. DESIGN OF AN IOT DEVICE FOR EDGE COMPUTING
APPLICATIONS

abnormality detection. Both SVM and LDA models have been adopted
for the classification stage of the sound events. Other results have been
achieved in the context of an EU project called DYNAMAP1, aimed at de-
veloping low-cost sensor networks for real-time noise mapping, which have
been reviewed in [77]. In particular, the authors show the results achieved
by their anomalous noise events detector algorithm for mapping the traffic
noise, considering both urban and suburban areas. The algorithm is based
on a two-class anomaly detection model which discriminates between nor-
mal road traffic noise and anomalous noise events. A set of smart and
low-cost acoustic sensors have been deployed along the roads to be moni-
tored. These sensors perform simple signal pre-processing and also event
classification exploiting acoustic models based on machine learning algo-
rithms. All the classification labels are sent to a centralized server that
is in charge of updating the noise maps. A third Edge Computing-based
architecture for audio event detection has been discussed in [78]. Wireless
audio sensors are deployed in indoor environments and raw data are sent
to data concentrator devices, which are equipped with graphics processing
units (GPUs). Such devices are in charge of data pre-processing, including
feature extraction and anomaly detection tasks. The detection model is
based on both clustering and classification algorithms. The data concen-
trators send the results of their elaboration to a remote server that takes
care of the needs of people living in the considered scenario.

4.2.1 Gap analysis

Table 4.1 summarizes the main features of the aforementioned recent ap-
proaches to anomaly detection in the IoT context. Observing this table, we
notice that the majority of the recent related literature sticks to classical
technological approaches (e.g., web/cloud-based frameworks [96, 97, 100],
and distributed WSN deployments [99, 59, 77]). Indeed, only a few works
attempt to rely on the Fog/Edge Computing paradigm to distribute the
execution of the different tasks of an environmental sensing IoT application
along the Cloud-to-Thing continuum [98, 52, 78].

However, it is worth noticing that the fog node used in [98] is a full-

1http://www.life-dynamap.eu/
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Table 4.1: Summary of the main features of the recent methods for anomaly detection in
IoT architectures (source: [41], p. 67598).

Reference Year Technological approach Anomaly Detection Model Type of Training Anomaly Detection Level Data from sensors
[96] 2018 Web service Association Rule Unsupervised Centralized Raw
[97] 2017 WSN + Data brokering platform CUSUM Unsupervised Centralized Raw
[98] 2017 Fog Clustering Unsupervised Distributed Raw
[99] 2014 hierarchical WSN Clustering Unsupervised Distributed Pre-elaborated
[52] 2018 Fog Clustering Unsupervised Distributed Raw
[100] 2018 Cloud Clustering Unsupervised Centralized Raw
[59] 2018 Collaborative WSN SMV and LDA Supervised Distributed Pre-elaborated
[77] 2017 hierarchical WSN Classification Supervised Distributed Pre-elaborated
[78] 2017 WSN + GPU-powered Edge gateway Clustering and Classification Semi-Supervised Distributed Raw

fledged server PC equipped with an Intel i7-4790 quad-core processor and
16 GB of RAM while, in [78], even though the authors propose a Mobile
Edge Computing (MEC) [101] approach, they rely on a high-performance
General Purpose Graphics Processing Unit (GE-GPU) directly installed
on a Jetson TK1 development board2, that is yet a quite powerful (and
expensive) edge gateway device. On the other hand, as described in Sec-
tion 4.3.2, the full gateway framework adopted in our experimentation is
deployed on a very cheap Raspberry Pi 33 single-board computer.

Moreover, the sensor nodes of [98] simply collect environmental data and
transmit, using a wireless connection, the digitized values to the fog node,
which is responsible for the full processing and analysis of all raw data flows
coming from (possibly various) sensor nodes. The same approach is also
followed in [52] to detect anomalies in slowly changing environmental phe-
nomena (e.g., 3 particle matter indicators enriched with GPS locations).
Conversely, as described in Section 4.4, in our framework the sensor nodes
are able to locally pre-process high-definition raw audio streams in real-
time, hence only transmitting the extracted features to the near gateway.
In this case, the intelligence of the application is truly distributed at the
edge of the network (e.g., from tiny sensing terminals, through cheap IoT
gateways, until web/cloud endpoints), as also the most constrained devices
of the chain can bear non-negligible computational overheads.

2https://developer.nvidia.com/embedded/jetson-tk1-developer-kit
3https://raspberrypi.org
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4.3 Technological Background

This section introduces and describes the main Edge technologies adopted
to develop and assess the proposed framework.

4.3.1 The Teensy-based Smart Audio Sensor

A Smart Audio Sensor (SAS) was originally defined in [102] as an embed-
ded device equipped with one or more microphones that is able to record
and perform some computations directly on the audio stream, without los-
ing real-time capabilities. In this way, it is possible to have devices that
are able to monitor the surrounding environment, even in some extreme
situations directly from the edge of the network. For instance, a SAS de-
ployed in a street may detect gunfire events, even in absence of light or
illumination. Moreover, by using an array of microphones, it may be also
possible to identify the direction of the event source.
However, SASs should be developed adopting powerful computing units
able to execute heavy operations directly on the audio stream (e.g., ARM
Cortex-M4). In the prototyping landscape, one of the most promising
boards for embedded intensive computations is the Teensy board4. Teensy,
developed by PJRC, is a versatile and powerful development platform for
embedded projects compatible with the Arduino Environment, thanks to
the Teensyduino libraries, thus most of the Arduino sketches run on Teensy
boards. Teensy is available in eight different flavors, based on the re-
quirements of the project. One of the most powerful board is the Teensy
v3.6, that is equipped with a 32 bit ARM Cortex-M4F processor, with the
DSP instruction set, working at 180MHz with a floating-point unit (FPU),
256KB of RAM, 1MB of Flash memory, 58 Digital I/O, 6 UART interfaces,
4 I2C buses, 3 SPI interfaces, 2 I2S Digital Audio buses, 1 micro-SD card
slot and the possibility to connect one Ethernet shield at 100Mbps.

Teensy boards have been designed by following the Arduino philosophy
“Easy to mount, cheap to produce” in order to extend the board capa-
bilities. Shields can be easily developed and plugged, thanks to the high

4https://www.pjrc.com/teensy/

68

https://www.pjrc.com/teensy/


4.3. TECHNOLOGICAL BACKGROUND

availability of I/O pins. Even Arduino shields can be plugged into a Teensy
board using the Teensy Arduino Shield Adapter5.
A powerful extension shield for Teensy boards is the Audio Shield6. This
board, created by PJRC, is able to add I/O audio capabilities to Teensy.
It is powered by the powerful SGTL5000 Low Power Stereo Codec7 and
allows 16 bits high-quality audio recording at 44.1 kHz (CD quality), using
either the on-board mono-channel microphone or the stereo line-level in-
put. Moreover, it supports stereo line-level output and stereo headphones
through the 3.5mm jack soldered on the board. A Teensy board can be
physically connected to an Audio shield using the 14x2 extension header
and the audio stream is transferred from one device to the other one, using
the I2S Digital Audio bus, which is a special communication bus designed
for audio streams supporting up to 2 different audio channels. The audio
data transfer is managed by the Teensy Audio library8, a software library
that is also able to execute various operations on audio streams. Further-
more, if the library is executed on Teensy 3.x boards, it can run real-time,
computationally-intensive operations, like FFTs, using the DSP instruc-
tion set provided by the ARM Cortex-M4 processor. In addition, another
library, OpenAudio for Teensy9, has been developed on top of the Teensy
Audio library and provides additional features and operations for real-time
audio processing. This enables developers to create sound-reactive projects
with reduced costs.
More in general, Teensy boards can be an interesting starting point to
prototype edge IoT devices.

4.3.2 The AGILE-based IoT Gateway framework

In general, SASs represent a versatile kind of embedded devices that can
be adopted within almost every IoT scenario, spanning from industrial
plants to smart city contexts, simply by connecting them to a gateway,
either through a wired or wireless radio communication technology. Gate-

5https://www.sparkfun.com/products/15716
6https://www.pjrc.com/store/teensy3_audio.html
7https://www.nxp.com/docs/en/data-sheet/SGTL5000.pdf
8https://www.pjrc.com/teensy/td_libs_Audio.html
9https://github.com/chipaudette/OpenAudio_ArduinoLibrary
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ways are able to bridge different networking stacks, e.g., IP and non-IP
worlds, and execute computationally intensive operations closer to the de-
ployed devices. In the context of gateway devices suitable for the IoT,
one opportunity is offered by the Adaptive Gateway for dIverse muLtiple
Environments (AGILE) [46]. AGILE is an open-source modular software
framework for IoT gateways that supports a wide range of components.
Hence, it enables developers, users, and companies to develop their own
solutions and products on top of its stack. The AGILE architecture has
been designed by following the micro-service paradigm, which was origi-
nally proposed for distributed systems. Nowadays, this paradigm is well-
recognized and adopted in several different fields (e.g., Cloud Computing),
as it enables strong modularity, maintainability, scalability, reliability, and
resiliency against failures of systems [103]. Indeed, if a service fails, the
whole system remains alive, with reduced capabilities in the worst case.
The AGILE project consortium adopted these concepts and ideas to design
a robust framework for IoT gateways. This framework consists of differ-
ent modules, where each module is implemented as an independent service
within a Docker container10, which creates a sandbox where the component
executes. Within a container, it is possible to use very specific technolo-
gies and programming languages, without suffering any compatibility issue
with other modules. Interactions among modules exploit a well-defined set
of Application Programming Interfaces (APIs) defined in the framework.
APIs are available in two different manners: using a common Inter-Process
Communication (IPC) bus (e.g., DBus11) or using RESTful interfaces.
The AGILE gateway framework runs on many different hardware architec-
tures, including x86 and ARM. In particular, AGILE has been successfully
tested and deployed on affordable Raspberry Pi 3 (RPi3) computers12,
which is a single-board computer. Despite its reduced cost, an RPi com-
puter can rely on several analog and digital input/output lines to extend
its basic capabilities (e.g., connecting sensors and actuators). For instance,
the Libelium company (which is a partner of the AGILE consortium) has

10https://www.docker.com/
11https://www.freedesktop.org/wiki/Software/dbus/
12https://www.raspberrypi.org
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developed an extension shield for the RPi, called the Maker’s Shield13,14,
equipped with sensors, buttons, LEDs, and two XBee sockets. This board
can help makers and developers to create complete IoT solutions in an easy
and straightforward way, by just plugging the shield on top of the RPi
GPIO header. Moreover, considering the presence of two XBee-compliant
sockets, it is possible to extend the networking capabilities of the AGILE
gateway by adding new families of supported devices and radio technolo-
gies.
Finally, the AGILE framework has been designed to be suitable in many
scenarios and applications. To this aim, the consortium identified five dif-
ferent pilot tests: open field and cattle monitoring, enhanced retail services,
port area monitoring for public safety, air quality and pollution monitoring,
and self-tracking. All these pilots are implemented by exploiting the mod-
ularity and the fine-granularity of the whole framework. In Section 4.5,
we will introduce a new showcase for the AGILE IoT gateway, which is
the rare sound event detector in an office environment, based on anomaly
detection algorithms.

4.4 The proposed Wireless Smart Audio Sensor

In this chapter, to describe how to design and deploy intelligence on Edge
IoT devices, we propose a tiny and affordable wireless smart audio sensor
(SAS) for indoor environments. Our wireless SAS has been developed using
commercial boards and components. As depicted in Figure 4.2, the device
comprises four different modules: a mono-channel electret microphone cap-
sule (Figure 4.2a), a Teensy Audio Shield (Figure 4.2b) for audio recording
at 44.1 kHz with 16-bit resolution, a Teensy 3.6 board (Figure 4.2c) for
local audio processing, and an HC-05 Bluetooth module (Figure 4.2d) for
serial data transfer.
During the initial phase of the design of our Edge IoT device or SAS
(Figure 4.3a), the device was conceived to record an audio stream with a
sample rate of 44.1 kHz and 16-bit resolution and to transmit the signal
over a UART interface using the Bluetooth module. Another device, e.g.

13https://github.com/Agile-IoT/agile-makers-shield-hardware
14https://github.com/Agile-IoT/agile-makers-shield-software
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Audio UARTI2S

(a) (b) (c) (d)

Figure 4.2: Hardware schema of the proposed Wireless Smart Audio Sensor. A Teensy 3.6
(c) is connected, via I2S bus, to a Teensy Audio Shield (b) that records the audio signal
coming from a mono-channel microphone (a). Then, the Teensy MCU (c) computes the
FFT and Mel coefficients of a recorded audio frame. Finally, the Teensy board (c) sends
all the Mel coefficients to a UART endpoint using a UART interface provided by an HC-05
Bluetooth 2.0+EDR module (d) (source: [41], p. 67600).

gateway, was in charge to perform some additional computations on the
sampled signal. The radio module is able to establish a Bluetooth 2.0 +
EDR connection (up to 3 Mbps) and supports UART baud-rates up to
460800 baud (from specifications). The original idea was to simply make
the microphone a wireless device over Bluetooth. From the technological
point of view, it was almost the same scenario we described in Chapter 3.
However, we conducted some tests and figured out that the module guaran-
tees good performances only up to 230400 baud using the 8N1 mode. Such
baud-rate is not enough to transmit the audio stream since it requires (in
this case 1 bps = 1 baud)

Sample Rate ·Bit Resolution = 44100 · 16

= 705600 bps,
(4.1)

where each sample is represented with 16 bits. A possible solution was to
reduce the sample rate to a value that was small enough to realize a bit rate
that fits in the available bandwidth. Starting from the maximum baud-
rate, the maximum achievable sample rate is calculated by using Formula
(4.2).

72



4.4. THE PROPOSED WIRELESS SMART AUDIO SENSOR

Maximum baudrate

Bit Resolution
=

230400

16
= 14400 Hz.

(4.2)

Since 14400 Hz is not a recommended sample-rate (is not an integer divi-
sion of 44100), the first smaller acceptable rate is 11025 Hz. The Nyquist-
Shannon sampling theorem tells that the maximum theoretical signal band-
width is one-half (5512.5 Hz) of the sampling-rate, thus the computed
sample-rate is too small to create a Smart Audio Sensor because high-
frequency components are required in many applications.
The above bandwidth bottleneck pushed a re-design of the Teensy board
behavior. In the beginning, the DSP pre-processing was not performed
on the SAS but on the other side of the Bluetooth link, e.g., gateway.
SASs are commonly adopted in use-cases in which the raw audio stream
is transformed to other more meaningful quantities such as Mel-Frequency
Cepstral Coefficients (MFCC) or Mel coefficients. The former is mainly
used as features for speech-based applications, the latter are frequently
adopted as features in non-speech scenarios. Both of them require the
preliminary computation of the frequency spectrum from the raw audio
stream. Teensy’s libraries provide efficient DSP operations exploiting the
DSP capabilities offered by the ARM M4F MCU. Using such libraries, we
have implemented the whole software flow to compute the Mel coefficients
within the Teensy firmware. Figure 4.3b shows the sequence of operations
required to calculate such coefficients. After the sampling performed by
the Audio Shield at fsr = 44100Hz, the Teensy MCU applies the Han-
ning window to the audio stream, in order to reduce discontinuities in the
signal, and calculates the Fast Fourier Transform (FFT) at NFFT points
using a temporal window large NFFT audio samples overlapped by δoverlap
with the previous window. Overlapping is used to maintain a high corre-
lation between two successive windows. The FFT implementation returns
NFFT complex samples made of two float32 numbers. We compute the
square magnitude of the FFT output in order to have an instantaneous
estimation of the power distribution over frequency. Consequently, we ap-
ply the Mel-Filtering using Nmel bins. This filtering is performed using a

73



CHAPTER 4. DESIGN OF AN IOT DEVICE FOR EDGE COMPUTING
APPLICATIONS

SamplingSampling

(a) Early design.

Sampling
Windowing 

&
FFT

Mel 
Extraction

Sampling
Square

Magnitude
Mel 

Extraction

(b) After re-design.

Figure 4.3: Software flowcharts of the implemented SAS. (a) is the early design of the SAS
with only recording capabilities. (b) is the re-designed version of the SAS with embedded
feature extraction (source: [41], p. 67601).

filter-bank, composed of Nmel filters, that implements the mel-scale, the
non-linear perception scale of the human ear [104]. Every Mel-filter has a
triangular shape, has response 1 at the central frequency and it linearly
decreases down to 0 when it reaches the central frequencies of neighbor
filters. The frequency response of the i-th filter is described in Formula
(4.3).

Hmeli(k) =



0 k < f(i− 1)
k−f(i−1)

f(i)−f(i−1) f(i− 1) ≤ k < f(i)

1 k = f(i)
f(i+1)−k

f(i+1)−f(i) f(i) < k ≤ f(i+ 1)

0 k > f(i+ 1)

(4.3)

f(i) is the central frequency of the i-th filter. To calculate these frequencies,
two different techniques have been proposed in the literature: the Slaney’s
formulation [105] and the HTK’s formulation [106]. In this chapter, we
adopt the former formulation that splits the frequency domain into two
different regions: a linear region for frequencies within the range 0-1000
Hz and a log region for frequencies greater than 1000Hz. Formula (4.4)
and Formula (4.5) describe how to pass from hertz to mel and vice-versa,
respectively.

m =


f

200/3 f ≤ 1000Hz

1000
200/3 + log(6.4)

27 · log
(

f
1000

)
f > 1000Hz

(4.4)

74



4.4. THE PROPOSED WIRELESS SMART AUDIO SENSOR

f =


200
3 ·m m ≤ 1000

200/3

1000 · exp
(
log(6.4)

27 ·
(
m− 1000

200/3

))
m > 1000

200/3

(4.5)

In order to compute the central frequencies, we have first to calculate
the mel representations of the lower and higher frequencies of the audio
bandwidth, e.g., 0 Hz and 22050 Hz, using Formula (4.4). Then, we com-
pute Nmel linearly spaced values in the range of the previously computed
lower and higher mel representations. Now, applying Formula (4.5) to ev-
ery value, we obtain the central frequencies f(i) of our filters.

After the mel-filtering, the smart audio sensor transmits the Nmel co-
efficients, represented as float32, over a Bluetooth channel using an 8N1
UART interface working at br baud.

4.4.1 Design Framework for Smart Audio Sensors

In this section, we present and develop our design framework for Smart
Audio Sensors that perform the computations presented above. Before
starting, we have to define four parameters that will be tuned in order to
correctly implement the SAS. Since the SAS operates on frequency repre-
sentations of the audio stream, the first two parameters that we present
are the length of the temporal window on which we compute the FFT
(NFFT ) and the overlapping fraction (δoverlap) between two successive au-
dio windows. These parameters influence the maximum length of the pre-
processing window, the length of the temporal window, and the granularity
of the audio transformation. The third parameter is the number of Mel
coefficients (Nmel) computed over the frequency spectrum. It affects the
transmission delay and the granularity of filters over the spectrum. The
last parameter is the baud-rate (br) of the Bluetooth module. It affects
only the transmission delay.

Given that we are designing an Edge IoT device, we need to mini-
mize the latency introduced by recording (trec), pre-processing (tpre), and
data-transmission (ttx) phases. We assume that the maximum latency for
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real-time response is 150ms. This particular value is the maximum Mouth-
to-Ear latency for VoIP systems, as defined in the G.114 ITU Recommen-
dation [107]. We formalize this condition, called the Real-Time condition,
in Formula (4.6).

trec + tpre + ttx < 0.15[s]. (4.6)

Moreover, during the design phase of a SAS, we have to set the process-
ing and the transmission parameters in order to satisfy another condition
that we call Buffering-Processing condition and it is formalized in Formula
(4.7).

tpre + ttx < tbuffering. (4.7)

Since the FFT has to buffer NFFT samples before it is able to compute
the frequency spectrum and the window overlap fraction is δoverlap, a full
pre-processing buffer is available every

tbuffering = (1− δoverlap)
NFFT

fsr
[s], (4.8)

where fsr is the sample rate. The SAS has to complete all the pre-
processing operations and the transmission phase within the buffering win-
dow tbuffering in order to not overlap with other adjacent ones.

