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Abstract

We present a methodology for the high order approximation of hyperbolic conservation laws
in networks by using the Dumbser-Enaux-Toro solver and exact solvers for the classical Riemann
problem at junctions. The proposed strategy can be applied to any hyperbolic system, conservative
or non-conservative, and possibly with flux functions containing discontinuous parameters, as long
as an exact or approximate Riemann problem solver is available. The methodology is implemented
for a one-dimensional blood flow model that considers discontinuous variations of mechanical and
geometrical properties of vessels. The achievement of formal order of accuracy, as well as the ro-
bustness of the resulting numerical scheme, are verified through the simulation of both, academic
tests and physiological flows.
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1. Introduction

We are concerned with hyperbolic conservation laws for which relevant applications include
the treatment of networks consisting of one-dimensional domains, hereafter referred to as edges,
sharing their boundaries, hereafter referred to as vertexes. Relevant applications regard traffic
flow [1], gas flow in pipes [2, 3], open channel flows and water distribution networks [4, 5, 6]
and the modelling of the circulatory system [7, 8, 9, 10, 11]. A crucial aspect for this kind of
applications is how to provide boundary conditions at terminal vertexes and algebraic coupling
conditions between one-dimensional domains at internal vertexes. A common practice for choosing
the coupling conditions is to identify a problem specific quantity, as could be the pressure in the
case of isentropic Euler equations [12], or the total pressure in the case of blood flow [13]. Then,
the numerical scheme is adapted in order to consistently enforce the devised coupling condition.

In the case of explicit schemes that make use of numerical fluxes at computational cell inter-
faces, such as finite volume or discontinuous Galerkin schemes, there exists a formal approach
that can be pursued. In practice, defining the coupling conditions at an internal vertex P, shared
by NP edges, can be seen as the resolution of a classical Riemann Problem (RP) for a junction of
NP one-dimensional domains. This problem was deeply discussed in [6], for example. Under the
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assumption of sub-sonic flow, the hyperbolic system will provide the necessary wave relations to
link the states provided by one-dimensional domains sharing a vertex, as in the case of the clas-
sic Riemann problem [14]. Therefore, in order to obtain coupling conditions that are completely
consistent with the underlying hyperbolic conservation law, the Riemann problem at the junction
has to be solved and the resulting Godunov state can then be used to compute numerical fluxes
needed by the explicit scheme to evolve the solution within the one-dimensional domain.

In the case of explicit high order finite volume schemes, one has non-constant data as initial
conditions for the Riemann problem at the junction. This specific Cauchy problem is known as
the Generalized Riemann Problem (GRP) [15]. In the case of an internal vertex, it is essential to
adopt a numerical methodology that solves the GRP at this location accurately enough in order to
preserve the formal accuracy of the scheme used for the resolution of conservation laws within the
one-dimensional domain. To the best of our knowledge, the first work presenting a methodology
to achieve arbitrary high order accuracy in this context was proposed in [16], where the authors
used a particular version of a class of numerical schemes known as ADER schemes [17], allowing
for arbitrary high order accuracy via one-step numerical methods.

Here, always within the ADER framework, we adopt a different methodology, the Dumbser-
Enaux-Toro Riemann solver [18] and adapt certain ingredients to the specificity of the problem
under study. This GRP solver requires a high order spatial reconstruction, which in this work is
performed using the WENO procedure [19, 20] and a classical RP solver. Special attention must
be placed in the choice of the classical RP solver, since in this kind of applications parameters
present in the flux function might be discontinuous and the RP solver should be able to deal with
this characteristic of the problem in an appropriate manner.

The proposed methodology allows for arbitrarily accurate approximations of hyperbolic con-
servation laws in networks. In order to illustrate and validate the methodology, we implement
the high order treatment of coupling conditions for a one-dimensional blood flow model, using the
exact classical RP solver proposed in [21]. This mathematical model incorporates several specific
features, such as the treatment of discontinuous parameters in the flux function and the propa-
gation of shocks (or elastic jumps). These features can be found in other applications, such as gas
flow in pipes with varying cross-sectional area [22] or open channel flow with variable topography
[23].

The rest of the paper is structured as follows. In Section 2 we introduce the mathematical
model chosen to illustrate the proposed methodology, which is then developed. Next, in Section
3 we perform a series of tests to verify the accuracy and robustness of the proposed methodology.
First we verify that the expected order of accuracy is achieved by solving a test with exact solution.
Then we solve a series of test problems on simple networks, including smooth and discontinuous
solutions. We conclude the tests by solving the one-dimensional equations on an arterial network
model with appropriate boundary conditions. Final remarks are drawn in Section 4.

