
Clustering data that are connected through a network

Stefano Benati

Dipartimento di Sociologia e Ricerca Sociale, Università di Trento

Justo Puerto

IMUS, Universidad de Sevilla

Antonio M. Rodŕıguez-Ch́ıa

Faculty of Sciences, Universidad de Cadiz

March 26, 2016

1 Introduction

The problem of clustering consists in discovering/detecting how a population is partitioned

into two or more subgroups, each specified by distinct features. The typical outcome of

a clustering algorithm is the assignment of observations to groups and, most of the times,

some estimation of the characteristics of every group. There are many techniques proposed for

clustering. Some of them are constructive, in the sense that observations are merged together

one at a time until the required partition is found, hierarchical trees being an example. Other

techniques have combinatorial structure, for example the k-means, in the sense that clustering

is formulated as an optimization problem in which different partitions are evaluated through

the objective function. Finally, there are techniques that assume probability distributions on

the population features, so that the optimal clustering is calculated maximizing the likelihood

function, for example with the EM algorithm. Each technique can be the most appropriate for

some application, but all of them works well if hidden groups are well separated. Conversely,

if the borders between groups are uncertain, because many observations coming from different

groups have similar features, then the precision of the algorithms decreases, to the point that

they just output random groups.

In this contribution, it is shown that the capability of detecting true clusters is enhanced if,

together with the ”‘standard”’ individual data that are pertinent to one population unit, the

1

1 INTRODUCTION 2

researcher can observe relational data too, that is, data describing the connections between

units. Tomake, built an example in social network analysis, suppose that a researcher wants

to determine groups with homogeneous cultural orientations within a population of individual.

Data come from a survey in which people answer to questions about their attitudes to

religion, politics, family and so on. It is often the case that individuals classified as “secular”

are not neatly separated from individuals classified as “religious”, as they can share same

views on social matters different from religion, Inglehart and Baker (2000). Therefore the

classification algorithm could not correctly classify individuals, thereby weakening the entire

subsequent analysis, for example providing wrong estimations of the groups parameters. A

possible remedy to the uncertainty could be to consider an additional data: the relationships,

for example friendship, kinship, sympathy, and so on, that exist between individuals. This

datum presents an important additional information: Social scientists know the principle of

homophylia, McPherson et al. (2001), for which people try to have like-minded friends.

With this datum at hand, the uncertain group attributions of a clustering algorithm can be

resolved.

It is discussed in Wasserman and Faust that there is an intrinsic difference between indi-

vidual and relational data. Individual data are specific attributes that form the compositional

dimension of the social actor, and must be distinguished from the structural dimension of

the social actor. This structural dimension is represented by the relations between individu-

als. Following Wasserman and Faust, there is a third dimension of an actor, and it is called

affiliation: It is the individual membership to specific groups, as clubs, companies or social

and cultural classes. Often this variable is unknown and must be determined through the

classification process.

Individual data are given in the form a matrix D of n rows and m columns, in which n

is the number of individuals and m is the number of features. Relational data are given in

the form of a graph G = (V,E), in which V are the individuals, |V | = n, and there is an arc

ij ∈ E if there is a relation between i, j ∈ V . The data structure that combines the graph

G = (V,E) with the data matrix D forms the triplet G = (V,E,D). This data structure is

called attributed graph, as the matrix D can be viewed as referring to node data, see ?.

Previous research on attributed graph tried to to apply standard clustering algorithms

to a simplified version of the problem. One form of simplification is obtained projecting the

matrix D into the graph G, defining weights on arcs (i, j) that depend on the similarity

1 INTRODUCTION 3

between individual i, j. A weighted graph G′ is obtained and analyzed using known graph

partition techniques, Neville et al. (2003). The other form of simplification proceeds the

other way round, projecting the connections of E into the matrix D, and then applying a

clustering algorithm, Combe et al. (2012). A more ingenious way of combining relational and

individual data is suggested in Cheng et al. (2012) it is suggested to analyze an augmented

graph, formed by two classes of nodes: nodes representing individuals and nodes representing

features, and arcs can connect both kind of nodes. Node distances are calculated through

random walks, and then thek-medoids clustering is applied. To summarize, whether G is

projected to D or D to G, the researcher has the advantage that no new technique is to

be developed for clustering. But the drawback is that compositional and relational data are

treated as homogeneous information, while their nature is intrinsically different.

An approach that keeps separated the two data types is presented in Xu et al. (2014).

Here, it is assumed that there is a probabilistic model underlying to relational and composi-

tional data. As commonly assumed in model-based clustering, each unit belongs to a latent

class, that determines the probabilities to have some feature and to form some link. Each class

is characterized by its distribution function depending on parameters. The parameters are

then estimated through the maximization of the likelihood function and the EM algorithm.

The approach is elegant, but requires high computational times and the explicit assumptions

of the multivariate distributions.

In this paper, we propose a combinatorial problem to cluster attributed graph. More

formally, the combinatorial structure of the objective function is borrowed from previous

clustering models, but it is imposed that the eligible groups must be connected, in the sense

that there must be a path from each pair i, j belonging to the same group. The clustering

model to which the connectivity constraints are superimposed is the clique-partitioning, a

method similar to the k-means, but with the advantage that k is not to be fixed in advance

1. This approach differs from the previous ones in two main aspects. First: The maximum

likelihood maximization is simplified by a combinatorial objective function that is easier to

optimize (as the k-means algorithm is faster than EM optimization). Second: Compositional

and relational data are not merged, but kept separate and they play a different role in the

1A warning is necessary here: The reader should not be mislead by the term clique, that apparently implies

networks data. The way in which the term is used in cluster analysis depends on the fact that the individual

data D are viewed as embedded on a complete graph.

2 PROBLEM FORMULATION 4

problem formulation.

From a pure optimization point of view, the model in this paper combines two combi-

natorial problems, namely clique partition, coming from clustering individual data, and the

spanning tree detection, coming from imposing connections on the relational data. The first

one is a well-known NP-hard problem. Moreover, although the spanning tree design can be

modeled as a continuous linear program, when superimposed on other combinatorial structure

(clique partition in this case) becomes also extremely difficult. Thus, it is not surprising that

our model is NP-hard and also extremely difficult; as it will be clear in the following sections.

In spite of that, we have found several valid integer linear programming formulations, some

of them rather promising, based on different rationale. These formulations provide exact so-

lutions for the considered problems for medium size problems (up to 40 units). Beyond this

limit, we propose to use heuristic approaches. For this purpose we also present a heuristic

algorithm whose performance is compared with exact solutions up to admissible sizes.

The paper is so structured:::::

2 Problem Formulation

At its origin, Grotschel and Wakabayashi (1989); Johnson et al. (1993) the clique partitioning

problem has been formulated for clustering data. An equivalence relation is defined when

two observations share the same qualitative feature and, as observations are characterized

by many features, many equivalence relations are defined. To determine the partition, all

equivalences must be aggregated, so that the resulting equivalence classes define the clusters.

