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Abstract

In this paper, we propose a unifying approach to the problem of measuring the inconsistency of judgments.

More precisely, we define a general framework that allow several well-known inconsistency indices to be

expressed as special cases of our formulation. Our proposal defines an inconsistency index as an aggregation

of ‘local’, i.e. triple-based, inconsistencies. We prove that some simple and reasonable assumptions on

the local inconsistency evaluation and on the aggregation rules guarantee a set of good properties for the

obtained general inconsistency index. We show that OWA functions and t-conorms are suitable examples of

aggregation functions for the local inconsistencies. We argue that the flexibility of our proposal is a relevant

property for inconsistency evaluation that allows a suitable tuning of some important characteristics of the

index. For example, by using different types of OWA functions, it is possible to obtain the desired balance

between an averaging behavior and a ‘largest inconsistency focused’ behavior. We show that our proposal

can be formulated in an equivalent way for the additive representation of local inconsistencies too. Under

this representation, we prove a property of Pareto-efficiency for our general, aggregation-based inconsistency

index.

Keywords: Pairwise comparisons; multiplicative preference relations; consistency; inconsistency indices;

analytic hierarchy process; aggregation functions; OWA operators.

1 Introduction

In various decision making problems, a fundamental step relates with the determination of the

weights of a finite set of alternatives/criteria. A widely accepted methodology to analyze alter-

natives and criteria and eventually derive a weight vector is to pairwise compare them. Namely,

by pairwise comparing alternatives one can decompose an otherwise cognitively too large problem

into more tractable sub-problems and tackle these latter ones.

Although a carefully selected set of (n − 1) pairwise comparisons is sufficient to elicitate a set

of weights (Bozóki et al, 2010), to enhance the robustness of the set of weights, the expert is

∗This is a preprint of the journal article: Brunelli M. and Fedrizzi M. (≥ 2018): A general formulation for some
inconsistency indices of pairwise comparisons. Annals of Operations Research, DOI:10.1007/s10479-018-2936-6.



often asked more questions in the form of pairwise comparisons. Different methodologies seem

to agree on this specific point. For example, in the Analytic Hierarchy Process (AHP), n(n−1)
2

pairwise comparisons are normally required, and a similar principle has also been advocated in

Multi-Attribute Value Theory (MAVT) where, referring to the case with only (n−1) comparisons,

Keeney and Raiffa (1976) claimed that “it may be desirable to ask additional questions thereby

getting an over-determined system of equations, fully expecting that the set of responses would

be inconsistent in practice”. This last statement captures a fundamental problem in the theory of

pairwise comparisons: more comparisons help improve the robustness of the results, but an expert

can hardly ever be completely rational in expressing them. The same idea was also supported

by (Belton and Stewart, 2002, Sec. 5.4.4). Furthermore, the capacity of preferences expressed as

ratio statements to represent ratios between criteria weights in MCDM problems where the value

function is additive has recently been validated by Pajala et al (2017).

Consistent preferences do not automatically imply the rationality and qualification of the decision

maker (Temesi, 2011). On the other hand, it is reasonable to assume that highly inconsistent

preferences might be a symptom of the decision maker’s incapacity in discriminating between

alternatives (Irwin, 1958) or of a lack of attention and concentration in the elicitation phase,

possibly due to information overload (Carmone Jr et al, 1997). Again, different theories in decision

analysis seem to agree on the importance of allowing for inconsistencies but, at the same time,

limiting their extent. In the AHP, Saaty (1977) claimed that preferences should be ‘close’ to

consistency, and in MAVT Keeney and Raiffa (1976) recommended that inconsistencies be reduced

to a ‘nominal level’.

