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A Novel Approach to the Unsupervised Update of

Land-Cover Maps by Classification of Time Series

of Multispectral Images
Claudia Paris, Member, IEEE, Lorenzo Bruzzone, Fellow, IEEE, Diego Fernández-Prieto

Abstract—This paper presents an unsupervised approach that
extracts reliable labeled units from outdated maps to update them
using time series (TS) of recent multispectral (MS) images. The
method assumes that: (1) the source of the map is unknown and
may be different from remote sensing (RS) data; (2) no ground
truth is available; (3) the map is provided at polygon level, where
the polygon label represents the dominant class; and (4) the map
legend can be converted into a set of classes discriminable with
the TS of images (i.e., no land-use classes that require manual
analysis are considered). First, the outdated map is adapted to
the spatial and spectral properties of the MS images. Then, the
method identifies reliable labeled units in an unsupervised way
by a two-step procedure: (1) a clustering analysis performed
at polygon level to detect samples correctly associated to their
labels, and (2) a consistency analysis to discard polygons far
from the distribution of the related land-cover class (i.e., having
high probability of being mislabeled). Finally, the map is updated
by classifying the recent TS of MS image with an ensemble of
classifiers trained using only the reference data derived from
the map. The experimental results obtained updating the 2012
Corine Land Cover (CLC) and the GlobLand30 in Trentino Alto
Adige (Italy) achieved 93.2% and 93.3% overall accuracy (OA)
on the validation data set. The method increased the OA up to
18% and 11.5% with respect to the reference methods on the
2012 CLC and the GlobLand30, respectively.

Index Terms—Automatic classification, land-cover maps up-
date, (RS) remote sensing, Sentinel 2, (TS) time series, unsuper-
vised methods.

I. INTRODUCTION

THE availability of remote sensing (RS) satellites optical

images such as Sentinel 2 or Landsat 8 guarantee a con-

stant way for monitoring the Earth’ surface at high temporal

resolution. This leads to dense time series (TS) of images at

global level, which provide informative multitemporal data for

long-term environmental analysis [1]. Moreover, several land-

cover/ land-use maps are now available at national, continental

or global level due to their importance for commercial and

environmental monitoring and planning [2]–[4]. The capability

to updating existing thematic maps using recently acquired

optical images is extremely interesting from the operational

view point. However, keeping cartographic products regularly

updated is a complex and time consuming task, which typically

requires ground reference data.

Supervised learning approaches represent the best solution

to update land-cover maps due to the possibility of generating

accurate classification results [5]–[8]. Recently, Valero et al

[7] defined a supervised classification system to generate

binary “annual-cropland/no-annual-cropland” maps produced

for monitoring crop growing condition using TS of Sentinel 2

images. Due to the availability of informative ground truth, the

method achieves 90% of accuracy at the end of the agricultural

season. In [8], Belgiu et al proposed a system architecture

for cropland mapping based on the availability of in-situ

surveys. A time-weighted dynamic time warping method is

employed to reconstruct the temporal spectral behaviour of

the crop types from a TS of Sentinel 2 images to accurately

distinguish different cultivations. The method tested in three

different study areas (Romania, Italy and USA) achieves an

Overall Accuracy (OA) ranging from 78.05% to 96.19%.

However, these approaches need labeled data for the image

to be classified, which are expensive and time-consuming to

collect. Moreover, in RS application it is not feasible to assume

ground truth available every time a land-cover map has to be

updated.

To solve this problem, a large effort has been devoted to

the development of semisupervised methods that rely on the

availability of reference data for an image previously acquired

over the same area (source image) [9]–[13]. The main idea

of these approaches is to include in the classifier (pre-trained

on the source image) unlabeled samples extracted from the

target image, in order to adjust the discriminant function to

the new data. In [10] Zanotta et al take advantage of the

repetitive nature of recurrent changes to adapt the change

detection rule computed for a given pair of multitemporal

images (source domain) to a new multitemporal pair of images

(target domain) expected to have the same kind of change

(e.g., deforestation). The method achieves a 91.5% detection

rate having a 7.5% of false alarms in the worst case. In

[14], the temporal correlation between multispectral (MS)

images belonging to the same TS is employed to update

the parameters of the maximum likelihood classifier trained

on the reference image. Experimental results conducted on

Landsat 5 images demonstrate the effectiveness of the method

that achieved an OA of 90.97%. This approach is further

generalized in [15] in the framework of the Bayesian rule

for cascade classification considering maximum likelihood and

neural-network classifiers. The method, tested on Landsat 5

data, generates an updated land-cover map characterized by

an OA of 95.54%. In [16], Bahirat et al address the case of

multitemporal acquisitions characterized by different sets of

classes. Graph-based methods are used to connect labeled and

unlabeled samples according to their similarity [17]–[21]. The

topological structure of the graph naturally injects unlabeled

samples in land-cover classes under the assumption of consis-
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tency (i.e., nearby points should belong to the same class)

[17]. Then, the labels of the unchanged reference samples

are propagated to generate a training set for the image to

classify. The method achieves an OA higher than 85% both on

a multitemporal medium resolution data set (Landsat 5) and a

multitemporal high resolution data set (Quickbird).

Although these strategies can be effective in enlarging small

training data set, to correct initial conditions is necessary to

guarantee accurate classification results. Semisupervised meth-

ods are indeed very sensitive to the initial model assumptions

since bad matching of pattern structure can lead in degradation

of classifier performances. To solve this problem, few methods

in the literature propose strategies to check the reliability of the

unlabeled samples extracted from the target domain [11], [22].

In [11], Bruzzone et al propose a circular validation strategy

which is employed to assess the reliability of the classification

result obtained. The method achieves on a multitemporal

Landsat 5 data set an OA of almost 91%. In [22], Demir et

al propose a change detection based transfer learning method

for generating a reference data set without any labeled data.

First, the method detects changes occurred between the MS

image to be classified and the one where ground truth is

available. Then, the labels of the unchanged reference samples

are propagated to generate a training set for the image to

classify. The method, tested on three multitemporal data sets

including Landsat 5, Landsat 7 and Quickbird MS images,

reaches OA higher than 85% by classifying the second image

with the unchanged reference samples. Besides the possibility

of increasing the reliability of the semisupervised classification

result, all these studies assume that: (i) there are reliable

reference data available for at least one image of the TS,

and (ii) the same type of RS data are used to perform the

update. Although these assumptions are reasonable in many

real applications, they are no more affordable when updating

land-cover maps at national or global scale.

To relax the TS constraint, in [23] Inglada et al propose

an operational work-flow to generate an automatic training

set in an unsupervised way by combining several cartographic

products to classify long TS of Landsat 8 images. Since many

mislabeled samples may be included in the training set, a

classifier tolerant to noise [24] is selected to generate the land-

cover map. Although the proposed work-flow allows a fast

delivery of maps at country level, the quality of the training

samples is not sufficient to obtain high classification accuracy

for all the classes. Classes such as woody moorlands, beaches

and vineyards obtain a classification accuracy lower than 50%

due to the availability of few training samples. The impact

of training label noise on classification perfomances for land-

cover mapping is evaluated in [25]. The authors compare the

results obtained with Support Vector Machine (SVM) and

Random Forest classifiers on a TS of Landsat 8 and Satellite

Pour l’Observation de la Terre (SPOT) 4 images acquired

during one year. The results show that when the number of

wrongly labeled samples is lower than 30% both classifiers

are little influenced by the training label noise (i.e., the OA%

decreases less than 10%). In contrast, their performances drop

down for higher noise levels.