As equivalence relations can be viewed as arcs of a complete graph, this clustering problem

has been termed clique partitioning.

The clique partitioning problem is formulated as follows. Let V = {1, . . . , n} be the

set of units and let Fk, k = 1, . . .m, be the set of binary features measured on V , let data

be collected in the matrix D = [dik]. Each binary variable defines an equivalence relation

between units, that is unit i is equivalent to j according to features k iff dik = djk. Let

mij = #(equivalence relations between i and j), then the cost function is cij = m− 2 ∗mij .

The values of cij range from the minimum −m, denoting full concordance between units i

and j, to the maximum of m, denoting discordance between i and j. The clique partitioning

problem is defined as finding the partition Π = {V1, . . . , Vp} such that the following objective

2 PROBLEM FORMULATION 5

function is minimized:

f(Π) =

p
∑

k=1

∑

i,j∈Vk

cij (1)

As the problem is in minimization form, units for which cij is negative tend to be in the

same group. Conversely, units for which cij is positive tend to be in different groups. As the

number p of groups is not determined in advance, but it is the output of the algorithm, and

since weights are both positive and negative, the problem is different from the p-cut problem,

the k-means and the p-median, and other clustering algorithms in which the number of cluster

must be defined a-priori.

When relational data are available they are stored in the graph G = {V,E}, in which

nodes i ∈ V are the units, and edges (i, j) ∈ E describe the unit links. For Q ⊆ V ,

G[Q] = (Q,E[Q]) is the subgraph induced by Q, e.g. the graph with edges (i, j) ∈ E[Q] iff

i, j ∈ Q. The partition Π = {V1, . . . , Vp}. is feasible iff G[Vi], i = 1, . . . , p are all connected

subgraph. Then the Connected Clique Partitioning Problem (el nombre se puede cambiar)

is to find the partition Π = {V1, . . . , Vp} that is formed by components connected on G and

that minimizes the objective function (1).

2.1 Flow based formulation with two indices variables

Let G = (V,E) be an undirected network with node set V = {v1, ..., vn} and edge set E,

such that, eij(= eji) ∈ E represents the edge joining the nodes vi and vj . For any vi, vj ∈ V

with i < j, let Cij be the interlink cost (benefit) between vi and vj , i.e., the cost (benefit)

generated by including in the same block these two nodes.

In the following, we present a valid formulation for the problem of finding the cheapest

partition of the nodes of a graph with respect to the full pairwise interlink cost with the

requirement that all nodes within a block must be connected. In order to guarantee the

connection of the nodes in the same block, we use the flow based formulation of the Spanning

Tree given by ? for the capacitated minimal directed tree problem. However, since in our

case we only need the connection among all the nodes in the same block, it is not mandatory

to avoid cycles in the resulting graph connecting these nodes, i.e., it is not necessary to have

a tree, so we can use a relaxed version of that formulation.

In the formulation of our problem we will use continuous flow variables to guarantee

2 PROBLEM FORMULATION 6

the connection among the nodes of the same block, defined on the arcs of the directed

network D = (V,A), where A consists of the set of arcs (i, j) and (j, i) such that the edge

eij(= eji) ∈ E. We will assume that we have the same number of single source nodes as the

number of blocks, which will be the nodes with the highest index in each block, with outflow

the cardinality of the corresponding block minus one and zero inflow. All other nodes have a

demand of one unit.

Therefore, in order to give a formulation of this problem based on the above ideas, we

define the following families of variables. For any i, k = 1, . . . , n such that i ≤ k, the variable

zik is defined as:

zik =











1, if node vi is assigned to block k,

0, otherwise.

For any i, j = 1, . . . , n such that i < j, the variable xij is defined as:

xij =











1, if nodes vi and vj are in the same block,

0, otherwise.

And, for any (i, j) ∈ A, the variable fij is defined as:

fij = amount of flow sent from node i to node j.

Therefore the flow-based formulation is as follows:

(Fflow) min
n
∑

i=1

n
∑

j=i+1

Cijxij (2)

s.t. xij ≤ zik +
n
∑

ℓ=j,ℓ6=k

zjℓ, ∀i, j, k = 1, . . . , n, i < j, i ≤ k. (3)

xij ≥ zik + zjk − 1, ∀i, j, k = 1, . . . , n, i < j ≤ k, (4)

zik ≤ zkk, ∀i, k = 1, . . . , n, i ≤ k, (5)
n
∑

k=i

zik = 1, ∀i = 1, . . . , n, (6)

n
∑

i=1: (k,i)∈A

fki −
n
∑

i=1: (i,k)∈A

fik =
k

∑

i=1

zik − 1, ∀k = 1, . . . , n, (7)

fij ≤ (n− 1)xij , ∀(i, j) ∈ A, i < j, (8)

fji ≤ (n− 1)xij , ∀(j, i) ∈ A, i < j, (9)

xij ∈ {0, 1}, ∀i, j = 1, . . . , n, i < j, (10)

zik ∈ {0, 1}, ∀i, k = 1, . . . , n, i ≤ k. (11)

2 PROBLEM FORMULATION 7

The objective function (2) accounts for the total interlinks cost of the nodes within the

same block. The family of constraints (3) ensure that if i and j go in the same block then

there is at least one representative of a block where both nodes can be assigned. With (4)

we guarantee that the variable xij takes the value 1 if and only if nodes i and j are in the

same block. Both together ensure the complete interconnection among the nodes of the same

block. The family of constraints (5) ensures that each node is assigned to a block represented

by a node vk if vk is assigned to this block. In addition, the family (6) guarantees that

each node belong to just one block and this is represented by the node with the greatest

index. Constraints (7) are the equations of balance of flow for the nodes of the graph. In

particular, the node representing each block has an outgoing flow equal to the number of

nodes in this block minus one and the remaining nodes of the block has demand 1. The

families of constraints (8) and (9) avoid the flow between nodes of different blocks. Finally,

(10) and (11) give us the binary condition over the variables x and z respectively. Observe

that using (3) and (4), the integrality condition over the x variables can be relaxed and then,

family of constraints (10) can be removed.

2.1.1 Valid inequalities

In the following, we propose some families of valid inequalities for the above formulation:

1. The complete interconnection among the nodes of the same block is reinforced as follows,

see ??:

xij + xjℓ − xiℓ ≤ 1, ∀i, j, l = 1, . . . , n, i < j < ℓ, (12)

xiℓ + xjℓ − xij ≤ 1, ∀i, j, ℓ = 1, . . . , n, i < j < ℓ, (13)

xij + xiℓ − xjℓ ≤ 1, ∀i, j, ℓ = 1, . . . , n, i < j < ℓ. (14)

2. The idea that each block is represented by the node with the largest index is reinforced

as follows:

zkk +
n
∑

j=k+1

xkj ≥ 1, ∀k = 1, . . . , n, (15)

zkk + xkj ≤ 1, ∀j, k = 1, . . . , n, j > k. (16)

3. The relationship between variable x and z is strengthened as follows:

zij ≤ xij , ∀i, j = 1, . . . , n, i < j. (17)

2 PROBLEM FORMULATION 8

Taking into account these valid inequalities, we present the following strengthening of Fflow,

(Fflow) min
n
∑

i=1

n
∑

j=i+1

Cijxij

s.t. (3)− (17).