Given the fact that judgments which are not too inconsistent can be accepted whereas too

inconsistent ones should be revised, the estimation of inconsistency concretely affects the decision

process and consequently it becomes crucial to rely on fair estimations of inconsistency. To this end,

a wide range of inconsistency indices have been proposed in the literature to quantify the deviation

of the preferences of a decision maker from a fully consistent form. Namely, such indices act as

indicators of the inconsistency level of pairwise comparisons. Some numerical comparative studies

analyzed the most relevant indices (Brunelli et al, 2013a; Bozóki and Rapcsák, 2008; Grzybowski,

2016; Kazibudzki, 2016) while, recently, formal studies on inconsistency indices have been proposed

in the literature through axiomatic approaches (Brunelli, 2017; Brunelli and Fedrizzi, 2015; Csató,

2017; Koczkodaj and Szwarc, 2014).

Having established these facts, the scope of this paper is that of constructing a general frame-

work for inconsistency indices and then study under what conditions the indices generated within

it satisfy some basic reasonable properties. The definition of such a general framework will (i)

push forward the formal analysis of inconsistency indices, (ii) clarify the essence of inconsistency

estimation, and (iii) be used to devise new and customized indices.

This paper is organized as follows. Section 2 introduces the necessary formalism on pairwise

comparisons and inconsistency indices, also recalling the recent literature on the subject matter

and the definitions of some indices used in the rest of the analysis. Section 3 shows that some well-

known inconsistency indices share a common algebraic structure and proves under what conditions

a general framework generates reasonable inconsistency indices. Continuing in the same direction,

Section 4 proposes the use of aggregation functions to model the general formulation of indices.

Finally, Section 5 contains a discussion and the conclusions.
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2 Pairwise comparisons and inconsistency indices

In the following, we shall consider a finite non-empty set of entities, hereafter also called ‘alterna-

tives’, X = {x1, . . . , xn} and a set of pairwise comparisons between them, i.e. a valued preference

relation on the set X. According to the multiplicative scheme, the degree of preference of xi to xj
is represented by a positive real value aij > 0 which is the numerical estimation of the ratio ωi/ωj
where ωi and ωj are the weights of xi and xj , respectively. It is common to assume reciprocity,

i.e. aij = 1/aji ∀i, j. In this setting, a pairwise comparison matrix A = (aij)n×n is defined as a

positive and reciprocal matrix, i.e. a convenient mathematical structure where the comparisons are

collected. A desirable property of pairwise comparison matrices is called consistency and resembles

an extension of the concept of transitivity to the case of valued preferences. Namely, a pairwise

comparison matrix is consistent (Saaty, 1977) if

aik = aijajk ∀i, j, k. (1)

This means that each direct comparison aik is supported by all indirect comparisons aijajk via

xj ∀j (Saaty, 1977). For later convenience, the set of all pairwise comparison matrices is defined

as

A = {A = (aij)n×n|aij > 0, aijaji = 1 ∀i, j, n > 2} .

Similarly, the set of all consistent pairwise comparison matrices A∗ ⊂ A is the following,

A∗ = {A = (aij)n×n|A ∈ A, aik = aijajk ∀i, j, k}.

Inconsistency indices have been introduced to estimate the extent of the violation of consistency—

i.e. the deviation from (1)—in pairwise comparison matrices. Formally, an inconsistency index is a

function I mapping pairwise comparison matrices into real numbers, such that the value I(A) ∈ R
represents the degree of inconsistency of A (Brunelli and Fedrizzi, 2015). Originally, Saaty (1977)

introduced an inconsistency index based on the Perron-Frobenius eigenvalue of A. However, in

recent years new indices have proliferated in the literature. In this paper, we consider only some of

them, and the reader can refer to a survey (Brunelli et al, 2013a) for a broader overview. Besides

Saaty’s index, the most widely known and studied index is, probably, the Geometric Consistency

Index (Crawford and Williams, 1985),

GCI(A) =
2

(n− 1)(n− 2)

∑

1≤i<j≤n
ln2

(
aij

(
∏n
k=1 ajk)

1
n

(
∏n
k=1 aik)

1
n

)
.