On the left-hand side of Formula (4.7), we have two terms: tpre and ttx.
The former can be rewritten as

tpre = tFFT + tmag + tmel, (4.9)

where tFFT , tmag, and tmel are the temporal duration of FFT, square mag-
nitude, and mel-coefficients extraction operations, respectively. More in
detail, the time required to compute an FFT operation tFFT depends on
the number of points NFFT and it has form

tFFT = 4.3 · 10−8 ·NFFT · log2(NFFT ) [s], (4.10)

where the coefficient 4.3 · 10−8 has been empirically found by interpolating
the time duration required to compute FFTs with different values of NFFT .
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The second term (tmag) of Formula (4.9) describes the time required
to compute the square magnitude of the FFT spectrum. Even this term
depends on the number of FFT coefficients NFFT and we have empirically
found that it has shape

tmag = 2.46 · 10−8 ·NFFT + 2.5 · 10−6 [s] (4.11)

The last term (tmel) of Formula (4.9) represents the time required by
the Teensy MCU to compute the mel-coefficients starting from the squared
magnitude of the FFT coefficients. Formula (4.12) shows the experimental
formula to compute tmel.

tmel = 5.1 · 10−7 ·Nmel + 3 · 10−7 ·NFFT − 1.9 · 10−5 [s] (4.12)

All empirical coefficients have been found by running 5000 times ev-
ery single operation in the pre-processing loop with different values of pa-
rameters NFFT ∈ {256, 512, 1024, 2048, 4096} and Nmel ∈ {40, 64, 128}.
Moreover, we used the ARM functions available in the Teensy arm math.h
library.

The left-hand side of the Buffering-Processing condition (Formula (4.7))
contains a second term, ttx, that keeps track of the time spent to transmit
the Nmel mel coefficients through a UART interface over the Bluetooth
channel. This term (Formula (4.13)) depends on three different parameters:
the number of coefficients Nmel, the effective bit-rate breff , and the number
of bits (Nbits) used to represent each coefficient, e.g., Nbits = 32 if we use
float32 numbers.

ttx =
Nmel ·Nbits

breff
[s]. (4.13)

It is important to note that the effective bit-rate breff used in Formula
(4.13) is not equivalent to the baud-rate br configured on the serial con-
nection, e.g., 230400 baud. We have to scale the configured baud-rate by
factor 0.8, so breff = br · 0.8. This scale factor comes from the serial mode
configured. Since we are using the 8N1 mode, we transmit 1 start bit, 8
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Table 4.2: Configured baud-rates Vs Effective bit-rates with 8N1 mode (source: [41], p.
67602).

Configured baud-rate br Effective bit-rate breff
57600 46080
115200 92160
230400 184320

data bits, 0 parity bits, and 1 stop bit. Resuming, we are actually trans-
mitting 10 bits every 8 information bits, thus the efficiency is 0.8. Effective
bit-rates are shown in Table 4.2.

4.4.2 A possible parameters tuning

As described above, a SAS designer has to tune only four parameters
(δoverlap, NFFT , Nmel, br), which are free variables. Typically, the over-
lap fraction δoverlap is set to 0.5 in order to keep a good correlation between
consequent windows. A possible set of parameters is the following:

δoverlap = 0.5 , NFFT = 4096

Nmel = 128 , br = 230400.

Now, we prove that this set of parameters verifies both the design con-
ditions. First, using Formula (4.8), we compute the inter-arrival time be-
tween two consequent windows and we get

tbuffering = 46.44 · 10−3 [s].

Hence, we compute the time required for pre-processing operations using
Formula (4.9), Formula (4.10), Formula (4.11), Formula (4.12), thus we
obtain

tpre = (2.11 + 0.1 + 1.3) · 10−3 = 3.51 · 10−3 [s].

Then, using Formula (4.13), we compute the time required to transmit
Nmel coefficients as float32 numbers, and we get
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Table 4.3: Other possible parameter combinations assuming δoverlap = 0.5 (source: [41],
p. 67603).

NFFT Nmel br
4096 128, 64, 40 230400
4096 64, 40 115200
4096 40 57600
2048 64, 40 230400
2048 40 115200
1024 40 230400

ttx = 22.2 · 10−3 [s].

Immediately, we can see that the Buffering-Processing condition (For-
mula (4.7)) holds, since

tpre + ttx = (3.51 + 22.2) · 10−3

= 25.71 · 10−3

< 46.44 · 10−3 = tbuffering.

Now, we have to verify if the Real-Time condition (Equation Formula
(4.6)) holds. The recording delay trec is simply the time required to record
NFFT samples at 44100 Hz and, in this case, it has value

trec = 92.9 · 10−3 [s].

Using this result we can compute the overall delay introduced by record-
ing, pre-processing, and transmission phases. We obtain

trec + tpre + ttx = 118.61 · 10−3 < 150 · 10−3 [s].

The Real-Time condition holds and our set of parameters can be used
to build a SAS or an edge device. Other possible parameter combinations
are shown in Table 4.3.

4.4.3 COTA: Configuration Over The Air

In the previous section, we have presented a framework that requires the
tuning of four parameters to design an Edge IoT device that performs some
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local computation. As we also depicted at the beginning of this chapter,
these devices may be deployed in hazardous or inaccessible locations, thus
the device’s parameters should be remotely set or changed from the other
side of the Bluetooth link. These devices can be connected to an AGILE
gateway and the gateway framework offers this functionality to remotely
configure parameters. It is called Configuration Over The Air (COTA) and
is implemented as a small micro-service that pushes parameters over the
serial link used to communicate with the target Edge device, a SAS in this
case. Parameters are sent to the remote device as a text string with the
following format

#δoverlap;Nfft;Nmel; br$ .

An example of a possible string is

#0.5; 4096; 128; 230400$ .

The SAS replies with an acknowledgment message, which is OK, for
a valid configuration or with ERROR if it rejects the configuration. Af-
ter the acknowledgment message, the remote device reboots with the new
configuration.

Moreover, the COTA module exposes a UI, accessible through the AG-
ILE web-based UI, that allows users to configure parameters. The interface
is user-friendly and ready to use. The title shows the device family and
ID, the body contains four different fields to set the value of parameters.
The UI controller is able to verify if the proposed configuration verifies our
two design conditions. If one condition is not met, the interface prompts
an error. Figure 4.4 shows an example of the COTA UI interface.

4.5 Proof of Concept: an Edge IoT application with

SAS devices

In order to demonstrate the applicability of the proposed Edge IoT device,
i.e., Smart Audio Sensor, introduced in Section 4.4, we have designed and
implemented an Edge IoT application. It has been deployed in an IoT
Smart Office environment that exploits a SAS and an AGILE gateway to
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Figure 4.4: COTA UI (source: [41], p. 67603).
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Figure 4.5: Block diagram of our technological framework, which is deployed at the edge of
the network, and the corresponding interactions between computing entities (source: [41],
p. 67604).

detect audio anomalies. In this context, anomalies may be screams, door
slams, or every event that is not a normal keyboard typing, a call, or a
talking. Figure 4.5 provides a block diagram depicting how the different
technological entities and comprising components interact with each other.

The SAS implements the pre-processing technique previously described
and it is configured as follow:

δoverlap = 0.5 , NFFT = 4096

Nmel = 128 , br = 230400.

The device has been deployed in a top corner of a rectangular room, which
has a surface of 25 square meters. The SAS records the audio-stream from
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an electret microphone, then pre-processes it by extracting mel coefficients
and, finally, sends computed features to an AGILE gateway using the Blue-
tooth interface. On the other side of the radio link, the gateway runs a
python-based micro-service that collects mel coefficients, through the se-
rial interface, and feeds an Anomaly Detection algorithm to detect if an
anomaly occurred or not in the current time frame. If yes, the micro-service
sends a notification to the user showing an error in the logging console.

Our objective is threefold: 1) we want to prove the possibility to spread
the intelligence on multiple computing entities at the edge of the network
(i.e., the AI model on the gateway and the feature extraction on the Edge
IoT devices); 2) we want to evaluate the impact over the CPU of Anomaly
Detection algorithms running on the AGILE gateway; 3) we aim at eval-
uating the delay between the anomalous event to the event detection. In
this way, we have considered two different anomaly-detection algorithms
among all the algorithms offered by the Scikit-Learn [91] toolbox: Elliptic
Envelope (EE) [108] and Isolation Forest (IF) [109, 110].
The EE algorithm assumes that the training set has a Gaussian distribu-
tion, thus it models a robust covariance estimator over data. Giving the
estimation of the inlier location and covariance, the algorithm uses the
Mahalanobis distance to measure the outlyingness of unseen data points.

The Isolation Forest algorithm exploits random forests to isolate outliers
from inliers. IF randomly chooses a feature and then splits in a point
between the maximum and the minimum values of the selected feature.
The number of splitting operations that are required to isolate an instance
is equal to the path from the root node of a tree to the leaf node. This is due
to the recursive nature of splitting that can be modeled by a tree structure.
We obtain a detection rule and a measure of normality by averaging path
lengths over a forest of trees. This is due to an intrinsic property of IF
that generates short paths for anomalies since they are isolated from not-
anomalous, or inlier, values.
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4.5.1 Training of the AI models

Since Anomaly Detection techniques belong to the Unsupervised Learning
family of machine learning algorithms, a labeled dataset is not required to
train our models. However, such algorithms require an unlabeled dataset
that describes the normality condition of the office environment. In or-
der to realize a reliable and real dataset, we conducted an audio recording
campaign using a Teensy Audio Shield and a Teensy board that was pro-
grammed only as a recorder and stream forwarder over a UART interface.
As stated in Section 4.4, the bandwidth available over a Bluetooth inter-
face is not sufficient to transmit the audio stream recorded at 44.1 kHz
with 16-bit resolution (Formula (4.1)), thus we configured the UART in-
terface over USB that can reach a higher baud-rate, up to 4.608 Mbaud.
We recorded the office audio stream for 4 hours saving a WAV file every 60
seconds. The obtained dataset was split into two different subsets: 2 hours
reserved for the training set and 2 hours assigned to the test set. Then,
the training phase comprises two steps: feature extraction and the train-
ing of a model. Feature extraction calculates the mel coefficients starting
from audio files using APIs offered by LibROSA [90], a python package for
audio analysis. The sequence of operations is the same one explained in
Figure 4.3. Anomaly Detection algorithms were implemented in Python3
using the Scikit-Learn framework [91], a powerful machine learning python
toolbox. As we stated above, we selected two different algorithms among
all the tens of available algorithms: Elliptic Envelope (EE) and Isolation
Forest (IF). These algorithms require a few hyper-parameters to configure
the training process. Since we want to study the CPU load of the model
inference, we used the default value of parameters for both of the algo-
rithms: we used 0.1 as contamination fraction and 100 as the number of
adopted trees in IF. Firstly, we have trained our algorithms on just the
first half of the set. Then, we retrained them on the entire set.

4.5.2 Performance evaluation of AI methods on an Edge device

As we stated above, we want to evaluate the proposed solution by consid-
ering the CPU load due to an Anomaly Detection algorithm running on
an AGILE gateway and the event-detection latency, the delay between the
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Figure 4.6: CPU load of Isolation Forest (source: [41], p. 67605).

anomalous event, and the event detection.
Since the AGILE gateway has been designed to run over a Raspberry Pi 3
computer, we conducted the load evaluation by running the AGILE gate-
way modules and the AD algorithm on the same device in two different
fashions: embedded within a Docker container and executed as a native
Python script. We recorded the user CPU load, since the module and
AGILE run in the user-space, using the top15 utility. Each experiment
comprises three different phases: in the first 15 seconds, the system runs
all the AGILE gateway modules and AD module without inferencing the
feature stream, since it is not attached to the detection module. Then, we
connect the feature stream to the AD algorithm for 30 seconds. Finally,
we detach the data stream from the module and we continue to record the
CPU load for the other 15 seconds. We profiled the CPU load for both the
AD algorithms. Moreover, in order to provide a baseline, we also repeated
the same experiments over an x86 machine that run the AD algorithm and
the AGILE gateway framework.

Figure 4.6 shows the CPU load due to the execution of the Isolation
Forest algorithm. As we can see, the average CPU load on a Raspberry

15http://man7.org/linux/man-pages/man1/top.1.html
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Figure 4.7: CPU load of Elliptic Envelope (source: [41], p. 67605).

Pi increases from 5.2% to 30.6% when the module is embedded within a
Docker container and from 6.8% to 30.4% when the module is natively exe-
cuted. We can see that when the algorithm is running the Docker overhead
is 0.2%. For IF, the Docker overhead on an x86 machine is the same (0.2%)
since the CPU load is 26.1% (dockerized) and 25.9% (native), respectively.
Figure 4.7 depicts the computing load due to the Elliptic Envelope algo-
rithm. The graph shows that the Raspberry Pi CPU load passes from 5.6%
to 7.9% when the algorithm is embedded within a container and from 5.6%
to 7.3% when the script is natively executed. The load over a x86 machine
is 1.18% when the module is containerized and 80.3% when the Python
script is run natively. This behavior might be due to how the Python in-
terpreter distributes the load over the CPU.
In general, except for the EE run as a native script over an x86 machine,
the CPU load of IF is higher than the load required to compute EE. This
is due to the nature of the running algorithm. EE has to check if the
input sample is inside or not the region defined by the learned decision
function. If the sample is outside, the algorithm notifies an anomaly. The
IF algorithm has to compute the output of all the trees present in the en-
semble (e.g., 100) and then it takes a decision. It is also possible to evince
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Table 4.4: Inference delays ti in [ms] (source: [41], p. 67606).

Setup Elliptic Envelope Isolation Forest
RPi - Docker 1.7 222.9
RPi - Native 1.7 234.4
x86 - Docker 0.18 19.3
x86 - native 0.18 15.7

this behavior from the delay introduced by the algorithm to compute the
output.

Table 4.4 shows that the IF is much slower than EE since IF has to
compute the output of 100 trees.

Using the inference delays (ti), we can compute the average overall la-
tency (tdetection) from the event to the detection. Formula (4.14), which
describes this latency, is the sum of 4 contributions: trec, the time required
to record an audio frame, tpre, the delay introduced by Teensy to prepro-
cess the audio frame, ttx, the transmission delay, and ti, the time required
to infer the data in the AD model.

tdetection = trec + tpre + ttx + ti. (4.14)

Applying Formula (4.14), we get tdetection = 120.3[ms] when we infer
with an EE model and tdetection = 341.5[ms] when we adopt IF as an AD
algorithm. Since EE is much faster and also lighter than IF, we decide to
adopt the Elliptic Envelope as the AD algorithm on our gateway.

Moreover, we conducted an evaluation campaign in order to profile the
performance of the adopted algorithm in terms of F1-score [111] and Error
Rate (ER) [112]. F1-score is defined as

F1 =
2 · P ·R
P +R

where P is the precision (P = TP
TP+FP , TP = True Positive and FP = False

Positive) and R is the recall (R = TP
TP+FN , TP = True Positive and FN =

False Negative). Error Rate (ER) is defined as

ER =
S +D + I

N
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where S is the number of substitution (correct time instant but wrong
class), D is the number of deletions (event not detected but present in the
ground truth), I is the number of insertions (event detected but not present
in the ground truth), and N is the number of events in the ground truth.
ER can have a value greater than 1.

We tested the adopted algorithm using a self-made dataset generated
using the mixture generation engine [66] developed for the DCASE2017
Challenge. We created a test dataset made by 501 examples: 167 with a
gunshot, 167 with a glass-brake, and 167 with a baby-cry. Each sample is
30 seconds long and was obtained by adding the rare event (e.g., a gunshot,
a baby-cry, or a glass-break) with probability one over the recorded office
audio stream. We applied this dataset to our system and we computed the
evaluation metrics using the sed eval toolbox [113] using a time-collar of
500 ms. The EE algorithm trained with the 60 minutes dataset obtained
an F1-score of 50.55% and an ER of 0.71. The same algorithm trained
with the 120 minutes dataset got an F1-score of 50.42% and an ER of
0.71. We evaluated also the IF algorithm on the same datasets and we
obtained an F1-score of 56.07% and an ER of 0.63 training with the 60
minutes dataset and an F1-score of 53.49% and an ER of 0.65 using the
120 minutes training dataset. Even if IF performs better than EE, we use
EE since it is faster and lighter.

4.5.3 Deployment on an AGILE gateway

In the previous section, we discovered that the Elliptic Envelope is the best
algorithm for our proof of concept, even if it has lower performance than
the Isolation Forest algorithm. The Elliptic Envelope algorithm is 2 orders
of magnitude faster and much lighter than IF, thus the system may be able
to respond earlier and waste less computational resources. We deployed
the EE algorithm and the model trained with 60 minutes of office audio
recordings in the AGILE Anomaly Detection micro-service. Moreover, we
bound a serial port to the module and we connected the Teensy board
programmed as a SAS with the parameters presented before.
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The system receives the features computed by the embedded board and
can to detect Audio Anomalies (e.g., hand claps). Once an anomaly hap-
pens, the micro-service notifies the user by logging detection messages in
the terminal output. However, it is important to remember the nature of
the incoming signal and the source of events. Since we are working with a
transformed audio stream, we have many feature frames per second (21.5
frames per second) and the algorithm can erroneously detect (False Pos-
itive) an anomaly. In order to reduce isolated False Positives, a possible
solution was to apply a median filter, with window length N (N has to be
an odd number), to the algorithm output. This filter considers the N − 1
past samples and the current one, then it sorts all the predictions. If at
position N+1

2 there is an anomaly, the filter declares that an anomaly oc-
curred. We have to choose a small value of N (e.g., 5, 7,...) such that
it does not introduce delays or hide anomalies. A good value of N is 5.
Moreover, another aspect that affects the accuracy of the deployed sys-
tem is the quality of the dataset. The training dataset should contain all
the audio events that define the condition of normality in the considered
environment. The anomaly model was trained using a real audio stream
recorded in an office environment during the working time, thus the audio
stream contained normal office sounds, e.g., talking, phone ringing, typing,
and clicking.

This kind of scenario suffers weaknesses related to the physical deploy-
ment of the SAS. Since the audio sensor embeds an electret microphone,
which has a sort of directivity even if it is omnidirectional, should be
positioned in the direction of the audio source in order to have better
transduction from the audio signal to the electric signal with reduced re-
verberation. Moreover, the raw audio signal exiting from the microphone
is really small and it requires a pre-amplification before the elaboration.
The pre-amplification gain should be fine-tuned in order to guarantee a
good quality of the signal with a high Signal-to-Noise Ratio (SNR). Noise
may be introduced by the microphone cable (depends on the cable quality
and length) and by the amplifier itself. Another weakness is related to
the power consumption since the SAS is always active and continuously
streams mel features over the Bluetooth channel. It should be deployed
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closer to a power source like an electric plug or connected to a high-capacity
battery. Future works will characterize the power consumption of this de-
vice.

In the considered PoC, we deployed just one SAS, which streams the ex-
tracted features. The proposed system is able to deal with multiple streams
coming from different SASs. This is possible since the Anomaly Detection
module supports more than one serial port binding. Using a multiplexing
technique, it is possible to choose one of the streams and then infer on it.
Another possibility is to deploy one AD micro-service per device, but this
approach requires more CPU power.
More in general, we proved the possibility to spread the computation re-
quired to build an IoT application, which uses AI methods, across different
entities, how to allocate different functionalities based on the constraints
(statically in these cases), and how remotely configure and reconfigure a
device. On this last point, the injected configuration has to be validated
in order to satisfy the application requirements such as latency, accuracy,
privacy, and so on.

4.5.4 Adoption in other domains: an industrial scenario

The proposed framework can be easily accommodated in different verticals,
especially within the Industrial IoT (IIoT) domain. In this case, the sensing
devices may be directly deployed on-machine, so as to locally perform their
computations before sending data to the gateway, which, in this way, has
only to execute the machine learning algorithm. This enables new vertical
use-cases focused on diagnostics, prognostics, and predictive maintenance,
which reduce expenses and optimize the machine life-time.

