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1 Introduction

Point estimation of spatial models is well known to be a difficult issue. One
general reason is that, from a probabilistic point of view, a spatial model is a
random field, typically characterized by a complex dependence structure, of
which only a single realization is available for estimation. More specifically,
what makes estimation overly complicated is the computational intractabil-
ity of the normalizing constant of the joint density, even for moderate lattice
sizes. This problem is particularly serious for Maximum Likelihood Esti-
mation (MLE) procedures, as the normalization constant depends on the
parameters of the model, and thus cannot be ignored in the maximization
of the likelihood function.

On the other hand, the conditional distributions at single sites, given
values at neighboring locations, usually admit simple representations. Ex-
ploiting this idea, Besag (1975) developed the so-called Maximum Pseudo-
Likelihood Estimation (MPLE) method, which is still very popular in prac-
tical applications.

MPLE is the earliest and simplest approach to estimation of the param-
eters of the most important model for spatially dependent binary random
variables, i.e. the autologistic model. As will be made clear in Sect. 2,
MPLE is based on the pseudo-likelihood function, defined by the product of
the conditional distributions at all locations given the values at neighboring
locations. To obtain the estimators, the pseudo-likelihood is maximized with
respect to the parameters as if it were a likelihood, i.e. by means of stan-
dard logistic regression estimation techniques. However, the two functions
coincide exactly if the observations at different locations are independent,
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a condition that is only satisfied in trivial cases. As a result, PMLEs are
consistent and asymptotically normal (Geman and Graffigne, 1987; Comets,
1992; Guyon and Künsch, 1992) but not efficient, with a loss of efficiency
positively related to the (absolute) value of the spatial dependence param-
eter.

Given that the difficulties are mostly caused by the normalization con-
stant, research has focused on methods of evaluating it, possibly in an ap-
proximate way. The pioneering work by Ogata and Tanemura (1984) devel-
ops various techniques for approximating the likelihood function. Moyeed
and Baddeley (1991) use an iterative stochastic approximation approach.
Huffer and Wu (1998) employ Markov Chain Monte Carlo methods. Gu and
Zhu (2001) compute MLEs by combining Markov Chain Monte Carlo and
stochastic approximation methods. Huang and Ogata (2002) propose a gen-
eralization of Maximum Pseudo-Likelihood. Friel and Pettitt (2004) develop
a method for exact MLE of the autologistic model that is simulation-free for
lattices with smallest row or column not larger than 10 and can be extended
to larger sizes by means of Monte Carlo techniques. Hughes et al. (2011) pro-
pose an approach, called Monte Carlo maximum likelihood, that maximizes
numerically an approximation of the likelihood function. Finally, Wang and
Zheng (2013) use expectation-maximization pseudo-likelihood and Monte
Carlo expectation-maximization likelihood.

Recently, MLE for intractable likelihoods (see Murray et al., 2006, for
a useful classification) has received some attention in the literature, mostly
because various simulation-based approaches allow to approximate the like-
lihood in these setups. In this paper we propose to extend to the autologistic
model the Approximate MLE (AMLE) method developed by Rubio and Jo-
hansen (2013). In short (see Sect. 3 below for details), the most appealing
feature of this approach is that it allows to obtain MLEs without perform-
ing a formal maximization of the likelihood function. Thus, it is the ideal
candidate for the computation of MLE of spatial models, because the prob-
lem of evaluating the normalizing constant is bypassed. Moreover, as long
as we are able to sample the model to be estimated, its implementation is
straightforward, and can be extended to other spatial models with essen-
tially no modifications. Finally, as the simulation of the autologistic model
is usually based on the Metropolis algorithm, which generates in a sequential
manner a single random variable for each location, the method works well
even for very large dimensions, as the only limit is the machine’s physical
memory. The two last features are non-negligible strengths with respect to
existing approaches, often characterized by involved implementation and/or
poor performances for large lattice sizes.

The rest of this paper is organized as follows: Section 2 reviews the
autologistic model, Section 3 introduces the AMLE methodology and de-
velops its implementation to the autologistic model, Section 4 presents first
the results of extensive Monte Carlo experiments aiming at a comparison
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of AMLE, MLE and MPLE in terms of Mean Squared Error and then a
real-data application. Finally, Section 5 concludes.

2 The autologistic model

By spatial model we mean a statistical model for a spatial pattern of data
y = (yi ∈ A ⊂ Rs, i = 1, . . . , C, where Rs is the s-dimensional Euclidean
space) having density

f(y|θ) =
e−Q(y,θ)

Z(θ)
. (1)

The normalizing constant is given by Z(θ) =
∫

AC e−Q(y,θ)µ(dy), where
µ(dy) is Dirac’s delta measure δy(dy) in the discrete case and dy in the
continuous case.