For later convenience, we remark that it was shown (Brunelli et al, 2013b) that GCI can be

rewritten as follows,

GCI(A) = χn
∑

1≤i<j<k≤n

(
ln
aijajk
aik

)2

, (2)

where χn is a normalization factor which depends on the order n of the matrix A. In the following,

we shall adopt formulation (2). Index GCI has been studied (Aguarón and Moreno-Jiménez,

2003; Aguarón et al, 2016) and extended to other representations of preferences as, for instance,

interval-valued pairwise comparisons (Meng et al, 2015; Wang, 2015).
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Peláez and Lamata (2003) proposed another index in the following form,

CI∗(A) =
1(
n
3

)
∑

1≤i<j<k≤n

(
aijajk
aik

+
aik
aijajk

− 2

)
. (3)

Such index was used by the same authors (Lamata and Peláez, 2002) as the objective function to

be minimized in the estimation of missing comparisons. Remarkably, another index was proposed

to estimate inconsistency (Shiraishi et al, 1998) and to estimate missing preferences (Obata et al,

1999) and later proven to be proportional, and thus equivalent, to CI∗ (Brunelli et al, 2013b).

This double interpretation of (3) seems to corroborate its soundness.

Cavallo and D’Apuzzo (2009, 2010) studied pairwise comparison matrices using group theory

and derived the following index

ICD(A) =
∏

1≤i<j<k≤n

(
max

{
aijajk
aik

,
aik
aijajk

}) 1

(n3) , (4)

whose range is the interval [1,+∞[. It is also interesting to note that ICD has been proven

functionally related to another important index used in the framework of reciprocal preference

relations (Brunelli, 2016). This fact certainly increases the relevance of index ICD.

Inspired by an original proposal by Koczkodaj (1993), Duszak and Koczkodaj (1994) introduced

a max-min inconsistency index,

K(A) = max
1≤i<j<k≤n

{
min

{∣∣∣∣1−
aijajk
aik

∣∣∣∣,
∣∣∣∣1−

aik
aijajk

∣∣∣∣
}}

, (5)

which was recently characterized by Csató (2017). Additionally, index K was used to estimate miss-

ing comparisons (Koczkodaj et al, 1999) and employed in real-world decision analysis (Koczkodaj

et al, 2014). More recently, Grzybowski (2016) proposed and justified a modification of index K,

where the maximum is replaced by the arithmetic mean,

ATI(A) =
1(
n
3

)
∑

1≤i<j<k≤n
min

{∣∣∣∣1−
aijajk
aik

∣∣∣∣,
∣∣∣∣1−

aik
aijajk

∣∣∣∣
}
. (6)

Let us note that, unlike the Consistency Index by Saaty, which requires the estimation of the

spectral radius of the pairwise comparison matrix A, the indices GCI, CI∗, ICD, K and ATI are

closed-form expressions of the entries of A, and therefore especially transparent and appealing.

Additionally, recently some properties have been introduced by Brunelli and Fedrizzi (2015),

Brunelli (2017), and Koczkodaj and Szwarc (2014) to help define the concept of inconsistency

index. In view of the fact that the properties proposed by Brunelli and Fedrizzi are seemingly

more restrictive than those by Koczkodaj and Szwarc, we shall focus on these former to derive

stronger results. Since they are going to be used later, it is here the case to shortly recall the above

mentioned axiomatic properties.

Property 1 (P1). Index I attains its minimum value ν ∈ R if and only if A is consistent, i.e.

I(A) = ν ⇔ A ∈ A∗ ∀A ∈ A.

Property 2 (P2). Index I is invariant under permutation of alternatives, i.e. I(A) = I(PAPT ) ∀A ∈
A and for all permutation matrices P.

Property 3 (P3). As the preferences are intensified, the inconsistency cannot decrease. Define

A(b) = (abij)n×n. Formally, I(A(b)) ≥ I(A) ∀A ∈ A and ∀b > 1.
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Property 4 (P4). Consider a matrix A ∈ A∗ and the matrix Apq(δ) which is the same as A

except for entries apq and aqp which are replaced by aδpq and aδqp, respectively. Then, I(Apq(δ)) is

a quasi-convex function of δ ∈]0,∞[ with minimum in δ = 1 for all p, q = 1, . . . , n.

Property 5 (P5). Index I is a continuous function of the entries of A for all A ∈ A.