2. Methods

In this section we present the mathematical model adopted to illustrate the proposed method-
ology. Then we show how to solve the classical RP at an internal vertex. Finally, we propose how
to accurately solve the GRP at this location.
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2.1. One-dimensional blood flow model with variable vessel properties
One-dimensional blood flow in deformable vessels is described by the following hyperbolic sys-

tem 
∂t A+∂xq = 0 ,

∂tq+∂x

(
q2

A

)
+ A
ρ
∂x p =− f

ρ
,

(1)

where x is the axial coordinate along the longitudinal axis of the vessel; t is time; A(x, t) is the
cross-sectional area of the vessel; q(x, t) is the flow rate; p(x, t) is the average internal pressure
over a cross-section; f (x, t)= γπµ q

A is the friction force per unit length of the tube, with γ depending
on the velocity profile; µ is the fluid viscosity and ρ is the fluid density.

Pressure p(x, t) is related to the cross-sectional area A(x, t) by the algebraic relation of the form

p(x, t)= K(x)φ(A(x, t), A0(x))+ pe(x, t)= K(x)
[(

A(x, t)
A0(x)

)m
−

(
A(x, t)
A0(x)

)n]
+ pe(x, t) . (2)

Here, pe(x, t) is a given external pressure, and K(x), m, n, A0(x) are parameters that take into
account mechanical and geometrical properties of the vessel.

Equations (1) must be complemented with appropriate boundary conditions at terminal ver-
texes of the network and so-called coupling conditions at internal vertexes or junctions. Concern-
ing junctions, if we consider NP vessels sharing a vertex, we must define NP state vectors Qk∗
with k = 1, . . . , NP (see (9) below), in order to provide coupling conditions for each one of the vessels
converging to the vertex P. A coupling condition is mass conservation

NP∑
k=1

gk
P qk

∗ = 0 , (3)

where gk
P is the auxiliary function

gk
P =

{
1 , if xk

P = Lk ,

−1 , if xk
P = 0

(4)

and xk
P is the local coordinate of the k-th edge, evaluated at vertex P. A second coupling condition

is given by either total pressure [13]

p(A1
∗)+ 1

2
ρ

(
q1∗
A1∗

)2

− p(Ak
∗)− 1

2
ρ

(
qk∗
Ak∗

)2

= 0, k = 2, ..., NP (5)

or pressure [24]
p(A1

∗)− p(Ak
∗)= 0, k = 2, ..., NP . (6)

Since parameters in (2) may vary in space and in the case of a junction could most cer-
tainly present discontinuous variations among neighboring domains, we consider the mathemat-
ical model and associated RP solver proposed in [21]. Let us first define the following trivial
auxiliary equations

∂tK = 0 , ∂t A0 = 0 , ∂t pe = F(x, t) , (7)

where F(x, t) is a prescribed function for the external pressure. Then, the modified model is written
in quasi-linear form as

∂tQ+A(Q)∂xQ=S(Q) , (8)
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with
Q= [

A, q,K , A0, pe
]T , (9)

and coefficient matrix A(Q)

A(Q)=


0 1 0 0 0

c2 −u2 2u A
ρ
φ K A

ρ
∂A0φ

A
ρ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (10)

Here u = q/A is the cross-sectional averaged velocity of the fluid, S(Q) is a source term vector

S(Q)= [0,− f /ρ,0,0,F(x, t)]T (11)

and c is the wave speed

c =
√

A
ρ

K∂Aφ . (12)

For a thorough mathematical analysis of system (8) see [21]. Here we recall some of the main
features of the system needed for the construction of the proposed methodology. The eigenvalues
of (10) are: λ1 = u− c , λ2 = λ3 = λ4 = 0 , λ5 = u+ c . Moreover, under a suitable assumption for
coefficients m and n, system (8) is hyperbolic, though not strictly hyperbolic. Hyperbolicity is lost
when |u| = c, leading to resonance and thus possible loss of uniqueness. Characteristic fields 1 and
5 are genuinely non-linear and therefore are associated with shocks and rarefactions. The remain-
ing fields are linearly degenerate (LD) and are associated with stationary contact discontinuities.