To reduce the amount of class label noise, few works intro-

duce approaches to automatically check the labeled samples

extracted from existing thematic maps [26], [27]. In [27],

Radoux et al randomly select training samples from existing

land-cover maps to classify 300 m Medium Resolution Imag-

ing Spectrometer (MERIS) data acquired from 2008 to 2012.

A spatial filtering analysis is performed to discard samples

on the boundaries between different land-cover areas since

they are more often incorrectly labeled due to inaccurate geo-

location. Then, a “cleaning” process excludes the outliers from

the distribution of the spectral signatures using a probabilistic

iterative trimming [28]. The same procedure is applied in [29],

where Matton et al present a method for mapping “annual-

cropland/no-annual-cropland” areas based on the normalized

vegetation index temporal behavior of the pixels. To rely on a

dense TS of images SPOT 4 images are integrated to Landsat 8

data. The OA obtained for the eight sites distributed through-

out the world ranges from 71% to 99%. A similar spectral

filtering analysis is presented in [26] where an editing process

is proposed to remove pixels identified as outliers in the

spectral domain for each class. Silva et al extract the labeled

samples from the 2006 Corine Land Cover (CLC) map to train

a classifier with MERIS data. Although the OA is 89%, some

classes characterized by very poor accuracy (lower than 60%).

Thus, even though these outlier removal strategies increase the

probability of selecting reliable samples from the map, their

main drawback is the risk of removing informative samples

[24] that strongly affecting the generalization capability of

the classifier. Moreover, the method updates an existing land-

cover map using MERIS images, characterized by a spatial

resolution of 300 m. When increasing the spatial resolution

at 10 m (e.g., Sentinel 2 data), the classifier is even more

sensitive to the quality of the training set [30].

A. Motivation

From this brief analysis of the literature, it turns out that a

large effort has been devoted to develop methods that reuse ex-

isting reference data to classify recent MS images. In contrast,

little effort has been done to extract reference data directly

from the map that needs to be updated. However, the source

of many thematic products is not necessarily a satellite image

belonging to a TS. Most of the existing thematic products have

been generated by multiple sources (e.g., photo-interpretation,

ancillary cartographic data) [3], [31], [32]. Moreover, the

recent launch of optical RS satellites such as Sentinel 2

guarantees a constant way for monitoring the Earth’ surface at

high temporal resolution (5 days upon complete constellation).

Sentinel 2 increases the potential of land-cover maps updating

rate establishing a detailed analysis of dynamic phenomena

also in areas that are typically affected by cloud cover [1]. In

this framework it is necessary to develop methods being able

to extract reliable reference data from the available thematic

maps to regularly update them in an unsupervised way (i.e.,

assuming that no new labeled data are available). However,

many challenges arise when extracting labeled samples from

existing thematic products. Because of changes occurred on

the ground and possible classification errors, wrong labels may

be inherited from the map. Moreover, land-cover maps are
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typically provided at polygon level, where the polygon label

is assigned through a majority rule. Therefore, the samples

belonging to the minority classes present in the polygon are

associated with a wrong semantic label. Finally, often the map

legend of is not optimized for the spectral properties of the

MS image used to perform the update [33], [34].

B. Contribution

In this paper we propose an unsupervised method that aims

to automatically extract reliable training samples from an

available thematic map (hereafter referred as “source map”),

using the multitemporal spectral information provided by TS

of recent MS images. The method is based on three main

components: (1) a preprocessing phase, where the source map

is adapted to the peculiarities of the available MS data, (2) an

unsupervised training set identification phase, where samples

having high probability to be still associated to correct labels

are detected, and (3) a land-cover map update phase, where

a pool of SVMs is trained with the extracted labeled units

to classify recent TS of MS images. Differently from the

literature, no spectral filtering at pixel level is used to remove

the outliers, since we aim at representing the distribution of

land-cover classes. To this end, first a data-driven clustering

analysis is performed at polygon level to automatically detect

samples associated to the dominant land-cover class. Then, a

consistency analysis of polygons belonging to the same class

is performed to discard polygons far from the distribution

of the considered class (i.e., having high probability to be

mislabeled).

The proposed method extends and enhances the work de-

scribed in [35] by: (1) removing the consistency check analysis

at pixel level which may discard informative training samples,

(2) introducing an ensemble-based classification step that mit-

igates the problem of including possible mislabeled samples in

the reference data extracted from the map, and (3) significantly

extending the experimental analysis. The main novelties of the

proposed method are: (1) the preprocessing step that aims at

reducing the discrepancy between the thematic product and

the MS images, and (2) the identification of reliable and

informative map samples by an automatic procedure tailored

to the map properties.

Note that in the considered method we exploit a TS of MS

images to enhance the capability of discriminating complex

land-cover classes such as the agricultural ones [36]. However,

the proposed method is flexible to handle any RS data (e.g.,

synthetic aperture radar polarimetry data which are suitable

for land-use/land-cover classification [37]–[40]) under the as-

sumption that the considered data allow the discrimination of

the set of classes present in the map legend.

C. Outline

The rest of the paper is organized as follow. Section II

introduces the notation and the proposed system architecture

by illustrating all the phases of the method in detail. Section III

describes the data set in terms of thematic products and optical

satellite images employed to perform the update. Section IV

discusses the experimental results obtained. Finally, Section V

draws the conclusion of the paper and presents possible future

developments.

II. PROPOSED LAND-COVER MAP UPDATING METHOD

A. Problem Formulation and Notation

The aim of the proposed approach is to exploit the informa-

tion provided by outdated land-cover maps to extract reliable

reference data. Due to the lack of ground truth and knowledge

on the source of the thematic map, we are addressing an

extremely ill-posed problem. In such a complex scenario, the

method is based on the following constrained assumptions:

i) the semantic of the classes of the thematic product can be

converted in an exhaustive set of classes discriminable with the

spectral content of the available TS of MS images; and ii) the

available land-cover map is provided at polygon level labeled

according to a majority rule criterion (i.e., the associated label

represent the dominant class of the polygon). Note that the first

assumption clarifies that no land-use classes are included in the

map legend, since they require intensive photo-interpretation

analysis and cannot be discriminated by using only the spectral

properties of the TS of images.

Let us define the notation used in this paper. MS images

are usually represented as 3-D arrays (e.g., tensor flow or data

cube). For notation convenience, the representation followed

in this paper considers the MS data as a 2-D matrix, where

each column corresponds to a spectral band, containing the

lexicographically ordered pixels of that band. Bold lowercase

denotes vectors (e.g., x), while bold uppercase denotes matri-

ces (e.g., X).