2.2 MTZ based formulation with two indices variables

In this section we propose a second formulation for our problem using the Miller-Tucker-

Zemlin (MTZ) inequalities. MTZ inequalities guarantee the connectivity of the solutions and

prevent cycles, these constraints were initially proposed by ? in the context of the Traveling

Salesman Problem. They have been adapted to other problems and reinforced by different

authors, see, e.g. ????. The MTZ formulation for the STP builds an arborescence rooted at

a specified node r ∈ V , in which arcs follow the direction from the root to the leaves. It uses

binary variables to represent the arcs of the arborescence. Each edge eij ∈ E, is associated

with a pair of binary variables, fij and fji, which take the value 1 if and only if arcs (i, j) and

(j, i) ∈ A belong to the arborescence, respectively. In addition, it uses continuous variables

ℓi, denoting the position that node vi occupies in the arborescence with respect to r. In our

case, we build as many trees as the number of blocks, and the roots of these trees will be

the nodes with the largest index in each block. Since we will use this family of inequalities

to ensure the connection among the nodes in the same block (not to build an arborescence),

some of the constraints of this family can be removed.

Hence, in order to give a formulation for our problem based of the above ideas, we use

the two families of binary variables that we have used in the previous formulation, i.e. x and

z, and now, as mentioned, the variables fij are also binary and defined as

fij =











1, if the arc (i, j) ∈ A is chosen,

0, otherwise.

Using these variables, the formulation of our problem is:

(FMTZ) min
n
∑

i=1

n
∑

j=i+1

Cijxij

s.t. (3)− (6), (10), (11),

ℓi + 1 ≤ ℓj + n(1− fij), ∀i, j = 1, . . . , n, (i, j) ∈ A, (18)
n
∑

i=1, (i,j)∈E

fij = 1− zjj , ∀j = 1, . . . , n, (19)

2 PROBLEM FORMULATION 9

fij + fji ≤ xij , ∀(i, j) ∈ A, i < j, (20)

fij ∈ {0, 1}, ∀(i, j) ∈ E. (21)

The family of constraints (18) guarantee the label assigned to node j is at least the label

assigned to node i if the arc (i, j) ∈ A is chosen. Actually, this family avoids the tours. In

addition, (19) ensure there is, at least, an incident arc at each node different from the one

representing its block. The family (20) guarantees that arcs joining nodes of different blocks

cannot be chosen. Finally, constraints (21) give the binary condition of the f variables. As

in Fflow formulation, we can relax the integrality condition over the x variables; and then,

family of constraints (10) can be removed.

2.2.1 Valid inequalities

Valid inequalities (12)-(17) derived for the flow formulation are still valid for this formulation.

Moreover, we have some additional ones.

Through the following two families of inequalities, we guarantee that the label assigned

to the nodes representing the blocks is 1;

ℓi ≥ zii, ∀i = 1, . . . , n, (22)

ℓi ≤ 1 + n(1− zii), ∀i = 1, . . . , n. (23)

The following inequalities ensure that the label associated with a node which is not repre-

senting its block will be at least 2,

2(1− zii) ≤ ℓi, ∀i = 1, . . . , n. (24)

Taking into account these valid inequalities, we present the following strengthening of

FMTZ ,

(FMTZ) min
n
∑

i=1

n
∑

j=i+1

Cijxij

s.t. (3)− (6), (10), (11), (18)− (24).

2 PROBLEM FORMULATION 10

2.2.2 Alternative formulation

Based on the previous formulation we can provide an alternative formulation where the family

of variables z has been substituted by variables yk ∀k = 1, . . . , n, defined as:

yk =











1, if node k is the node with the highest index in its partition,

0, otherwise.

The formulation of the problem using this new family of variables is:

(F2MTZ) min
n
∑

i=1

n
∑

j=i+1

Cijxij

s.t. (10), (12)− (14), (18), (20), (21),

yk +

n
∑

j=k+1

xkj ≥ 1, ∀k = 1, . . . , n, (25)

yk + xkj ≤ 1, ∀k < j = 1, . . . , n, (26)
n
∑

i=1, (i,j)∈A

fij = 1− yj , ∀j = 1, . . . , n, (27)

yk ∈ {0, 1}, ∀k = 1, . . . , n. (28)

The families of constraints (25)-(26) guarantee that each node is assigned to just one block

and this is represented by the node with the greatest index. Actually, these two families

of constraints is a rewriting constraints (15) and (16) using variables y. In the same sense,

constraints (27) are an adaptation of constraints (19) using variables y. Again, the integrality

condition on the y variables can be relaxed by constraints (27).

The families of valid inequalities (22)-(24) are still valid for this formulation.

Taking into account these valid inequalities, we present the following strengthening of

F2MTZ ,

(F2MTZ) min
n
∑

i=1

n
∑

j=i+1

Cijxij

s.t. (10), (12)− (14), (18), (20)− (28).

2.3 Branch & Cut Procedure

For the three previous formulations, we have developed a B&C procedure, where we have

introduced a family of cuts in each node of the branch and bound tree. In order to describe

this procedure, for a given node of the branch and bound tree, let x̄, z̄ be the optimal values

2 PROBLEM FORMULATION 11

of variables x and z, respectively, in that node. For any ε > 0, we consider the following

steps:

STEP 0 Consider that a node vℓ belongs to a block k with ℓ ≤ k if and only if z̄ℓk > ε.

STEP 1 For each block, we identify the pairs of nodes vi and vj with i < j that belong to the

same block but they are not connected through the nodes of their block. In order to

determine if two nodes in the same block are connected through the edges of their block,

we have computed the shortest path between each pair of nodes of a block using the

algorithm of Floyd-Warshall, taking into account that the length of the edge between

two nodes, vi and vj , is

length(eij) :=











0, if eij ∈ E, z̄ik > ε and z̄jk > ε,

1, otherwise.

Hence, if the length of the shortest path between two nodes is 0, these nodes are

connected.

STEP 2 Introduce the following cut:

k−1
∑

ℓ=i+1 : z̄ℓk≤ε

xiℓ +
n
∑

ℓ=k+1

xiℓ +
i−1
∑

ℓ=1 : z̄ℓk≤ε

xℓi − xij ≥ 0. (29)

The rationale behind inequality (29) is the following. Assume that we are given vk ∈ V ,

ε > 0 and a set of nodes, K := {vℓ : ℓ ≤ k and z̄ℓk > ε}. The set K would become a block

if the graph induced by its nodes were connected. On the contrary, if vi, vj ∈ K were not

connected in the graph induced by K; then any block containing vi a vj should include at

least another node, vℓ 6∈ K, to ensure the connection of the resulting induced graph. This

condition is encoded in the inequality (29) assuming that the inequality xiℓ ≥ xij is fulfilled

for some vℓ 6∈ K, i.e., if vi and vj belong to the same block, which forces xij = 1, then vℓ 6∈ K

also belongs to the same block, xiℓ = 1.