Property 6 (P6). Index I is invariant under inversion of preferences, i.e. I(A) = I(AT ) ∀A ∈ A.

Note that, albeit lengthy in its formulation, P4 concerns changing a single comparison and

its reciprocal in a consistent matrix and simply states that the larger the change, the larger the

inconsistency.

3 Decomposition of some transitivity-based indices

From a first inspection, it appears that indices GCI, CI∗, ICD, K and ATI share a common

structure. Firstly, in all of them there are terms
aijajk
aik

or, equivalently, thanks to reciprocity,

aijajkaki. Hereafter, we shorten them with αijk := aijajkaki. Secondly, all these indices are based

on an evaluation of the local inconsistency of triple (i, j, k) for 1 ≤ i < j < k ≤ n. This evaluation

is a real valued function f : R+ → R mapping positive values αijk’s into real values f(αijk) acting

as estimations of local inconsistency. Thirdly, another function,
⊕

: R(n3) → R, is used to aggregate

the contributions of local inconsistencies, f(αijk), to the global inconsistency. Thus, indices GCI,

CI∗, ICD, K and ATI can be rewritten in the more general form

I(A) =
⊕

1≤i<j<k≤n
f(αijk). (7)

The decompositions of the above mentioned indices into the more general form (7) is summarized

in Table 1.

Index
⊕

: R(n3) −→ R f : R+ −→ R

GCI χn
∑

1≤i<j<k≤n
(lnαijk)

2

CI∗
1(
n
3

)
∑

1≤i<j<k≤n
αijk + 1

αijk
− 2

ICD
∏

1≤i<j<k≤n
(·)

1/(n3) max
{
αijk,

1
αijk

}

K max
1≤i<j<k≤n

min
{
|1− αijk| ,

∣∣∣1− 1
αijk

∣∣∣
}

ATI
1(
n
3

)
∑

1≤i<j<k≤n
min

{
|1− αijk| ,

∣∣∣1− 1
αijk

∣∣∣
}

Table 1: Decomposition of inconsistency indices GCI, CI∗, ICD, K and ATI.

Figure 1 offers a snapshot of the rationale behind the decomposition of the indices. We shall note

that an heuristic attempt to see indices as an aggregation of local inconsistencies was proposed by

Siraj et al (2015).

Inconsistency indices based on values αijk = aijajkaki have some interesting properties which

will later on become useful. Let us now investigate some properties of the general quantity αijk.
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α1 2 3

α1 2 4

α(n−2) (n−1)n

f(α1 2 3)

f(α1 2 4)

f(α(n−2) (n−1)n)

L

1≤i<j<k≤n I(A)

| {z }

local evaluations

| {z }

aggregation

A
· · · · · ·

Figure 1: Inconsistency indices (2)–(6) evaluate and then aggregate local contributions into a value
of global inconsistency.

The first property is that, given a pairwise comparison matrix A = (aij)n×n and an arbitrary αijk,

ασ(i)σ(j)σ(k) ∈
{
αijk,

1

αijk

}
, (8)

for all permutations σ : {i, j, k} → {i, j, k}. In fact, by inspection, we have

αijk = αjki = αkij =
1

αjik
=

1

αikj
=

1

αkji
.

The second property is that,

abija
b
jka

b
ki = (aijajkaki)

b = αbijk ∀i, j, k, (9)

and for all b ∈ R. Let us also note that αijk = 1 means that the alternatives xi, xj and xk are

compared in a perfectly consistent way. Given the existence of properties defining the concept

of inconsistency index, one natural research direction would be that of finding some requirements

which, when imposed to f and
⊕

, ensure that the induced inconsistency index I is an inconsistency

index satisfying properties P1–P6. The next theorem provides results in this sense.

Theorem 1. Consider an inconsistency index I in the form (7). Then, if

• Function f is quasi-convex in ]0,∞[ with strict minimum in αijk = 1, and such that

f (x) = f (1/x) for all x > 0. (10)

• Function
⊕

is symmetric, monotone increasing in all arguments, and strictly monotone

increasing w.r.t. the greatest argument.