However, industrial scenarios often require a higher number of sensing
devices in order to effectively monitor different points of a plant. In these
situations, this framework can easily scale up, providing a gateway that is
able to manage large numbers of devices and related data streams. Since
we keep deploying an AGILE gateway instance on a cheap Raspberry Pi
3 computer, we prefer not exceeding 80% of CPU load. Given this con-
straint and extrapolating the CPU load of the Elliptic Envelope container
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from Figure 4.7, we assert that more than 30 parallel Elliptic Envelope
containers can be concurrently hosted on a single gateway. Then, given
the harsher conditions of a typical industrial environment in terms of elec-
tromagnetic interference, for our preliminary campaign we have changed
the radio interface from Bluetooth to Wi-Fi as the latter, besides offering
higher resistance against electromagnetic interference, allows for higher
data-rates. We conducted a wide performance test over the Wi-Fi chan-
nel using IPerf16, obtaining stable data-rates of 4Mbps, at the UDP level.
Considering that our gateway is able to support up to 31 devices, this
means that every device can stream data up to a maximum data-rate of
129 Kbps.

We have successfully applied this framework to a real industrial plant
available at the Micro-Nano Facility (MNF) of Fondazione Bruno Kessler
(FBK, Trento, Italy)17. This facility allows researchers to study, develop
and build microdevices by processing raw silica wafers in an extremely
clean and fine-controlled environment, also known as Clean Room. We will
talk again about the research developed in this facility in Chapter 6. The
Clean Room is composed of different modules that keep the environment
suitable for silica processing. One of the most important modules is the
air treatment system that controls both the injection and expulsion of the
air from the room, while keeping constant the air pressure and the relative
humidity. These systems are extremely critical since a malfunction could
have disastrous effects on processes and equipment. Each system has two
electric engines, while each engine is connected with a belt to a shaft that
rotates a fan to push or extract the air from the Clean Room. Since these
engines do not have on-board sensors, we are developing retrofitting kits to
sense vibrations (using MEMS accelerometers) and temperature sensors.
These kits sample the physical dimension, perform time-frequency feature
extraction and then stream data using a Wi-Fi radio chip to the AGILE
gateway. More in detail, the kit computes 32 features, expressed as 32-
bit float numbers, starting from a 4 seconds time window sampled at a
frequency of 1 kHz. It follows that each kit has to transmit 1024 bits every
4 seconds. Given that the maximum data-rate for each kit is as large as

16https://iperf.fr/
17https://mnf.fbk.eu/
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Figure 4.8: Pipeline of deployment in an industrial scenario.

129 Kbps, then the effective bandwidth allocation for each kit is only 0.2%.
Such bandwidth requirement allows for radio chips to stay in a low power
consumption mode (sleep mode) for more than 99% of the time, which
increases the life-time of battery-powered kits.

We have installed 2 kits for each machine (one on top of the engine
chassis and one directly on the shaft bearing) for a total of 4 machines
(thus, 8 kits in total). The gateway can manage all the data streams coming
from these kits and, contextually, it can infer anomalies per stream. The
inference output (i.e., 0 if the anomaly is absent; 1 otherwise) is used to
tag data streams that are sent to a remote cloud data broker. The remote
system stores data and it allows for historical analysis through a Grafana-
based dashboard18. An overall view of the processing pipeline is depicted
in Figure 4.8.
Last but not least, since the gateway supports the Configuration Over The
Air (COTA), we are able to dynamically reconfigure devices based on the
actual needs: if an anomaly occurs, we can easily reconfigure the device
in order to have a finer analysis of the system. Future developments of
this scenario comprise the possibility to simply and smoothly deploy new
firmware on sensor kits via OTA updates.

4.6 Remarks

Edge Computing has deeply changed the IoT. Moving computation to the
edge of the network, or closer to the data sources, has enabled many novel

18https://grafana.com/

91

https://grafana.com/


CHAPTER 4. DESIGN OF AN IOT DEVICE FOR EDGE COMPUTING
APPLICATIONS

applications and scenarios that were not possible before. Starting from
the design of an IoT application (Chapter 3) that runs all the processing,
including an AI model, on an edge device, in this chapter we moved a step
forward. Here, we consider again an Edge IoT application that runs all the
processing (including AI) at the edge of the network, however, we moved
the computation, even more, closer to the data sources, i.e., on the IoT
devices. We literally spread the computation across multiple computing
entities: gateways, devices, and so on. This allows building Edge IoT ap-
plications that can fully exploit the power of the paradigm. This requires
allocating the processing algorithms on edge devices based on the resources
offered by each device. However, IoT devices, given their embedded na-
ture, usually introduce strong system, networking, and energy constraints
that have to be considered during the design phase of the application.
In this chapter, to practically demonstrate how to design an Edge IoT
application and its devices, we presented a simple framework to design
a special class of IoT devices called Smart Audio Sensors (SASs), which
are audio devices able to autonomously record audio streams, locally per-
form computations on the recorded streams and send the results of these
computations over a wireless link. In the beginning, we designed a device
that was a simple audio recorder, with Bluetooth connectivity to transmit
the raw audio stream. However, we had to deal with a Bluetooth link
that does not have enough bandwidth to carry an audio stream sampled
at 44.1KHz with 16-bit resolution. Therefore, we decided to migrate most
of the computations directly into the audio device firmware. More in de-
tail, we implemented the entire software flow (Figure 4.3) to extract the
mel-coefficients from the raw audio stream. We defined a mathematical
framework to design parameters of the mel extraction software flow. Such
framework is based on two conditions, namely the Real-Time condition
(Equation Formula (4.6)) and the Buffering-Processing condition (Equa-
tion Formula (4.7)), that have to be satisfied by the flow parameters.

After that, we have integrated the SAS into the AGILE gateway ecosys-
tem and we have developed an ad-hoc module, called Configuration Over
The Air (COTA), to remotely configure and push the mel-flow parameters
without direct intervention on the device firmware. This module offers a
user interface (UI) through the AGILE UI, and it is also able to detect if
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the inserted configuration is valid or not.

The proposed solution has been validated by deploying the proposed
Edge IoT device (i.e., SAS) in a real smart office scenario. This device is
responsible for collecting and locally computing the mel-coefficients while
transmitting the computed features to an AGILE gateway instance. The
latter simply receives the mel-coefficients from its wireless radio interface
and runs a micro-service that executes a purposely trained anomaly de-
tection algorithm, in charge of detecting anomalous events in the received
feature-transformed stream. We compared two different options, namely
Elliptic Envelope and Isolation Forest, in terms of average computing la-
tency and user CPU load at the gateway level. We observed that, on the
AGILE gateway instance, the best model is the Elliptic Envelope, being
it two orders of magnitude faster and one order of magnitude lighter than
the Isolation Forest counterpart.

The approach presented in this chapter has been validated considering
a static allocation of processing algorithms on different entities based on
the system constraints imposed by the application, the hardware devices,
and the selected networking interface. We partially overcame the prob-
lem of static allocation by introducing the concept of Configuration-Over-
The-Air, which allows us to reconfigure the main parameters of deployed
algorithms. However, the possibility to dynamically re-allocate the compu-
tation on the different entities (i.e., gateways, devices, etc.) allows having
more resilient and powerful applications where, for instance, components
can be migrated or updated or removed or introduced. This may give the
flexibility to unleash even more power of the Edge Computing paradigm.
In the direction of Edge Intelligence, the same approach may be adopted to
retrain and redeploy machine learning models based on conditions or when
a model is not valid anymore (e.g., accuracy below a threshold). Con-
sidering the industrial scenario presented in Section 4.5.4, a possible im-
provement may be the automatic retraining and redeployment of anomaly
detection models based on the evolution of the system (e.g., replacement
of a bearing). In this perspective, in the next chapter, we present a novel
class of hardware chips, known as Edge AI Accelerators, specially designed
to efficiently execute cloud-scale AI models at the edge, e.g., deep learn-
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ing models. We will provide a wide characterization of them in order to
understand their pros and cons, the system requirements, and the effort
that practitioners have to invest in order to adopt these devices in their
applications.
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Novel hardware platforms for Edge
Intelligence
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Figure 5.1: This chapter presents a systematic overview of Edge AI accelerator chips
available on the market by describing their requirements, constraints, and performances in
Edge IoT applications. These chips are a fundamental building block for Edge Intelligence
IoT applications since enable the efficient execution of AI algorithms at the edge from
the computational and energetic points of view. Practitioners can design and implement
intelligent Edge IoT applications based on these hardware platforms and removing the
dependency from Cloud Computing to infer complex AI models.

.

5.1 Introduction

Edge IoT applications, e.g., personal-scale sensing applications, are in-
creasingly pushing the inference part of AI models to edge devices such as
IoT, smartphones, wearables, sensors, etc. This transition offers attractive

Part of this chapter appears in the following publication that I co-authored:
M. Antonini, T. H. Vu, C. Min, A. Montanari, A. Mathur, and F. Kawsar, “Resource Characterisation of
Personal-Scale Sensing Models on Edge Accelerators”. In Proceedings of the First International Workshop
on Challenges in Artificial Intelligence and Machine Learning for Internet of Things - AIChallengeIoT‘19.
New York, NY, USA: ACM Press, 2019, pp.49-55. DOI: 10.1145/3363347.3363363

95

http://doi.org/10.1145/3363347.3363363


CHAPTER 5. NOVEL HARDWARE PLATFORMS FOR EDGE INTELLIGENCE

benefits concerning privacy, performance, and cost. In the last 18 months,
this shift has resulted in the emergence of a brand-new class of neural chips
aimed at inferences at the edge. The proposition is remarkable; for the first
time, we can move away from software accelerators and push cloud-scale
AI models into edge devices without compromising accuracy. Naturally,
these edge accelerators are uncovering exciting opportunities for building
powerful Edge Intelligence IoT applications with complicated learning ob-
jectives and demanding computations, and, as Figure 5.1 shows, we are
posing the pillars for Edge Intelligence.
There have been several attempts to understand the performance charac-
teristics of human sensing models on smart devices like smartphones and
commodity devices [114, 115]. However, the characterization of Edge AI
accelerators is still at a very early stage. To this end, we take a system-
atic look at a set of edge accelerators, their working principles, and their
performance in executing a variety of human sensing models.

This chapter presents a systematic characterization [116] of seven dif-
ferent accelerator configurations (Google Coral Dev Board, Google Coral
Accelerator with Raspberry Pi (hereinafter, RPi) 4B and 3B+, NVIDIA
Jetson Nano with native TensorFlow GPU and TensorRT, and Intel Neu-
ral Compute Stick with RPi 4B and 3B+) running eight different deep
learning models with three tasks (motion, audio, and image). We report
on their execution performance concerning memory, execution time, and
energy overhead and share observations that lay an empirical foundation
for both the evolution of these accelerators and their usage in Edge IoT
applications.
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IN
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D

U
C

T
IO

N

Coral Dev
Board

Coral Accelerator
+ Raspberry Pi 3B+

Coral Accelerator
+ Raspberry Pi 4B

NVIDIA
Jetson Nano

Intel NCS2
+ Raspberry Pi 3B+

Intel NCS2
+ Raspberry Pi 4B

CPU
Quad-Core
Cortex A53

Quad-Core
Cortex A53

Quad-Core
Cortex A72

Quad-Core
Cortex A57

Quad-Core
Cortex A53

Quad-Core
Cortex A 72

Memory 1 GB LPDDR4 1 GB LPDDR2 2 GB LPDDR4 4 GB LPDDR4 1 GB LPDDR2 2 GB LPDDR4

AI Chip Google EdgeTPU Google EdgeTPU Google EdgeTPU
128 Core

Maxwell GPU

Intel Movidius
Myriad X VPU

with 16 SHAVE cores

Intel Movidius
Myriad X VPU

with 16 SHAVE cores
On-Chip
Memory

8 MB 8 MB 8 MB
Shared

with CPU
512 MB LPDDR4

+ 2.5 MB Centralized
512 MB LPDDR4

+ 2.5 MB Centralized
AI Chip Interface PCIe USB 2.0 USB 3.0 PCIe USB 2.0 USB 3.0

AI Chip OPs 4 TOPs 4 TOPs 4 TOPs 472 GFLOPs 1 TOPs 1 TOPs
Network Interfaces ETH, WiFi, BT ETH, WiFi, BT ETH, WiFi, BT ETH ETH, WiFi, BT ETH, WiFi, BT

Table 5.1: Specification of the hardware platforms used in the study (source: [116], p. 50).
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The rest of the chapter is structured as follows: Section 5.2 describes
the different AI accelerators, their characteristics, and the steps required
to adapt a cloud-scale deep learning model, i.e., a TensorFlow or Keras
model, to run an edge AI accelerator. We describe the deep learning sens-
ing models considered in this chapter in Section 5.3. Section 5.4 describes
the benchmarking framework and outlines the systematic report on per-
formance metrics of the accelerators for the models. Finally, we present
some final remarks and key insights in Section 5.5. It is worth mentioning
that the design of the benchmarking framework and characterization ex-
periments were carried out during a visiting period abroad at Nokia Bell
Labs (Pervasive Systems research group) in Cambridge (UK) from June
2019 to October 2019.

5.2 Edge AI Accelerators

Many big tech companies have proposed different hardware solutions to
accelerate the execution of deep learning algorithms at the edge of the net-
work. This opens many different new application markets where complex
AI can be executed on devices. In this study, we consider seven different
hardware/software configurations with three types of edge accelerators.
Table 5.1 reports their hardware specifications; we consider two Tensor-
Flow frameworks for Jetson Nano, TensorFlow GPU1 and TensorRT2.

Google Coral3: In summer 2018, Google announced the edge version
of its Tensor Processing Unit (TPU) platform known as EdgeTPU under
the brand name Coral. The EdgeTPU is an application-specific integrated
circuit designed to deliver up to 4 Tera OPerationS (TOPS) per second
using a power budget of 2 watts (2 TOPS/watt). This chip supports only
signed integer operations at 8 and 16 bits and it comes with approximately
8 MB of on-chip RAM used to cache the model’s parameters. Since this
board has been strictly designed for optimal inference, it currently sup-
ports only TensorFlow Lite models that meet specific requirements [117]
(e.g., parameter quantization). The EdgeTPU is offered by Google in ten

1https://www.tensorflow.org/install/gpu
2https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
3https://coral.ai/
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different flavors4 grouped in two main categories: Prototyping products
and Production products. The former group contains four different prod-
ucts: two dev-kit called Coral Dev Board with respectively 1 and 4 GB of
RAM, a Coral Dev Board mini, and a USB dongle called Coral Acceler-
ator. The Production products comprise four PCIe boards, which mount
the EdgeTPU chip, with different form factors (Mini PCIe, M.2 A+E key
with single or dual edge TPU, and M.2 B+M key), a System-on-Module
(SoM) ready to be plugged in the target device, and the spare solderable
module. Additional commercial devices, which embed the Coral TPU, are
offered by ASUS that offers the ASUS AI Accelerator PCIe Card card,
which supports up to 8 Coral M.2 cards, and the ASUS Tinker Edge T, a
single-board computer based on the Coral SoM board.
For the sake of this chapter, we consider only two Coral devices: the 1 GB
Coral Dev Board and the USB Coral Accelerator. The former dev-kit (See
Figure 5.2a) is a single board computer that hosts onboard RAM, storage,
and other peripherals. The second device is a USB device that requires a
host device, thus, we use Raspberry 4B (See Figure 5.2b) and 3B+. The
biggest difference between Raspberry Pi (hereinafter, RPi) 4B and 3B+
regarding our benchmark study is the AI chip interface. RPi 4B supports
USB 3.0 (with a maximum rate of 5 gigabits per second), whereas RPi 3B+
supports USB 2.0 (with a maximum rate of 480 megabits per second). We
will evaluate the impact of the interface later in this chapter.

NVIDIA Jetson Nano: In March 2019, NVIDIA has announced
and made available a new GPU-powered board, known as Jetson Nano,
targeting the maker community (See Figure 5.2c). This board hosts a
64-bit quad-core Arm Cortex-A57 CPU and an NVIDIA Maxwell GPU
with 128 CUDA-cores able to deliver up to 472 GFLOPs running float
operations. CPU and GPU share a common bank of 4 GB of LPDDR4
RAM, which requires the tuning of the memory reservation between CPU
and GPU. Since this board runs a full-fledged operating system derived
from Ubuntu, the board natively supports TensorFlow 1.x compiled with
GPU support and TensorRT 5. In October 2020, NVIDIA announced and
made available a new version of Jetson Nano with 2 GB of RAM.

4https://coral.ai/products/
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(a) Google Coral Dev Board (b) Coral Accel. with RPi 4B

(c) NVIDIA Jetson Nano (d) Intel NCS2 with RPi 4B
Figure 5.2: Hardware platforms used in the study (source: [116], p. 51).

Intel NCS2: Intel has made available the new Intel Movidius Myr-
iad X Vision Processing Unit (VPU), a low-power System-on-Chip (SoC)
designed to accelerate deep-learning deployments and computer vision ap-
plications. This chip includes several processors and computing units opti-
mized for high parallelism and DNN inference making it capable of running
up to 4 TOPS with a power budget of 1.5 watts. The VPU is available
in two different in-package configurations: without in-package additional
RAM and with 4GBits (512 MBytes) in-package RAM. Intel has released
a USB 3.0 dongle known as Intel Neural Compute Stick 2 (NCS2) that
hosts the Movidius Myriad X VPU with 4GBit of RAM. This USB stick
can be plugged as a co-processor to speed-up the inference of neural net-
works. NCS2 requires the model to be optimized using the OpenVINO
framework5. We also consider Raspberry Pi 4B (See Figure 5.2d) and 3B+
as the mainboard for benchmarking NCS2.

5.2.1 Model compilation workflow

Since edge accelerators have different constraints and requirements, differ-
ent optimizations need to be applied to fully exploit the hardware acceler-

5https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
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Figure 5.3: Compilation workflow (source: [116], p. 51).

ation. Figure 5.3 presents the required steps for the edge accelerators we
use for our benchmark study. In this chapter, we consider deep learning
models that have been implemented with native TensorFlow or with Keras
with TensorFlow as backend.

NVIDIA Jetson Nano: The first step is to train the algorithm by
applying full-precision training which outputs a model with parameters
expressed as 32bit floating-point numbers. Then, the model needs to be
frozen to convert all the inner variables to constant and make the model
ready for the inference phase and further optimization. The frozen model
can natively run on the Jetson Nano using native TensorFlow with GPU
support. Jetson Nano also supports TensorRT, a library that optimizes
the execution of neural networks by replacing the implementations of some
layers with more efficient ones. TF-TRT converter needs information in-
cluding input tensor name and shape, precision mode (FP16 or FP32),
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size of the inference batch, and size of the reserved execution memory.
The output is a TensorFlow-TensorRT frozen model ready to be deployed.

Intel NCS2: Intel NCS2 also needs the full-precision frozen model to
generate a model compatible with it. Then, the model is converted using
the OpenVINO model optimizer6, a cross-platform tool that runs static
analysis and adjustments of the model. The optimizer needs only the
shape of the input tensor and the floating number precision (e.g., FP16).
It returns a set of files, known as Intermediate Representation (IR), that
are used by the Inference Engine API to run the model over the Movidius
Myriad X VPU.

Google Coral: Since EdgeTPU does not support floating-point pa-
rameters, it is essential to represent the model weights as signed-integer
numbers, i.e., quantization. The EdgeTPU run-time supports quantization-
aware training [118, 119] which performs parameter quantization at train-
ing time. The model is frozen after this step and then converted to Ten-
sorFlow Lite format. As an alternative, from the v12 of the EdgeTPU
run-time, it supports post-training full-integer quantization [120]. This
procedure quantizes all the parameters and activations without re-training
the model. It requires a small and representative dataset, which might
be a part of the training set, to define the quantization range. Note
that, while quantization-aware training requires the additional cost for re-
training, higher accuracy is achievable as it is generally more tolerant to
lower precision values. The last step is to feed the quantized TensorFlow
Lite model to the EdgeTPU compiler7, which has been dockerized by us8.
The compiler verifies if the model meets the requirements [117]. It statically
defines 1) how weights are allocated in the edge TPU on-chip memory 2)
the execution of the TensorFlow Lite graph on the acceleration hardware.