2.2. RP at a junction for system (8)
Wave relations for all characteristic fields of (8) are provided in [21]. Having this information

available, the Riemann problem can be solved by defining wave relations for all characteristic
fields and iteratively finding the states connected by admissible waves in phase-space. See [14, 25]
for background. Here we formulate the problem and its solution for NP , infinitely long converging
vessels sharing vertex P. The Riemann problem at vertex P reads{

∂tQk +A(Qk)∂xQk = 0 , x ∈R , t〉0 ,

Qk(x,0) =Qk
1D ,

(13)

for k = 1, . . . , NP .
The self-similar solution to (13) consists of 2 NP constant states, where NP states are the ini-

tial condition states provided by the one-dimensional vessels Qk
1D , with k = 1, . . . , NP , while the re-

maining states Qk∗, with k = 1, . . . , NP , are states connected to initial condition states via non-linear
waves and among themselves via the linearly degenerate stationary contact discontinuity created
by the discontinuous variation of mechanical and geometrical properties of vessels at vertex P.
In general, the unknown state vectors Qk∗ ,k = 1, . . . , NP are computed by solving the following
non-linear system of 2 NP equations

NP∑
k=1

gk
P Ak

∗uk
∗ = 0 ,

p(A1
∗)+ 1

2
ρ(u1

∗)2 − p(Ak
∗)− 1

2
ρ(uk

∗)2 = 0, k = 2, . . . , NP ,

uk
∗−uk

1D + gk
Pβ

k = 0 k = 1, . . . , NP ,

(14)
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where βk is

βk =



∫ Ak∗

Ak
1D

c(τ)
τ

dτ if Ak
∗〈Ak

1D ,√√√√Bk (Ak∗− Ak
1D)

Ak∗ Ak
1D

if Ak
∗ ≥ Ak

1D

(15)

and Bk is

Bk = Kk

ρ

(
m

m+1

(Ak∗)m+1 − (Ak
1D)m+1

(Ak
0)m

− n
n+1

(Ak∗)n+1 − (Ak
1D)n+1

(Ak
0)n

)
. (16)

Full details on the derivation of wave relations present in (14), obtained by a standard eigen-
structure analysis of (8), are given in [21]. It is worth noting that the first NP wave relations are
related to the stationary contact discontinuity generated by variable mechanical and geometrical
properties, while the remaining relations are valid across non-linear waves.

2.3. Accurate GRP solution via the Dumbser-Enaux-Toro solver
The GRP has to be solved at both, internal cell interfaces, i.e. within the one-dimensional do-

main, as well as at boundary cell interfaces. It is therefore appropriate to introduce the numerical
methodology used to solve the GRP in the one-dimensional domain and then illustrate how to treat
this problem in correspondence of internal vertexes.

2.3.1. Path-conservative finite-volume-type numerical scheme
We adopt a path-conservative finite-volume type numerical scheme of the form

Qn+1
i =Qn

i −
1
∆xi

∫ tn+1

tn

∫ xi+ 1
2

xi− 1
2

A(Q)∂xQdxdt− ∆tn

∆xi

(
D−

i+ 1
2
+D+

i− 1
2

)
+∆tnSi , (17)

for i = 1, . . . , N, where N is the number of computational cells, ∆xi = xi+ 1
2
−xi− 1

2
is the mesh spacing

and ∆tn = tn+1 − tn is the time step. Moreover, we have

Qn
i = 1

∆xi

∫ xi+ 1
2

xi− 1
2

Q(x, tn)dx , (18)

Si = 1
∆tn∆xi

∫ tn+1

tn

∫ xi+ 1
2

xi− 1
2

S(Q(x, t))dxdt (19)

and

D±
i+ 1

2
= 1
∆tn

∫ tn+1

tn
D±

i+ 1
2

(
Q−

i+ 1
2
(t),Q+

i+ 1
2
(t),Ψ

)
dt . (20)

Here Q±
i+ 1

2
(t) are limiting data states from left and right arising from the solution of the GRP for

system (8) at cell interface xi+ 1
2

and D±
i+ 1

2

(
Q−

i+ 1
2
(t),Q+

i+ 1
2
(t),Ψ

)
is a monotone first order fluctuation

[26] defined as

D±
i+ 1

2
= 1

2

∫ 1

0

[
A(Ψ(Q−

i+ 1
2
,Q+

i+ 1
2
, s))±|A(Ψ(Q−

i+ 1
2
,Q+

i+ 1
2
, s))|

]
∂Ψ

∂s
ds , (21)
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where the path Ψ =Ψ(Q−,Q+, s), with 0 ≤ s ≤ 1, is a Lipschitz continuous function that connects
the left state Q− to the right state Q+ in phase-space, satisfying

Ψ
(
Q−,Q+,0

)=Q−, Ψ
(
Q−,Q+,1

)=Q+ . (22)

For full details on the computation of first order fluctuations the reader is referred to [10] and
references therein. For D±

i− 1
2
, analogous definitions to (20)-(21) hold.

In order to achieve high order accuracy in space and time, integrals in (17) have to be computed
in a proper manner. This involves the computation of both, space-time evolution of the state vector
within the control volume [xi− 1

2
, xi+ 1

2
]× [tn, tn+1] and time integrals along cell interfaces. We use

the Dumber-Enaux-Toro (DET) solver, proposed in [18] and extended to non-conservative systems
in [27, 28].