Let Xq ∈ R
B×d be the MS image acquired at time tq and made

up of d spectral channels and B pixels. Accordingly, the TS of

co-registered MS images acquired on the same area at different

times can be represented as the horizontal concatenation of

the corresponding 2-D matrices. Let X = (X1,X2, · · · ,XQ)
be the TS of MS images, where X ∈ R

B×n has B pixels

and n = d · Q spectral channels. Note that the TS of images

can be also represented as vertical concatenation of spectral

vectors X = (x1; x2; · · · ; xB), where each row xb ∈ R
1×n

represents the multitemporal spectral values associated to the

bth pixel (i.e., elements from 1 to d are the spectral values of

X1, elements from d+ 1 to 2d are the spectral values of X2,

etc.).

Let M = {Ω,P} be the source map composed of a set of land-

cover classes Ω = {ωu}Uu=1 and a set of polygons P = {λj}j ,

where each polygon is associated to a unique label.

Fig. 1 shows the system architecture of the proposed land-

cover map updating method. The approach is separated into

three main phases: i) preprocessing; ii) automatic identification

of the pseudo training sets; and iii) update of the land-cover

map by classification of recent TS of MS images. In the

following, we describe in detail each phase of the proposed

method.

B. Preprocessing

The first phase of the proposed method, preprocessing, seeks

to prepare the TS of MS images, and adapt the thematic

map to the properties of the considered MS images. First,
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Fig. 1: System architecture of the proposed automatic land-cover map updating approach. The approach is separated into three

main phases: (i) preprocessing, (ii) unsupervised training sets identification, and (iii) land-cover map update.

the images are atmospherically corrected and the clouds are

masked, thus leading to surface reflectance products. In the

experimental analysis of this paper Sentinel 2 images are

employed to update the thematic products since these data are

particularly suited to frequently update of land-cover maps

due to the combination of high geometric resolution, novel

spectral capabilities, large swath width and short revisit time

[1]. However, any other MS optical data can be employed

(e.g., Landsat 8). The atmospheric correction and cloud de-

tection was performed using the Sen2cor tool provided by the

European Space Agency (ESA) [41], while cloud gaps were

filled according to [42]. Due to the peculiar multi-resolution

property of S2 images [1], a cubic interpolation is used to

match the spatial resolution of the 20m bands to 10 m for the

entire TS. Finally, a radiometric normalization is eventually

applied to the interpolated images so that each spectral band

is rescaled between zero and one.

In the land-cover map preprocessing, first we rescale the

thematic product at the spatial resolution of the highest reso-

lution channel of Sentinel 2. Then, the semantic of the legend

is converted into a set of classes discriminable considering the

spectral content of the image TS. To this end, we referred to

the Land Cover Classification System (LCCS) [43], which is

a standard common land-cover language for translating and

comparing existing legends. In the literature several works

make use of legend harmonization approaches due to the need

of comparing existing thematic products and integrating multi-

spatial/spectral and multi-semantic data sets [43]–[47]. LCCS

is a comprehensive, a priori world-wide reference system for

land-cover created for mapping. In order to have a high level

of flexibility (describe land-cover features at any scale or level

of detail), LCCS standardizes terminology and the attributes

used to define thematic classes instead of defining a single

universal land-cover legend. In particular, the system uses a

set of independent diagnostic criteria that allow correlation

with existing classifications and legends independent of the

scale or means used to map. Let Ωc = {ωu}Uc

u=1 be the subset

of Uc ≤ U classes converted from the original map legend. Let

l = (l1, l2, · · · , lB)T ∈ R
B×1 and p = (p1, p2, · · · , pB)T ∈

R
B×1 be the vectors representing the land-cover classes and

the polygons associated to the multitemporal vectors of the

TS, respectively, with l ∈ Ωc and p ∈ P . Therefore, lb and

pb represent the label and the polygon associated to the bth
spectral vector xb, respectively.

C. Unsupervised Training Sets Identification

The second phase of the proposed method, unsupervised

training sets identification, aims to automatically extract from

the map samples having high probability to be still associated

with valid labels. When extracting reference data from exist-

ing thematic products, many wrong labels may be inherited

due to: i) changes occurred on the ground, ii) classification

errors present in the map, and iii) mislabeled samples due

to the polygon aggregation. To address all these issues, the

proposed method aims to first analyze each polygon to detect

the samples belonging to the dominant class (i.e., the one

having the highest probability to be correctly associated to the

polygon label). Then, it analyzes the land-cover distribution

in order to keep only the most reliable units. We assume

that most of areas in the map remains unchanged, which is a

typical scenario when updating thematic products representing

widespread land-cover classes such as Urban, Crops or Forest.

In contrast, the update of specific thematic products such as

the agricultural ones cannot be updated with the proposed

method, since most of the pixels would be associated to wrong

labels. Moreover, we assume that the multitemporal spectral

signatures of samples belonging to the same land-cover class

are similar. Note that even though the method can be applied

on individual RS data, the valuable information provided by

TS of images allows the accurate characterization of the land-

cover classes from the spectral view point. Finally, we train

an ensemble of SVM classifiers (however any classification

technique can be used). Each SVM is trained independently

using the randomly chosen training samples via a bootstrap

technique. The final decision is defined as the result of a simple

majority voting combination rule.

For sake of simplicity, let us focus the attention on the

jth polygon Pj = X(pi=λj ,:) = (x1; x2; · · · , xBj
) ∈ R

Bj×n

associated to Bj pixels and characterized by the n spectral

channels of the TS. Let us assume that the polygon label is
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(a) (b) (c) (d)

Fig. 2: Qualitative example of polygon k-means clustering result: (a) original polygon associated to the “crop” label, (b)

dominant land-cover class detected C1, (c) first minor class detected C2 (road), and (d) second minor class detected C3 (river).

ωu, i.e., l(pi=λj ,1) = ωu. To identify the multitemporal vectors

belonging to Pj correctly associated to ωu (i.e., the dominant

class of the polygon), we partition the polygon samples into

Kj clusters {C1
j ,C2

j , . . . ,C
Kj

j } according to their multitem-

poral spectral similarity, where Ck
j = (x1; x2; · · · , xNk

j
). To

this end we considered for simplicity a k-means clustering

algorithm, which is efficient from the computational view

point [48]. However, any other clustering technique can be

used. Starting from a random initial set of centroids, the

k-means clustering algorithm associates each multitemporal

vector xb ∈ Pj to the closest centroid based on the euclidean

distance metric [49]. By progressively adjusting the centroid

positions, the global minimum is reached by minimizing:

Kj
∑

k=1

∑

xb∈Ck
j

||xb − mk||2 (1)

where mk is the centroid of the cluster Ck
j . Since a different

number of classes may be present in different polygons, the

proposed approach automatically estimates the number of Kj

classes present in the jth polygon Pj . This data-driven analysis

allows us to adapt the cluster detection to each polygon, thus

increasing the probability of accurately detecting the dominant

cluster of the polygon. To identify Kj , the proposed method

uses the Calinski Harabasz (CH) Index, which is widely

used in the literature to detect the number of clusters in an

unsupervised way [50]–[52]. The number of clusters Kj is

estimated by considering the average between- and within-

cluster sum of squares as follows:

CH =









Kj
∑

k=1

Nk
j ||mk − m||2

Kj − 1









/









Kj
∑

k=1

Bj
∑

b=1

||xb − mk||2

Bj −Kj









(2)

where m is the centroid of Pj . Due to the spectral similarity

of samples belonging to the same class, the algorithm auto-

matically assigns pixels belonging to the dominant class of the

polygon to the same cluster. Based on the majority decision

rule, it is reasonable to assume that the cluster having the

highest number of samples represents the dominant polygon

class. Let Cmax
j be the dominant cluster of Pj . Fig. 2 shows

a qualitative example of the clustering result obtained on a

polygon associated to the “crop” label where Kj = 3. Due

to the automatic detection of the number of natural classes

present in the polygon, the method distinguishes the dominant

class “crop” C1, from the minor classes “road” C2 and “river”

C3.