The autologistic model is a special case of (1). The joint distribution of
ỹ = (ỹ1, . . . , ỹL)′, where ỹ = vec(Ỹ ), Ỹ = (ỹi,j) (i = 1, . . . , N ; j = 1, . . . ,M ,
L = MN) and vec is the operator that stacks the columns of a matrix on
top of one another, is given by (Strauss, 1992; Casella and Robert, 2004,
Example 5.8; Arbia, 2006, Sect. 2.4.2.3)

p(ỹ) =
1

Z(J,H)
exp







−J
∑

(i,j)∈N

ỹiỹj −H
∑

i

ỹi







, (2)

where J ∈ R and H ∈ R are parameters, N is a prespecified neighborhood
equivalence relation, ỹi ∈ {−1, 1} and Z(J,H) =

∑

i,j exp{−J
∑

(i,j)∈N ỹiỹj−
H

∑

i ỹi} is the normalization constant. The model is of paramount impor-
tance in statistical mechanics, where it is known as Ising model of ferromag-
netism (Cipra, 1987).

Let now yi = (ỹi + 1)/2. The conditional representation of (2) is given
by

P (yi = 1|yj , j $= i) =
exp{2(H + J

∑

j yj)}

1 + exp{2(H + J
∑

j yj)}
=

exp{α+ β
∑

j yj}

1 + exp{α+ β
∑

j yj}
.

(3)
If the yjs were independent, this would be a logistic regression model. Un-
fortunately, as they are dependent, MLE must be based on the joint distri-
bution (2), whose normalizing constant Z(J,H) becomes rapidly intractable
from the computational point of view as L increases.
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3 AMLE of spatial models

3.1 A review of AMLE

Given a sample (y1, . . . ,yn) ∈ Rq×n from a distribution with cumulative
distribution function FY (y;θ), let the likelihood function be denoted by
L(θ;y1, . . . ,yn), where θ ∈ Θ ⊂ Rp is a vector of parameters. Assume for a
moment a Bayesian setup, such that π(θ) is the prior distribution of θ and
π(θ|y) is the posterior, given by

π(θ|y) =
f(y|θ)π(θ)

∫

Θ
f(y|t)π(t)dt

. (4)

Suppose that we can construct the following approximation of the likelihood
function:

f̂ε(y|θ) =

∫

Rn

Kε(y|z)f(z|θ)dz, (5)

where Kε(y|z) is a normalized Markov kernel and ε is a scale parameter.
Plugging (5) into (4) we obtain an approximation of the posterior:

π̂ε(θ|y) =
f̂ε(y|θ)π(θ)

∫

Θ
f̂ε(y|t)π(t)dt

.

Note that, for a uniform prior on a suitable set D ⊂ Rp, the maximization
of the likelihood function and the maximization of the posterior density are
equivalent.

The typical kernel Kε(y|z) is defined as follows:

Kε(y|z) ∝

{

1 ρ(η(y), η(z)) < ε,

0 otherwise,
(6)

where η : Rq×n → Rl is a summary statistic, ρ : Rq×n × Rq×n → R+ is
a metric and ε > 0. The simplest version uses η(y) = y, in which case
we obtain the Approximate Bayesian Computation (ABC) algorithm intro-
duced by Pritchard et al. (1999). For reasons that will be outlined below,
when employing this technique in the AMLE setup we shall use the sufficient
statistics of the model, if available.

The preceding discussion motivates the following algorithm:

Algorithm 1 (AMLE)

1. Obtain a sample θ∗
ε = (θ∗

ε,1, . . . ,θ
∗
ε,m)

′ from the approximate posterior
π̂ε(θ|y); m is commonly called ABC sample size;

2. Use this sample to construct a nonparametric estimator φ̂ of the den-
sity π̂ε(θ|y);
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3. Compute the maximum of φ̂, θ̃m,ε. This is an approximation of the
MLE θ̂.

Step 1 can be carried out using any algorithm, as it is not required that
the sample be independent. The most common solution is the simple ABC
algorithm.