2.3.2. Spatial reconstruction
As we shall see later in this section, the DET solver, as many high order finite volume solvers,

requires a spatial reconstruction procedure based on cell averages. In this work we use the
Weighted Essentially Non-Oscillatory (WENO) methodology proposed in [29]. This spatial re-
construction procedure differs from the original WENO methodology [20, 30] in that entire spatial
polynomials over the computational cell are obtained. First we introduce reference coordinates
0 ≤ ξ ≤ 1 given by x = xi− 1

2
+ξ∆xi. For a scheme of order k, at each time level tn, we reconstruct

element-wise polynomials of the type

wi =wi(ξ, tn)=
M+1∑
l=1

ψl(ξ)ŵl(tn) :=ψl(ξ)ŵl(tn) , (23)

where M = k−1 is the polynomial degree of the spatial reconstruction, ψl(ξ), l = 1, . . . , M +1, are
the corresponding basis functions and ŵl(tn), l = 1, . . . , M+1, are the expansion coefficients at time
t = tn. Note that in (23) we have introduced the Einstein summation convention, which implies
summation over repeated indexes. This convention will be used throughout the rest of this work.

The spatial reconstruction is performed on a set of stencils defined as

Ss
i =

i+R∪
e=i−L

Te , (24)

where L = L(M, s) and R = R(M, s) are the stencil extent to the left and to the right, respectively.
For odd order schemes we use three stencils, one central stencil (s = 1, L = R = M/2), a fully
left-sided stencil (s = 2, L = M, R = 0) and a fully-right sided stencil (s = 3, L = 0, R = M). For
even order schemes we use four stencils, two of which are central (s = 0, L = f loor(M/2)+ 1,
R = f loor(M/2)) and (s = 1, L = f loor(M/2), R = f loor(M/2)+1), and two fully left- and right-sided
as defined before.

Details on the spatial reconstruction are omitted since the methodology is rather standard and
was extensively documented in the literature. For details on the particular WENO version used
in this paper see [29, 31].

A further aspect to be addressed emerges from the fact that for any order of accuracy greater
than 1, there will be cells of the spatial reconstruction stencil that fall outside the one-dimensional
domain. These cells are commonly called ghost cells. This aspect will be treated in Section 2.3.5,
after the GRP solution is fully described.
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2.3.3. Space-time implicit discontinuous Galerkin prediction
A key feature of the DET solver is the time evolution of the initial data left and right of the

interface xi+ 1
2
. To this end, a space-time local Discontinuous-Galerking (DG) scheme is used,

which will provide a local space-time polynomial Qh to be later used to solve integrals in (17).
We start by transforming system (8) to a reference space-time element TE = [0,1]× [0,1] with
reference coordinates ξ and τ, related to the physical domain by x = xi− 1

2
+∆xi ξ and t = tn +∆tn τ.

The resulting system reads

∂τQh +A∗∂ξQh =S∗ , (25)

with modified Jacobian and source term vector

A∗ := ∆tn

∆xi
A(Qh) , S∗ :=∆tnS(Qh) .

In order to simplify the notation, we introduce the following operators:

[a,b]τ =
∫ 1

0
a(ξ,τ)b(ξ,τ)dξ , 〈a,b〉TE =

∫ 1

0

∫ 1

0
a(ξ,τ)b(ξ,τ)dξdτ . (26)

Next, we multiply (25) by a space-time basis function θ = θ(ξ,τ) and integrate over the reference
element TE . Using integration by parts for the time derivative term we obtain

[θ,Qh]1 −〈∂τθ,Qh〉TE +〈θ,A∗∂ξQh〉TE = [θ,wh]0 +〈θ,S∗〉TE . (27)

We use the same space-time basis functions θ, to approximate Qh, A∗∂ξQh and S∗, so that

Qh(ξ,τ)=
(M+1)2∑

l=1
θlQ̂l , A∗∂ξQh(ξ,τ)=

(M+1)2∑
l=1

θl àA∗∂ξQl , S∗(ξ,τ)=
(M+1)2∑

l=1
θlŜ∗ l , (28)

where Ŝ∗ l =∆tnS(Q̂l).
We obtain expansion coefficients Q̂l by a fixed point iteration procedure, see [18] for details,

in which at each iteration step, m = 0,1, . . . until convergence is achieved, we solve the following
system (