For the alternative formulation, F2MTZ , where the z variables are not used anymore, we

consider the following cuts based on the same idea above:

k−1
∑

ℓ=i+1 : x̄ℓk<ε

xiℓ +
n
∑

ℓ=k+1

xiℓ +
i−1
∑

ℓ=1 : x̄ℓk<ε

xℓi − xij ≥ 0 (30)

The results obtained applying this Branch & Cut procedure to the formulations Fflow,

FMTZ and F2MTZ will be refered to B&C Fflow, B&C FMTZ , and B&C F2MTZ , respectively.

2 PROBLEM FORMULATION 12

2.4 Incomplete formulations

In order to obtain better computational results in the solution times of the previous formu-

lations and to increase the size of the instances that we are able to solve, we propose to use

incomplete formulations. That is, we propose to use formulations which are not valid for

our problem and introduce cuts progressively in the nodes of the branch and bound tree to

obtain feasible solutions. Based on this idea, we follow three strategies to generate incomplete

formulations. Observe that previous formulations have two main groups of constraints, the

first one to guarantee the interlink and the second one, to ensure the connection; both among

the nodes in the same block.

The first strategy consists of removing the group of constraints that ensures the connection

among the nodes of the same block; the second one will consider the same idea but the

interlink is modeled in a different way (using exclusively variables x like in Formulation

F2MTZ). And, the third strategy 1) removes the group of constraints ensuring the connection

among the nodes of the same block and 2) partially removes the group of constraints to

ensure the interlink among the nodes of the same block. In the following, we show the three

incomplete formulations that have provided the best computational results out of an number

of tests among different alternatives.

2.4.1 First incomplete formulation

In order to generate the first incomplete formulation, we consider formulation FMTZ without

constraints (18) and (22)-(24). Therefore, the resulting formulation ensures that all the x

variables between pair of nodes in the same block take the value 1, but the connection between

each pair of nodes of the same block is not guaranteed. Hence, in the solution procedure we

will proceed as in the B&C scheme previously described, i.e., the non-connected solutions

obtained in each node of the branch-and-bound tree are cut with the following constraints,

where ε is a fixed positive amount:

k−1
∑

ℓ=i+1 : z̄ℓk≤ε

x̄iℓ +
n
∑

ℓ=k+1

xiℓ +
i−1
∑

ℓ=1 : z̄ℓk≤ε

xℓi − xij ≥ 0.

As in B&C procedure, to determine if two nodes are connected through the edges of a block,

we have computed the shortest path between each pair of nodes within the block using

the algorithm of Floyd-Warshall. In this subproblem we have considered a complete graph

induced by the nodes in the block and the length of the edge between two nodes is defined as

2 PROBLEM FORMULATION 13

0 if this edge actually exists in the original graph and 1 otherwise. Therefore, if the length

of the shortest path between two nodes is 0, these nodes were originally connected.

This incomplete formulation has been reinforced with the following valid inequality:

j−1
∑

i=1
eij∈E

xij +

n
∑

i=j+1

eji∈E

xji ≥ 1− zjj , ∀j = 1, . . . , n. (31)

The family of inequalities (31) gives a necessary condition for the connection of the nodes in

the same group but it is not sufficient. Actually, it implies that every node of a block except

the representative of the block must be connected with another node of the block via an edge

of E. Therefore, the first incomplete formulation is:

(FI1) min
n
∑

i=1

n
∑

j=i+1

Cijxij

s.t. (3)− (6), (10)− (17), (19)− (21), (31).

2.4.2 Second incomplete formulation

In the second incomplete formulation, we consider formulation F2MTZ where the family of

constraints (18) and (22)-(24) have been removed and (31) is included. Therefore, the second

incomplete formulation is:

(FI2) min
n
∑

i=1

n
∑

j=i+1

Cijxij

s.t. (10), (12)− (14), (20), (21), (25)− (28), (31).

As before, these constraints ensure that all the x variables between pair of nodes in the same

block take the value 1, but the connection between each pair of nodes of the same block is

not guaranteed.The difference with respect to the previous one is that this formulation does

not use z variables. Therefore, the non-connected solutions obtained in each node of the

branch-and-bound tree are cut with the family of valid inequalities (30).

2.4.3 Third incomplete formulation

In the third incomplete formulation, we consider Formulation FI2 where the family of con-

straints (12)-(13) have been partially removed. Therefore, the third incomplete formulation

3 HEURISTIC 14

is:

(FI3) min
n
∑

i=1

n
∑

j=i+1

Cijxij

s.t. (10), (14), (20), (21), (25)− (28), (31),

x1j + xjℓ − x1ℓ ≤ 1, ∀j, l = 1, . . . , n, i < j < ℓ, (32)

xin + xjn − xij ≤ 1, ∀i, j = 1, . . . , n, i < j < ℓ. (33)

In this case, besides to not guarantee the connection of the nodes within the same block, this

formulation does not ensure the interlink among all the nodes of the same block. Therefore,

in addition to adding the violated cuts of the family (30), we need some additional valid

inequalities, namely the violated constraints of the family (12)-(13).

3 Heuristic

The problem complexity requires the development of heuristic methods for two reasons. The

first reason is that we want to solve problems of any size, but integer linear programming

solves medium-sized problems only. The second reason is that an approximate solution to the

problem is needed by integer programming too. In fact, computational times can decrease

if integer programming starts with a good feasible solution, with which to discard the nodes

that do not contain optimal solutions.

The two method that are proposed here are plain variations on local search heuristics. It

can be readily seen from the combinatorial structure of the problem that the clusters of an

incumbent solution can be modified re-assigning objects to different clusters. If the connec-

tivity constraints are still satisfied and the objective function improves, then the incumbent

solution is updated. The process is then repeated and stops when clustering cannot be im-

proved. In this case it said that a local optimum has been reached. More formally For every

node i, let N [i] = {j|ij ∈ E} ⊆ V be the node set of the neighbors of i. Let Π = {V1, . . . , Vp}

be a partition of V , the partition is feasible if sets Vj are connected for all j = 1, . . . , p. Let

Vc(i) be that set such that i ∈ Vj , that is, c(i) = j.