Although the model meets the requirements, it is possible that some
operations could not be supported by the EdgeTPU run-time. Then, the
compiler tags them as unsupported and forces the execution of those and
subsequent operations on the CPU instead of TPU. It is also possible that

6https://docs.openvinotoolkit.org/latest/openvino_docs_MO_DG_Deep_Learning_Model_

Optimizer_DevGuide.html
7https://coral.ai/docs/edgetpu/compiler/
8https://github.com/mattiantonini/edgetpu-compiler-container
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Task Model Architecture Characteristic
Parameters
(Millions)

M
ot

io
n

Aroma (A) [121]
CNN+DNN
+ Residual
Connections

Excluding LSTM 0.385

A
u

d
io

Audio Classification (E) [122]
(Emotion Only)

CNN + FC
No MFCC
extraction

0.249

DKWS (D) [123] CNN + FC
No MFCC
extraction

0.923

V
is

io
n

SqueezeNet V1.0 (S) [124] CNN + FC Fire modules 1.235

MobileNet V1 (M) [125] CNN + FC
Traditional

and depth-wise
convolution layers

4.232

EfficientNet-EdgeTPU (E2) [126] CNN + FC Traditional CNN 5.440
Inception V1 (I) [127] CNN + FC Inception Modules 6.618

DenseNet121 (D2) [128]
CNN + FC
+ Residual
Connections

Each layer is
connected to all

the previous layers
7.978

Table 5.2: Specification of sensing models used in the study (source: [116], p. 52).

the model’s weights do not fit in the TPU on-chip memory but the opera-
tions are still executed on TPU. In this case, the weights are dynamically
streamed from off-chip memory, e.g., RAM, to the on-chip memory, in-
troducing additional latency. Even only a few tens of bytes stored in the
off-chip memory may drastically degrade the device’s performance.

5.3 Personal-scale Deep Learning Sensing Models

Given that we target Edge IoT applications, with a focus on personal-
scale sensing applications, we select a broad range of deep learning sensing
models tailored for motion, audio, and vision tasks. Table 5.2 summa-
rizes the architectures and properties of the models we benchmark. They
cover diverse types of convolutional neural networks (CNN) architecture,
e.g., with and without auxiliary branches, residual connections, depth-wise
convolution, and fully connected layers.

Motion task: Motion sensors, e.g., , accelerometer, gyroscope, and
magnetometer, are crucial components in smart devices as they provide
rich information about user context [129, 130]. One of the most desired
applications of motion tasks is human activity recognition (HAR). For the
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HAR model, we select Aroma [121]. It consists of two hierarchical classi-
fiers. The first classifier exploits 8 convolution layers to automatically learn
low-level features from the distribution of sensor data. These low-level fea-
tures are then classified into different simple activities, e.g., standing and
walking, using a fully connected layer and a softmax classifier. On top of
this classifier, a long short-time memory (LSTM) model is applied to learn
and extract meaningful complex activities, e.g., commuting, from tempo-
ral relationships in the low-level features over time. However, since the
current accelerators do not support LSTM modules, we profile only the
convolutional part of the model.

Audio task: Audio understanding is always on the front line of machine
learning and enables a variety of sensing tasks. Using edge accelerators is
promising to enable on-device audio processing, which provides clear bene-
fits such as privacy assurance and low latency. In this chapter, we consider
two different audio tasks, keyword spotting and emotion recognition. Key-
word Spotting is a vital component in virtual assistant applications, e.g.,
Google Assistant or Amazon Alexa. To this end, we use a deep keyword
spotting (DKWS) model [123], which is a three-layer deep convolutional
neural network. It is capable of detecting several spoken keywords, e.g.,
yes and no. The goal of the emotion recognition task is to capture the
human psychological state unobtrusively in daily lives using the speaker’s
utterance. We follow the implementation proposed in [122] which com-
prises of 3 CNN layers, a fully connected layer, and a softmax classifier to
classify four different emotions, including neutral, upset, happy, and an-
gry. For the benchmark, we focus only on the model execution and exclude
the pre-processing steps such as the extraction of Mel-Frequency Cepstral
Coefficients (MFCC) features.

Image task: Image recognition is one of the most active areas of
machine learning with many applications [131]. Given the popularity of
these models, we profile 5 different types of neural networks, including
SqueezeNet V1.0 [124], MobileNet V1 [125], EfficientNet [126], Inception
V1 [127], and DenseNet121 [128].

These models cover a variety of network architectures. SqueezeNet in-
troduced Fire modules which makes use of 1x1 convolution to squeeze the
number of input channels and a 3x3 filter to reduce the total number of

104



5.3. PERSONAL-SCALE DEEP LEARNING SENSING MODELS

parameters. MobileNet V1 introduced depth-wise convolution, which ap-
plies convolutions on each channel before combining the filters to reduce
the number of parameters. Recently Google has developed EfficientNet
– a new family of CNN architecture which can be optimized for differ-
ent platforms; we use EfficientNet-EdgeTPU, which is optimized for the
Google EdgeTPU. EfficientNet utilizes architectural search (grid search on
depth and width) to find a near-optimal architecture, which optimizes both
depth and width of a neural network. Inception V1 includes 22 convolu-
tion layers with branches of 1x1, 3x3, and 5x5 convolutions and a fully
connected layer. DenseNet121 contains both convolution layers and Dense
blocks which maintain residual connections from one layer to all previous
layers in the same block.

5.3.1 Scope of the benchmark

Our goal is to investigate the resource characteristics of edge accelerators
under a range of deep learning sensing models usually adopted in IoT
applications. However, there are several compilation and optimization pa-
rameters that affect the resource characteristics and inference accuracy as
well. For example, for the precision mode, FP16 (half-precision point)
could occupy less memory and lower inference latency compared to FP32
(full-precision point) but could result in accuracy degradation. In this
chapter, as an initial step, we select personal-scale sensing models, which
are widely used in IoT applications, as a key independent variable and aim
at investigating their resource characteristics. To this end, we set the com-
pilation and optimization parameters to the default values used in each
edge accelerator. For example, for the precision mode, we used FP32 and
FP16 for TensorFlow GPU and TensorRT on Jetson Nano, respectively.
Intel NCS2 was also set to FP16. The investigation of the compilation and
optimization parameters and their impact on the accuracy is left for future
developments and works.

In this aspect, we do not include other operations into the benchmark,
which are required for the entire sensing pipeline such as sensing, data
transmission, and data management. It is because their resource charac-
teristics are not affected by edge accelerators.
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5.4 Performance Benchmarks

We conduct a set of benchmarks to characterize the resource usage of
personal-scale sensing models on edge accelerators. We consider end-to-
end model performance metrics of memory usage, execution time, and
energy consumption. Given the proprietary nature of each accelerator and
the limited availability of APIs, we could not include accelerator-related
metrics such as TPU usage. We expect that the outcome of these experi-
ments uncovers the feasibility of running sensing models and applications
on edge accelerators with the final aim at build a pillar for future Edge
IoT applications.

5.4.1 Experimental Setup

To systematically explore the resource characteristics, we develop a bench-
mark script that executes the sensing models repeatedly and measures
memory usage and execution time. We perform 20,000 separate inferences
for every model on each platform and report the average figures. For all
the experiments, we use a batch size of 1 to consider applications where
the models need to process and label sensory inputs as quickly as possible,
without additional latency introduced by batching several data points. For
energy measurements, we use a High-Voltage Monsoon Power monitor9.

We consider three steps in the model lifetime: loading, warm-up, and
inference. In the loading, the model is loaded into the accelerator’s on-chip
memory. The warm-up refers to the first execution of the model, and the
inference is for the subsequent executions. We separate the warm-up from
the inference since accelerator run-time completes hardware initialization
(e.g., model caching and memory allocation) upon the first request of the
model execution.

5.4.2 Memory Usage

We investigate the memory footprint, which is known to be a key resource
bottleneck in the processing of deep learning models on embedded devices
due to a large number of parameters.

9https://www.msoon.com/high-voltage-power-monitor
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(a) Coral Dev (b) RPi3 + Coral USB (c) RPi4 + Coral USB

(d) RPi3 + NCS2 (e) RPi4 + NCS2

(f) Jatson Nano(GPU) (g) Jatson Nano(TensorRT)
Figure 5.4: Host device memory footprint (notice the different scale for the y-
axis) (source: [116], p. 53 for figures (a), (d), and (f)).

The first observation is that, when a model is executed on an accelera-
tor, the memory is gradually allocated at three different times: (1) when
the model is loaded, (2) at the first inference (warm-up), and (3) dur-
ing subsequent inferences. It is important to notice that the loading and
warm-up memory remains allocated for all subsequent inferences and it is
deallocated only when the model is unloaded. We further discover that
the way the memory is handled depends on the hardware architecture of
the accelerator and also on its run-time software. For the accelerators with
on-chip dedicated memory (memory isolated from system memory), i.e.,
Coral Dev (Figure 5.4a), Coral Accelerator (Figure 5.4b and Figure 5.4c),
and NCS2 (Figure 5.4d and Figure 5.4e), the compilation pipeline opti-
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mizes the model to keep as much of the network as possible on the on-chip
memory to ensure low latency access, thereby resulting in low utilization
of the memory on the host device. Even for large models (e.g., Efficient-
Net, Inception V1, and DenseNet), we observe that only 13–18 MB are
allocated during the loading and the warm-up phases on the host memory
of the Coral Dev Board (Figure 5.4a) and on the Raspberry Pi memory
used with the Coral Accelerator (Figure 5.4b and Figure 5.4c). Also on
the Intel NCS2 (Figure 5.4d and Figure 5.4e), the host memory allocated
is a bit higher than the Coral devices but still marginal. For example,
the largest amount of allocated memory is for the EfficientNet model with
about 50 MB of memory allocated for loading and warm-up (for the same
model only 14 MB are allocated when using the Coral devices). For the
inference phase, the host memory used is even lower, we measure less than
10 KB across all models both on Coral devices and NCS2.

On the Jetson Nano, however, we notice that significantly more mem-
ory is allocated during loading and warm-up, as shown in Figure 5.4f and
in Figure 5.4g for the TensorFlow GPU and TensorRT run-times, respec-
tively. Only between 1 MB and 10 MB are used during inference instead.
We hypothesize that this is because the TensorFlow and TensorRT run-
times are still not optimized for constrained devices with limited memory.
The implication is that, since on Nano the memory is shared between the
CPU and the GPU (i.e., there is no dedicated memory for the GPU),
the more memory is used for a deep learning model the less is available
for the operating system and other processes running on the CPU. As a
consequence, the Jetson Nano board running TensorFlow GPU could not
run the large models (MobileNet, EfficientNet, Inception, and DenseNet),
because the free memory is not enough to load and perform the warm-up
phase of these models. On the other hand, the Jetson Nano board using
TensorRT as runtime was able to run EfficientNet and DenseNet, however
with a high memory demanding. This is important because a real sys-
tem would need to execute other tasks in addition to the model inference
(e.g., communication, user interface, and data logging) requiring memory
for each of these tasks. This might become impossible if most of the free
memory is consumed by model execution, as on the Jetson Nano. Therefore
we observe that devices with dedicated on-chip memory and with software
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Figure 5.5: Execution time (inference time) on different platforms (adapted from [116],
p. 53).

pipelines capable of optimizing the models’ memory requirements, such as
Coral Dev, Coral Accelerator, and NCS2, are preferable for systems that
need to run processes in addition to the model execution. We remember
that this was one of the first characterizations of these devices, thus further
analyses are required to fully understand their potential.

5.4.3 Execution time

We look into the execution time of the model inference, which is a key
metric for IoT applications at the edge of the network that need to react
quickly to input data. Figure 5.5 shows the inference time for different
platforms. The results show a couple of interesting findings. First, the
execution time is largely different, depending on the edge platform. In
general, Coral Dev and Coral (RPi 4B) outperform other platforms. For
example, one execution of the SqueezeNet model takes 2 ms both on Coral
Dev and Coral (RPi 4B), whereas it takes 9.5 ms, 27 ms, 11 ms, 29 ms, and
26 ms on Coral (RPi3B), NCS2 (RPi 3B), NCS2 (RPi 4B), Nano (GPU),
and Nano (RT), respectively.

Second, as expected, the inference is faster for simpler models. For ex-
ample, the execution time on Coral Dev is 0.5, 0.5, 3.5, 2.1, 2.7, 4.2, and
10.9 ms for Aroma, Emotion, DKWS, SqueezeNet, MobileNet, Inception,
and DenseNet (see Table 5.2 for the number of parameters). DenseNet is
the slowest on the Coral devices because the entire model cannot be allo-
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cated on the on-chip accelerator’s memory (∼8 MB) and therefore part of
the parameters was allocated on the host memory (1.9 MB). This causes
additional latency because parameters need to be moved between the host
memory and the accelerator on-chip memory. The trend showing that sim-
pler models run faster is observable also on different platforms. However,
NCS2 (RPi 4B) is an exception to this tendency. The execution time of
DKWS is 47 ms, whereas that of SqueezeNet, MobileNet, and Inception
is 11ms, 25ms, and 22ms. We hypothesize that this is because DKWS
has an unusual kernel size in its first convolutional layer (i.e., 8x20) which
translates to heavy computation on the input data and possibly causes
inefficiency because the Movidius chip is not optimized for this kernel size.
We find a similar behavior on EfficientNet and DenseNet with the Intel
NCS2. While the number of parameters of EfficientNet is lower than that
of DenseNet, its execution time is much higher on the Intel NCS2. We con-
jecture that this is because EfficientNet has been designed and optimized
for the EdgeTPU architecture.

We delve deeper into the execution time of the loading and warm-up
steps as shown in Figure 5.6. Interestingly, edge platforms show a different
tendency. We notice that the loading and warm-up times for all models on
Coral Dev are always below 30 ms while the Coral accelerator, NCS2, and
Jetson Nano take several seconds. Knowing loading and warm-up times of
these accelerators is important in reactive systems where different models
need to be executed on-demand to respond to certain sensory inputs. In
this context, models are dynamically loaded to perform a few inferences
and then unloaded. Large loading and warm-up times will reduce the
performance of the system, making it difficult to promptly respond to
input data. From our benchmarks, we can conclude that Coral Dev is
suitable to support reactive systems where multiple models need to be
loaded and unloaded over time while NCS2 and Jetson Nano are more
suitable for applications where a single model is used for long periods of
time, amortizing the loading and warm-up cost.
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(a) Coral Dev (b) RPi3 + Coral USB (c) RPi4 + Coral USB

(d) RPi3 + NCS2 (e) RPi4 + NCS2

(f) Jatson Nano(GPU) (g) Jatson Nano(TensorRT)
Figure 5.6: Execution time for loading, warm-up, and inference operations. X-axis reports
shortened model names as in Table 5.2 (source: [116], p. 53 for figures (a), (e), and (f)).

5.4.4 Energy

Energy is a precious resource in battery-powered Edge IoT devices em-
powered with edge accelerators. When we design a device, we have to
guarantee that the battery life is enough to last at least the time between
to rests, e.g., 24 hours for a smartphone, 7 days for a wristband, and so
on. Here, we define the energy overhead as the energy which is additionally
consumed for the model execution. To obtain the net energy increase, we
measure the difference between the average power consumed during the
model execution and when the board is idle and, then, multiply it by the
model execution time. These are estimations of the energy overhead using
power consumption collected using an empirical approach.

Interestingly, as shown in Figure 5.7, the energy overhead varies much
depending on the accelerator. For example, Coral Dev and Coral (RPi 4B)
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Figure 5.7: Energy consumption on different platforms at inference time (adapted from
[116], p. 54)

Coral Dev Coral (RPi 3B) Coral (RPi 4B) NCS2 (RPi 3B) NCS2 (RPi 4B) Jatson Nano
3.1 2.4 4.2 2.8 3.6 1.2

Table 5.3: Idle power of platforms (W) (adapted from [116], p. 54).

mostly consume less than 10 mJ for a single execution (inference) regardless
of the model. On the other hand, the energy overhead ranges from 5 mJ
to 274 mJ on NCS2 (RPi 4B) and Jetson Nano. We can also observe that
the TensorFlow framework largely impacts the energy overhead, even with
the same platform. On Jetson Nano, TensorFlow GPU generally consumes
more energy than TensorRT. This is probably because TensorFlow GPU is
not optimized for energy efficiency and it takes longer as well for the model
execution.

Table 5.3 shows the power draw in the idle state, i.e., when no operation
is being executed. Interestingly, the power also varies much depending on
the hardware specification. A Raspberry Pi 3B connected to an accelerator
consumes less than 3 W, however, when it is connected to a Raspberry Pi4,
the power draw is higher than 3.5W. This is due to the power draw of the
Raspberry Pi 4B alone (without any accelerator), which is 2.9 W. Finally,
Figure 5.8 reports the energy consumption of loading and warm-up phases
for a subset of models and platforms. Even if these phases look to have
a big impact on battery life, they do not deplete too much energy since
these phases are needed to be executed only once, at the model loading
phase. On the other hand, the inference phase may be repeated thousands
of times.
More investigations are required on the energy consumption side consider-
ing also the pre-processing pipeline of data, i.e., from sensors to the model.
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(a) Coral Dev (b) RPi3 + Coral USB (c) RPi3 + NCS2

(d) RPi4 + NCS2 (e) Jatson Nano(GPU) (f) Jatson Nano(TensorRT)
Figure 5.8: Energy overhead for loading, warm-up, and inference operations for a subset
of models and platforms. X-axis reports shortened model names as in Table 5.2.

5.4.5 The impact of connection interfaces: USB3.0 (RPi 4B) vs
USB2.0 (RPi 3B+)

According to the hardware specification, the main difference between RPi
4B and 3B+ is the interface with AI Chip as described in Table 5.1, i.e.,
USB 2.0 on RPi 3B+ and USB 3.0 on RPi 4B. In this subsection, we quan-
tify the impact of the interface on the performance of the model execution.
Here, we focus on the latency and power consumption, which are mainly
affected by the interface.

Execution time: Figure 5.9a and Figure 5.9c show the execution time
(inference time) of Coral Accelerator and Intel NCS2, respectively. As
expected, RPi 4B takes a shorter time than RPi 3B+ by virtue of its fast
transmission via USB 3.0. Interestingly, the performance gap, i.e., the
difference of the execution time between RPi 4B and RPi 3B+, is different
depending on the type of the accelerator. With the Coral accelerator,
the ratio of RPi 3B+ to RPi 4B ranges from 3.1 (EfficientNet) to 7.3
(DenseNet). However, with Intel NCS2, the ratio mostly remains less than
1.7, except the SqueezeNet (2.4).

Energy: We also compare the energy overhead as shown in Figure 5.9b
and Figure 5.9d. The results show that, in general, RPi 3B+ consumes
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(a) Execution time - Coral Acc. (b) Energy overhead - Coral Acc.

(c) Execution time - NCS2 (d) Energy overhead - NCS2
Figure 5.9: Performance comparison between Edge AI Accelerators connected to host
devices via USB3.0 (RPi 4B) and USB2.0 (RPi 3B+) (source: [116], p. 54 for figures (a)
and (b)).

more energy for the model execution; the only exception is DKWS on
Intel NCS2. The main reason is due to the increase in the execution time.
However, the idle power of RPi 3B+ is much lower than RPi 4B. The idle
power of RPi 3B+ is 2.4 W and 2.8 W with Coral Accelerator and Intel
NCS2, respectively. This makes the average power of RPi 4B during the
model execution (including the idle power) higher than that of RPi 3B+.
For example, the average power of the Aroma model on RPi 4B is 5.0 W,
whereas that on RPi 3B+ is 2.9 W. In this aspect, we estimate that the
battery life of RPi 3B+ will be longer than that of RPi 4B assuming a
battery with the same capacity.