Although the cluster analysis allows us to solve the aggre-

gation problem of the polygon, we cannot rely completely on

the considered thematic product since wrong labeled polygons

may be present in the map (i.e., polygons where changes

happened to the ground or associated to wrong labels). To

address this issue, instead of considering an outlier filtering

approach at sample level, the proposed method performs a

polygon consistency analysis, to remove those polygons which

are far from the class distribution. This condition allows us to

discard samples associated to wrong labels without removing

informative samples. Let us focus the attention on the cluster

associated uth land-cover class ωu. Let Nu be the number of

polygons associated to ωu, i.e., {P1,P2, · · · ,PNu
}. At the end

of the clustering procedure, each polygon is represented by its

dominant cluster {Cmax
1 ,Cmax

2 , · · · ,Cmax
Nu

}. For each cluster

Cmax
j , we compute its Bhattacharyya distance from the whole

set of clusters associated to ωu as follows [53]:

Bju =
1

8
(µu − µj)

T

(

Σu +Σj

2

)−1

(µu − µj)+

+
1

2
ln

(

|Σu +Σj |/2
√

|Σu||Σj |

) (3)

where µu and Σu represent the mean and the covariance

matrix of the set of multitemporal spectral vector xb ∈
{Cmax

1 ,Cmax
2 , · · · ,Cmax

Nu
}, while µj and Σj are the mean

and the covariance matrix of cluster Cmax
j . Only the most

reliable clusters, i.e., those having distance from the cluster

distribution smaller than the 65th percentile of the cluster

distances, are used to represent ωu. This condition allows

us to extract from the thematic map a pool of reliable and

informative samples to be used for generating a set of pseudo
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training sets {T1, T2, · · · , TS}, where Ts = {(xb, yb)}b is

the sth training set having xb ∈ R
1×n and yb ∈ Ωc. Note

that we called them pseudo, since they are not completely

reliable as the ones made up of ground reference data.The

pseudo training sets are generated without replacement (i.e.,

each sample belongs only to one pseudo training set) with

the aim of training statistically independent classifiers which

are expected to generate uncorrelated classification errors. A

stratified random sampling design is considered to generate

balanced training sets proportionate to the original prior prob-

abilities of the land-cover classes Ωc = {ωu}Uc

u=1 according

to the thematic product. The number of pixels per land-cover

class present in the thematic map is used as strata to determine

the number of samples to select per class [54].

D. Land-Cover Map Update

In the last phase of the proposed method, we perform the

update to the land-cover map by classifying the TS of MS

images with the set of the pseudo training sets generated in

the previous phase. First, a feature selection step is performed

to detect the feature subspace where the land-cover classes

are more discriminable. In the considered implementation,

we exploit a Sequential Forward Floating Selection (SFFS)

method based on the Jeffreys-Matusita distance as separability

criterion [55], [56]. Then, an ensemble of SVMs classifiers is

used to classify the TS of images. SVMs with Gaussian Radial

Basis Function (RBF) kernels is considered [57] because of

their capability of dealing with noisy samples in a robust way

and to produce sparse solutions [58]. Please note that any

other feature selection method or classifier can be used in

the considered system. A bagging technique [59] is adopted

to construct the ensemble, where several SVMs are trained

independently via a bootstrap method. Since the classifiers

are statistically uncorrelated (ideally independent), their errors

are expected to be uncorrelated. Accordingly, the result of

combination is expected to improve the reliability of the clas-

sification results. Note that also sophisticated techniques can

be used to define many combination rules of the ensemble of

classifiers. Here, to illustrate the effectiveness of the proposed

approach we use a very simple majority voting decision rule.

Let {f1, f2, · · · , fS} be the decision functions of the ensemble

of SVM classifiers trained using the {T1, T2, · · · , TS} and let

#{fs(xb) = ωu} be the number of SVMs whose decision is

the class ωu for the pixel xb. The majority voting decision of

the ensemble of SVMs for xb is given by:

fmv = argmax
u∈[1,··· ,Uc]

(#{fm(xb) = ωu}) (4)

Since the proposed method is completely unsupervised, the

SVM classifiers trained are considered as weak learners. Thus,

some wrongly labeled samples may be included in the pseudo

training sets. However, the ensemble of classifiers allows

us to mitigate this problem, thus leading to more reliable

classification result with respect to those obtained by using

one classifier [60].

III. DATA SET DESCRIPTION

To assess the effectiveness of the proposed method, we

perform the update of both 2012 CLC map and 2010 Glob-

Land30. The 2012 CLC map produced at continental level (25

European Union member states) by the European Environment

Agency [2], is provided with a spatial resolution of 100 m for

the raster version and of 30 m of the vector version (used in

the experiments). The map was generated with a minimum

mapping unit of 25 ha, thus large polygons characterized this

thematic product. The classification scheme of the CLC map

presents a hierarchical structure of 44 classes. The first level is

composed of 5 classes which correspond to the main categories

of the land-cover/land-use (artificial areas, agricultural land,

forests and semi-natural areas, wetlands, water surfaces). The

second level (15 classes) covers physical and physiognomic

entities at a higher level of detail (urban zones, forests, lakes,

wetlands, crops, etc.), while in the third level presents all the

detailed 44 classes. The production of this map was based on

visual interpretation of optical/near-infrared satellite images

(i.e., mainly Landsat imagery) and ancillary data such as aerial

photograph, topographic maps or forestry maps [61].

The second thematic product is the 2010 GlobLand30

provided by the National Geomatics Center of China (NGCC)

in the framework of the “Global Land Cover Mapping at

Finer Resolution” project, one of the first global land-cover

data sets provided at 30 m geometric resolution. To generate

the map the collection and classification of more than 10,000

scenes was performed. The scenes were mainly acquired by the

Landsat Thematic Mapper (TM), Landsat Thematic Enhanced

TM plus (ETM+) and Chinese Environmental and Disaster

(HJ-1) satellites [3]. GlobeLand30 is available in raster format

at 30 m spatial resolution. The legend is based on 10 land-

cover classes.