A move m = (i, q) is a pair i ∈ V , q = 0, . . . , p. If q ≥ 1, then the move represents the

possible assignment of unit i to cluster Vq; the move is feasible if both new cluster Vc(i) \ i

and Vq ∪ i are connected. If q = 0, then the move represents the assignment of i to an an

empty cluster, that is i becomes a singleton and eventually Vp+1 = {i}. The evaluation of a

3 HEURISTIC 15

feasible move is calculated as the value:

δiq =











∑

j∈Vq
cij −

∑

j∈Vc(i)
cij if q ≥ 1;

−
∑

j∈Vc(i)
cij if q = 0.

(34)

The Local Search Algorithm 1 begins with a feasible partition Π, then tries to improve

the objective function moving units to different clusters. If there is no feasible move that

decreases the objective function, then Π is a local optimum. When a local optimum is found,

then the procedure can be applied again starting with new initial partitions, till a maximum

tmax re-starts are tried. The procedure to determine the local optimum is described as follows:

1.

Algorithm 1 Local Search Algorithm

1: procedure Local Search for Connected Cluster

2: for dot from 1 to tmax ⊲ Local Search is repeated tmax times

3: (Π, f)← RandomNetClique(version = ”‘RR”′ or ”‘V NS”′) ⊲ Π is a random

feasible partition, f is the objective function

4: loc opt = FALSE ⊲ Condition for a local optimum

5: while loc opt = FALSE do

6: ∆←Moves Compilation(Π, . . .) ⊲ Generate a list of moves

7: (M,d)← Choose Move(∆, . . .) ⊲ M a subset of moves, d variation of the

objective function

8: if d < 0 then

9: f ← f + d, ⊲ Decrease of the Objective Function

10: Apply M to Π. ⊲ Obtain a new partition Π

11: else

12: loc opt = TRUE. ⊲ Condition for a local optimum

13: end if

14: end while

15: end for

16: end procedure

The algorithm begins calculating a random clustering Π with objective function f . Parti-

tion Π is calculated by ”‘Random Restart”’ or ”‘Variable Neighborhood Search”’ (the meth-

3 HEURISTIC 16

ods are described later). The while loop of instructions from 4 to 13 leads Π to a local opti-

mum, applying repeatedly the procedures Moves Compilation and Choose Move. The output

of Moves Compilation is a matrix ∆ = [δiq], i = 1 . . . n, q = 0 . . . p listing the improvement of

the objective function for each feasible move. The output of the procedure Choose Move is

a list of moves M = {m1, . . . ,mw} and a value d. The list of moves M , when applied to

Π, leads to a new feasible partition with the value of the objective function decreased by d.

The moves of M are chosen in a greedy way from the matrix ∆, considering that there are

multiple moves improving the objective function without needing to recalculate ∆. Indeed, if

a move mt = (i, q) is chosen and applied to Π, then values δjs remain the same if s 6= q, c(i)

and c(j) 6= q, c(i). More precisely, procedure Choose Move is described as follows:

Algorithm 2 Choose Move Procedure

1: procedure Choose Move

2: Input: ∆ = [δiq], j = 1, . . . , n, q = 0, . . . , p

3: Output: M= list of moves; d = variation of the objective function

4: V ← {1, . . . , n},K ← {1, . . . , p},M ← ∅

5: D ← 0, fimprove← TRUE ⊲ Initialization

6: while V 6= ∅,K 6= ∅, f improve = TRUE do

7: Let δiq = min{δjw|j ∈ V,w ∈ K} ⊲ Move Choice

8: if δiq < 0 then

9: d = d+ δiq ⊲ update d

10: M ←M ∪ {(i, q)}

11: V ← V \ {i}

12: K ← K \ {c(i)}

13: if q ≥ 0 then

14: K ← K \ q

15: end if

16: else

17: delta positive = FALSE ⊲ no improvement moves are left

18: end if

19: end while

20: end procedure

4 COMPUTATIONAL RESULTS 17

It remain to describe how partitions Π are generated in Step 3 of Algorithm 1. Two

alternatives are tested. The first procedure works out Π from scratch and randomly at every

iteration and is called Random Restart. RR is implemented labeling objects with random

integer numbers between 1 and cmax, then the clusters of Π are the connected objects having

the same label. The final number of clusters can be larger than cmax. RR is the simplest of

the family of the so-called Multi-Start methods, ?, and used often as the benchmark to which

to compare more elaborate versions, Benati (2008). In this contribution, RR is compared to a

second procedure called Variable Neighborhood Search (VNS). The starting solutions of VNS

mild randomness with information contained in the best found solution. It is implemented

as follows: at the first iteration Π is a random partition and the first local search calculates

the first best solution Πbest. A new Π is worked out from Πbest relocating t objects into

different clusters, where t is a varying parameter. At the earliest stages, t is small to search

for improved solutions in the immediate proximity of Πbest. If no improvement of Πbest is

found, than t is increased, to explore solutions that are further away from Πbest. When t

reassignments are to be done, both objects and clusters are chosen randomly and an object

is relocated only when the modified clusters remain connected. The qualitative difference

between RR and VNS is that the search of the latter is more constrained than the search

of the former, as it is designed to take advantage of the (potential) good clusters contained

in Πbest. The principle of VNS are explained in Hansen et al. (2010), recent applications of

VNS to clustering problems are Hansen et al. (2012) and ?.

Algorithm 3 CH election algorithm

1: procedure CH–Election

2: for each node i ∈ N do

3: Broadcast HELLO message to its neighbor

4: let k ∈ N1 (i) U i be s.t

5: QOS(k) = max QOS(j) |j ∈ N1(i) U i

6: MPRSet(i) = k

7: end for

8: end procedure

4 Computational Results

4 COMPUTATIONAL RESULTS 18

Algorithms are tested on simulated problems, in which parameters determine the clusters

features and the network connectivity. The experiment layout is the one proposed in ?: Data

are composed of n units on which m binary features, Fi = {0, 1}, i = 1, . . . ,m, are recorded.

Units belong to one of two groups, each group is composed of n/2 units. If one unit belongs

to group 1, then Pr[Fi = 1] = pc for all i = 1, . . . ,m, otherwise, if the unit belongs to group

2, then Pr[Fi = 1] = 1− pc for all i = 1, . . . ,m. If pc is close to one, then the two groups are

well separated, as all units of Group 1 tend to be a vector of ones and all units of Group 2 is a

vector of zeros. As pc gets closer to 0.5, the distinction between the two groups is less and less

precise. Then units are connected through arcs: If two units (or nodes) belongs to the same

group then the probability that there is an arc between the two units is pin (the probability

of an internal arc). If the two nodes belongs to two different groups, then the probability

that there is an arc between the two units is pout (the probability of an external arc). vertex

i is connected to Xin vertices of the same group of i and the Xout vertices of the other group,

where Xin and Xout are random variables. With the parameter above, E[Xin] ≈ npin/2 and

E[Xout] ≈ npin/2. All experiments are run with pin > pout, so that connectivity provides

information: If a node i, whose membership is uncertain, is connected with a node j that is

known to belong to Group k, then it is likely that i belongs to k as well.