• Both f and
⊕

are continuous,

then I satisfies the properties P1–P6.

Proof. First, let us observe that from (10) and (8) it follows

f(ασ(i)σ(j)σ(k)) = f(αijk). (11)

Property (11) states that f(αijk) is invariant under indices permutation. Now, we shall analyze

how the single properties P1–P6 are implied by the restrictions imposed to f and
⊕

.

P1 We shall prove the implication in both directions.

⇒ ) By contrapositive, this can be equivalently written A /∈ A∗ ⇒ I(A) 6= ν. If A /∈ A∗,
then there exists a triple (i′, j′, k′) for which αi′j′k′ 6= 1. Hence, there exists a f(αi′j′k′)
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with value strictly greater than the minimum attainable by f . Since we required that
⊕

be

strictly monotone in its greatest argument, it follows that A /∈ A∗ ⇒ I(A) > ν.

⇐ ) Functions f have strict global minimum for αijk = 1. Hence, if A ∈ A∗, then all

the f(αijk) are minimized. Since they are all minimized and
⊕

is a monotone increasing

function, it also reaches its minimum ν.

P2 We shall consider that the operation PAPT maps the original argument αijk into ασ(i)σ(j)σ(k)
where σ is a permutation of {1, . . . , n}. Hence, thanks to (11), the operation PAPT induces a

reordering of the arguments of
⊕

, but this is irrelevant since we required
⊕

to be symmetric.

P3 Thanks to (9) and the quasi-convexity of f we know that f(αbijk) is monotone increasing w.r.t

b ≥ 1. Given that
⊕

is also monotone increasing, we deduce that P3 is satisfied.

P4 Let us consider I(Apq(δ)). Each term f(αijk) in (7) not containing apq or aqp remains un-

changed as in I(A), i.e. f(αijk) = f(1). The terms αijk containing both indices p and q can

be written in the form αpqk = aδpqaqkakp. Since A ∈ A∗, it is αpqk = apqaqkakp = 1. Then,

αpqk = aδpqaqkakp is an increasing function of δ if apq > 1 and a decreasing function of δ if

0 < apq < 1. Then, satisfaction of P4 follows from the assumptions on functions f and
⊕

.

P5 Functions f and
⊕

are continuous and therefore their composition, I, is also continuous.

P6 With the operation of transposition, for all i < j < k each αijk is transformed into 1
αijk

= αkji.

Given (10), we know that I(A) = I(AT ).

The next theorem follows easily from Theorem 1.

Theorem 2. Indices GCI, CI∗, ICD, K and ATI satisfy properties P1–P6.

Proof. According to Table 1, the indices mentioned above are particular cases of (7). Then, it is

sufficient to prove that the corresponding functions f and
⊕

satisfy the assumptions of Theorem

1. By inspection of Table 1, it is easy to verify that all functions f corresponding to the considered

indices are continuous quasi-convex functions in ]0,∞[, such that f (x) = f (1/x), with strict

minimum in αijk = 1, see Figure 3. Functions
⊕

from Table 1 are based on sums, products of

positive numbers, or max functions. We conclude that GCI, CI∗, ICD, K and ATI satisfy the

assumptions of Theorem 1 and consequently they satisfy the properties P1–P6.

Figure 2 explains the role played by Theorems 1 and 2. In addition, we note that the satisfaction

of properties P1–P6 by indices GCI, CI∗, ICD and K was already proven (Brunelli, 2017; Brunelli

and Fedrizzi, 2015) separately for each index. Clearly, individual proofs are much more onerous

than the one of Theorem 2 and therefore we believe that general formulations, such as the one

presented in Theorem 1, could help simplify the analysis of inconsistency indices.