[θk,θl]1 −〈∂τθk,θl〉TE

)
Q̂m+1

l −〈θk,θl〉TE Ŝ∗m+1
l = [θk,ψl]0ŵl −〈θk,θl〉TE

àA∗∂ξQ
m
l , (29)

for k = 1,2, . . . , (M+1)2.
The initial guess for the fixed point iteration procedure is provided by the spatial reconstruc-

tion polynomial, so that for m = 0 the space-time prediction polynomial is constant in time. For
more sophisticated initial guesses see [31]. Having computed the space-time predictions in all
computational cells, the solution to the GRP at time t is found by solving a classical Riemann
problem using the space-time reconstructed states extrapolated to both sides of the cell interface,
see [32]. The source term space-time average (19) and the non-conservative product space-time
average present in (17) are computed by numerical integration using Qh and a quadrature rule
of appropriate accuracy. For space polynomials w and space-time polynomials Qh, we adopt a
nodal basis function, where space and space-time nodes are given by Gaussian quadrature points
and the space and space-time basis functions are the Lagrange interpolation polynomials passing
through these points [31].
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2.3.4. Computation of high-order numerical fluxes/fluctuations at boundary cell interfaces
In the case of boundary cell interfaces, one has to solve a classical RP at the internal vertex

P with NP predicted states, as shown in Section 2.2. As in the case of internal cell interfaces, i.e.
within the one-dimensional domain, these RPs have to be solved at appropriate quadrature points
for time integration in (20).

For hyperbolic systems written in conservation form, the numerical flux is directly computed,
since the solution of the RP at quadrature points provides the Godunov state used to evaluate the
physical flux. On the other hand, in the case of non-conservative systems a fluctuation has to be
computed. In the case of a positive fluctuation at an inflow boundary cell interface located at x = 0,
it is sufficient to perform the integral in (21) as

D+
1− 1

2
= 1
∆tn

∫ tn+1

tn
D±

1− 1
2

(
Q−

∗ (t),Q+
1− 1

2
(t),Ψ

)
dt , (30)

where Q−∗ (t) is the solution to the classical RP for initial conditions given by predicted space-time
polynomials evaluated at time t on the corresponding internal vertex. Similarly, for an outflow
boundary cell interface located at x = L, with L the length of the edge, it is sufficient to perform
the integral in (21) using the predicted state and the Godunov state as follows:

D−
N+ 1

2
= 1
∆tn

∫ tn+1

tn
D±

N+ 1
2

(
Q−

N+ 1
2
(t),Q+

∗ (t),Ψ
)

dt . (31)

See [33, 34] for details on the design of the integration pathΨ when an exact RP solver is used.

2.3.5. Ghost cell filling for spatial reconstruction
At time tn, the WENO procedure requires M ghost cells to be filled at each side of the one-

dimensional edge. In practice, an accurate approximation of the solution is required in order to
compute cell averages that will then be used to fill ghost cells. Here, we propose a methodology
that is similar to the one presented in [16]. The solution approximation used to compute cell
averages is provided by a Taylor series expansion around the internal vertex P, shared by the k-th
edge. Assuming that the origin of a local spatial coordinate ε is located at the internal vertex P,
shared by the k-th edge, the state vector outside the one-dimensional domain for the this edge has
the form

Qk
g(ε, tn)=Qk

∗(tn−1 +∆tn−1)+
M∑
j=1

1
j!
∂

( j)
x Qk

∗(tn−1 +∆tn−1) ε j , (32)

where Qk∗(tn−1+∆tn−1) is the solution of the GRP for the k-th edge sharing vertex P, obtained from
the previous time step. For the case n = 0, the initial condition is used to assign Qk∗(tn−1 +∆tn−1)
and its spatial derivatives.

In [16], ∂( j)
x Qk∗(tn−1 +∆tn−1) was approximated by performing an inverse Cauchy-Kowalewski

procedure, such that spatial derivatives could be computed from temporal derivatives available
from the GRP solution of the previous time step. Here, we directly use the spatial derivatives
from the implict DG prediction of the previous time step. To compute spatial derivatives out of the
space-time prediction Qh(ξ,τ), we recursively make the following ansatz

〈θk,θl〉 �
∂

( j)
ξ

Q
l
= 〈θk,∂ξθl〉á∂( j−1)

ξ
Q

l
, (33)

with j = 1, . . . , M and k, l = 1,2, . . . , (M +1)2. Note that matrix 〈θk,θl〉−1〈θk,∂ξθl〉 is computed only
once, so that the spatial derivatives are obtained by a simple matrix-vector product. Moreover, it
is worth mentioning that avoiding the use of the inverse Cauchy-Kowalewski procedure allows to
apply this procedure to hyperbolic systems with non-invertible Jacobian matrixes.
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2.4. Summary of the algorithm
Consider a network consisting of NV vertexes and NE edges. NI are internal vertexes or

junctions and NB = NV −NI terminal nodes on which boundary conditions must be provided. The
following list summarizes how to evolve the solution from time tn to tn+1:

1. For all edges: fill ghost cells for spatial reconstruction as specified in Section 2.3.5 and per-
form WENO as stated in Section 2.3.2.