The experiments on small and medium sized problems are run on random data generated

with the following parameters: m = 10, E[Xin] = 3 and E[Xout] = 1, pc = 0.60. The value

tmax the maximum number of starting solutions, has been fixed to 10n. Results are reported

in Table 3. Columns report the objective function and the number of iterations to get to

it, iterations calculated as the number of times that the matrix ∆ is worked out in line 6 of

Algorithm 1. The last column reports the difference between the best found heuristic solution

and optimal one: empty spaces means that they are equal, unknown means that the instance

has not solved by Branch&Bound.

Both algorithms start from the same initial partition Π, but finally there is a clear evidence

that RR is better than VNS. In 26 out of 40 problems RR the objective function of RR is better

than the one of VNS, in only 2 occurrences out of 40 VNS is better than RR. Considering

only the 26 instances in which RR is better than VNS, one can see that in 23 out of 26

the iteration in which the the best solution is found is larger for RR than for VNS, with

an average of 1197 iterations needed by RR and only 358 required by VNS (that remains

trapped in a local optimum). It seems to point out that the VNS search is too constrained: It

4 COMPUTATIONAL RESULTS 19

is exploring solutions that are too close to previous ones and does not go where the optimum

is found. Unfortunately, RR cannot find the optimal solution to 18 out of 37 solved instances.

Results for graphs with n = 80, 100 are reported in Table 4. Here the results of RR

and VNS are similar, the avereges of the objective function are equal up to 1 digital points,

versus . The best solution found by RR 8 out of 20 times by RR, 11 by VNS and one tie.

When we consider the instances in which RR is better, the iterations needed to the best

solution found are 10276 on averages for RR, 3876 for VNS. The impressions is again that

VNS cannot escape poor qualities initial solutions. This is also supported by the fact that,

when the only the 11 instances in which VNS is best are considered, there VNS takes 3895

iterations against 5248 of RR. It seems that having a good starting solution is crucial for

VNS to take advantage of its mechanism of neighborhood solutions.

The experiment has been run with fixed values of n = 50 andm = 10, pout = 0.04 and with

varying parameters pc = 0.65, 0.55, 0.45, pin = 0.12, 0.16, 0.20. Given those probabilities, for a

given node the expected number of arcs pointing outside the group is 1, the expected number

of arcs pointing within the group can be 3, 4, or 5. The input of a test problem is a matrix D

and a graph G, that are randomly generated according to the probabilities described before.

In this section we have computationally tested the formulations presented in Section 2 and

their corresponding strengthening. Thus, we have implemented all of them in the commercial

solver XPRESS-IVE 1.24.04 running on a Intel(R) Core(TM) i7-4790 CPU @400GHz 32GB

RAM. The cut generation option of XPRESS was disabled in order to compare the relative

performance of the formulations cleanly.

Algorithms are tested on simulated problems, in which parameters determine the cluster

features and the network connectivity. Parameters values are chosen to model application

data in which the true clusters are hard to detect without the additional information of the

units connectivity. Data are composed of n units on which m binary features, Vi = {0, 1}, i =

1, . . . ,m, are recorded, . Units belong to one of two groups, each group is composed of n/2

units. If one unit belongs to group 1, then Pr[Vi = 1] = pc for all i = 1, . . . ,m, otherwise, if

the unit belongs to group 2, then Pr[Vi = 1] = 1−pc for all i = 1, . . . ,m. If pc is close to one,

then the two groups are well separated, as all units of Group 1 tend to be a vector of ones

and all units of Group 2 is a vector of zeros. As pc gets closer to 0.5, the distinction between

the two groups is less and less precise. Then units are connected through arcs. If two units

(or nodes) belongs to the same group then the probability that there is an arc between the

4 COMPUTATIONAL RESULTS 20

two units is pin (the probability of an internal arc). If the two nodes belongs to two different

groups, then the probability that there is an arc between the two units is pout (the probability

of an external arc). If pin > pout, then connectivity provides information: If a node i, whose

membership is uncertain, is connected with a node j that is known to belong to Group k,

then it is likely that i belongs to k as well.

The results are reported in Table 2 and they correspond to the average of those obtained

after solving ten instances for each size, the time was limited to two hours of CPU. Hence, the

first two columns of Table 2 correspond to the size and the formulation used to solve these

instances, respectively. The third and fourth columns give the number of instances that were

not optimally solved within the time limit and the CPU time in seconds, respectively. The

three last columns, GAP, GAP R and Nodes, stand for the averages of: gap between the best

bound and the best solution after 7200 seconds (for the instances whose CPU time exceeded

the time limit), the gap in the root node and number of nodes in the B&B tree, respectively.

To obtain a general idea of the comparisons among these averaged values, for the results in

the column Time and for different formulations, we have accounted the value 7200 seconds

for those instances that exceed the time limit. In the same way, the values used to computed

the average of the column Nodes have been the number of nodes of the B&B tree when the

CPU time limit was reached.

The formulations described in the second column correspond to the ones described in

Section 2. The last one, “FI3 + sol heu” corresponds to the third incomplete formulation

where the solver has been fed with the solution provided by the heuristic approach. As we can

see, among the three first formulations, Fflow, FMTZ and F2MTZ , the third one provides much

better results than the other ones. Regarding the branch and cut approach, although it does

not provide an uniform improvement with respect to the running times, it slightly improves

the gap in the instances where the optimal solution is not achieved within the limit time.

With respect to the incomplete formulations, the third-incomplete formulation reports much

better computational results than the remaining ones. Observe that the best computational

results have been obtained when the solution obtained by the heuristic approach is fed to the

solver using the third incomplete formulation. As a conclusion, we can see that the successive

improvements from the first to the last formulation have provided a remarkable reduction of

CPU time (around two orders of magnitude).

5 COMPUTATIONAL RESULTS 21

Table 1: Add caption

n t exact t heur # GAP exact/heur

20 0.9 9 0.2

30 29.4 7 1.2

36 798.8 2 3.3

40 2774.6 3 4.6

5 Computational Results

The main motivation of the new clustering model proposed here is that connection data

improves the quality of the clustering algorithms. The following experiment proves that it is

so. The experiment has been run with fixed values of n = 50 and m = 10, pout = 0.04 and

with varying parameters pc = 0.65, 0.60, 0.55, pin = 0.12, 0.16, 0.20. Given those probabilities,

for a given node the expected number of arcs pointing outside the group is 1, the expected

number of arcs pointing within the group are approximately 3, 4, or 5. Varying pc, data

more and more confounded are generated. The mode of Group 1 is vector of ones, the mode

of Group 2 is a vector of zeros. Denoting with Z the number of ones of a unit of Group 1,

with m = 10 and pc = 0.65, Pr[Z ≤ 4] ≈ 0.10, that is the probability of being closer to the

mode of the other group. The probability of of the same distance is Pr[Z = 5] ≈ 0.20. With

pc = 0.55, Pr[Z ≤ 4] ≈ 0.25, Pr[Z = 5] ≈ 0.24.