Algorithm 2 (simple ABC)

1. Simulate θ′ from the prior distribution π(·);

2. Generate y = (y1, . . . , yn)′ from f(·|θ′);

3. Accept θ′ with probability ∝ Kε(y|z), otherwise return to Step 1.

Rubio and Johansen (2013) study the asymptotic properties of the esti-
mator, which are particularly important because they can give some insight
into the choice of the input parameters. The crucial result is that, under
a mild condition about Kε(x|y), π̂ε(θ|x) converges pointwise to π(θ|x) as
ε → 0, for any θ ∈ D.

A corollary of the preceding result suggests how to choose the summary
statistic: if η is a sufficient statistic for θ, the ABC approximation con-
verges pointwise to the posterior distribution. It is therefore clear that, if a
sufficient statistic is available for θ, one should use it in the algorithm.

Finally, under the additional condition of equicontinuity of π̂ε(·|y) on D,
it is possible to show that limε→0 π̂ε(θ̃|y) = π(θ̃|y), where θ̃ is the unique
maximizer of π(·|y).

Suppose now to have a simple random sample θ∗
ε = (θ∗

ε,1, . . . ,θ
∗
ε,m)′ from

the approximate posterior π̂ε(·|x) with mode θ̃ε and an estimator θ̃m,ε of
θ̃ε obtained from θ∗

ε and such that θ̃m,ε → θ̃ε almost surely when m → ∞.
From these results it follows that, for any γ > 0, there exists ε > 0 such that
limm→∞ |π̂ε(θ̃m,ε|y)− π(θ̃|y)| ≤ γ almost surely.

It is worth noting that θ̃m,ε is an approximation of the MLE, with asymp-
totic variance related to the numerical value of ε: in particular, depending
on ε, the estimator may be more or less efficient than the MLE. Ionides
(2005) has indeed shown that the maximization of a smoothed approxima-
tion of the likelihood such as (5) may be preferable to the maximization of
the likelihood itself.

In step 2, Rubio and Johansen (2013) suggest to use Kernel Density
Estimation (KDE). The performance of KDE deteriorates as the dimension
of θ increases. Intractable likelihoods often have few unknown parameters,
as is the case of the autologistic likelihood considered in this paper, which
has only two unknown parameters. Nevertheless, an increase in the number
of parameters is likely to cause higher computational costs.
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3.2 AMLE of the autologistic model

Let Y = (y1,1, . . . , yN,M) be the N × M matrix containing the realiza-
tion of an autologistic model. From now on, we will use the notation
y = vec(y1,1, . . . , yN,M). The implementation of AMLE requires specific
versions of Algorithms 1 and 2 and appropriate choices of the numerical
values of the input parameters. We consider Algorithm 2 first.

One of the assumptions of AMLE is that the prior is uniform. When
the support is a compact subset of Rp it may make sense to use the full
support, but, when the domain is the p-dimensional Euclidean space, we
need starting values and intervals around them, sufficiently wide to contain
the true parameter values. If the distribution of the initial parameters is
known, the widths can be approximately computed analytically, otherwise
Monte Carlo techniques can be easily implemented.

For the autologistic model, the natural choice of the starting value is

the MPLE estimator θ̂
MPLE

. We then sample candidate values of the pa-
rameters from the U [θ̂MPLE

i + di, θ̂MPLE
i + ui] distributions, where di ≤ 0

and ui ≥ 0 (i = 1, 2) are such that the intervals [θ̂MPLE
i + di, θ̂MPLE

i + ui]
contain with very high probability the true values of the parameters.

The choice of di and ui can be based on a simulation experiment, con-
sisting in simulating B times the autologistic model and computing 99.9%
confidence intervals. The parameters di and ui are then given by the bounds
of the confidence intervals. In the present context, we use B = 100.

We know from theory that, if η in (6) is a sufficient statistic for θ, the
AMLE algorithm has favorable convergence properties. Sufficient statis-
tics for the autologistic model (2) are given by

∑

i ỹi and
∑

(i,j)∈N ỹij.

In terms of (3), they can be conveniently rewritten as S1 =
∑L

i=1 yi and

S2 =
∑M−1

i=1

∑N
j=1 I{yi,j=yi+1,j} +

∑M
i=1

∑N−1
j=1 I{yi,j=yi,j+1}, where I is the in-

dicator function.
We are now in a position to detail Algorithm 2 in the autologistic case:

Algorithm 3

1. Simulate α′ ∼ U [α̂MPLE+d1, α̂MPLE+u1], β′ ∼ U [β̂MPLE+d2, β̂MPLE+
u2];

2. Simulate a realization y′ of the autologistic model with parameters α′

and β′;

3. Compute the sufficient statistics S′
1 and S′

2 using y′. If the Euclidean
distance ||S−S′|| =

√

(S1 − S′
1)

2 + (S2 − S′
2)

2 is smaller than ε, where
S = (S1, S2), S

′ = (S′
1, S

′
2) and S1 and S2 are the sufficient statistics

computed with the observed data, accept α′ and β′; otherwise, return
to Step 1.
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Table 1: Bias, variance and MSE of classical MLE and AMLE of p for
X ∼ Bin(n, p) with n = 100 and p = 0.5. The results shown are averages
of 100 Monte Carlo replications. The remaining parameters are m = 1000,
D = [0, 1].