The satellite optical data used to perform the update of the

maps are Sentinel 2 MS images. Although any MS data can be

employed, Sentinel 2 data have a huge potential for this task,

due to their spatial resolution (10 m in the visible range),

their enhanced spectral capabilities (i.e., three bands in the

“red edge”), a swath width of 290 km and their increased

revisit time with respect to the past (5 days upon complete

constellation). The considered study area, which extends for

1549 km2 over the T32TPS Sentinel 2 granule, is located in

the Trentino Alto Adige Region, Italy. To perform the land-

cover map updating we considered a TS of four Sentinel 2

images acquired on the 27th May 2017, 26th June 2017, 18th

July 2017 and 21st September 2017. The Sentinel 2 spectral

bands considered are the ones acquired at 10m and 20m spatial

resolution. Thus, the method considers 40 features (10 features

per image) per pixel. To quantitatively evaluate the accuracy

of the updated land-cover maps, we used a reference data

set made up of 35678 samples manually labeled by photo-

interpretation and distributed all over the region. The spatial

distribution of the reference data is represented in Fig. 3, while

Tab. I shows the number of samples divided per class.

IV. EXPERIMENTAL RESULTS

In this section we present the experimental results obtained

by updating both the 2012 CLC and the GlobLand30 maps
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Fig. 3: True color representation of Sentinel 2 image acquired on the 18th July 2017 with ground reference data ( coordinates

are reported in the UTM WGS84 32N system).

TABLE I: Ground reference data used for validating the results

divided per class.

ID Class # Validation Samples

ω1 Urban 2216

ω2 Crops 2821

ω3 Broadleaved 4741

ω4 Conifers 7584

ω5 Grass 2954

ω6 Water 2858

ω7 Rocks 4299

ω8 Snow 2945

ω9 Shrubland 1744

ω10 Mineral Site 3516

using the proposed method. First, we present the experimental

setup, by introducing the baseline methods used for com-

parison. Then, we describe in detail the legend conversion

performed considering the spectral properties of Sentinel 2.

We move to the analysis of the quality of the pseudo training

sets extracted from the map by presenting both the clustering

results obtained at polygon level and the statistical consis-

tency analysis. Finally, the updated land-cover maps will be

presented and discussed both from the qualitative and the

quantitative view point.

A. Experimental Setup

The considered thematic products were generated by using

multiple sources (several RS data, photo-interpretation, ancil-

lary data, etc.). Thus, they cannot be updated by using any

state-of-the-art methods which requires the availability of the

image used to generate the map. To prove the effectiveness

of the proposed method, we compared it with a tolerant noise

classifier [25] and a standard outlier filtering approach [27].

In [25], Pelletier et al suggest to use Random Forest classifier,

which does not require a demanding parameter tuning, when

noise is present in the training set. In the considered imple-

mentation we follow the parameter setting suggested by the

authors:

• number of trees to build equal to 200;

• number of input features randomly selected by each node

equal to the square root of total number of features (in

our case
√
40);

• maximum depth of the tree growth equal to 25;

• minimum number of instances in the node equal to 10.

In [27], Radoux et al first perform a spatial filtering analy-

sis to discard samples on the boundaries between different

land-cover classes. Then, a spectral filtering step excludes

the outliers from the distribution of the spectral signatures

using a probabilistic iterative trimming [28]. In the considered

implementation, the polygon boundaries were discarded by

performing a morphological erosion. The structural element

employed is a disk having size 2 (i.e., removing a boundary

of 20m around the polygon). To perform the spectral filtering

step, the authors suggest to tune α ∈ [0.05, 0.1, 0.2]. The

results reported are the ones that achieve the best classification

accuracy, obtained with α = 0.05. The extracted training set is



8

used to classify the TS of Sentinel 2 images. The classification

is performed using SVM classifier with RBF kernel. To detain

a fair comparison with the proposed method, the SFFS is

applied to remove redundant features, thus increasing the

classification accuracy.

The proposed method classifies the TS of Sentinel 2 images

with an ensemble of five SVMs with RBF kernel. For both

the proposed method and [27], the optimal kernel parameters

(i.e., the regularization parameter C and the spread of the

kernel γ) were selected by a 3-fold cross-validation. In the

proposed method case, the model selection is carried out for

each SVM of the ensemble. The SFFS algorithm selected 20

features among the original 40 spectral channels for both the

proposed and the baseline methods [27].

B. Legend Conversion

Tab. II shows the legend conversion used for the 2012

CLC map. The 2012 CLC legend was simplified to de-

pict the widespread land-cover classes: “Urban”, “Mineral

Site”,“Crops”, “Broadleaved”, “Conifers”, “Grass”, “Shrub-

land”, “Rock”, “Snow” and “Water” according to the LCCS

standard. The legend conversion allows us to exclude land-

use classes such as “Airports”, “Dump Sites” or “Sport and

facilities” that cannot be discriminated by using the spectral

properties of Sentinel 2. Moreover, we removed classes mixed

from the semantic view point, such as “Sparsely Vegetated

Area” or “Mixed Forest” which were defined in the CLC leg-

end due to the need of assigning labels to aggregated polygons

(i.e., minimum mapping unit of 25 ha). However, the updated

map is generated at 10 m resolution, thus, the classification

result obtained at pixels level strongly enhances the geometric

details of the classification map (i.e., “Sparsely Vegetated

Area” or “Mixed Forest” are replaced with “Broadleaved”,

“Conifers” or ‘ Grass”) and does not require these mixed

classes anymore. Note that since we are facing a complex

and ill-posed problem, in the considered legend we are not

including detailed land-cover classes such as “Vineyards”

even though they can be discriminated by using the spectral

properties of Sentinel 2. Thus, to generate a reliable updated

product, we focused the attention on a simpler but enough

informative class legend.

Tab. III shows the legend conversion used for the Glob-

Land30 map. All the land-cover classes present in the Glob-

Land30 legend can be discriminated by the spectral properties

of Sentinel 2. Note that, the GlobLand30 legend includes

also the land-cover classes “Wetland” and “Tundra”. However,

these classes are not present in the considered study area

and thus, they are not reported in Tab. III. For a qualitative

evaluation of the results obtained, the same colors used for

the converted CLC legend are employed for the GlobLand30.

Differently from the 2012 CLC, the polygons map is not

provided together with the classification map. To overcome

this issue, we automatically extract the polygons from the

classification map by labeling the 4-connected components

associated to the same label having at least 100 pixels.

TABLE II: Translation of the 2012 CLC legend into the

proposed target legend for the considered test area (Trentino

Alto Adige Region).

CLC Class Target Class

Continuous urban fabric Urban

Discontinuous urban fabric -

Industrial or commercial units Urban

Airports Urban

Mineral extraction sites Mineral Site

Sport and leisure facilities -

Non-irrigated arable land Crops

Vineyards Crops

Fruit trees and berry plantations Crops

Olive groves Crops

Annual permanent crops Crops

Complex cultivation patterns Crops

Land with agriculture and vegetation -

Broadleaved forest Broadleaved

Coniferous forest Conifers

Mixed forest -

Natural grasslands Grass

Moors and heathland Shrubland

Transitional woodland-shrub -

Bare rocks Rocks

Sparsely vegetated areas -

Glaciers and perpetual snow Snow

Water courses Water

Water bodies Water

TABLE III: Translation of the GlobLand30 legend into the

proposed target legend for the considered test area (Trentino

Alto Adige Region).