5.4.6 Preliminary heating analysis

Besides the energy consumption or the time required to execute a model,
another fundamental parameter that has to be considered when we design
Edge IoT devices, especially for personal-scale applications, is the heat
dissipated by chips. Usually, a running CPU is heated up by the heat
produced in transistor junctions and this has to be dissipated into the sur-
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(a) Idle (b) Continuous inference
Figure 5.10: Thermal images of a RaspberryPi 4 connected to a Coral Accelerator during
idle phase (not inferencing) and running phase (continuous inference). Regarding the
color scale, black/blue means cooler, yellow/white means warmer.

rounding environment, usually using heat-sinks, fans, or other strategies.
Obviously, if the heat is not well dispersed, the device may become too hot
and it may be damaged or, even, it may harm some people. Moreover, a
hot device means that a lot of energy is “wasted”.
Here, we present a preliminary insight about the heating of a RaspberryPi4
connected to a Coral Accelerator. We used a FLIR One Pro thermal cam-
era10, connected to an Apple iPad, we collect the thermal spectrum of the
devices. However, given that RaspberryPi4 mounts a metallic enclosure
around chips that has a low emissivity of infrared radiation, we overcome
the problem by placing some black electric insulating tape on top of the
chips. Since the tape has a high emissivity, we were able to get an estima-
tion of the temperature of the devices. We sampled the temperatures of
three different points: the RaspberryPi CPU, the RaspberryPi RAM, and
the Coral Accelerator. Figure 5.10 shows the exact positions of thermal
sampling points. At idle, when the device is not running a model, the mean
temperatures of RaspberryPi’s CPU and RAM chips are 56.7 °C and 51
°C, respectively. The Coral Accelerator was at 42.2 °C. If we start to con-
tinuously infer a deep learning model, the average temperature of devices
quickly raise and, after 30 seconds, it reached 62 °C (RPi CPU), 55.4 °C

10https://www.flir.it/products/flir-one-pro/
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(RPi RAM), and 53.5 °C. Even if these values are not looking too high for
a computing device, however, they may be dangerous if someone touches
them. Different standards and guidelines have been defined to identify
the suitable range of temperatures. For example, the ASTM C1055 [132]
standard identifies the range of temperatures and contact duration after
that people may be injured (first-, second-, and third-degree burns). For
example, exposures longer than 15 seconds at 56 °C, or for 5 seconds at
60 °C, causes a third-degree burn. This opens the topic of thermal charac-
terization and optimization of Edge AI accelerators and, more in general
of IoT devices, not only from the energetic perspective but also from the
safety point of view.

5.5 Remarks

We attempted to characterize the resource performance and suitability of
personal-scale deep learning models on a wide variety of edge accelerators.
Beyond the mere numbers, our study further offers useful insights for the
development of Edge Intelligent IoT devices on top of the Edge AI accel-
erators. First, as described in Section 5.2.1, the execution path of deep
learning models on edge accelerator is not optimized, yet. For example, on
Google Coral platforms, if an operation in the model is tagged as unsup-
ported, the execution path is statically determined by putting the whole
subsequent operations (including the untagged one) to the CPU. It im-
plies that the position of the untagged operation affects the performance
of the model significantly. Second, the interface between CPU and AI chip
is a critical bottleneck. As reported in Section 5.4.5, even with the same
Coral accelerator, USB 3.0 accelerates the execution time by three to seven
times compared to USB 2.0. Last, careful scheduling is needed to support
multiple sensing models. This is because the dynamic change in sensing
models incurs significant overhead, e.g., as shown in the cost of loading
and warm-up on Jetson Nano (Section 5.4.3).

For the automated and scalable benchmark, we prototyped an end-to-
end benchmarking toolkit. As a core component for the resource bench-
mark, it takes a sensing model and a target platform as input. Then, it
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converts the given model to the platform-specific model binary as described
in Figure 5.3 and performs the benchmark. As future developments, we
envision this toolkit as a full-fledged, comprehensive framework for edge
accelerators. If practitioners provide the sensing model, the test dataset,
and the execution requirements, e.g., latency, accuracy, and energy bud-
get, the toolkit can automatically test the given model on various edge
accelerators in the background and recommend the most suitable platform
providing an in-depth report on the expected performance. This might
become a fundamental tool for Edge IoT practitioners to evaluate their
future Edge Intelligence IoT applications.

However, an important aspect of Edge Intelligence applications is still
missing: how can we design AI models to be executed at the edge? A few
works have been published where authors try to optimize the architecture
for neural networks for the target hardware platform. An example is Ef-
ficientNet [126], we evaluated it in this chapter, that has been designed
using a grid-search approach to identify a good combination of network
depth and width. In the next chapter, we will present an end-to-end (from
data selection to the model hyper-parameters, passing through the feature
extraction) framework to design an Edge IoT application that executes a
small and performing neural network on embedded devices. Our frame-
work, together with the benchmarking tool developed and presented in
this chapter, may become part of an essential tool-set that practitioners
should use in their every-day activity of application designers.
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Chapter 6

AI-supported design of Edge
Intelligence IoT applications
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Figure 6.1: Edge Intelligence is almost here. Indeed, this chapter presents a framework
to design the end-to-end processing pipeline of an Edge Intelligence IoT application,
including the AI model that has to be executed at the edge of the network, i.e., on an
IoT device. We exploit different bio-inspired AI methods to identify the (sub)optimal
pipeline, using state-of-the-art methodologies. A target pipeline includes data selection,
feature extraction, hyper-parameters optimization, and selection of the best AI model.
Even if our framework has been especially designed for a well-defined class of devices
(i.e., smart gas sensors), it can be easily adapted and adopted in other domains.

6.1 Introduction

Nowadays, smart devices [41] are present in almost every environment and
they may become even more intelligent if combined with each-day-more-
sophisticated AI algorithms. Using modern AI techniques, we can teach

Part of this chapter appears in the following publication that I co-authored:
M. Antonini, A. Gaiardo, and M. Vecchio “MetaNChemo: A meta-heuristic neural-based framework for
chemometric analysis.” Applied Soft Computing, vol. 97, p. 106712, Dec. 2020. Copyright Elsevier
(2020). DOI: 10.1016/j.asoc.2020.106712.
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devices what they should do based on data, context, and so on. Famous
examples like self-driving cars, face recognition systems, and virtual per-
sonal assistants (e.g., Amazon Alexa and Google Assistant) are examples
of how AI is drastically changing the way we live and interact with the
surrounding environment. However, most of the intelligence is still run-
ning in the cloud, as big players are still pushing, but we are seeing some
movements toward the edge of the network. In the previous chapters, we
have presented how to design and build Edge IoT applications that exploit
the edge of the network to execute AI and deliver better services. We have
also presented the current evolution of computing platforms that are now
able to execute cloud-scale models at the edge of the network, shaping the
design of future smart devices and applications.

In this chapter, we propose a multidisciplinary and AI-based end-to-end
framework to support the design of an Edge Intelligence IoT application.
In detail, this framework allows us to identify the entire processing pipeline
from a sensor to the training of a small (in terms of the number of weights)
and accurate (in terms of F1-score) neural network that can be inferred by
a tiny embedded device. Given that we want to deliver a framework that
can be used to design applications in real settings, our framework, which
we call MetaNChemo [133], has been initially designed for smart chemo-
metric systems. However, it is possible to adapt MetaNChemo to other
application domains with a small effort.
MetaNChemo identifies, besides the pre-processing pipeline, the architec-
ture and hyper-parameters of a neural network that is able to detect the
right concentration of carbon monoxide (CO), within the range from 0
to 25 ppm in the air, at different relative humidity levels. Monitoring of
CO concentration is extremely important due to the high toxicity of this
gaseous compound, being CO poisoning the leading cause of fatal air poi-
soning [134] in several countries. Our neural network has to combine signals
sampled from a sensor array made of up to 3 different chemoresistive sen-
sors (SnO2 [135], ZnO-1 [136], and ZnO-2 [137]). Such sensors have been
designed and developed by the Micro-Nano Facility(MNF)1 research unit

1https://mnf.fbk.eu/
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of our institution, the Bruno Kessler Foundation (FBK, Italy). The inter-
ested reader can find additional details about the fabrication process in Ap-
pendix A. This synergy allows us to design and implement a complete end-
to-end research pipeline using state-of-the-art and innovative techniques for
sensor production and data analysis. Moreover, it reduces research costs to
build and study smart gas sensors. In this chapter, we want to prove that
the selection of the sensor array and hyper-parameters of the neural net-
works can be performed by combining state-of-the-art meta-heuristic tools
and techniques, indeed our approach handles the optimization of these as-
pects at the same time. Many of the algorithms belonging to this family
exploit bio-inspired mechanisms [138] to optimize parameters with respect
to one or more fitness functions. For instance, genetic algorithms [139, 140]
can be used as alternative methods to train models, even if we consider deep
neural networks [140, 141]. Alternatively, meta-heuristic algorithms can be
useful tools to optimize internal neural network architectures and internal
connectivity patterns [142, 143, 144, 145]. Given the research hype around
deep learning, meta-heuristic approaches have been successfully applied to
discover deep neural network architectures [146], convolutional neural net-
works (CNNs) [147, 148] and their hyper-parameters optimizations, e.g.,
the dropout rate [149]. Finally, meta-heuristic approaches are widely used
to select features to feed machine learning models [150, 151, 152, 153].

In summary, the main contributions of this chapter are threefold:

• to introduce a multidisciplinary end-to-end framework, called Meta-
NChemo, able to support the design of Edge Intelligence IoT appli-
cations, and more in particular smart chemometric systems, from the
production of gas sensors to the assessment of AI models;

• to propose a data-driven approach that comprises the entire process-
ing pipeline and exploits different state-of-the-art AI techniques (pre-
processing, meta-heuristics, machine learning) to identify an AI model
with strong design requirements imposed by embedded devices: low
number of parameters (i.e., 20–50 weights) and high detection capa-
bilities (F1score ≥ 0.95);
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• to reduce the research gap and join forces between computer science
and material science worlds.

The remainder of this chapter is structured as follows: Section 6.2
presents a quick overview of machine learning methods applied to gas sen-
sors. The data collection setup from chemoresistive sensors and data-set
construction are delineated in Section 6.3. Section 6.4 describes the meta-
heuristic-based approach designed to identify the best sensor array and
network architecture, which are the core of our Edge Intelligence IoT ap-
plication. The results obtained are presented and analyzed in Section 6.5.
Then, in Section 6.6, we draw some conclusions, outlining possible future
works and the main challenges opened by MetaNChemo.

6.2 Machine learning methods for gas sensing

Historically, research around gas sensing devices has been driven by ma-
terials science communities and industries that have tried to identify the
best sensing materials and procedures to build reliable sensors with high
sensitivity and selectivity. Nowadays, given the opportunity offered by
AI [154], and if properly combined with domain knowledge, it is possible
to have better insights from data, i.e., if there is a mixture of different
gases and their concentration. Several works describe the combination of
AI techniques with gas sensor data.
Vergara et al. [155] collected three years of data by injecting 6 different
gases in a measurement chamber containing a 16 sensors array (metal-
oxide sensors, TGS-type sensors from Figaro). They developed an ensem-
ble method based on support vector machines (SVMs) to detect different
gases with the aim to study the drift of sensors over time. Their data-set is
publicly available and adopted, for instance, by Wang et al. [156] to train
SVMs to detect the concentration of gases. Moreover, they exploited a
genetic algorithm (GA) to find the best hyper-parameters of SVMs.
Other researchers [157] used an array of commercial sensors to collect re-
sponses to mixtures of gaseous compounds. They propose a methodology
to identify and train the best neural network architecture with the aim to
correctly identify the odor intensity and the hedonic tone.
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Casey et al. [158] deployed sensor arrays, which comprise commercial sen-
sors, and fed machine learning algorithms with mixtures of sensor output
signals. They compared neural networks with linear models with the aim
to understand if these methods may help to address the cross-sensitivity
of sensors.
However, these examples use commercial sensors or public data-sets. First,
commercial sensors may suffer from cross-sensitivity; moreover, they may
be expensive and are often covered by the industrial secret that prevents
research communities to acquire a full understanding. On the other hand,
while research conducted over public data-sets and commercial sensors is
essential to develop new methods, the main drawback is that we do not
have full control of physical experiments since we cannot control the en-
vironmental conditions (i.e., air temperature, relative humidity, etc.), the
sensor array (i.e., which sensors we want to study and their working tem-
peratures), the injected gases (i.e., compounds, concentrations, injection
profiles, etc.), and how we sample signals (i.e., sample frequency).

6.3 Data-set construction

6.3.1 Data Acquisition

In this chapter, to support the design of an Edge Intelligence IoT appli-
cation, as use-case we investigate the gas sensing performances of SnO2,
ZnO-1, and ZnO-2 sensors against different concentrations of CO (0, 2, 5,
10, 15, 20, and 25 ppm), in the presence of various percentages of relative
humidity (RH%), in order to develop and validate our approach in real
conditions (even if in a controlled environment). Indeed, variations of the
RH% values typically affect the response of MOX gas sensors [159]. The
CO concentrations were chosen based on the CO threshold limit value [160],
which is 25 ppm. Figure 6.2 shows a block diagram of the setup used for
the gas sensing measurements. Eight sensors, i.e., three SnO2, three ZnO-1
(nanograins), and two ZnO-2 (nanorods), were placed in a dedicated gas
test chamber with a volume of 0.5 dm3. The arrangement of sensors in
the gas test chamber is shown in Table 6.1. The electronic system of
the gas test chamber was equipped with two separated electronic circuits
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Table 6.1: Gas sensor arrangement in the test chamber and their working tempera-
tures (source: [133], p. 5).

Channel CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
MOX

Sensor Type
SnO2 ZnO-1 ZnO-2 SnO2 ZnO-1 SnO2 ZnO-1 ZnO-2

Working
Temperature

400°C 450°C 400°C 400°C 450°C 400°C 450°C 400°C

Figure 6.2: Schema of the gas sensing experimental setup (source: [133], p. 5).

for each sensor, namely one dedicated to the heater and one devoted to
the collection of the sensing material signal. The sensing materials of all
sensors were kept at 400 °C (SnO2 and ZnO-1) and 450 °C (ZnO-2) during
the experiments, which are the best working temperatures for these sens-
ing materials [135, 136]. The device heating was obtained by applying a
constant voltage to the sensor heaters. The MOX electrical resistance was
collected by measuring the electrical current through the sensing material.
One of the interdigitated electrode contacts was biased to −1.0 V, whereas
the second was connected to the negative input of an operational amplifier.
The amplifier worked in negative feedback mode through a set reference
resistance (Rref), and the amplifier output was measured with an analog
to digital converter. The amplifier output is inversely proportional to the
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sensing material electrical resistance with this configuration:

Vout = − (−1.0V ) · Rref

Rs
, (6.1)

where Rs is the resistance of the sensing film. We sampled the amplifier
output every 5 s. The experimental setup was equipped with certified
cylinders of dry air (80% N2, 20% O2) and CO (100 ppm, mixed with
dry air). The CO concentrations in the gas chamber were modified by
mixing dry air and CO gas flows utilizing MKF mass-flow controllers. The
humidity was injected into the test chamber passing an additional dry
air flux through a bubbler containing deionized water. The temperature
and the RH% values were collected with a digital temperature–humidity
sensor (1.0% accuracy), located in the gas chamber. The MKF mass-flow
controllers were driven with the LabVIEW software, which automatically
saved in a file the mass-flow data at the end of each measurement. We
performed several data collection campaigns, by modifying the RH% in
the chamber. During each campaign, we kept constant the RH% and
repeated different times the CO injections in the chambers, at different
concentrations. Since we are using sensors that may be installed in house
appliances, we selected 3 typical values of RH%: 18% (almost dry air), 36%,
and 54% (both within the indoor humidity range defined as comfortable,
30%–60%).

6.3.2 Data pre-processing

As explained in Section 6.3.1, data are collected by running several daily
campaigns with different CO concentrations and RH% values. However,
such collected data are not suitable to train a neural network. In this
section, we present the processing pipeline that produces the data-set that
we will be used later in this chapter. Since data are mainly generated by
two different sources, namely flow-meters and sensors, we need to apply
different processing methods to the different signals.

Flow-meter data preparation

Flow-meter data describe the concentration of gases injected inside the
measurement chamber. However, this signal suffers from noisy fluctua-
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Figure 6.3: Example of flow-meter data (blue line) that describes the concentration of
carbon monoxide (CO) injected in the measurement chamber. The red line is the same
flow-meter data after the data cleaning procedure (source: [133], p. 5).

tions due to the non-ideal behavior of the equipment that does not keep
constant the gas flow. Thus, we need a clean version of the signal (red
line in Figure 6.3) by starting from the noisy sampled flow-meter data
(blue line in Figure 6.3). We desire a signal that is constant when the
concentration is constant, or when there are small fluctuations due to the
non-ideal behavior of the flow-meter, and a step when there is a jump from
a concentration level to another one. In order to denoise data, we need
the sampled flow data (flow data) and the list of possible concentrations
(list concentrations), apriori known from the experiment setup. In all
our experiments, the values of concentrations used to clean the signal in
Figure 6.3 are 0, 2, 5, 10, 15, 20, and 25 ppm. For our investigation, we
assume that the concentration levels have only integer values.

Given the flow data and list concentrations, we first need to apply
a median filter to flow data with a window length equal to 5 in order
to smooth out some noise. Then, we round the output of the filter to
the closest integer value, compute the gradient, and round it to the closest
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Algorithm 1 Procedure to clean the flow-meter data (source: [133], p. 6).

1: procedure CleanFlowMeterData(flow data, list concentrations)
2: data← median filter(flow data, 5) . filter with window length 5
3: data← round(data) . round data to the closest integer value
4: g data← compute gradient(data) . compute gradient
5: g data← round(g data) . round gradient
6: g zero intervals← identify zero intervals(g data) . return boundaries of

intervals with value zero, each element is a pair (start interval, end interval)
7: for i← 0 to length(g zero intervals) do
8: start, end← g zero intervals[i]
9: data[start, end]← max(data[start, end]) . set all elements of the interval to

the maximum value of the interval
10: unique values← get unique values(data)
11: for i← 0 to length(unique values) do
12: if not (unique values[i] in list concentrations) then
13: diff vec← (list concentrations− unique values[i])2
14: min index← get index minimum value(diff vec)
15: data[data = unique values[i]]← list concentrations[min index]

16: return data

integer value. The desired effect is that small values of the gradient become
0. At this point, we have to identify the flat regions of the flow-meter
data by looking for intervals where the gradient is 0, and we save them
in a list. By iterating over this list, we substitute all the values of each
interval with the maximum value of such interval. We obtain a signal that
looks like a piece-wise function. However, some intervals may not have
a value that belongs to list concentrations. If this happens, we need to
replace the values of these intervals with the closest value (e.g., minimum
absolute error) from list concentrations. The output of this step returns
a clean signal like the red signal in Figure 6.3. Algorithm 1 summarizes
the procedure described above.

Sensors data preparation

Raw signals sampled from sensors need to be processed before we can
use them for our purposes. Such measurement values are affected by bi-
ases, measurement noise, and transitions between different concentrations
that may lead to non-accurate readings. Figure 6.4 depicts an example
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(c) Sensors with ZnO-2 film.
Figure 6.4: Examples of raw signals sampled from sensors. Each signal has a different
zero-concentration bias and a different excursion, at different concentration levels. Note
that the vertical scales are different for the various types of sensors (varying from a few
kΩ to MΩ) (source: [133], p. 6).

of raw signals sampled during one of our campaigns. In this section, we
present the processing applied to each sampling campaign in order to have
a clean and usable data-set. Each campaign is independent with respect
to the others. The final composition of the data-set will be presented
in the next section. Before starting, we need to process the flow-meter
data as explained in Section 6.3.2. This step is required since the sensors’
pre-processing depends on the concentration levels. We will refer to the
cleaned flow-meter signal as flow data. First, we have to normalize the
sensor signal with respect to the average value of the concentration at 0
ppm. This step reduces the bias of the signal that changes every time that
the concentration returns to 0 ppm. Usually, the higher the bias, the big-
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ger the excursion. At the beginning of each campaign, pure air is injected
into the measurement chamber for several hours (e.g., 6-12 hours) in order
to clean the surface of the sensing paste and to stabilize the response of
sensors. We take the response during the stabilization phase, we apply a
median filter with window length 3, then we compute the mean over the
last 60% of the stabilization response, and we get the zero-concentration
value. We divide the entire signal by the zero-concentration value and we
get the normalized signal around 1.0. Then, we truncate the beginning of
the stabilization interval by keeping only the last 25% of the stabilization
interval. This removes part of the signal that might be polluted by the
stabilization process and we reduce the unbalanced ratio of instances as-
sociated with different concentrations. Moreover, the system suffers from
different inertia due to the different components: the CO concentration
reaches the desired level quickly since it is manipulated by the mass-flow
controller, however, during a transitory condition, sensors’ response is slow
since the sensing material needs some time to interact with the gas and
to reach a stable value of the resistance. Considering the interval between
two different concentrations of CO in the chamber, we remove the initial
30% of the data from each interval. Then, we label the remaining data
with the right concentration.

If we apply this procedure to signals drawn in Figure 6.4, we get the
new signals depicted in Figure 6.5.