MLE AMLE
ε = 0.01 ε = 0.1 ε = 0.5

bias 4.10 · 10−3 2.83 · 10−4 1.72 · 10−3 1.56 · 10−2

variance 2.23 · 10−3 5.49 · 10−5 2.98 · 10−4 5.64 · 10−2

MSE 2.25 · 10−3 5.50 · 10−5 3.01 · 10−4 5.66 · 10−2

rejection rate 0.990 0.792 0.020

The simulation of the autologistic model at Step 2 is carried out by means
of the Metropolis algorithm (Metropolis et al., 1953; Gu and Zhu, 2001, p.
346; Huang and Ogata, 2002, p. 6) with 500 Monte Carlo steps. Step 3 is
based on standard kernel density estimation methods: analogously to Rubio
and Johansen (2013), we use the kde command of the ks package of R to
compute the nonparametric estimator φ̂ of the density π̂ε(θ|y). Finally, we
compute θ̂ = argmax(φ̂).

Besides D, in order to use the algorithm one has to set the parameters
m and ε. The choice is problem-dependent and will be examined thoroughly
in the next section. Before focusing on the autologistic model, we show the
results of a toy simulation experiment that illustrates how the variance of
the estimator depends on ε.

Example 1. We simulate B = 100 times a binomial random variable X ∼
Bin(n, p) with n = 100 and p = 0.5. At each replication, we estimate p
by means of the MLE p̂ = x/n and by means of AMLE, using an ABC
sample size m = 1000, D = [0, 1] and ε ∈ {0.01, 0.05, 0.1}. It is well-known
from classical MLE asymptotic theory that var(p̂) ≈ p(1 − p)/n = 0.0025.
Table 1 gives the bias, the variance and the MSE of the two estimators.
AMLE is clearly preferable to MLE, in terms of variance and MSE, for
ε ∈ {0.01, 0.05}, whereas MLE is better for ε = 0.5. The rejection rate is
given by B(1 −m/

∑B
i=1 Ti), where Ti is the number of replications of the

ABC algorithm needed to generate m observations from π̂ε(θ|y) at the i-th
replication of Algorithm 3. Whereas with ε = 0.5 almost all observations
are accepted, the computational cost associated to the case ε = 0.01 is much
larger, because approximately 99% of the simulated parameter values are
rejected.
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4 Numerical experiments

We now turn to the simulation experiments concerning the use of AMLE for
estimating the autologistic model. As said above, three parameters need to
be set as input of the algorithm. In doing this, we have to face a trade-off
between computational burden and precision of the estimators. In partic-
ular, the precision increases as ε gets smaller and m gets larger. D is less
important because, provided it includes the true parameter value, it mainly
affects the rejection rate (Rubio and Johansen, 2013).

We note first that there is a negative relationship between ε and the

rejection rate rr, because rr is given by rr
def
= #{y′ : |η(y)− η(y′)| > ε}/B,

where B is the number of replications, and

lim
B→∞

rr = P (|η(y)− η(y′)| > ε). (7)

Application of AMLE to the autologistic model is quite heavy from the
computational point of view. Suppose indeed to be interested in implement-
ing Algorithm 3 with m = 100 and to use a value of ε such that the rejection
rate is rr = 0.99. Then the total number of autologistic models that need
to be simulated is 10 000. Using the Metropolis algorithm with 500 steps,
the total number of random variables to be simulated is 500 ·M ·N · 10 000.

The following simulation experiments are based on setups similar to Gu
and Zhu (2001), Huang and Ogata (2002) and Friel and Pettitt (2004),
so that the results obtained with AMLE are comparable to exact MLEs
produced by their procedures. In detail, the three experiments carried out
in this paper are organized as follows:

1. Simulate an N × M autologistic model with N = 125 and M = 12.
This is the dimension of the real-data analysis carried out in this paper
as well as in Gu and Zhu (2001) with the Wiebe’s wheat data (see be-
low). The hyperparameters are α = 0 and β ∈ {−0.4,−0.2, 0, 0.2, 0.4}.
α is treated as a known parameter, so that we only estimate β.