GlobLand30 Class Target Class

Artificial Surfaces Urban

Cultivated Land Crops

Forest Forest

Shrubland Shrubland

Bare land Bare land

Grassland Grass

Permanent Snow and Ice Snow

Water Water

C. Training Set Analysis

Fig. 4 shows examples of polygons identified as reliable by

the proposed method (i.e., having a Bhattacharyya distance

smaller than the 65th percentile of the cluster distances from

the land-cover class distribution). Moreover, the automatic

clustering results are reported per polygon. As one can notice,

the data-driven clustering analysis is able to accurately detect

the dominant land-cover class present in the polygon. While in

the “Urban” polygon (Fig. 4a and Fig. 4g) only the samples

belonging to artificial surfaces (such as buildings or roads)

are selected, for the “Crop” polygon (Fig. 4b and Fig. 4g)
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 4: Polygon consistency analysis: (a)-(e) examples of polygon selected to represent the land-cover class (Bhattacharyya

distance ≤ 65th percentile of the cluster distances). (g)-(l) Clustering results obtained on the considered polygons (i.e., samples

considered to generate the land-cover class distribution). The represented land-cover classes are: (a),(g) “Urban”; (b),(h) “Crops”;

(c),(i) “Broadleaved”; (d),(j) “Water”; (e),(k) “Rock”; and (f),(l) “Snow”.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 5: Polygon consistency analysis. (a)-(e) Examples of discarded polygons (Bhattacharyya distance > 65th percentile of

the cluster distances). (g)-(l) Clustering results obtained on the considered polygons. According to the initial thematic product,

the polygon are associated to the following land-cover classes: (a),(g) “Urban”; (b),(h) “Crops”; (c),(i) “Broadleaved”; (d),(j)

“Water”; (e),(k) “Rock”; and (f),(l) “Snow”.

the samples of rocks and roads are discarded. Similarly, in

the polygon associated to the “Rock” label (Fig. 4e and Fig.

4k) the samples belonging to the grass are removed. Due

to the majority rule criterion, when no changes occurred on

the ground, the polygon label is correctly associated to the

dominant class present in the scene. By accurately removing

the samples that are not associated to the dominant class of

the polygon, we strongly improve the capability of the method

of selecting reliable units to generate accurate land-cover class

distributions. However, results show that some polygons are

not correctly associated to their labels.

Fig. 5 shows some examples of polygon discarded in

the polygon consistency analysis step. In the “Urban” and

“Water” polygon the dominant land-cover class is no more

represented by artificial surfaces (Fig. 5a and Fig. 5g) or by

the lake (Fig. 5d and Fig. 5j), respectively. Moreover, due to

deforestation, the “Broadleaved” polygon is now characterized

by the presence of bare land (Fig. 5c and Fig. 5i). Finally,

one of the most critical land-cover class to deal with is

the “Snow” due to its seasonal variability. Although in the

considered thematic products the “Snow” class is defined as

permanent snow, polygons associated to this label may show

the presence of the land-cover usually covered by the snow,

thus affecting the majority rule criterion. However, the spectral

response of all these polygons is far from their land-cover class

distribution and thus, they can be discarded during the polygon

consistency analysis. Note that, differently from the spectral

filtering strategies performed at sample level, the considered

analysis does not remove informative samples since we are

working at polygon level. Moreover, the adaptive tuning of the

threshold to each land-cover class distribution (i.e., the 65th

percentile) automatically excludes the polygons far from the

distribution according to the spectral properties of the class.

D. Results of Land-Cover Map Update

Tab. IV shows the comparison between the accuracies ob-

tained when updating the 2012 CLC by the proposed method

and the baseline methods [25] and [27], later defined as
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TABLE IV: Land-cover map update result of the 2012 CLC map. The Overall Accuracy (OA%), User Accuracy (UA%), Producer Accuracy
(PA%) and Fscore (F1%) are reported for: (1) the supervised Random Forest tolerant noise classifier (Baseline) [25]; (2) the supervised SVM
classifier based on the outlier filtering approach (Baseline) [27]; (3) the proposed unsupervised land-cover map update approach.

Classes
Baseline Methods

Proposed Method
Random Forest (RM1) [25] Outlier Filtering (RM2) [27]

PA% UA% F1% PA% UA% F1% PA% UA% F1%

Urban 35.96 90.93 51.54 89.44 58.28 70.57 91.11 77.53 83.78

Crops 64.38 59.98 62.10 80.33 89.99 84.88 95.68 90.75 93.15

Broadleaved 78.21 83.65 80.84 98.44 90.34 94.22 99.33 89.87 94.36

Conifers 85.58 91.27 88.34 93.20 94.89 94.03 93.60 94.78 94.19

Grass 75.99 97.49 85.41 98.48 88.04 92.97 99.63 92.78 96.08

Water 99.17 99.86 99.51 100 99.83 99.91 99.93 99.90 99.91

Rocks 75.50 91.05 82.55 93.13 78.23 85.03 98.70 94.96 96.80

Snow 100 86.15 92.56 82.28 100 90.28 100 99.09 99.54

Shrubland 84.87 42.14 56.32 61.30 93.53 74.06 70.47 86.06 77.49

Mineral Site 100 0.02 0.05 72.10 97.64 82.95 75.96 99.14 86.02

OA % 75.08 88.61 93.16

Reference Method 1 (RM1) and Reference Method 2 (RM2),

respectively. The proposed approach obtained classification

results in terms of Fscore (F1%) equal or higher than the

baselines methods for all the classes. In particular, the F1%

achieved by the proposed method ranges from a 77.49% (for

the “Shrubland” class) to 99.91% (for the “Water” class),

whereas the RM1 ranges from 0.05% (for the “Mineral Site”

class) to 99.51% (for the “Water” class) and the RM2 ranges

from 70.57% (for the “Urban” class) to 99.91% (for the

“Water” class). Note that the proposed method is able to reach

high accuracy regardless of the land-cover class, whereas this

is not true for the baseline techniques. For instance the RM1

obtained an F1% of 0.05% and 56.32% on “Mineral Site” and

“Shrubland”, respectively, compared to 86.02% and 77.49%

of the proposed method. This is due to the fact that Random

Forest alone is not able to capture the models of the classes

having a low number of training samples [23]. By removing

the outliers using a spectral filtering technique, it is possible

to improve the classification accuracy, but the RM2 fails in

modelling complex land-cover classes. This is clearly visible

in the “Urban” class that reaches a User Accuracy (UA%)

of 58.28 compared to the 77.53% of the proposed method.

The spectral filtering approach discards all the samples far

from the core of the land-cover class distribution. However,

the “Urban” includes red and white building roofs, character-

ized by different spectral behaviour. As most of the samples

belongs to the red roof category, the outlier spectral filtering

discards all the white ones (identified as outliers). The two-

step procedure performed at polygon level allows us to remove

most of the noisy samples, while keeping the informative ones.

The effectiveness of the proposed approach is also confirmed

by the OA of 93.16% compared to the 75.08% and 88.61%

achieved by the RM1 and the RM2, respectively.