Data-set composition

At this point, we have the tools to build our data-set. Since we want
to train small neural networks that are able to classify the concentration
levels from the sensors readings and should be executed by an Edge IoT
device, our data-set should be built by keeping in mind that it targets a
classification task. Each instance of the data-set contains the timestamp,
8M normalized sensor readings (M for each sensor), the environmental
readings (relative humidity and temperature), and the concentration of
injected CO (value obtained from the cleaning of the flow-meter signal)
in the chamber. The 8M sensors’ normalized readings are obtained by
applying the procedure described in Section 6.3.2 to each sensor signal. M
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(c) Sensors with ZnO-2 film.
Figure 6.5: Processed signals using the procedure described in Section 6.3.2 and the
signals of Figure 6.4 as input. All signals are normalized (source: [133], p. 7).

is the length of the time window we consider in the current instance. If
M = 1, we only consider the current readings of the 8 sensors. If M > 1,
we consider the current readings and the previous M − 1 (past) readings
from each of the 8 sensors. We will identify the value of M during the
execution of the optimization algorithm, but it will never be higher than
30. The environmental readings (relative humidity and temperature of the
measurement chamber) are associated with the current reading and are
scaled by 100 in order to have values in the range [0.0, 1.0]. Finally, the
concentration of injected CO can only assume 7 distinct values (i.e., 0,
2, 5, 10, 15, 20, and 25 ppm). Since these values are discrete, we identify
each value as a class. Our NNs will classify 7 different concentration levels
from sensors’ readings.

From the data of each measurement campaign, we get a list of instances
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Campaign RH% 0 ppm 2 ppm 5 ppm 10 ppm 15 ppm 20 ppm 25 ppm Total
July 1st 18 3855 1506 1510 1509 1510 1509 1507 12906
July 3rd 36 6434 1506 1508 1511 1509 1511 1506 15485
July 5th 54 4259 1506 1510 1509 1510 1508 1508 13310
July 13th 54 10737 1338 1339 1339 1341 1343 1340 18777
July 17th 18 2737 1002 1005 1006 1007 1005 949 8711
July 18th 36 2979 1002 1006 1006 1007 1005 1006 9011
July 19th 54 4410 1002 1006 1008 1005 1006 1005 10442
July 21st 18 4113 1506 1507 1508 1508 1510 1508 13160
July 24th 54 2816 502 503 503 503 502 504 5833
July 25th 54 4232 1506 1509 1510 1509 1509 1509 13284
July 27th 18 8397 1002 1005 1004 1004 1006 1004 14422

Total 54969 13378 13408 13413 13413 13414 13346 135341

Table 6.2: Details of the constructed data-set (source: [133], p. 8).

sorted by their timestamps. We identify each list with the day when the
campaign was started. Table 6.2 shows some detail about the data-set con-
structed, including how many instances are associated per class and the
relative humidity present in the measurement chamber. We want to make
the reader aware that, due to a fault of the data collection system that
happened between July 6th and July 12th 2018, such data could not be
stored. However, we decided to use the data correctly collected, since the
production of sensors (from the silicon wafer to the sensor packaging, pre-
sented in Appendix A) and their calibration campaigns are quite expensive
processes.

This data-set allows us to train and assess our neural networks. To this
aim, we split it into four disjoint sub-sets: Training Set (TrSet), used to
train NNs, Validation Set(VSet), used to assess the performance models
during the meta-heuristic research of hyper-parameters (Section 6.4), Test
Set(TSet), used to run the selection strategy described in Section 6.4.2,
and Evaluation Set(ESet), used to assess the performance in a different
environmental condition. For our experiments, we distribute the sampled
campaigns over the four sub-sets in two different ways:

• 5321-split:

TrSet : 5 campaigns: 2 at RH 18% (July 1st and 17th), 1 at RH
36% (July 3rd), and 2 at RH 54% (July 5th and 13th)

VSet : 3 campaigns: 1 at RH 18% (July 21st), 1 at RH 36% (July
18th), and 1 at RH 54% (July 19th)

TSet : 2 campaigns (July 24th and 25th) at RH 54%
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ESet : 1 campaign (July 27th) at RH 18%

• 6221-split:

TrSet - Training Set : 6 campaigns: 2 at RH 18% (July 1st and
17th), 2 at RH 36% (July 3rd and 18th), and 2 at RH 54% (July
5th and 13th)

VSet - Validation Set : 2 campaigns: 1 at RH 18% (July 21st) and
1 at RH 54% (July 19th)

TSet - Test Set : 2 campaigns (July 24th and 25th) at RH 54%

ESet - Evaluation Set : 1 campaign (July 27th) at RH 18%

In both cases, we train our networks with all the three values of RH,
however, in the first case we use only one campaign at RH 36% and 2
campaigns in the second case. Moreover, we validate the performance of
models using a campaign at RH 36%, besides the ones at RH 18% and RH
54%, in the first case, and no campaign at RH 36% in the second case.

Finally, we look for the best network to implement it by testing the
models over two campaigns at RH 54%. Selected models are further tested
against another campaign at RH 18% to check model performance on a
really low value of RH.

It is important to highlight that the data-set we just built is used to
discover, train, and evaluate the performance of the neural network that
we want to deploy on a target device. At inference time, when a device
will run the model, only the selected and pre-process data will be fed to
the model. We will discuss the selection of sensors in the following section.

6.4 The proposed approach

Neural networks are machine learning (ML) tools able to mix knowledge
and highlight patterns coming from different sources. Our goal is to identify
the architecture and train a neural network that is able to run on low cost,
constrained, and off-the-shelf computing platforms (e.g., an ARM-based
micro-controller with limited RAM and computing power, and costing a

132



6.4. THE PROPOSED APPROACH

few USD), like the ones that are usually used to build Edge IoT devices.
Ideally, this ML model could be part of the computing pipeline of a smart
gas sensor connected to an array of different sensors and that is able to
provide feedback to a user if the concentration is too high. However, the
complete design and characterization of such a smart device is out of the
scope of this chapter. Here, we provide only a method to identify the AI
model that should run on a target Edge IoT device.

Since we want to target a generic constrained and embedded platform
with a few tens of bytes of RAM, our neural network should be as small
as possible in term of weights (or parameters), but at the same time, it
should have high classification performance (high F1-score), by considering
the data-set described in Section 6.3. The architecture of the network we
want to build should support the following requirements:

• combine data coming from SnO2, ZnO-1, and ZnO-2 sensors;

• possibility to use previous sample of the sensors’ readings (memory
length, the value M introduced in Section 6.3.2);

• use of environmental variables such as relative humidity and temper-
ature;

• employ a reduced number of hidden layers (1 or 2);

• employ a reduced number of neurons per layer;

• use only fully-connected layers;

• the activation function should be one of the following: relu, logistics,
tanh, or identity ;

• the network should be able to return one of the 7 concentration of CO
(0, 2, 5, 10, 15, 20, and 25 ppm);

• learning rate equal to 0.001;

• regularization value equal to 0.0001.

The number of possible networks that satisfy these requirements is huge
and it is not feasible to explore all possible combinations. Moreover, we
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do not know, for instance, how many neurons we should use, at maximum,
per layer. Due to this combinatorial explosion, we decide to resort to a
meta-heuristic approach to efficiently explore the hyper-parameter space
and discover solutions that satisfy our requirements. Formally, the problem
that we want to solve can be described as follows

minimize
nn

(−F1(nn), num params(nn)) (6.2)

where nn is a tuple (described below) that identifies a valid architecture
of a neural network trained and tested on the TrSet and VSet datasets,
respectively. Above we said that we want to maximize the F1-score but
it is equivalent to minimize the opposite of the F1-score. Regarding the
num params(nn) function, which computes the number of parameters in-
side a neural network, it can be expressed as follows

num params(nn) = (2 + length(S) ·M + 1) · n1+

+ (nl + 1) · no +
l∑

i=2

((ni−1 + 1) · ni)
(6.3)

where nn is a tuple composed of:

• S: the list of input sensors;

• M : the memory length presented in Section 6.3.2;

• l: the number of hidden layers;

• ni: the number of neurons in the i-th hidden layer, with i from 1 to l;

• no: the number of neurons in the output layer (i.e., 7).

This tuple is mapped on the chromosome (Figure 6.6) described in the
next section. We want also to highlight that the +2 term refers to the
current humidity and temperature input values, the +1 terms are relative
to the hidden layers’ biases, and if l < 2 the summation in the formula
disappears.

We tackle this problem using a meta-heuristic approach that we ex-
plain in Section 6.4.1 and then we use a selection strategy as explained in
Section 6.4.2.

134



6.4. THE PROPOSED APPROACH

6.4.1 Meta-heuristic approaches to hyper-parameters exploration

Meta-heuristic methods are a broad family of techniques and algorithms
that may provide good solutions to an optimization problem. These proce-
dures explore the solution space by looking for the best candidates. Usu-
ally, they are inspired by biological phenomena such as social behaviors
(e.g., swarms) or population (e.g., evolution). Since our goal is to find
a neural network that has a small number of weights and high detection
capabilities, we need an algorithm able to optimize a multidimensional ob-
jective function. In the following, we present two different meta-heuristic
approaches with the aim of providing a more generic framework. The first
approach (Section 6.4.1) is based on a genetic algorithm (GA) that exploits
some biologically inspired operators (e.g., crossover, selection, mutation)
to efficiently explore huge search spaces and identify a population of feasi-
ble solutions [161]. The latter approach (Section 6.4.1) relies on a particle
swarm optimization (PSO) algorithm [162] that moves a swarm of parti-
cles (i.e., solutions) in the search-space, according to some mathematical
relations (update rules), by looking for the optimal solutions.

The genetic approach

Genetic approaches have been used for decades to solve optimization prob-
lems in many different domains. A good state-of-the-art algorithm, avail-
able from the soft computing literature, is the non-dominated sorting ge-
netic algorithm II (NSGA-II) [163], a bio-inspired algorithm able to find
optimized solutions against two or more objective functions, keeping them
in a finite-sized archive of non-dominated solutions. We highlight that, in
the following, we use the NSGA-II algorithm since it is one of the most
adopted and well-known multi-objective genetic algorithms, while the com-
parison of different genetic approaches in tackling our specific optimization
problem is out of the scope of this chapter. The interested reader is in-
vited to refer to [161] for a recent comparison and detailed description of
the most effective multi-objective genetic algorithms.
In order to identify the most suitable neural network architecture and sen-
sors to use for our purposes, we model our problem as an integer optimiza-
tion problem, encoding the above network architecture and requirements
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Figure 6.6: Structure of the chromosome. Each blue square is a gene (source: [133], p.
10).

in a chromosome that contains the hyper-parameters of the network. Each
chromosome is composed of 5 + l genes: the first 3 genes allow to select up
to 3 different sensors of the sensor array: a SnO2 sensor, a ZnO-1 sensor,
and a ZnO-2 sensor. In this portion of the chromosome, a gene equal to 0
means that a sensor of that type is not selected, otherwise it selects one of
the sensors. In the latter case, these genes may assume values of 1, 2, or
3 (except for the third gene, which cannot assume a value of 3, since we
have only two sensors of type ZnO-2). In this way, it is possible to select 1,
2, or 3 sensors. If 0 sensors are selected, the solution is considered invalid
and, therefore, it is immediately discarded. The fourth gene represents the
number of readings (memory length M) used per sensor and it can assume
values from 1 to MMAX . The fifth gene represents the activation function
and its mapping is the following: 0 for relu, 1 for tanh, 2 for logistic, and
3 for identity. The subsequent l genes define the number of neurons of the
l hidden layers of the network. Every layer can incorporate from 1 neuron
to LMAX neurons. We performed different experiments, as we will explain
in the next section, with l = 1 and l = 2 hidden layers. Figure 6.6 shows
a representation of the chromosome structure. Clearly, each chromosome
unequivocally identifies one, and only one, solution.

In order to efficiently explore the solution space with the NSGA-II algo-
rithm, we need to configure some parameters of the algorithm. We identify
the size of the solution archive as Npop and the size of the off-spring pop-
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Parameter Value
Population Size Npop 64
Off-Spring Population Size Nos 32
Number of Generations G 4000
Crossover Operator Single-point
Crossover Probability Pc 1.0
Mutation Operator Integer Polynomial
Mutation Probability Pm 1/(5 + l)
Mutation Distribution Index ηm 20
PRNG Seed 42
Maximum memory length MMAX 30
Maximum neurons per layer LMAX 30

Table 6.3: NSGA-II set-up (source: [133], p. 9).

ulation as Nos. The off-spring population is the set of new solutions that
will be computed in each generation. Then, we adopt the integer single-
point crossover [164], applied with probability Pc, as a crossover operator.
This operator takes two chromosomes, randomly splits them in a common
point, and swaps the right-hand-sides of chromosomes. Furthermore, the
integer polynomial mutation operator [165] has been selected as mutation
operator, with probability Pm and distribution index ηm. This operator
perturbs each gene of every chromosome of the off-spring solutions with
probability Pm. It also prevents an early convergence of the algorithm if it
gets stuck in a local optimum. Finally, the genetic algorithm requires a set
of fitness functions, to be maximized or minimized, to decide which solu-
tion is preserved or dropped. Since we associate a neural network to each
chromosome, we want to minimize the number of weights (or parameters)
of the network and maximize the F1-score, or better minimize −F1-score,
computed over the VSet. Each network is configured using the chromosome
and trained using the TrSet. Finally, the NSGA-II algorithm is executed
for a number of generations equals to G. Table 6.3 summarizes the con-
figuration adopted in our experiments for the NSGA-II algorithm. We
highlight that the configuration values for the crossover and the mutation
operators were left to their default values within the jMetalPy library [166],
while all the remaining parameters were set based on our past experience
designing multi-objective optimization algorithms [167].
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Finally, in order to speed up the convergence of the algorithm, we intro-
duce two improvements during the generation of the off-spring population:

• Kill-the-clone: we check if some members of the off-spring popula-
tion are clones of individuals already present in the solution archive:
if yes, we set the fitness functions, the number of parameters and
the F1-score to + inf and − inf, respectively. These solutions will be
automatically discarded during the sorting phase;

• Reincarnation: we keep a complete and separate list, known as the
Reincarnation List, of all the solutions generated across all the gener-
ations. If an individual generated during the mating phase is present
in the Reincarnation List and it is not a clone of a solution present
in the population archive, we associate the already calculated fitness
functions to the reincarnated solutions.

The genetic research of solutions has been implemented using the jMet-
alPy [166] framework, a Python implementation of the jMetal [168] frame-
work, which is one of the reference tools for multi-objective optimization
and meta-heuristic. Regarding the design and training of the neural net-
work, we used the multi-layer perception (MLP) classifier available within
the SciKit-Learn library [91], a state-of-the-art Python library for machine
learning. We set all the pseudo-random number generators’ (PRNGs) seeds
to 42 (both for the MLP and the NSGA-II algorithm). Finally, for data
pre-processing, we used standard Python libraries such as Pandas, NumPy,
and SciPy. The comparison of different frameworks and/or implementa-
tions, developed in other programming languages, is out of the scope of
this chapter.

The PSO-based approach

In this section, we introduce iSMPSO, a particle swarm optimization (PSO)
alternative that can be used to tackle the same multi-objective integer
problem (hyper-parameters optimization of a neural network) presented in
the previous section. Specifically, in the following, we provide some perfor-
mance comparisons in terms of hyper-volume [169] between the NSGA-II
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and the iSMPSO algorithms. Our goal is to give the flavor of the op-
portunities offered by this multidisciplinary research, while to accurately
benchmark the two algorithms against the proposed problem is out of the
scope of this chapter.

iSMPSO is based on a PSO algorithm [170], which exploits the behav-
ior of a swarm of particles (solutions) to optimize a problem. The original
PSO algorithm [162] has been proposed multiple times in several differ-
ent flavors, with support for single and multi-objective problems [171, 170]
with real [171, 170], binary [172], and integer codifications [173]. Since
our goal is to provide practitioners with some tools to be used in their
settings, we selected the speed-constrained multi-objective PSO (SMPSO)
algorithm, as it can be easily adapted to our needs. We kindly invite the
reader to refer to [170] for a detailed description of the SMPSO algorithm.
Natively, SMPSO supports polynomial mutation as turbulence operator,
selects and stores the non-dominated solutions using the crowding distance
metric [163], and stores them in an external archive. However, this algo-
rithm was designed for real-valued problems, hence we first need to adapt
it to support integer problems. Thus, we replace the particle position rule
(Formula (6.4))

−→x i(t) = −→x i(t− 1) +−→v i(t) (6.4)

where −→x i(t) and −→v i(t) are the position and the velocity of the i-th particle
at time t, with the position rule (Formula (6.5)) defined in [173].

−→x i(t) = ceil
(
(−→x i(t− 1) +−→v i(t)) · 10Y

)
mod −→mi (6.5)

In Formula (6.5), t is the time index, −→v i is the same velocity vector of
Formula (6.4), −→x i is the position of the i-th particle, Y defines the num-
ber of digits of accuracy required by the application, we consider Y=0,
thus the 10Y term disappears. Finally, the mod operator computes the
element-wise modulus of the argument with respect to −→mi, which is the
vector of values of upper bounds of particles’ position. Moreover, to fully
support integer problems, we replace the real-valued polynomial mutation
operator with the integer polynomial operator [165] with probability Pm

and distribution index ηm. For convenience, we relabel this algorithm as
iSMPSO, where i refers to the support for integer problems.
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Parameter Value
Swarm Size Nsw 64
Leaders Archive Size Nleaders 64
Number of Iterations G 600
Mutation Operator Integer Polynomial
Mutation Probability Pm 1/(5 + l)
Mutation Distribution Index ηm 20
PRNG Seed 42
Maximum memory length MMAX 30
Maximum neurons per layer LMAX 30

Table 6.4: PSO set-up (source: [133], p. 10).

The iSMPSO algorithm is able to handle and optimize the integer prob-
lem presented above (Formula (6.2)) that aims at finding the best neural
network architectures that minimize the number of network parameters
and maximize the F1-score. A solution is identified with a particle as de-
picted by Figure 6.6 and we define Nsw as the size of the swarm of particles
considered during every iteration of the optimization algorithm. We invite
the reader to refer to the previous section for a detailed description of the
optimization problem. We run the iSMPSO algorithm for G iterations by
setting the PRNG seed to 42. At the end of the algorithm execution, the
Pareto front is stored in the external leader archive (with maximum size
Nleaders) and we call Npareto the number of solutions stored. Finally, Ta-
ble 6.4 summarizes the configuration adopted for our experiments with the
PSO algorithm.

Even in this case, we highlight that the parameters of the mutation
operator are the default values in the jMetalPy library [166]. The other
parameters have been chosen to have a good exploration of the search
space.

Finally, due to the likelihood to generate cloned or reincarnated so-
lutions, we adopt the Kill-the-clone and Reincarnation strategies (Sec-
tion 6.4.1) to speed-up the convergence of our experiments.

This approach and the iSMPSO algorithm have been implemented using
the same Python libraries (i.e., jMetalPy, SciKit-Learn, SciPy, NumPy,
Pandas) used to implement the genetic method presented above.
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6.4.2 K-Means-based selection strategy

After G generations or iterations, we get a set of N solutions that have
different hyper-parameters, performance, sizes, and ability to generalize
future data points. If we run the genetic approach, N is equal to Npop = 64,
if we consider the full population, or Npareto. If we consider the solutions
that belong to the Pareto front. If we run the PSO-based approach, N is
the number of solutions that belong to the leader archive and it is equal
to Npareto.

These N solutions are the best solutions found up to this point. How-
ever, we still do not know which network we should implement on our
Edge IoT device. We need a selection strategy that identifies the most
suitable network that satisfies our requirements: we have to minimize the
number of parameters (low resource utilization) and maximize the F1-score
(generalize subsequent data). First of all, we need to estimate the ability
of each network to correctly detect the CO concentration of unseen sam-
pling campaigns. This step is also important to understand if the networks
are over-fitting the training data or they can generalize over unseen data.
Thus, we compute the F1-score by inferring the TSet over each network
previously trained using the TrSet. We get a new cloud of points in the
solution space identified by the number of parameters of the network and
the F1-score computed over the TSet. This step updates only the F1-score
associated with each solution and not the number of parameters, which
are fixed with the solution. The number of parameters depends on the
network architecture. A simple selection strategy might be the selection
of a solution from this cloud, but, which solution do we select? The one
with the highest F1-score, the one with the lowest number of parameters,
the one on the knee or another one? In the following, we describe a se-
lection technique based on the K-means algorithm that has the same or
better performance than choose the solution that minimizes the distance
between the ideal (and impossible) solution with F1-score equal to 1.0 and
0 parameters.