2. For all edges: perform the prediction step as specified in Section 2.3.3.
3. For all internal vertexes or junctions: solve the classical RP for appropriate time integration

quadrature points as described in Section 2.2.
4. For all internal cell interfaces of all edges: compute fluctuations using (20) with first order

fluctuations (21).
5. For all boundary cell interfaces of all edges: compute fluctuations using (20) with first order

fluctuations (30) and (31).
6. For all edges: update the solution using (17).

3. Results

In this section we perform a series of tests in order to verify the accuracy and robustness of the
methodology presented in the previous section. For all tests presented here, the vessel stiffness
coefficient K is computed, following [8], as

K(x)= 4
3

hE
R0(x)

, (34)

where h is the vessel wall thickness, E is the effective Young modulus of the vessel wall material
and R0 is the radius of the reference cross-sectional area A0. Note that a variation of A0 in space
will cause a variation of the vessel stiffness coefficient K .

3.1. Convergence rates
Here we carry out a convergence rate study in order to verify that the expected theoretical

order of accuracy of the proposed numerical scheme is actually attained. To this end we construct
a test problem for a modified non-linear system of equations that is a perturbation of the original
system via a source term vector. In this manner we obtain a smooth, exact solution of a non-
homogeneous non-linear system. We proceed to prescribe a smooth function Q̂(x, t) that will be the
exact solution of the perturbed system. Here we choose

Q̂(x, t)=
[

Â(x, t)
q̂(x, t)

]
=

 Ac +δA Ac sin
( 2π

L x
)
cos

(
2π
T0

t
)

qc −δA Ac L
T0

cos
( 2π

L x
)
sin

(
2π
T0

t
) , (35)

where quantities with superscript c are average values and terms δ are fluctuations around the
average. Inserting (35) into (8) we obtain the following inhomogeneous system

∂tQ+A(Q)∂xQ=S(Q)+ Ŝ(x, t) . (36)

The resulting source term Ŝ(x, t) reflects the fact that (35) is not a solution of the original
system (8). Ŝ(x, t) can be calculated using algebraic manipulators; its expression is not reproduced
here.

The convergence test is performed over a network composed by two vessels connected at both
extremities, thus forming a closed loop. The number of cells used in each mesh refinement step
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in one of the vessels is always the double of the quantity used in the other one. Reference param-
eters are: h = 0.5mm, R0 = 14mm, EE = 1.2 MPa, p0 = 0Pa, µ = 0Pa s. Moreover, the following
parameters are used: L = 1.0m, T0 = 1 s, Ac = πR2

0, δA = 0.1, qc = 100ml s−1. The output time is
taken as tend = 0.5 s and the CFL number used is CFL = 0.9.

Table 1 displays the empirical convergence rates for second and third order versions of the
proposed finite volume-type numerical scheme, respectively. Errors for the cross-sectional area
were measured in the norms L1, L2 and L∞. The expected convergence rates are reached for all
norms, even with reduced number of computational cells discretizing the domain.

Throughout this work we will denote as J1, numerical solutions obtained by performing WENO
considering constant data on ghost cells and by using only constant (in time) states at tn as initial
conditions for the Riemann problem at the junction instead of predicted states provided by the
DET solver. High order coupling as proposed in the present work is denoted by JN, with N the
order of accuracy of the coupling strategy. Convergence rates for low order coupling are also shown
in Table 1, illustrating that the formal order of accuracy is lost in this case, as expected.

Test N L1 L2 L∞ O(L1) O(L2) O(L∞)

ADER-O2-J2 4 1.65e-05 1.92e-05 4.67e-05 - -
8 3.77e-06 4.65e-06 1.48e-05 2.1 2.0 1.7
16 8.81e-07 1.09e-06 3.66e-06 2.1 2.1 2.0
32 2.31e-07 2.88e-07 9.55e-07 1.9 1.9 1.9
64 6.11e-08 7.53e-08 2.31e-07 1.9 1.9 2.1

ADER-O3-J3 4 6.03e-06 8.32e-06 1.90e-05 - -
8 1.08e-06 1.42e-06 3.36e-06 2.5 2.6 2.5
16 1.22e-07 1.59e-07 4.57e-07 3.1 3.2 2.9
32 1.50e-08 1.91e-08 5.45e-08 3.0 3.1 3.1
64 1.94e-09 2.43e-09 6.79e-09 3.0 3.0 3.0