Fig. 6 shows the original 2012 CLC map, the map after the

legend conversion and the updated map for the whole study

area. To perform a qualitative analysis Fig. 7 shows different

portions of the updated 2012 CLC map, by presenting the

original map (Fig. 7a, e, i, m, q), the converted map (Fig. 7b,

f, j, n, r), one of the Sentinel 2 image used for the updating task

(Fig. 7c, g, k, o, s) and the updated map (Fig. 7d, h, l, p, t). Due

to the minimum mapping polygon unit of 25 ha, the CLC map

provides a high level description of the land-cover by removing

important geographical details such as the presence of rivers or

narrow roads (Fig. 7q). In contrast, the high spatial resolution

of Sentinel 2 images, allows us to produce an updated map that

represents the ground cover with a high geometric detail (see

Fig. 7t). The ensemble of SVMs accurately classifies pixels

belonging to the river and correctly delineates the geometrical

structure of all the artificial surfaces (both in terms of buildings

and roads). Similar results are depicted in Fig. 7p, which

shows the capability of the proposed method to accurately

classify land-cover classes similar from the spectral view point

such as “Mineral Site” and “Rock” due to the extraction of

reliable and informative samples from the map. Moreover,

the proposed method allows the semantic decomposition of

polygons associated to classes such as “Mixed Forest”, by

classifying the polygon pixels as “Broadleaved” or “Conifers”

(see Fig. 7d 7h 7l). Tab. V shows the quantitative evaluation of

the update performed on GlobLand30 by the proposed method

and the baseline methods RM1 and RM2. Similarly to the CLC

map case, the proposed method achieves accurate classification

results. The F1% achieved by the proposed method ranges

between a minimum of 79.34% (for the “Shrubland” class)

and a maximum of 100% (for the “Snow” class), whereas the

RM1 ranges from a minimum of 36.08% (for the “Shrubland”

class) to a maximum of 99.55% (for the “Water” class) and the

RM2 ranges from a minimum of 58.73% (for the “Shrubland”

class) to a maximum of 99.77% (for the “Water” class). Also

in this case, the proposed approach outperforms the baselines

on the minority classes.
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(a)

(b)

(c)

Fig. 6: 2012 CLC Map: (a) initial map, (b) map converted according to the LCCS standard, and (c) map updated with the

proposed method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 7: 2012 CLC map updating results on small portions of the considered test area: (a),(e),(i),(m),(q) original CLC map;

(b),(f),(j),(n),(r) converted CLC map; (c),(g),(k),(o),(s) one of Sentinel 2 images used to perform the update; and (d),(h),(l),(p),(t)

updated map.
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For instance, RM1 and RM2 obtained on the “Shrubland”

class a F1% of 36.08% and 58.73%, respectively, while

the proposed approach achieved 79.34%. Similarly, on the

“Crop” class the proposed method obtained a F1% of 92.58%

compared to 59.98% and 78.08% of the RM1 and the RM2,

respectively. Moreover, the proposed method obtained com-

parable classification results on the update of both the maps,

by achieving an OA% of 93.29 and of 93.16% starting from

GlobLand30 and 2012 CLC maps, respectively. Note that

results are provided at pixel level and no post-processing has

been applied to the updated maps.

Fig. 8 shows the original GlobLand30 map, the map after

the legend conversion and the updated map for the whole

study area. Although the 2012 CLC map has been produced

with a different geometric resolution and 2 years later than

GlobLand30, there is a good agreement on the land-cover

classes present in the scene (see Fig. 6a and Fig. 8a). Fig. 9

shows some qualitative examples of the updated GlobLand30

map, by presenting the original GlobLand30 map (Fig. 9a, e,

i, m, q), the converted map (Fig. 9b, f, j, n, r), one Sentinel

2 image of the TS (Fig. 9c, g, k, o, s) and the updated map

(Fig. 9d, h, l, p, t) for different portions of the considered study

area. Differently from the CLC map, this map is provided at a

higher spatial resolution (30m), even though from the semantic

view point no distinction are made for “Broadleaved” and

“Conifer” (both included in the “Forest” class), while “Mineral

Site” is included into the “Urban” semantic class. However,

the proposed approach further increases the geometric detail to

spatial resolution of 10 m while accurately updating the land-

cover map. This is also due to the fact that no aggregation is

performed on the updated map differently form the considered

thematic product. For instance, Fig. 9t shows the higher level

of detail provided by the updated map and the accurate

detection of the building present in the scene.

Tab. VI and VII report the computation times taken by an

Intel Core i7-7700 CPU running at 3.60 GHz, with 32 GB

of RAM using an implementation in MATLAB to update the

land-cover map on the considered study area (2680 × 5780

pixels representing an area of 1549 km2) starting from the

2012 CLC and the GlobLand30 maps, respectively. The model

selection and the SVM classification have been parallelized

over 5 cores for both the proposed method and the RM2, while

the RM1 was not parallelized due to its low computational

complexity. As expected the proposed method takes a higher

computational time with respect to the reference methods

due to the ensemble of 5 SVMs and the two step procedure

performed at polygon level. However, this increased time

results in a significant improvement of both the classification

accuracy and the reliability of the obtained land-cover map.

Note that the implementation of the proposed method can be

optimized by parallelizing the polygon analysis to extract the

reliable samples. Moreover, the classification time required

from the ensemble of SVMs can be decreased by increasing

the number of parallel tasks.

V. CONCLUSION AND DISCUSSION

In this paper, we presented a novel approach to the auto-

matic update of existing land-cover maps by classification of

recent TS of satellite MS images. The method is completely

unsupervised and does not assume to know the source of the

thematic product, which can be different from a RS data. The

main assumptions of the method are that: (1) the source map

is aggregated at polygon level according to a majority rule

approach, and (2) the legend can be converted into an exhaus-

tive set of classes discriminable using the spectral information

provided by the MS data used to perform the update. Under

these assumptions, it is possible to automatically extract a

reliable training set which can be used to update the thematic

product without any labor intensive manual analysis.

From the results obtained one can observe that the legend

conversion allows us to deal with a classification scheme

that represents the more widespread land-cover categories

that can be discriminated by using the spectral properties

of the MS data. The proposed system architecture allows

us to extract from the land-cover map a reliable pool of

labeled samples due to the two-step procedure performed at

polygon level, i.e., polygon k-means clustering and polygon

consistency analysis. The update is performed using a TS

made up of four Sentinel 2 images acquired between May

and September, which allows us to discriminate the set of

land-cover classes present in the scene. By sampling the

temporal signature of the considered classes in May, June,

July and September, we increase the classification accuracy

that can be obtained by using a single date acquisition. For

instance, in May pixels belonging to “Crop” may present a

similar spectral behavior to those belonging to “Grass” due to

analogous vegetation state. However, the use of the September

acquisition may solve the ambiguity as “Crop” pixels after

harvesting have a completely different spectral signature from

“Grass”. Note that denser TS should be used to deal with

a set of classes characterized by high temporal variability

during the year (i.e., rapid rate of change), while longer

TS of images can be employed to consider more complex

classification schemes (i.e., distinguish different cultivations).

In the first step the data-driven clustering approach discards

the samples belonging to the minority classes present in the

polygon (i.e., classes that are not associated to the polygon

label), while in the second step only the polygons having

the highest probability to be correctly labeled are considered.

This polygon analysis allows us to remove unreliable samples

without discarding informative samples useful to represent the

land-cover class distribution.