Given the entire set of solutions, first of all, we need to scale the fitness
functions to bring the values near the [0.0, 1.0] interval. The number of
parameters has a big excursion and it may assume values above 1000, thus
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Algorithm 2 Sorting function that shifts solutions by the centroid and scaled with respect
to the standard deviation (source: [133], p. 11).

1: function SortWRTScaledStd(solution list, µi, σi)
2: for j ← 0 to length(solution list clusteri) do
3: scaled values{0} ← (solution list{j}.obj{0} − µi{0})/σi{0} . X: number of

parameters
4: scaled values{1} ← (solution list{j}.obj{1} − µi{1})/σi{1} . Y: F1-score
5: d{j} ← euclidean distance(scaled values, (0, 0))
6: if not (scaled values{0} < 0 and scaled values{1} > 0) then
7: d{j} ← −d{j} . Change the sign if solution is not in the second quadrant

8: sorted list← sort list wrt list(solution list, d)
9: return sorted list

we scale the number of parameters by 1000. On the other side, the F1-
score is already defined in the desired interval. Making the number of
parameters “comparable” with the F1-score allows us to easily compare
solutions. Now, we apply the K-means algorithm with K clusters and we
obtainK sets of solutions. The algorithm returns centers of mass of clusters
µi, known as centroids, that might not be solutions, and we compute also
the standard deviation σi of each cluster, using only solutions that belong
to the considered cluster. From each cluster, we need to identify a solution
that should minimize the number of parameters and maximize the F1-
score of the cluster. First, considering one cluster at a time, we shift all
the solutions associated with the cluster and the centroid by µi to have
the centroid in the origin, then we scale the shifted fitness values by the
standard deviation σi of the cluster. Now, we compute the Euclidean
distance d between each shifted and scaled fitness value with the origin
(0, 0). If a solution is not in the second quadrant of the space identified
by the scaled number of parameters (X-axis) and scaled F1-score (Y-axis),
where the scaled centroid is the origin, we change the sign of d. We sort
the solutions from the biggest to the smallest value of d. Geometrically,
we select the solution that is the farthest from the centroid in the second
quadrant, if there is not any solution in such quadrant, we select the closest
solution to the centroid. Algorithm 2 presents the pseudo-code of the
sorting function and we select the first solution of the sorted list as the
best solution for the current cluster. Applying this function on all sets of
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Algorithm 3 Sorting function that shifts and scales solutions by the cen-
troid (source: [133], p. 11).

1: function SortWRTScaledCentroid(solution list, µK)
2: for j ← 0 to length(solution list) do
3: scaled values{0} ← solution list{j}.obj{0}/µK{0})− 1
4: scaled values{1} ← solution list{j}.obj{1}/µK{1})− 1
5: d{j} ← euclidean distance(scaled values, (0, 0))
6: if not (scaled values{0} < 0 and scaled values{1} > 0) then
7: d{j} ← −d{j} . Change the sign if solution is not in the second quadrant

8: sorted list← sort list wrt list(solution list, d)
9: return sorted list

solutions and choosing the first element, we get the solution listK that is
a list with K possible solutions. Now, we compute the centroid µK , and
we apply Algorithm 3. This function is similar to the one described in
Algorithm 2, except for how it scales the fitness values of solutions: here
we subtract and divide solution listK by µK . We get a sorted version of
the solution listK list: the best solution is the first element of the list.
Up to this point, we have a solution that is the best if we apply the K-
means algorithm with K clusters. However, how many clusters do we have
to identify? Or in other words, what is a good value of K? In order to
surpass this issue, we compute the best solutions for every integer value
of K from 1 to the number of solutions N , i.e., to N = Npop = 64 if we
consider the full population of the genetic approach or to N = Npareto if we
are considering the Pareto front. It is expected that Algorithm 3 returns
a limited set of unique best solutions since a solution might be the best
solution for different values of K. We count how many times a solution is
present in the list, then we build the list of unique solutions solution listU .
We also store in the .min K attribute the minimum value of K such that
the best cluster associated with K has only one element (i.e., the best
solution). We remove all the solutions that have been counted only 1 time.
Solutions that are elected only once as best solutions are less prone to be
good solutions compared to solutions that were elected more times. Now,
we compute the centroid µU and the standard deviation σU using the list of
unique solutions (solution listU). We apply again Algorithm 2 and we get a
solution. We get the sorted list of unique solutions(sorted solution listU),
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then we check if the first element of the list lays in the second quadrant.
If yes, we declare that this solution is the best. Otherwise, we select the
solution associated with the smallest value of the .min K attribute. Now,
we have the best solution that we want to implement on our Edge IoT
device and we infer the ESet to check the performance of this solution over
a “dry” set (RH 18%).

This selection strategy has been implemented in Python3 using Pandas,
NumPy, SciKit-Learn [91](for the K-Means algorithm), Scipy, and Mat-
plotlib libraries.

6.5 Analysis of results

The meta-heuristic approaches presented in Section 6.4 allow us to effi-
ciently explore the space of hyperparameters to find the best neural net-
work. We can use a brute-force strategy, e.g., computing all the possible
combinations, but this exploration may take months or, even, years to be
completed. Before starting to discuss which is the best neural network, we
want to preliminary compare the genetic and the PSO-based (Section 6.4.1)
search algorithms to understand if one method outperforms the other. To
tackle this objective, the literature reports many different ways to com-
pare meta-heuristic algorithms such as the hyper-volume (HV) [169] or the
inverted generational distance(IGD) [174]. We may use one of these or
other metrics, but, for simplicity, we decide to use the HV metric since
it requires only a reference point (we select (0; 700)) and not the true
Pareto front, which is unknown in real-world problems like our problem.
In the following, we will depict the outcomes of the comparison by running
experiments using the data-sets prepared in Section 6.3 (5321-split and
6221-split) with neural networks with l = 1 or l = 2 hidden layers. Neural
networks are trained using the TrSet and validated using the VSet. The
computing environment is based on a Ubuntu 18.04.2 machine powered
by an Intel i7-8665U CPU (quad-core CPU with Intel Hyper-Threading
technology, 8 virtual cores) and 16 GB of RAM. Using the code optimiza-
tions presented at the end of Section 6.4.1, the time required to execute
G = 4000 generations (genetic approach) orG = 600 iterations (PSO-based
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Table 6.5: Hyper-volumes of the approximated Pareto fronts identified during different
experiments (source: [133], p. 12)

Experiment NSGA-II @ 4000 generations iSMPSO @ 600 iterations
Data-set: 5321-split
Hidden layers: 1

649.491 647.137

Data-set: 5321-split
Hidden layers: 2

655.617 651.576

Data-set: 6221-split
Hidden layers: 1

674.142 674.019

Data-set: 6221-split
Hidden layers: 2

672.793 672.75

approach) is around 24 h if we simultaneously train models using 7 virtual
cores. Figure 6.7 compares the Pareto Front approximations identified by
the two meta-heuristic algorithms (NSGA-II and SMPSO). By computing
the hyper-volume (w.r.t. the reference point (0; 700)), we directly observe
from Table 6.5 that NSGA-II returns a slightly wider front (i.e., higher
HV) than the PSO-based approach. As we explained above, our objective
is to create a framework that allows us to discover a model architecture
without consuming too much (research) effort. In line with this further
requirement, we opted for the NSGA-II algorithm because it fits well our
needs (integer problems, multi-objectives, etc.). If we do a metaphor, we
literally used the meta-heuristic algorithms to find the best solutions as
we use a screwdriver against a specific screw head. Furthermore, we are
not interested in Pareto fronts with very long tails, rather we privilege
prominent knees since it is the starting point of successive analysis in the
pipeline, i.e., selection of the “best solution” using a particular decision
strategy.

In the following sections, we will present the research of the best neural
network using only the output of the genetic approach. At this point,
combining the output of the genetic approach with a selection strategy
allows us to identify the structure of a tiny fully-connected neural network
that can be implemented on a constrained smart gas sensor. We consider
4 different selection approaches:

• S1 - Minimum Parameters: We select the network that minimizes
the number of parameters independently from the TSet ;

• S2 - Best F1: We select the network that maximizes the F1-score
over the TSet ;

145



CHAPTER 6. AI-SUPPORTED DESIGN OF EDGE INTELLIGENCE IOT
APPLICATIONS

0 200 400 600 800
Number of parameters

0.70

0.75

0.80

0.85

0.90

0.95

F1
 S

co
re

Pareto Fronts - NSGAII vs iSMPSO

NSGAII Pareto solution
iSMPSO Pareto solution
Common Pareto solution

(a) Dataset: 5321-split Layers: 1
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(b) Dataset: 5321-split Layers: 2
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(c) Dataset: 6221-split Layers: 1
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(d) Dataset: 6221-split Layers: 2

Figure 6.7: Comparisons between the approximated Pareto fronts returned by the NSGA-
II and iSMPSO algorithms. Blue dots represent solutions belonging to the Pareto front
returned by iSMPSO, while black dots are the solutions of the front identified by NSGA-II.
Finally, red dots are the solutions present on both fronts (source: [133], p. 13).

• S3 - Minimum Distance: We select the network that minimizes the
Euclidean distance between the network and the ideal (and impossi-
ble) network with F1-score equal to 1.0 and 0 parameters. In order to
make the number of parameters “comparable” with the F1-score, we
scale this metric by 1000;

• S4 - K-means based strategy: We select the network using the
criterion presented in Section 6.4.2.

It is worth recalling that the selection of the network is done by inferring
the best neural networks with the TSet that is composed of two sampling
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Figure 6.8: Solutions identified by the genetic research using the 5321-split and
l = 1. Crosses highlight solutions selected using different criteria and their perfor-
mance (source: [133], p. 13).

campaigns (July 24th and 25th 2018), as presented in Section 6.3.2. During
these campaigns, RH was kept at 54%, which is a possible value in our
houses. In this way, we test if the model selected is working well in “real”
conditions. Moreover, selected models are inferred with data sampled in a
subsequent campaign (July 27th, 2018) when RH was 18%. This evaluation
has the aim to verify if the model can work also with a different value of
humidity (dry condition).

6.5.1 Data-set with 5321-split and l = 1

The goal of this experiment is to identify the best neural network with only
one hidden layer (l = 1) using the 5321-split of our data-set. The data-set
split is presented in Section 6.3.2.

Starting from Figure 6.8a, we may adopt different selection strategies
to identify the best network. Using the strategy S1, the best network has
18 parameters, an F1-score of 0.813 and 0.678 over the TSet and ESet,
respectively. Strategy S3 returns a network with 43 weights and it reaches
an F1-score of 0.972 over the TSet and 0.848 over the ESet. Using Sec-
tion 6.4.2 strategy (S4), the best solution has 55 parameters and achieves
an F1-score of 0.979 and 0.875 over the TSet and the ESet, respectively.
Finally, if we select the best solution using the strategy S2, the best so-
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Table 6.6: Solutions selected using the 5321-split and l = 1 (source: [133], p. 14).

Popu-
lation

Selection
Criterion

Sensors
Used

M
Activation
Function

Hidden
Neurons

Weigths
F1-score
(TSet)

F1-score
(ESet)

Full

S1 CH2 1 relu 1 18 0.813 0.678
S2 CH2,CH8 20 relu 12 607 0.99995 0.910
S3 CH2,CH8 1 logistic 1 43 0.972 0.848
S4 CH2,CH8 3 logistic 3 55 0.979 0.875

Pareto

S1 CH2 1 relu 1 18 0.813 0.678
S2 CH2,CH8 17 tanh 7 315 0.997 0.891
S3 CH2,CH8 1 identity 2 31 0.959 0.878
S4 CH2,CH8 1 identity 2 31 0.959 0.878

lution reaches an F1-score of 0.99995 over the TSet and 0.910 over the
ESet with a network of 607 parameters. This strategy performs better
than ours over the F1-score, however, this solution requires 11 times more
weights than the solution identified by our strategy (55 weights) with an
increment of 0.02 and 0.035 of the F1-score over the TSet and ESet, re-
spectively. Now, considering the population that lays over the Pareto front
(Figure 6.8b), the network selected with the best F1-score (S2) achieves a
value of 0.997 over the TSet with a network of 315 parameters, 10 times
more than S3 and S4 strategies, which identify the same network com-
posed of 31 parameters and it achieves an F1-score of 0.959 and 0.878 over
the TSet and ESet, respectively. Finally, S1 selects the same network as in
the full population analysis. More details about the structures of selected
networks are present in Table 6.6.

6.5.2 Data-set with 5321-split and l = 2

The goal of this second experiment is similar to the previous one, however,
this time we try to find the best networks with l = 2 hidden layers. Starting
from the full population that is depicted in Figure 6.9a, strategy S1 selects
a network with 20 weights that achieves an F1-score of 0.813 when inferring
the TSet and 0.689 when inferring the ESet. S3 and S4 identify as the
best solution the same network composed of 37 parameters able to reach
an F1-score of 0.979 and 0.893 over the two sets. The network with the
best F1-score (S2) has 175 parameters and it hits an F1-score of 0.9998
(TSet) and 0.859 (ESet).

Now, we consider the population over the Pareto front (Figure 6.9b). In
this case, selection strategies S1, S3, and S4 identify the same solutions
elected as best solutions in the full population analysis. However, strategy
S2 selects a network with 147 weights that achieves an F1-score of 0.986
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Figure 6.9: Solutions identified by the genetic research using the 5321-split and
l = 2. Crosses highlight solutions selected using different criteria and their perfor-
mance (source: [133], p. 14).

Table 6.7: Solutions selected using the 5321-split and l = 2 (source: [133], p. 14).

Popu-
lation

Selection
Criterion

Sensors
Used

M
Activation
Function

Hidden
Neurons

Weigths
F1-score
(TSet)

F1-score
(ESet)

Full

S1 CH2 1 identity 1, 1 20 0.813 0.689
S2 CH2,CH8 1 relu 5, 11 175 0.9998 0.859
S3 CH2,CH8 1 tanh 2, 2 37 0.979 0.893
S4 CH2,CH8 1 tanh 2, 2 37 0.979 0.893

Pareto

S1 CH2 1 identity 1, 1 20 0.813 0.689
S2 CH2,CH8 11 tanh 2, 9 147 0.986 0.907
S3 CH2,CH8 1 tanh 2, 2 37 0.979 0.893
S4 CH2,CH8 1 tanh 2, 2 37 0.979 0.893

over the TSet and 0.907 over the ESet. This solution is almost 4 times
bigger than the network selected by S4 with the F1-scores higher only by
0.007 over the TSet and 0.014 over the ESet.

Finally, we highlight that when we use the 5321-split, the most selected
sensors are CH2 (ZnO-1) and CH8 (ZnO-2). More details about the struc-
tures of networks are present in Table 6.7.

6.5.3 Data-set with 6221-split and l = 1

In this experiment, we look for the best network with l = 1 hidden layer
and using the 6221-split presented in Section 6.3.2.

Starting from the full population, Figure 6.10a strategies achieve values
of the F1-score of 0.789 (S1, 18 parameters), 0.99995 (S2, 91 parameters),
0.981 (S3, 31 parameters), and 0.981 (S4, 31 parameters) over the TSet.
Similarly, if we feed the networks with ESet, we get the following F1-scores:
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(a) Full population.
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Figure 6.10: Solutions identified by the genetic research using the 6221-split and
l = 1. Crosses highlight solutions selected using different criteria and their perfor-
mance (source: [133], p. 15).

Table 6.8: Solutions selected using the 6221-split and l = 1 (source: [133], p. 15).

Popu-
lation

Selection
Criterion

Sensors
Used

M
Activation
Function

Hidden
Neurons

Weigths
F1-score
(TSet)

F1-score
(ESet)

Full

S1 CH2 1 identity 1 18 0.789 0.728
S2 CH2,CH3 1 logistic 7 91 0.99995 0.842
S3 CH2,CH3 1 identity 2 31 0.981 0.859
S4 CH2,CH3 1 identity 2 31 0.981 0.859

Pareto

S1 CH2 1 identity 1 18 0.789 0.728
S2 CH2,CH3 3 relu 7 119 0.991 0.782
S3 CH2,CH3 1 relu 2 31 0.955 0.841
S4 CH2,CH3 1 identity 1 19 0.940 0.872

0.728 (S1), 0.842 (S2), 0.859 (S3), and 0.859 (S4). Moving to the Pareto
front (Figure 6.10b), strategy S1 is the only approach that elects the same
solution identified in the full-population analysis. Instead, S2 picks as best
network a model with 119 parameters with an F1-score of 0.991 over the
TSet and 0.782 over the ESet. Moreover, we can note that this solution
is over-fitted over the data related to RH 54% since there is a drop of the
F1-score computed over the two sets. Strategy S3 selects a network with
31 parameters that achieves values of F1-score of 0.955 and 0.841 over the
TSet and ESet, respectively. Finally, our strategy (S4) achieves the best
F1-score over the ESet (0.872) with respect to the other strategies and a
value of 0.940 over the TSet.

Finally, Table 6.8 reports additional information about the structure of
the best networks.
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(a) Full population.
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(b) Population on Pareto front.

Figure 6.11: Solutions identified by the genetic research using the 6221-split and
l = 2. Crosses highlight solutions selected using different criteria and their perfor-
mance (source: [133], p. 15).

6.5.4 Data-set with 6221-split and l = 2

This experiment uses the same data-set split as the previous one, however,
here we try to identify the best network that has l = 2 hidden layers. Fig-
ure 6.11a depicts the full population solutions. S1 and S2 select networks
that reach an F1-score of 0.786 and 0.996, respectively, over the TSet with
networks made of 20 and 111 weights. Inferring the ESet, the S1 best
solution achieves 0.732 and the S2 network has an F1-score of 0.798. We
notice a big drop in the performance of the latter solution. Then, S3 per-
forms well as S4 since they identify a solution with 27 parameters, and an
F1-score of 0.987 over the TSet and 0.849 over the ESet. Considering the
Pareto front (Figure 6.11b), S1 performs as in the full-population analysis.
S2 returns a network of 63 parameters, instead, S3 and S4 select a network
with 37 weights. The former network performs well on the TSet (0.980),
however, we notice a drop of the F1-score when we infer the ESet (0.818).
This network might be more able to analyze RH 54% data. The latter
network reaches an F1-score of 0.974 (TSet) and 0.858 (ESet). Finally,
when we use the 6221-split of our data-set, the best pair of sensors are
CH2 (ZnO-1) and CH3 (ZnO-2). More details about the selected networks
are available in Table 6.9.
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Table 6.9: Solutions selected using the 6221-split and l = 2 (source: [133], p. 15).

Popu-
lation

Selection
Criterion

Sensors
Used

M
Activation
Function

Hidden
Neurons

Weights
F1-score
(TSet)

F1-score
(ESet)

Full

S1 CH2 1 identity 1, 1 20 0.786 0.732
S2 CH2,CH3 2 relu 8, 3 111 0.996 0.798
S3 CH2,CH3 1 relu 2, 1 27 0.987 0.849
S4 CH2,CH3 1 relu 2, 1 27 0.987 0.849

Pareto

S1 CH2 1 identity 1, 1 20 0.786 0.732
S2 CH2,CH3 1 tanh 4, 3 63 0.980 0.818
S3 CH2,CH3 1 tanh 2, 2 37 0.974 0.858
S4 CH2,CH3 1 tanh 2, 2 37 0.974 0.858
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Figure 6.12: Convergence plots of the NSGA-II algorithm using different datasets and
number of hidden layers l (source: [133], p. 16).

6.5.5 Selection of the best solution

As we presented in the experiments above, every time we use a different
data-set split, the number of hidden layers, or selection strategy, we find a
different best solution.

This is also highlighted by the convergence plots shown in Figure 6.12
of our experiments since we get a different approximation of the Pareto
Front. In our settings, we have to deal with a multi-objective optimization
problem, and for the sake of visualization, the cost function depicted in
Figure 6.12 is defined as

cost(pf) = HV (ip, ref)−HV (pf, ref) (6.6)

where HV is the hyper-volume as defined in [169]. More in detail, ref is
the reference point used to compute the hyper-volume and it is equal to
(0.0; max parameters), where this last value is the maximum number of
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weights that a neural network can have in our experiments. It is computed
by feeding Formula (6.3) with the maximum number of sensors (i.e., 3),
the number of hidden layers l, the maximum value of the memory length
M , and the maximum number of neurons (as defined in Table 6.3). In-
stead, ip is (1.0, 0.0) and it is related to an ideal network with 0 weights
and an F1-score equal to 1.0. This is the same ideal network used to
define the S3 strategy. This function (Formula (6.6)) is computed over
the approximation of the Pareto front (pf) identified at the end of every
generation.