2. Same as 1, but now the lattice has M = N = 64, as in Gu and Zhu
(2001)’s Monte Carlo investigations.

3. Analogously to Friel and Pettitt (2004), simulate a N×M autologistic
model with N = 12 and M = 100. The hyperparameters are α ∈
{−0.3, 0, 0.3} and β ∈ {−0.3,−0.1, 0, 0.1, 0.3}. Both parameters are
considered unknown and therefore estimated from the simulated data.

All the simulations are repeated B = 15 times. In order to com-
pare the estimators, we use the Root-Mean-Square-Error (RMSE), given

by RMSE(θ̂) =
√

b(θ̂)2 + var(θ̂), where b(θ̂) = (1/B)
∑B

i=1 θ̂i− θ is the bias,
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Table 2: Bias, standard deviation, Root-Mean-Squared Error and rela-
tive efficiency of β̂AMLE vs β̂MPLE for various values of β, with N =
125, M = 12 and α known. Relative efficiency is defined as RelEff =
RMSE(β̂AMLE)/RMSE(β̂MPLE).

Bias Sd RMSE RelEff
(×10−2) (×10−2) (×10−2)

β = −0.4
MPLE 3.39 0.67 3.45

0.43
AMLE 1.20 0.89 1.49

β = −0.2
MPLE 3.06 0.64 3.13

0.57
AMLE −1.51 0.95 1.79

β = 0
MPLE −0.37 0.61 0.71

1.04
AMLE 0.39 0.63 0.74

β = 0.2
MPLE −2.21 0.74 2.34

0.34
AMLE −0.16 0.77 0.78

β = 0.4
MPLE −2.78 0.55 2.83

0.23
AMLE −0.22 0.62 0.65

var(θ̂) = (1/B)
∑B

i=1(θ̂i −
ˆ̄θ)2 is the variance and ˆ̄θ = (1/B)

∑B
i=1 θ̂i is the

sample mean.
Before carrying out the experiments outlined above, we perform AMLE

with α = 0 and β = 0.4 with various values of ε, in order to get some insight
into the impact of ε on the performance of the algorithm. Fig. 1 shows the
results for ε ∈ {5, . . . , 15} and m ∈ {200, 400}. For comparison purposes,
we also report the RMSE of the MPLE estimator.

The graph suggests that the RMSE is essentially the same for all values
of ε, as the differences seem to be random and mainly related to sampling
variability. In the following we use ε = 9, as it is the numerical value
corresponding to the smallest RMSE, and m = 200, as m = 400 doubles
computing time with no significant precision improvement.

Tables 2 and 3 give numerical values of bias, standard deviation, RMSE
and relative efficiencies, measured as RMSE(β̂AMLE)/RMSE(β̂MPLE), re-
spectively for N = 125, M = 12 and for N = M = 64. Figure 2 shows rela-
tive efficiencies of β̂AMLE with respect to β̂MPLE both for N = 125, M = 12
and for N = M = 64.

From the tables and the figure, at least three facts emerge clearly. First,
the relative efficiency of AMLE gets larger as β increases in absolute value;
this is unsurprising, as MPLE corresponds to MLE when β = 0, and the
loss of efficiency is an increasing function of |β|. Second, the improvement
in relative efficiency brought by AMLE seems to be different for positive
and negative spatial dependence. This outcome may be partly explained by
the sampling variability related to the small number of replications, but not
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Figure 1: RMSE of three estimators of β (univariate case, hyperparameters
α = 0,β = 0.4, sample sizes m ∈ {200, 400}).
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Table 3: Bias, standard deviation, Root-Mean-Squared Error and relative
efficiency of β̂AMLE vs β̂MPLE for various values of β, with N = M = 64.
Relative efficiency is defined as RelEff = RMSE(β̂AMLE)/RMSE(β̂MPLE).