Three clustering methods are considered. The first two methods are the k-means and

the clique-partition, two methods that do not consider the network structure of the data.

The third method is the connected-clique-partition presented in this paper. The k-means

algorithm is run with k equal to the exact value of 2, an assumption that seldom can be

made in practice. The methods are compared in terms of the ARI, the adjusted Rand index

Hubert and Arabie (1985). The ARI is an index that compares the true and the estimated

partitions of a population. It is equal to 1 if the true and the estimated partition are equal,

it is close to 0 (with the possibility of being negative) if the estimated partition is equivalent

to the random one.

The result of the experiment are reported in Table 5. Looking at the averages, it can

be seen that the best ARI has been obtained by the net-clique clustering, with a value of

REFERENCES 22

n Nombre \# Time GAP 2 GAP R 2 Nodes

20

Fflow 0 12.3 0.0 25.7 3174.4

FMTZ 0 56.0 0.0 21.2 29193.5

F2MTZ 0 9.8 0.0 18.6 11180.5

B&C Fflow 0 16.1 0.0 25.6 3160.9

B&C FMTZ 0 15.2 0.0 21.2 6201.3

B&C F2MTZ 0 6.7 0.0 20.4 4747.0

FI1 0 2.6 0.0 16.0 257.9

FI2 0 2.0 0.0 17.0 55.8

FI3 0 1.0 0.0 27.9 116.9

FI3+sol heu 0 0.9 0.0 27.6 36.6

30

Fflow 4 4281.4 13.8 34.1 68943.2

FMTZ 4 5040.8 6.9 29.8 282112.6

F2MTZ 0 1389.8 0.0 25.9 254538.7

B&C Fflow 4 4450.7 11.3 33.2 71208.1

B&C FMTZ 3 4358.2 6.3 29.8 250908.6

B&C F2MTZ 1 2021.1 0.5 25.9 385374.5

FI1 2 1615.9 2.8 23.9 3430.8

FI2 0 141.4 0.0 24.2 978.8

FI3 0 46.9 0.0 34.9 2473.4

FI3+sol heu 0 29.4 0 34.9 1104,8

36

Fflow 10 7199.9 31.8 44.1 26340.1

FMTZ 10 7199.8 33.0 46.8 88221.4

F2MTZ 7 6121.1 11.0 31.1 506437.0

B&C Fflow 10 7200.0 25.9 41.0 29230.4

B&C FMTZ 10 7199.7 47.8 58.6 83581.3

B&C F2MTZ 8 6504.2 16.2 35.4 353671.2

FI1 3 3422.4 4.1 24.1 7073.5

FI2 1 1503.2 2.0 24.7 3946.7

FI3 0 1096.8 0.0 34.8 21787.0

FI3+sol heu 0 798.8 0.0 34.8 11853.0

40

Fflow 10 7200.3 60.8 65.0 12973.8

FMTZ 10 7200.1 45.7 53.1 35412.6

F2MTZ 8 6103.9 36.1 47.7 105652.6

B&C Fflow 10 7199.9 38.2 43.8 14839.6

B&C FMTZ 10 7200.0 40.4 48.7 33290.0

B&C F2MTZ 9 6719.2 35.0 46.9 111553.1

FI1 8 6441.8 13.6 26.8 6767.5

FI2 4 3857.9 11.2 28.6 4404.3

FI3 3 3433.9 6.1 37.2 24669.4

FI3+sol heu 3 2774.6 5.0 36.6 18384.9

Table 2: Computational results of formulations in Section 2.

approximately 0.21, while the k-means and the clique partition gave approximately the same

result of 0.13. The net-clique method always improves the partitions of the other methods,

with only a few exceptions that are when data are so stranded that no methods is able to

recognize any structure (the ARI being approximately equal to 0). Table 6 and 7 reports

the ARI averages controlling on values of pin and pc. Again, a steadily improvement can be

observed.

References

Benati, S. Categorical data fuzzy clustering: An analysis of local search heuristics. Com-

REFERENCES 23

puters and Operations Research 35, 3 (2008), 766–775. cited By 14.

Cheng, H., Zhou, Y., Huang, X., and Yu, J. X. Clustering large attributed informa-

tion networks: an efficient incremental computing approach. Data Mining and Knowledge

Discovery 25, 3 (2012), 450–477.

Combe, D., Largeron, C., Egyed-Zsigmond, E., and Géry, M. Combining relations

and text in scientific network clustering. In International Conference on Advances in

Social Networks Analysis and Mining, ASONAM 2012, Istanbul, Turkey, 26-29 August

2012 (2012), pp. 1248–1253.

Grotschel, M., and Wakabayashi, Y. A cutting plane algorithm for a clustering problem.

Mathematical Programming 45, 1-3 (1989), 59–96. cited By 112.

Hansen, P., Mladenovic, N., and Moreno Perez, J. Variable neighbourhood search:

Methods and applications. Annals of Operations Research 175, 1 (2010), 367–407. cited

By 203.

Hansen, P., Ruiz, M., and Aloise, D. A vns heuristic for escaping local extrema entrap-

ment in normalized cut clustering. Pattern Recognition 45, 12 (2012), 4337–4345. cited By

3.

Hubert, L., and Arabie, P. Comparing partitions. Journal of Classification 2, 1 (1985),

193–218. cited By 1975.

Inglehart, R., and Baker, W. Modernization, cultural change, and the persistence of

traditional values. American Sociological Review 65, 1 (2000), 19–51. cited By 1527.

Johnson, E., Mehrotra, A., and Nemhauser, G. Min-cut clustering. Mathematical

Programming 62, 1-3 (1993), 133–151. cited By 115.

McPherson, M., Smith-Lovin, L., and Cook, J. Birds of a feather: Homophily in social

networks. Annual Review of Sociology 27 (2001), 415–444. cited By 3794.

Neville, J., Adler, M., and Jensen, D. D. Clustering relational data using attribute

and link information. In Proceedings of the Workshop on Text Mining and Link Analysis,

Eighteenth International Joint Conference on Artificial Intelligence (Acapulco, Mexico,

2003).

REFERENCES 24

Wasserman, M., and Faust, K. Social Networks Analysis: Methods and Applications.

Cambridge University Press.

Xu, Z., Ke, Y., Wang, Y., Cheng, H., and Cheng, J. GBAGC: A general bayesian

framework for attributed graph clustering. ACM Transactions on Knowledge Discovery

from Data 9, 1 (2014), 5:1–5:43.