Once the algorithm has converged, we need a decision-maker able to
select the best network. We decide to use the strategy S4 presented in
Section 6.4.2 that uses an approach based on the K-means algorithm. We
compared four different strategies to deliver a simple baseline, however,
the benchmarking of selection strategies is out of the scope of this chapter.
The reader may adopt a different selection strategy, based on the problem
at hand.

6.6 Remarks

The widespread of Edge Computing and IoT devices are pushing the de-
velopment of novel applications where intelligence is not running anymore
only in the cloud but also at the edge of the network and on the sensing
devices.
Previous chapters covered how to design Edge IoT applications by spread-
ing the intelligence and processing at the edge of the network. We moved
the intelligence on commodity devices, i.e., gateways, to support smaller
and dumb devices.
This chapter, instead, covers the design of the AI model, i.e., a neural
network, that has to be deployed on embedded IoT devices to realize an
Edge Intelligence IoT application. We presented a bio-inspired AI-based
framework to design the entire pipeline from the sensors to the assessment
of the AI model that should be executed on a target device, considering
also system constraints, i.e., RAM, CPU, and so on.
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We applied this approach to a set of real applications, known as chemo-
metric applications, with the objective to detect the right concentrations
of gaseous compounds from the air. To deliver our framework and validate
it in real settings, we designed the entire research pipeline from the design
and production of the sensors (given the availability of a clean-room at our
premises, the MNF facility at Bruno Kessler Foundation, Italy) to the per-
formance assessment of the (sub-)optimal AI model, passing through the
data collection in a controlled environment, pre-processing, neural network
hyper-parameter selection and training. We called our approach Meta-
NChemo, since it combines meta-heuristic techniques with chemometrics
and neural networks. Even if the approach has been specifically tailored
for chemometric analysis, it can be easily adapted and adopted in many
different domains to build Edge Intelligence IoT applications.

At this point, we have the tools to build an end-to-end Edge Intelligence
IoT application, from the design of the processing that should be executed
by devices, to the design of different AI models that have to be executed
at the edge of the network. The next chapter, which concludes this the-
sis, presents some final remarks about the research presented in this and
the previous chapters, tries to highlights some future developments, and
enforces the need for Edge Computing and Edge Intelligence in future IoT
applications.
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Conclusions
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Figure 7.1: This is the very last chapter of this thesis. After a recap of the previous chap-
ters and how this thesis answers the main research questions, this chapter presents some
future directions and how IoT applications that exploit Edge Intelligence may become a
trending topic in many different fields.

The terms Internet of Things, IoT Platforms, and Edge Computing
have strongly pushed the academic and industrial research communities to
identify, design, build, and deliver everyday better IoT applications that
have deeply changed the world we are living in today. Indeed, even if
these technologies are now ubiquitous, IoT started to be widely investi-
gated in 2011 when Gartner inserted the term Internet of Things on its
Hype Cycle of Emerging Technologies [4]. IoT reached the very top of the
curve in 2014 [5] and in 2015 [175] new IoT-related technologies became
popular like IoT platforms and Connected Homes. In 2017, smart devices
like smart bulbs, smart lockers, connected speakers empowered with vo-
cal assistants (e.g., Amazon Alexa) became mainstream [12]. In the same
months, Edge Computing has become a hot topic thanks, also, to big Inter-
net players that have rolled-out new Edge Computing platforms like AWS
Greengrass (we talked about it in Chapter 2). However, at that time, most
of the effort was invested to bring cloud-scale computations at the edge of
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the network also by exploiting the concept of Fog Computing to migrate
and orchestrate functionalities among the different tiers of the architecture
(Figure 2.2). Then, given the huge developments around AI and the design
of Edge AI hardware accelerators, Edge AI appeared on the rising slope of
the Gartner’s Hype Cycle for Emerging Technologies in 2018 [176] and it
is still, in 2020, in the top part of the curve [177].
This thesis, started in November 2017, contributes to the paradigm shift
from traditional cloud-based IoT applications, toward Edge IoT applica-
tions, to Edge Intelligence IoT applications. Every chapter proposes a
design approach or the ingredients for IoT applications to support this
shift starting from research hypes and novelties in the field. As result, this
thesis poses different milestones and provides guidelines and recommenda-
tions to practitioners that will create the next generation of Intelligent IoT
applications at the edge of the network.
More in detail, Chapter 2 presented and discussed the broad and complex
Edge IoT platform landscape. We observed and reviewed different plat-
forms considering different players: open-source communities, industrial
consortia, commercial products, and standard initiatives. This chapter
represents the foundations of the entire thesis since it gives the initial in-
gredients to design an IoT application at the edge of the network.
Subsequently, Chapter 3 discussed an approach to design and implement
an IoT application that exploits the so-called Cloud-to-Thing continuum.
The application implements IRESE, an anomaly detection method based
on unsupervised machine learning techniques, to detect rare events from an
audio stream. Here the processing and the AI algorithm were moved from
the cloud to a powerful-enough device at the edge, i.e., an IoT gateway,
connected to a microphone for audio sampling.
Then, Chapter 4 presented how to push the processing even more toward
data sources, i.e., on sensing devices, enabling novel Edge IoT applications
that reduce bandwidth usage, latency, and increase privacy (by design).
Here we presented a framework to fine-tune the parameters of processing
techniques, how to remotely reconfigure devices based on the application
needs (COTA, Configuration Over The Air) and system constraints.
Chapter 5 described and evaluated the main Edge AI Accelerators avail-
able on the market. We identified the steps and transformations required
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to convert a cloud-scale deep learning model for a target edge device. Then,
we conducted a systematic analysis of Edge AI Accelerators’ performance
by executing different personal-scale AI models in different execution con-
figurations. Benchmarks highlighted different important aspects that have
to be kept in mind when practitioners design their own applications, such
as the impact of communication interfaces (e.g., USB 2.0 vs USB 3.0) and
device heating.
Finally, Chapter 6 presented a bio-inspired AI-based methodology to iden-
tify the neural network architecture for Edge Intelligence IoT applications
by combining the design of the processing pipeline with the system con-
straints imposed by edge devices. Models trained with our method, af-
ter a few transformations (i.e., the ones presented in Chapter 5), can
be easily executed on edge devices. We validated our framework, called
MetaNChemo, on a real set of sensing applications, known as chemomet-
ric applications. Experiments conducted over our framework returned tiny
neural networks, with 20 ∼ 50 weights, with high-detection performance
(F1score ≥ 0.95).

7.1 What’s next?

In the next few years, we will experience a broad development and adoption
of Edge Intelligence IoT applications in many different scenarios, thanks
also to the development of novel AI methods. This opens many new excit-
ing research opportunities from system design, intelligence algorithm de-
sign, application design perspectives. From the system design perspective,
the challenges cover the possibility to design intelligent systems that can
efficiently execute complex AI models on hardware devices. Models should
have a reduced energy footprint (devices are usually battery-powered), low
latency, enhanced privacy (by design), low bandwidth utilization, and very
high accuracy without the need of a remote entity. Moreover, if devices
have enough computing power, they may locally fine-tune (i.e., continuous
learning) their models to better react to external stimuli. For instance,
a greater opportunity is offered by neuromorphic computing chips, which
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mimic neuro-biological architectures present in the nervous system (i.e.,
neurons). Edge AI accelerators offer another interesting opportunity. As
presented in Chapter 5, a lot of effort has to be pushed to design an efficient
system that removes almost all the hardware bottlenecks, which may in-
troduce undesired delays and subsequent performance drops. At the same
time, they need to be more energy-friendly given that such devices should
be embedded in battery-powered devices and do not overheat, to avoid any
possible injury. We envision that a new generation of Edge AI accelerators
will be available soon as co-processors inside MCUs and CPUs units with-
out the need for any external device. An example is represented by the
A11/A12/A13/A14 Bionic System-on-Chips (SoCs), from Apple, that can
execute trillions of operations per second. They contain a special proces-
sor, called Neural Engine, that makes machine learning instruction really
fast.
Besides the research on systems designed that exploit Edge Intelligence, a
lot of effort has to be pushed on the design of AI models that can fully
exploit the power of the edge of the network, i.e., the target computing
device. As our results showed, if the architecture of a neural network is
optimized for a specific hardware platform, it delivers better performance.
However, the space of all the possible model architectures is huge and a
wide exploration is unfeasible. A great research opportunity is offered by
meta-heuristic techniques that are able to explore such solution space by
combining system constraints with performance objectives. We envision
that in the future we will have tools that will ask us only the sensors or
the data on which we want to build the system and, autonomously, the
tool will return the best target platform, the system performance charac-
terization, and the model that better suits to the problem. Other research
opportunities are offered by the distributed deployments of Edge Intelli-
gence applications. Given that every smart device of a given application
will embed an AI model, the devices them-self will specialize (or fine-tune)
their model to a specific environment/objective. This will create a plethora
of different models, similar among them, that will express and address dif-
ferent aspects of the same application. Edge Intelligence, in combination
with Federated Learning approaches, may create new design approaches
for future intelligent applications.
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Finally, Edge Intelligence will enable new scenarios and application do-
mains. Just to cite a few:

• Space and satellites are currently one of the main hypes. Thanks to the
huge investments of public agencies and private companies, satellites
are becoming crucial tools in our lives (e.g., navigation, Earth observa-
tion, telecommunications, micro-gravity experiments, etc.), however,
the data volume generated is becoming huge. It has been estimated
that the Copernicus Sentinels fleet (Sentinels 1A, 1B, 2A, 2B, 3A,
and 3B) produces, on average, ∼ 20TB of data every day [178]. Data
volumes will increase and it will become unfeasible to move such an
amount of data to the Earth, thus AI processing will be executed di-
rectly on satellite and only the processed data will be streamed. The
first attempt of this approach is under test by the European Space
Agency (ESA) that launched a CubeSat, known as φ-sat-1 (PhiSat-
1) [179], that embeds some AI model to detect clouds from images.
Only images that satisfy some requirements (i.e., cloud coverage lower
than a threshold) will return on Earth, with a consequent reduction
of transferred data. Other missions are under development [180].

• Smart and precision agriculture is another really hot and active do-
main. Here, devices are typically deployed in very sparse environments
where electric and connectivity infrastructures are not usually avail-
able or not powerful enough (e.g., a LoRAWAN network). Thus, Edge
Intelligence applications may enable many new applications. For in-
stance, a smart device powered with a camera can run some AI models
to understand the current growth status of fruits, detect possible dis-
eases, damages, and so on. The device, thus, will only send a few data
extracted from the pictures instead of the entire image.

• Digital industry is one of the trends we are experiencing today, but,
in the next years, industries will become even more digital. The pos-
sibility to place sensors next to running equipment, with the opportu-
nities offered by Edge Intelligence, will strongly push the development
of Condition Monitoring (CM) and Predictive Maintenance (PM) ap-
plications where the equipment itself will be able to understand, in a
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time-tight manner, its own status and take fast actions (e.g., switch
off, slow-down, etc.). This intelligence, which will be deployed on the
equipment, or really close to it, will be specialized for the monitored
equipment to better understand its behavior and increase accuracy.
Federated learning approaches may be used to improve the overall ef-
ficacy by combining the intelligence available from wide deployments
and scenarios.

These are just a few possible domains where Edge Intelligence will play a
fundamental role. Many other domains and opportunities will appear in
the next years generating a market value of billions of dollars.

What’s next?
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sound: Real-time audio event detection based on high performance
computing for behaviour and surveillance remote monitoring,” Sen-
sors, vol. 17, no. 4, 2017.

[79] X. Xia, R. Togneri, F. Sohel, and D. Huang, “Random forest classifi-
cation based acoustic event detection utilizing contextual-information
and bottleneck features,” Pattern Recognition, vol. 81, pp. 1–13, Sep.
2018.

[80] D. O’Shaughnessy, “Linear predictive coding,” IEEE Potentials,
vol. 7, no. 1, pp. 29–32, Feb. 1988.

[81] J. D. Markel and A. H. Gray, Linear Prediction of Speech, ser. Com-
munication and Cybernetics. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1976, vol. 12.

[82] P. Bansal, S. A. Imam, and R. Bharti, “Speaker recognition using
MFCC, shifted MFCC with vector quantization and fuzzy,” in 2015
International Conference on Soft Computing Techniques and Imple-
mentations (ICSCTI), Oct. 2015, pp. 41–44.

[83] S. Davis and P. Mermelstein, “Comparison of parametric representa-
tions for monosyllabic word recognition in continuously spoken sen-
tences,” IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 28, no. 4, pp. 357–366, 1980.

[84] X. Valero and F. Alias, “Gammatone cepstral coefficients: Biolog-
ically inspired features for non-speech audio classification,” IEEE
Transactions on Multimedia, vol. 14, no. 6, pp. 1684–1689, Dec. 2012.

[85] S. Shalev-Shwartz and S. Ben-David, Understanding machine learn-
ing: From theory to algorithms. Cambridge: Cambridge University
Press, 2014.

170



BIBLIOGRAPHY

[86] Z. Ghahramani, “Unsupervised learning,” in ML summer schools
2003: Advanced lectures on machine learning, O. Bousquet, U. von
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[166] A. Beńıtez-Hidalgo, A. J. Nebro, J. Garćıa-Nieto, I. Oregi, and
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and V. Guidi, “Aza-crown-ether functionalized graphene oxide for
gas sensing and cation trapping applications,” Materials Research
Express, vol. 6, no. 7, p. 075603, Apr. 2019.

[185] A. Gaiardo, B. Fabbri, V. Guidi, P. Bellutti, A. Giberti, S. Gherardi,
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Appendix A

Chemoresistive sensors

In the last years, research around solid-state gas sensors has received
a strong boost thanks to the development of innovative devices for the
monitoring of gaseous molecules. Solid-state gas sensors are divided into
four broad categories: optical sensors, quartz microbalances, electrochem-
ical, and chemoresistive gas sensors [181]. Each type of gas sensor shows
advantages and disadvantages; however, it is undeniable that the chemore-
sistive gas sensors are the most investigated because of their great ver-
satility [182, 183]. A great effort has been devoted to the investigation
of the sensing properties of several nanostructured semiconductors, such
as Metal OXides (MOX), metal sulfides, polymers, graphene, and carbon
nanotubes, to identifying the optimal sensing material [182, 184, 185, 186].
MOX sensors have been studied since the early 1970s and they are still the
most widely used materials in the field of chemoresistive gas sensors, due
to the high tunability of their physical and chemical properties and func-
tionality [182, 183]. Furthermore, MOX can be synthesized in the form of
low-dimensional 0D, 1D, 2D, and 3D nanostructures, which showed promis-
ing gas-sensing performances including fast response, high sensitivity, and
very low detection limit [187].

Several studies have been carried out on the gas sensing mechanism
modeling, which is typically based on the change in the thickness of the

Part of this appendix appears in the following publication that I co-authored:
M. Antonini, A. Gaiardo, and M. Vecchio “MetaNChemo: A meta-heuristic neural-based framework for
chemometric analysis.” Applied Soft Computing, vol. 97, p. 106712, Dec. 2020. Copyright Elsevier
(2020). DOI: 10.1016/j.asoc.2020.106712.
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MOX nanostructure depletion layer [182, 188, 189]. The depletion layer
thickness is strongly dependent on the charge and amount of oxygen ad-
sorbed on the nanostructure surface. On the one hand, the oxygen charge
relies on the working temperature of the sensor [190]. On the other hand,
the interaction of the sensing material with reducing or oxidizing gases
significantly influences the amount of oxygen adsorbed on the MOX sur-
face [182]. For n-type MOX semiconductors, such as SnO2 and ZnO, the
charge carriers are the electrons, thus an increase of the oxygen concen-
tration adsorbed on the surface involves an increase of the semiconductor
electrical resistivity, whereas a decrease of the adsorbed oxygens results in
an increase of the free electrons in the semiconductor, involving a decrease
in the MOX electrical resistivity [182]. The sensing material is usually
deposited on a substrate, which plays the role of microheater, mechanical
support and contains interdigitated electrodes necessary to measure the
electrical resistance of the nanostructured semiconductor [135].

MOX chemoresistive gas sensors are particularly low cost, small, sta-
ble, highly sensitive and showed the advantage of higher throughput and
amenability for large-scale integration. Nevertheless, they still show some
shortcomings that limit their widespread use, including lack of selectivity
and a constant drift of the sensor signal over time [190]. Indeed, Chap-
ter 6 has also the duty to show some research opportunities offered by the
combination of chemoresistive gas sensors with AI techniques, as also sup-
ported by [154]. Chemoresistive sensors have been successfully applied in
indoor and outdoor air quality monitoring [191], precision agriculture [192],
analysis and diagnosis of clinical disease with non-invasive methods [193],
and safety in the workplace [194].

A.1 Chemoresistive sensors production at FBK

The chemoresistive gas sensors used in Chapter 6 were entirely produced in
the laboratories of the Micro-Nano Facilities (MNF)1 group of the Bruno
Kessler Foundation (FBK, Trento, Italy). The gas sensor development can
be divided into two main parts: the microfabrication process of silicon

1https://mnf.fbk.eu/.
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substrates and the synthesis of MOX semiconductors.

In the first step of the microfabrication process, a triple layer of
SiO2/Si3N4/SiO2 (ONO) was deposited over a double-side polished sili-
con wafer using thermal oxidation and low-pressure chemical vapor de-
position techniques. The thickness of the three layers was chosen to ob-
tain a stack with zero mechanical stress. Afterward, a deposition of Ti
(10 nm) and Pt (120 nm) layers was carried out by electron beam evapo-
ration over the ONO stack. The Pt/Ti double layer was defined through
a photolithographic process to obtain the heater. In the subsequent step,
a SiO2 insulating layer was deposited by using plasma-enhanced chemical
vapor deposition, to electrically insulate the heater and the interdigitated
electrodes. Then, Ti/Pt interdigitated electrodes were deposited and pat-
terned by repeating the same process block used for the heater. Thermal
treatment at 650 °C in N2 was performed after each layer deposition, to
thermal stabilize the microheaters at the MOX paste firing temperature.
Finally, the membrane was released by chemically etching the silicon wafer
from the backside. In a wafer, there were about 1200 devices, divided lastly
by using a dicing saw. A scheme of the final microheater cross-section is
reported in Figure A.1a. The microfabrication process is explained in de-
tail in [135]. The MOX synthesized in Chapter 6 were SnO2 nanograins
(SnO2), ZnO nanograins (ZnO-1), and ZnO nanorods (ZnO-2). All of
them were prepared through sol–gel synthesis. For SnO2 and ZnO-1, the
starting metallorganic reagents (Sn(II) ethylexanoate and Zn(II) acetate)
were dissolved in 2-propanol. Then, water was added dropwise to the two
solutions to obtain the formation of the SnO2 and ZnO gels. The two
syntheses are reported in detail in [135, 136]. The ZnO-2 powder was pro-
duced by dissolving Zn(II) acetate in a refluxed ethanol solution at 60 °C.
Afterwards, acid oxalic was added to the solution to allow the growth of
ZnO nanorods [195]. All the three gel were left precipitate in the solu-
tion overnight. The produced powders, separated from solutions by the
filtration method, were dried at 100 °C and then calcined at 650 °C for 2
hours in an oven. The powders were then mixed with a suitable amount of
alpha-terpineol and ethylcellulose to obtain printable pastes [196]. After-
ward, the sensing pastes were deposited onto silicon microheaters through
screen printing deposition (Figure A.1b) [135]. After deposition, the films
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(a) Schema of a microheater cross-section. (b) A microheater screen printed with
SnO2.

(c) A scanning electron microscope image
of the SnO2 thick film.

(d) Two devices bonded on T039 open
packages.

Figure A.1: Schema and pictures of the sensors realized in the MNF facility at
FBK (source: [133], p. 4).

were calcined for 2 hours at 650 °C to thermal stabilize them and to evapo-
rate the solvents (Figure A.1c). The final devices were bonded on standard
metallic open packages (TO39) by employing a gold ball bonding system
(Figure A.1d) [135].
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