Bias Sd RMSE RelEff
(×10−2) (×10−2) (×10−2)

β = −0.4
MPLE 3.30 0.62 3.36

0.19
AMLE 0.27 0.58 0.64

β = −0.2
MPLE 1.50 0.37 1.54

0.33
AMLE 0.09 0.49 0.50

β = 0
MPLE 0.11 0.43 0.45

1.07
AMLE 0.04 0.48 0.48

β = 0.2
MPLE 1.34 0.56 1.45

0.61
AMLE 0.45 0.75 0.88

β = 0.4
MPLE 2.85 0.52 2.89

0.24
AMLE 0.43 0.56 0.70

β
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el
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ffi
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−0.4 −0.2 0 0.2 0.4

0
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N = 125, M = 12 

N = M = 64 

Figure 2: Relative efficiency of y of β̂AMLE with respect to β̂MPLE, mea-
sured as RMSE(β̂AMLE)/RMSE(β̂MPLE) in the univariate case for α = 0
and β ∈ {−0.4,−0.2, 0, 0.2, 0.4}, with m = 200.
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new in the spatial statistics literature (see, e.g., Schabenberger and Gotway,
2002; Griffith and Arbia, 2010; Arbia et al., 2011; Arbia et al., 2013), where
“asymmetric” results corresponding to setups with spatial dependence of the
same magnitude but different sign are well known. Finally, the smaller MSE
of AMLE is entirely due to a smaller bias, whereas the standard deviation of
the two estimators is approximately the same or slightly larger for AMLE,
probably because of some extra Monte Carlo sampling variability.

For comparison purposes, we recall that for model (2) with α = 0 on a
64× 64 grid, Huang and Ogata (2002) find via simulation that the MLE of
J has efficiencies of 0.983, 0.963, 0.897, and 0.750 with respect to PMLE for
J ∈ {0.1, 0.2, 0.3, 0.4}1 . For the same model on a 125× 12 grid, Gu and Zhu
(2001) find efficiencies of 0.173, 0.770, 1.106, 0.635 and 0.180 with respect
to PMLE for J ∈ {−0.4,−0.2, 0, 0.2, 0.4}.

The rejection rate is between 0.991 and 0.993 for the experiments in
Table 2 and between 0.992 and 0.994 for those in Table 3. Thus, to obtain a
sample of 200 parameter values, the number of simulations of the autologistic
model is approximately equal to 25 000 in the first case and to 28 000 in the
second case. The amount of time needed ranges between about two and two
and a half hours per replication on a 3.16 GHz machine.

We now turn to the bivariate case, using first ε = 9 andm = 200 as in the
univariate case. The results in Table 4 show that overall AMLE performs
better than MPLE, but the difference is smaller than in the preceding tables.
One reason may be that AMLE needs a smaller ε and/or a larger m to reach
convergence. However, before considering this issue, it is worth noting that
this result is also related to a peculiar feature of the MPLE estimators.

Similarly to the univariate cases, the improvement is mainly due to a
smaller bias component. For some parameter combinations (for example,
when α = 0 and β = −0.3), MPLE is approximately unbiased, so that
the two estimators have a similar MSE. In these instances, concluding that
MPLE performs well seems more appropriate than concluding that AMLE
performs poorly, as α̂MPLE is approximately unbiased. Continuing the anal-
ysis of the same example, when α = 0 and β = −0.3, β̂AMLE has a smaller
RMSE than β̂MPLE , because the latter shows a systematic bias. The other
cases where the difference is small mostly correspond to |β| = 0.1 and are
therefore not surprising, because, when |β| → 0, MPLEs converge to MLEs.

As of the convergence issue, note that the need of a smaller ε and/or a
larger m for reaching convergence in the bivariate case may be justified by
the fact that kernel density estimation works worse when the dimension of
the parameter space is high. Thus, we repeated some of the experiments
with ε = 5 and m = 500. Detailed results are displayed in Table 5 and

1Note that Huang and Ogata (2002) measure the efficiency as the ratio of the MSEs.
In order to be able to carry out meaningful comparisons, we have taken the squared root
of the efficiencies reported in their paper, which corresponds to the ratio of the RMSEs.
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Table 4: Bias, standard deviation, Root-Mean-Squared Error and relative
efficiency of α̂AMLE vs α̂MPLE and β̂AMLE vs β̂MPLE for various values of
α and β, with N = 12, M = 100, ε = 9 and m = 200. Relative efficiency is
defined as RelEff = RMSE(θ̂AMLE)/RMSE(θ̂MPLE), where θ is equal to α
or β.