The pool of reliable units detected, by the proposed ap-

proach is used to train a multiple classifiers system that

results in more accurate and robust maps with respect to

the presence of noisy samples in the pseudo training sets

generated. The quantitative and qualitative analysis performed

on the obtained thematic products confirm the effectiveness

of the proposed approach, thus leading to reliable updated

thematic products. Moreover, due to the 10 m spatial resolution

of the Sentinel 2 data used to perform the update, the method

sharply increases to 10 m the geometric details of the outdated

maps (i.e., 100m for 2012 CLC and 30m for the GlobLand30).

For the 2012 CLC map, this spatial improvement leads to

a more accurate description of the thematic products from

the semantic view point by replacing polygons having mixed
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TABLE V: Land-cover map update result of the GlobLand30 map. The Overall Accuracy (OA%), User Accuracy (UA%), Producer Accuracy
(PA%) and Fscore (F1%) are reported for: (1) the supervised Random Forest tolerant noise classifier (Baseline) [25]; (2) the supervised SVM
classifier based on the outlier filtering approach (Baseline) [27]; (3) the proposed unsupervised land-cover map update approach.

Classes
Baseline Methods

Proposed Method
Random Forest (RM1) [25] Outlier Filtering (RM2) [27]

PA% UA% F1% PA% UA% F1% PA% UA% F1%

Urban 96.50 59.86 73.89 82.60 90.52 86.38 79.32 99.68 88.34

Crops 61.08 58.92 59.98 76.07 80.19 78.08 94.22 91.00 92.58

Forest 84.71 92.95 88.64 98.24 94.79 96.49 99.32 92.50 95.79

Grass 83.33 96.78 89.55 98.54 97.10 97.82 98.95 93.93 96.37

Water 99.10 100 99.55 100 99.55 99.77 100 99.86 99.93

Rocks 59.15 98.07 73.79 99.80 81.34 89.63 91.56 83.12 87.14

Snow 100 86.72 92.89 99.93 99.59 99.76 100 100 100

Shrubland 86.15 22.82 36.08 47.25 77.59 58.73 74.43 84.95 79.34

OA % 81.78 91.66 93.29

TABLE VI: Run times obtained on the considered study area (2680 × 5780 pixels representing an area of 1549 km2) for

updating the 2012 CLC map.

Time

Random Forest (RM1) [25] Outlier Filtering (RM2) [27] Proposed Method

Extract Map Labels 2.20 s 6.53 s 823.25 s

Feature Selection - 47.81 s 47.81 s

Train the Classifier 14.83 s 259.38 s 259.38 s

Classify the Study Area 2543.50 s 4968.86 s 24844.30 s

TABLE VII: Run times obtained on the considered study area (2680 × 5780 pixels representing an area of 1549 km2) for

updating the GlobLand30 map.

Time

Random Forest (RM1) [25] Outlier Filtering (RM2) [27] Proposed Method

Extract Map Labels 2.14 s 6.30 s 598.48 s

Feature Selection - 41.42 s 41.42 s

Classifier Train 16.46 s 126.56 s 126.56 s

Classify the Study Area 2053.50 s 2262.22 s 11311.10 s

labels such as “Mixed Forest” with more pure pixels associated

to “Broadleaved” or “Conifer”.

We would like to remark that the proposed method is

completely scalable since it extracts labeled samples all over

the map. Since the experimental analysis was performed at

local level, the ensemble of pseudo training sets used to train

the classification rule was applied to the entire study area.

However, when extending the analysis at national or continen-

tal level, the possibility of generating several ensemble of local

pseudo training sets is fundamental to: (i) face the problem

of the variability of the spectral signature, (ii) face the need

of modeling different climate regions, and (iii) automatically

generate locally balanced training sets, proportionate to the

original prior probability of the land-cover classes in the

considered area.

As future developments, we aim to design a system archi-

tecture based on the proposed approach to produce frequently

updated maps at large scale (e.g, national level). To this end,

we plan to define a pre-processing strategy that automatically

generate cloud free composites that can be used to update

the existing thematic products at seasonal level. The system

would allow a constant land-cover monitoring performed at

high spatial resolution in an unsupervised way. In this context,

we aim to define a post-processing strategy to generate the map

at object level (thus removing noisy pixels).



15

(a)

(b)

(c)

Fig. 8: GlobLand30 Map: (a) initial map, (b) map converted according to the LCCS standard, and (c) map updated with the

proposed method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 9: GlobLand30 land-cover map updating results on small portions of the considered test area: (a),(e),(i),(m),(q) original

GlobLand30 map; (b),(f),(j),(n),(r) converted GlobLand30 map; (c),(g),(k),(o),(s) one of Sentinel 2 images used to perform the

update; and (d),(h),(l),(p),(t) updated map.
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[32] S. Faroux, A. K. Tchuenté, J.-L. Roujean, V. Masson, E. Martin, and
P. Le Moigne, “Ecoclimap-ii/europe: A twofold database of ecosystems
and surface parameters at 1 km resolution based on satellite information
for use in land surface, meteorological and climate models,” Geoscien-

tific Model Development, vol. 6, no. 2, p. 563, 2013.

[33] R. G. Congalton, J. Gu, K. Yadav, P. Thenkabail, and M. Ozdogan,
“Global land cover mapping: A review and uncertainty analysis,” Remote

Sensing, vol. 6, no. 12, pp. 12 070–12 093, 2014.
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APPENDIX

The mathematical notation used in this paper is listed in the following table. Symbols are reported in the order of appearance.

Symbol Description

B number of pixels of the MS images

d spectral channels of the MS images

Xq qth MS image acquired at time tq , where Xq ∈ R
B×d

Q number of MS images of the TS

n number of spectral channels of the TS of images, where n = d ·Q
X TS of MS images, where X ∈ R

B×n

xb multitemporal spectral vector of the TS, where xb ∈ R
1×n

M Source Thematic Product

ωu uth land-cover class

U number of land-cover classes of the source map legend

Ω Set of land-cover classes of the source thematic product, where Ω = {ωu}Uu=1

λj jth polygon of the source thematic map

P Set of polygons of the source thematic product, where P = {λj}j
Uc number of land-cover classes converted from the source map legend

Ωc Set of converted land-cover classes, where Ωc = {ωu}Uc

u=1

l labels associated to the multitemporal vectors of the TS, where l ∈ R
B×1

p polygons associated to the multitemporal vectors of the TS, where l ∈ R
B×1

Bj number of multitemporal vectors associated to the jth polygon

Pj = X(pi=λj ,:) set of multitemporal vectors associated to the jth polygon, with Pj ∈ R
Bj×n

Kj number of clusters automatically detected in the polygon Pj

{C1
j ,C2

j , . . . ,C
Kj

j } set of clusters derived by partitioning Pj

Nk
j number of multitemporal vectors associated to the kth cluster Ck

j

mk centroid of Ck
j

m centroid of Pj

Nu number of clusters associated to the land-cover class ωu

µu mean value of ωu

Σu covariance matrix of ωu

µj mean value of Cj

Σj covariance matrix of Cj

{T1, T2, · · · , TM} set of M pseudo training sets

{f1, f2, · · · , fM} set of decision functions of the ensemble of SVM classifiers