ADER-O2-J1 4 2.01e-05 2.32e-05 5.35e-05 - -
8 6.20e-06 8.03e-06 2.49e-05 1.7 1.5 1.1
16 1.88e-06 2.91e-06 1.44e-05 1.7 1.5 0.8
32 6.35e-07 1.08e-06 7.44e-06 1.6 1.4 1.0
64 2.62e-07 4.22e-07 3.79e-06 1.3 1.4 1.0

ADER-O3-J1 4 1.38e-05 1.63e-05 3.16e-05 - -
8 4.43e-06 7.02e-06 2.53e-05 1.6 1.2 0.3
16 1.42e-06 2.65e-06 1.43e-05 1.6 1.4 0.8
32 5.42e-07 1.02e-06 7.54e-06 1.4 1.4 0.9
64 2.54e-07 4.20e-07 3.83e-06 1.1 1.3 1.0

Table 1: Empirical convergence rates obtained for second and third order ADER schemes. N is the number of cells of the
vessel with the coarsest mesh. Errors are computed for variable A [m2] and refer to the vessel with the coarsest mesh.

3.2. Wave propagation in a simple network
In order to study the effect of the proposed coupling strategy on numerical results, we consider

a simple vessel network composed by three vessels, with properties defined in Table 2. Vessel 1
is the parent vessel, whereas vessels 2 and 3 are daughter vessels. It is worth noting that the
reference cross-sectional area of the vessels that compose the network are different, with discon-
tinuous variation at the bifurcation point. Moreover, spatial discretization is different in each
vessel. Other relevant parameters are: µ = 0Pa s; ρ = 1050kg m−3, E = 1.2 MPa, h = 0.5mm. A
CFL number of CFL = 0.9 was used for all computations reported in this section.

3.2.1. Smooth wave
In this test we prescribe the flow rate curve reported in [8] at the beginning of vessel 1,

whereas the ends of vessels 2 and 3 are considered as transparent boundaries. Initial conditions
are p(x,0)= 10.656KPa and q(x,0)= 0ml s−1.
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Vessel no. L [mm] r0 [mm] ∆x [mm]

1 500 14 10

2 500 10 20

3 500 7 30

Table 2: Parameters for vessel network used in Section 3.2.

The solution for time t = 0.12 s is shown in Figure 1. Results for pressure and flow include a
reference solution obtained with a first order scheme on a very fine mesh (∆x = 1mm), as well as
second and third order solutions for both, high and low order coupling schemes. Daughter vessel 3
is not displayed for the sake of clarity. From the presented results it can be easily concluded that
the high order coupling yields a more accurate solution than the low order coupling.

3.2.2. Shock wave
Here we assess the ability of the proposed methodology to solve problems involving the prop-

agation of discontinuities in a network. This is perhaps not relevant for arterial blood flow, but
could be a situation that might be observed in other physiological flows, such as in the respiratory
system [35] or in the venous system [36].

Test 1
In this test all outlets of the network are considered to be transparent boundaries. Initial

conditions are identical to the ones used for the previous test, except for pressure in vessel 1,
where we prescribe p1(x,0)= 11.988KPa for x < 0.4m.

The solution for time t = 0.06 s is shown in Figure 2. Results for pressure and flow include
a reference solution obtained with a first order scheme on a very fine mesh (∆x = 1mm), as well
as second and third order solutions for both, high and low order coupling. The initial pressure
discontinuity generates a forward-traveling shock and a backward-traveling rarefaction. As the
shock reaches the bifurcation point, it propagates through both daughter vessels. Moreover, a
reflected shock is generated in vessel 1. The better accuracy of high order coupling is not as
evident as for the smooth case, even if results for high order coupling are slightly more accurate.
This can be explained by the fact that the shock is enforcing the spatial reconstruction to lower
the order of the solution at the shock.

Test 2
In order to further assess the capacity of the proposed reconstruction procedure to deliver

(essentially) non-oscillatory solutions, we now consider a test case in which the pressure discon-
tinuity is located in one of the daughter vessels. In particular, initial pressure in vessel 2 is set
to p2(x,0) = 11.988KPa for x > 0.15m . The obtained solutions for t = 0.08 s are shown in Fig-
ure 3. In this case the initial pressure discontinuity produces a backward-traveling shock and a
forward-traveling rarefaction, which for the displayed time has already abandoned the vessel. As
the shock reaches the bifurcation a forward-traveling rarefaction is generated in vessel 2, while
the shock propagates in vessels 1 and 2.

3.3. Arterial network
Here we consider the model of the human arterial system presented in [37] and further studied

in [8]. The model includes 37 major arteries, an inflow curve at the root of the aorta and terminal
resistances, as shown in Figure 4. For full details on the model see [37] and [8].