Bias Sd RMSE RelEff
(×10−2) (×10−2) (×10−2)

α = −0.3, β = −0.3

α̂MPLE 1.895 2.395 3.054
0.819

α̂AMLE
−0.079 2.373 2.502

β̂MPLE 3.167 0.986 3.318
0.324

β̂AMLE
−0.002 1.076 1.076

α = −0.3, β = −0.1

α̂MPLE 1.988 1.473 2.474
0.791

α̂AMLE 0.931 1.723 1.958

β̂MPLE 0.256 0.857 0.894
0.988

β̂AMLE
−0.234 0.851 0.883

α = −0.3, β = 0.1

α̂MPLE 1.919 1.583 2.488
0.806

α̂AMLE 1.091 1.682 2.005

β̂MPLE 1.650 1.375 2.148
0.824

β̂AMLE 1.087 1.396 1.769

α = −0.3, β = 0.3

α̂MPLE
−1.493 1.735 2.288

0.665
α̂AMLE

−0.035 1.592 1.592

β̂MPLE
−2.684 0.959 2.850

0.349
β̂AMLE

−0.068 0.993 0.995

α = 0, β = −0.3

α̂MPLE
−0.040 1.860 1.860

1.006
α̂AMLE

−0.206 1.859 1.871

β̂MPLE 1.362 0.835 1.598
0.689

β̂AMLE
−0.466 0.998 1.101

α = 0, β = −0.1

α̂MPLE 0.181 1.806 1.815
1.000

α̂AMLE 0.123 1.812 1.816

β̂MPLE
−0.085 1.075 1.079

0.992
β̂AMLE 0.019 1.070 1.070

α = 0, β = 0.1

α̂MPLE
−0.449 1.376 1.448

0.824
α̂AMLE

−0.454 1.103 1.193

β̂MPLE 0.534 0.850 1.004
0.897

β̂AMLE 0.047 0.900 0.901

α = 0, β = 0.3

α̂MPLE 1.503 1.621 2.211
0.498

α̂AMLE 0.213 1.079 1.100

β̂MPLE
−3.013 1.432 3.336

0.518
β̂AMLE

−1.167 1.274 1.728

α = 0.3, β = −0.3

α̂MPLE
−1.935 1.819 2.656

0.832
α̂AMLE

−0.779 2.067 2.209

β̂MPLE 1.753 0.812 1.932
0.814

β̂AMLE
−1.331 0.837 1.572

α = 0.3, β = −0.1

α̂MPLE
−0.419 1.396 1.457

0.992
α̂AMLE 0.544 1.390 1.446

β̂MPLE 2.264 1.169 2.548
0.852

β̂AMLE 1.489 1.354 2.171

α = 0.3, β = 0.1

α̂MPLE 2.467 1.381 2.827
0.512

α̂AMLE 0.525 1.348 1.446

β̂MPLE
−1.964 0.783 2.115

0.538
β̂AMLE

−0.776 0.831 1.137

α = 0.3, β = 0.3

α̂MPLE 2.624 1.389 2.969
0.780

α̂AMLE 1.681 1.594 2.317

β̂MPLE
−2.676 0.639 2.751

0.769
β̂AMLE

−1.703 1.256 2.116
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Table 5: Bias, standard deviation, Root-Mean-Squared Error and relative
efficiency of α̂AMLE vs α̂MPLE and β̂AMLE vs β̂MPLE for various values of
α and β, with N = 12, M = 100, ε = 5 and m = 500. Relative efficiency is
defined as RelEff = RMSE(θ̂AMLE)/RMSE(θ̂MPLE), where θ is equal to α
or β.

Bias Sd RMSE RelEff
(×10−2) (×10−2) (×10−2)

α = −0.3, β = −0.3

α̂MPLE 1.106 2.117 2.388
1.013

α̂AMLE
−0.729 2.308 2.420

β̂MPLE 2.991 0.849 3.109
0.305

β̂AMLE
−0.036 0.948 0.949

α = 0, β = −0.3

α̂MPLE
−1.512 1.500 2.130

1.006
α̂AMLE

−1.387 1.788 2.143

β̂MPLE 2.042 0.782 2.186
0.432

β̂AMLE
−0.046 0.943 0.945

α = 0, β = −0.1

α̂MPLE
−0.552 1.864 1.944

0.951
α̂AMLE

−0.467 1.788 1.848

β̂MPLE 1.086 1.192 1.612
0.968

β̂AMLE
−0.021 1.561 1.561

α = 0, β = 0.1

α̂MPLE 1.004 1.475 1.784
0.831

α̂AMLE 0.185 1.471 1.483

β̂MPLE
−1.821 1.208 2.185

0.919
β̂AMLE

−0.962 1.764 2.009

α = 0, β = 0.3

α̂MPLE
−1.778 1.270 2.185

0.689
α̂AMLE

−0.975 1.148 1.592

β̂MPLE
−2.507 1.094 2.735

0.413
β̂AMLE 0.034 1.130 1.130

α = 0.3, β = 0.3

α̂MPLE 2.633 1.636 3.100
0.757

α̂AMLE 1.708 1.611 2.348

β̂MPLE
−2.770 0.964 2.933

0.349
β̂AMLE

−0.348 0.962 1.023

14



α, β

R
el

at
ive

 e
ffi

ci
en

cy

(−0.3, −0.3) (−0.3, −0.1) (−0.3, 0.1) (−0.3, 0.3) (0, −0.3) (0, −0.1) (0, 0.1) (0, 0.3) (0.3, −0.3) (0.3, −0.1) (0.3, 0.1) (0.3, 0.3)

0
0.