REFERENCES 25

name RR it VNS it Optimal

20-1 -114 11 -114 64

20-2 -74 28 -34 4

20-3 -122 34 -122 67

20-4 -112 14 -110 8

20-5 -128 233 -102 8

20-6 -102 112 -96 13

20-7 -154 100 -102 442

20-8 -94 895 -92 226 - 96

20-9 -116 9 -116 28

20-10 -140 11 -140 10

30-1 -254 1210 -248 1661

30-2 -152 171 -152 109

30-3 -200 1265 -144 12 -210

30-4 -200 1378 -170 1003

30-5 -288 1675 -276 296

30-6 -260 382 -260 101

30-7 -228 377 -222 280

30-8 -122 906 -108 95 -126

30-9 -276 973 -136 16

30-10 -168 2274 -154 21 -176

36-1 -296 3437 -296 1033 -300

36-2 -300 588 -300 33 -304

36-3 -356 1372 -340 15 -390

36-4 -326 1573 -304 1015 -340

36-5 -300 767 -300 420

36-6 -286 121 -286 1045

36-7 -310 1723 -324 452 -344

36-8 -230 1988 -204 25 -246

36-9 -260 1643 -242 518 -268

REFERENCES 26

n pc E[Xin] E[Xout] label RR it VNS it

80 0.6 3.0 1.0 1 -1030 2389 -1086 4245

80 0.6 3.0 1.0 2 -968 7601 -1042 2670

80 0.6 3.0 1.0 3 -1274 14858 -1260 141

80 0.6 3.0 1.0 4 -976 8314 -900 1035

80 0.6 3.0 1.0 5 -1234 1487 -1370 415

80 0.6 3.0 1.0 6 -936 10286 -818 4512

80 0.6 3.0 1.0 7 -1246 10875 -1286 3260

80 0.6 3.0 1.0 8 -998 10262 -904 1954

80 0.6 3.0 1.0 9 -1190 5695 -1196 1562

80 0.6 3.0 1.0 10 -1416 2514 -1440 1732

100 0.6 3.0 1.0 1 -1630 5027 -1482 10911

100 0.6 3.0 1.0 2 -1730 2097 -1908 7597

100 0.6 3.0 1.0 3 -1216 3138 -1266 2873

100 0.6 3.0 1.0 4 -2094 4527 -1966 3299

100 0.6 3.0 1.0 5 -1442 13965 -1386 6752

100 0.6 3.0 1.0 6 -2176 2844 -2176 3648

100 0.6 3.0 1.0 7 -1686 2289 -1756 3034

100 0.6 3.0 1.0 8 -1390 15593 -1484 408

100 0.6 3.0 1.0 9 -1934 14973 -1798 2405

100 0.6 3.0 1.0 10 -2136 4052 -2194 15048

-1435.1 7139.3 -1435.9 3875.1

Table 4: Heuristic results for the largest sized problems

REFERENCES 27

units features pc pin pout k-means clique net-clique

50 10 0.60 0.20 0.04 0.038 0.058 0.136

50 10 0.60 0.20 0.04 0.021 0.013 0.121

50 10 0.60 0.20 0.04 0.255 0.275 0.374

50 10 0.60 0.20 0.04 0.020 -0.004 0.083

50 10 0.60 0.20 0.04 -0.006 0.002 0.131

50 10 0.60 0.20 0.04 -0.019 -0.018 0.075

50 10 0.60 0.20 0.04 -0.018 0.081 0.163

50 10 0.60 0.20 0.04 0.039 0.098 0.123

50 10 0.60 0.20 0.04 0.059 0.071 0.135

50 10 0.60 0.20 0.04 0.300 0.050 0.339

50 10 0.60 0.16 0.04 0.177 0.125 0.192

50 10 0.60 0.16 0.04 0.144 0.157 0.231

50 10 0.60 0.16 0.04 0.347 0.195 0.267

50 10 0.60 0.16 0.04 -0.014 0.019 0.084

50 10 0.60 0.16 0.04 -0.006 0.192 0.404

50 10 0.60 0.16 0.04 0.177 0.214 0.257

50 10 0.60 0.16 0.04 0.143 0.122 0.137

50 10 0.60 0.16 0.04 0.215 0.110 0.093

50 10 0.60 0.16 0.04 -0.018 0.017 0.091

50 10 0.60 0.16 0.04 -0.004 0.007 0.216

50 10 0.60 0.12 0.04 0.039 0.003 0.147

50 10 0.60 0.12 0.04 0.006 0.073 0.055

50 10 0.60 0.12 0.04 0.177 0.177 0.298

50 10 0.60 0.12 0.04 0.214 0.140 0.193

50 10 0.60 0.12 0.04 0.060 -0.019 0.225

50 10 0.60 0.12 0.04 0.085 0.215 0.203

50 10 0.60 0.12 0.04 0.215 0.301 0.342

50 10 0.60 0.12 0.04 0.060 0.138 0.130

50 10 0.60 0.12 0.04 -0.006 -0.012 0.145

50 10 0.60 0.12 0.04 0.143 0.017 0.161

50 10 0.65 0.20 0.04 0.020 0.263 0.336

50 10 0.65 0.20 0.04 0.300 0.193 0.328

50 10 0.65 0.20 0.04 0.347 0.372 0.541

50 10 0.65 0.20 0.04 0.509 0.451 0.472

50 10 0.65 0.20 0.04 0.451 0.422 0.490

50 10 0.65 0.20 0.04 -0.006 -0.022 0.060

50 10 0.65 0.20 0.04 -0.019 0.133 0.138

50 10 0.65 0.20 0.04 0.509 0.374 0.429

50 10 0.65 0.20 0.04 0.299 0.203 0.456

50 10 0.65 0.20 0.04 0.215 0.089 0.239

50 10 0.65 0.16 0.04 0.299 0.203 0.328

50 10 0.65 0.16 0.04 0.214 0.237 0.344

50 10 0.65 0.16 0.04 0.508 0.415 0.347

50 10 0.65 0.16 0.04 0.452 0.400 0.430

50 10 0.65 0.16 0.04 0.143 0.144 0.205

50 10 0.65 0.16 0.04 0.397 0.637 0.774

50 10 0.65 0.16 0.04 0.569 0.481 0.637

50 10 0.65 0.16 0.04 0.011 0.206 0.346

50 10 0.65 0.16 0.04 0.397 0.127 0.356

50 10 0.65 0.16 0.04 0.177 0.105 0.208

50 10 0.65 0.12 0.04 0.300 0.200 0.322

50 10 0.65 0.12 0.04 0.397 0.507 0.645

50 10 0.65 0.12 0.04 0.509 0.422 0.484

50 10 0.65 0.12 0.04 0.021 0.283 0.309

50 10 0.65 0.12 0.04 0.398 0.236 0.465

50 10 0.65 0.12 0.04 0.112 0.182 0.461

50 10 0.65 0.12 0.04 0.509 0.449 0.474

REFERENCES 28

0.55 0.6 0.65

k-means 0.021 0.095 0.289

clique 0.019 0.094 0.290

net-clique 0.083 0.185 0.379

Table 6: ARI avereges controlling for pc

0.12 0.16 0.20

k-means 0.135 0.150 0.120

clique 0.146 0.147 0.110

net-clique 0.217 0.233 0.197

Table 7: ARI averages controlling for pin