The vessels included in the model present tapering and discontinuous variations of geomet-
rical and mechanical properties across junctions, being therefore perfectly suited to validate the
proposed methodology.
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Figure 1: Smooth wave in a simple network at time t = 0.12 s. Vertical dashed line shows the location of the junction.
Daughter vessel 3 is not displayed for the sake of clarity. Insets display the solution at the junction. Ref. was obtained
using a first order scheme on a very fine mesh (∆x = 1mm).
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Figure 2: Shock wave in a simple network: test 1. Second and third order results for pressure and flow. Output time
t = 0.06 s. The solution in vessel 3 is the one where the shock wave has advanced more in space. Ref. was obtained using a
first order scheme on a very fine mesh (∆x = 1mm).
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Figure 3: Shock wave in a simple network: test 2. Second and third order results for pressure and flow. Output time
t = 0.08 s. Ref. was obtained using a first order scheme on a very fine mesh (∆x = 1mm).
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Figure 4: Schematic representation of the in vitro model of the arterial system presented in [37]. Purple dot represent
the network inlet, black dots are junctions or terminal nodes. A pump is connected to the network inlet and resistances
are connected to terminal segments. Arrows indicate vessels for which the solution is displayed. For full details on the
network topology and geometrical/mechanical parameters refer to [8, 37].

The number of computational cells used in the j-th vessel is defined as N j = d L j
∆xmax

e. Computa-
tions were performed using a CFL = 0.9 on a notebook with an Intel Core i7-4500 (1.80 GHz clock
speed). Table 3 reports setting details of the runs for which computational results shown in this
section were obtained.

Label ∆xmax [mm] Order−1D Order− Junction tCPU [s]

O1 20 1 J1 10.07

O1-RFN1 10 1 J1 17.24

O1-RFN2 5 1 J1 36.18

Ref. 1 1 J1 794.00

O2-J2 20 2 J2 12.04

O2-J1 20 2 J1 11.13

O3-J3 20 3 J3 35.30

O3-J1 20 3 J1 20.24

Table 3: Setting of simulations for computational results shown in Section 3.3. tCPU is the computational time per cardiac
cycle.

Figures 5 and 6 show computational results for pressure and flow rate. The improvement in
the description of waveform landmarks given by the solutions obtained using high order coupling
is evident for both quantities, pressure and flow. The improvement is more evident in the case of
vessels where flow is highly oscillatory, like the left renal and carotid arteries. However, differ-
ences can also be encountered in other vessels, like in the thoracic aorta.

Figure 7 features pressure and flow rate along the aorta and left lower limb for time t = 10 s,
which corresponds to nearly maximum flow rate at the root of the aorta. The better approximation
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obtained by second and third order schemes using a consistent high order coupling is also evident
in this complex network. Moreover, from Figure 7 it can be concluded that there is a clear sense of
convergence when moving from second to third order coupling, while it is not clear that the same
holds for the low order coupling. Remarkably, it could also be noticed that the low order coupling
can produce non-physical oscillations in the solution, as shown in Figure 8.

Table 3 shows CPU time per cardiac cycle for all simulations shown in this section. Although
these numbers must be considered carefully since the code was not optimized, we can safely con-
clude that high order schemes are more efficient if a specific accuracy is to be achieved.

4. Final remarks

We have proposed a methodology for a high order approximation of hyperbolic conservation
laws in networks. The proposed strategy requires the availability of an exact or approximate Rie-
mann solver for the Riemann problem at a junction and the use of the Dumber-Enaux-Toro solver.
The methodology was illustrated for a one-dimensional blood flow model that considers discon-
tinuous variations of mechanical and geometrical properties of vessels. Reported computational
results show that the proposed method is crucial to fully exploit the accuracy of high order finite
volume schemes.

It is important to stress that the high order approximation proposed here can be applied to any
hyperbolic conservation law, conservative or non conservative and possibly with discontinuous flux
functions, as long as an exact or approximate Riemann problem solver is available. Moreover, this
kind of treatment of internal vertexes is mandatory if local time stepping techniques are to be
implemented. This last aspect is being currently investigated.
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Figure 5: First and second order computational results for pressure and flow. Dashed line refers to a reference solution
obtained with a first order scheme and ∆x = 1mm. For other quantities refer to Table 3.
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Figure 6: First and third order computational results for pressure and flow. Dashed line refers to a reference solution
obtained with a first order scheme and ∆x = 1mm. For other quantities refer to Table 3.
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Figure 7: Second and third order computational results for pressure and flow along the aorta and lower limb at time
t = 10 s. Vertical lines indicate the location of bifurcations. For other quantities refer to Table 3.
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Figure 8: Detail of second order computational results for pressure along the aorta at time t = 10 s. Vertical lines indicate
the location of bifurcations. For other quantities refer to Table 3.
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