2
0.

4
0.

6
0.

8
1

ε = 9

ε = 5

Figure 3: RMSE of the estimator of β in the bivariate case for various
parameter values, ε ∈ {5, 9}, m = 500).

relative efficiencies are shown in Fig. 3.
Now the improvement obtained with AMLE is more significant, but

mostly for β̂. Moreover, the gain in efficiency of AMLE is much larger
when |β| is larger. Similarly to the univariate case, the relative efficiency of
the estimators of the intercept in cases with β = 0.3 and β = −0.3 is quite
different.

Analogously to the single-parameter case, for all the experiments in Ta-
ble 4 the rejection rate is between 0.991 and 0.993, so that, for simulating
m = 200 pairs of parameters, the computing times are about the same. As
for the setup of Table 5, the rejection rate is between 99.6 and 99.8%, so
that, in order to get 500 simulated parameter values, one needs to gener-
ate between approximately 130 000 and 230,000 autologistic models. The
necessary amount of time is between about 12 and 22 hours respectively.

4.1 Application: Wiebe’s wheat data

We apply the AMLE method to the same dataset used in Gu and Zhu (2001),
now available in the R package agridat (Wright, 2013). The data are the
results of a uniformity trial of 1500 plots of wheat conducted in Idaho in

15



1927, and refer to a rectangular lattice of dimension 125× 12. Values larger
than the mean are set equal to 1, the remaining values are equal to 0, so
that the variable of interest is binary. We use AMLE with m = 500 and
ε = 9, obtaining β̂AMLE = 0.376. The result is in good agreement with the
MLE computed by Gu and Zhu (2001), equal to 0.372 with an estimated
standard deviation of 0.012.

5 Conclusion

In this paper we have estimated the parameters of the autologistic model
via Approximate Maximum Likelihood. The finite sample properties of the
estimators depend on the parameters of the algorithm, so that we ran simu-
lation experiments aiming at measuring the precision of the estimators and
its relationship to the input parameters.

The choice of the scaling factor ε and of the ABC sample size m seems
to have a rather limited impact on the performance of the algorithm in the
single-parameter case, but is more important in the two-parameter model,
probably because kernel density estimation is less effective when the dimen-
sion of the space increases.

Overall, the performance of the algorithm is excellent in the univariate
case, where relative efficiency of AMLE in terms of RMSE, ranges between
19% and 43% when |β| = 0.4 and between 33% and 61% when |β| = 0.2.
In the bivariate case, and for different parameter values, the big picture is
similar, but only under more stringent conditions about ε and m, and espe-
cially as concerns the estimator of β: the relative efficiency of the estimators
of β is between 0.305 and 0.432 for |β| = 0.3, and between 0.919 and 0.968
for |β| = 0.1. It is worth noting explicitly that in the two-parameter ex-
ample our Monte Carlo evidence suggests that reducing ε and/or increasing
m gives estimators with smaller RMSE. Therefore these outcomes, which
are indeed essentially in line with MLE results obtained in the literature in
analogous frameworks, can probably be improved, at the cost of an increased
computational burden.

The AMLE method has two major advantages. First, it can be used for
any dimension of the lattice, as long as it can be simulated; basically, this
means that the only limit is the computer’s physical memory. Second, its
implementation is easy. The computational cost is rather large, but this is a
serious problem mostly in simulation experiments, where the model needs to
be estimated several times. In real-data point estimation problems, where
the procedure has to be run only once, setting a small ε and a large ABC
sample size is usually not a major difficulty.

We mention two important issues that require further research. First,
as pointed out above, the method can be easily extended to other classical
spatial models for which MLE is difficult. The most obvious example, but
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certainly not the only one, is the autonormal model. Moreover, the approach
can probably be used in more complicated spatial models where MLE is not
available at all, for example when data are not only spatially dependent, but
also clustered in groups, and nested or crossed effects are of specific interest
(see e.g. the model proposed by Corrado and Fingleton, 2012).
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