3.1 Pareto efficiency

Let us introduce the following notation

ᾱijk := max

{
αijk ,

1

αijk

}
. (12)

Definition 1 (Pareto efficiency). Given A = (aij)n×n ∈ A and A′ = (a′ij)n×n ∈ A , let αijk :=

aijajkaki, α
′
ijk := a′ija

′
jka
′
ki. Moreover, let ᾱijk and ᾱ ′ijk be defined according to (12), as well as

7



GCI

CI∗

ICD

K

P1{P6

Th.1

ATI

· · ·

· · ·

· · ·

Figure 2: Theorem 1 implicitly defines a family of inconsistency indices satisfying P1–P6. Theorem
2 proves that indices GCI, CI∗, ICD and K can be generated by the general form (7)
and satisfy properties P1–P6.

I(A) defined by (7). If

ᾱ ′ijk ≥ ᾱijk ∀ i < j < k =⇒ I(A′) ≥ I(A) , (13)

then index I is called Pareto efficient.

Note that Definition 1 emphasizes the role of the basic local inconsistency terms ᾱijk from the

point of view of Pareto efficiency of inconsistency indices (7). The intuitive interpretation is the

following: if all the local violations of the inconsistency of a matrix A′ are greater or equal than

those in A, then also the global inconsistency of A′ is greater or equal than the global inconsistency

of A1. The following theorem proves that Pareto efficiency is guaranteed under assumptions even

weaker than those of Theorem 1.

Theorem 3. Consider an inconsistency index I in the form (7). Then, if

• Function f is quasi-convex in ]0,∞[ with strict minimum in αijk = 1, and such that

f (x) = f (1/x) for all x > 0 (14)

• Function
⊕

is monotone increasing in all arguments

then, I is a Pareto–efficient index.

Proof. From the assumptions on f and definition (12), it follows that

f(αijk) = f(ᾱijk) ∀ i < j < k.

Since ᾱijk ≥ 1 , then

ᾱ ′ijk ≥ ᾱijk =⇒ f(ᾱ ′ijk) ≥ f(ᾱijk).

As
⊕

is monotone increasing in all arguments, then

ᾱ ′ijk ≥ ᾱijk ∀ i < j < k =⇒ I(A′) ≥ I(A),

and I is Pareto efficient.

Corollary 1. Indices GCI, CI∗, ICD, K and ATI are Pareto efficient.

1A similar property, called locality, was formulated in “W.W. Koczkodaj and J. Szybowski, Axiomatization of
inconsistency indicators for pairwise comparisons matrices revisited, arXiv:1509.03781v1”.
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(d) f for indices K and ATI

Figure 3: Plots of functions f for indices GCI, CI∗, ICD, K and ATI. They are quasi-convex
functions in ]0,∞[ such that f(α) = f(1/α) with strict minimum in α = 1.

Proof. The proof immediately follows from Theorem 2.

It is also possible to relate the lack of Pareto efficiency with the non-satisfaction of some proper-

ties. In fact, it can be proven that, if an index I does not satisfy P3 or P4, then it cannot be Pareto

efficient. Since a significant number of inconsistency indices do not satisfy P3 and P4 (Brunelli,

2017), Pareto efficiency is not a trivial property of inconsistency indices.

4 Some general forms for inconsistency indices

As pointed out in the previous section, different functions f are used by the inconsistency indices

studied in this paper and they all fit the requirements of Theorem 1. A graphical illustration of

such functions lends itself well to the study of their behavior. For this scope, Figure 3 illustrates

the plots of the functions f for the indices GCI, CI∗, ICD, K and ATI. Although very similar,

with the exception of K, different indices treat deviations from consistency in different ways. For

example, when α > 1, the increase in the inconsistency of a triple is linear for ICD, whereas K

penalizes deviations close to the consistent situation more than those happening when the triple

is already quite inconsistent.
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4.1 OWA functions

To bridge different views and create a common framework, in this section we propose some aggre-

gation functions which can be used to aggregate the local contributions to the global inconsistency.

To achieve this goal, some general families of averaging operators are recalled and later on used.

Definition 2 (Quasi-Ordered Weighted Averaging Function (Grabisch et al, 2009)). A quasi-

ordered weighted averaging (QOWAψ,w) function of dimension m is a mapping that has an asso-

ciated weighting vector w = (w1, . . . , wm) with w1 + · · · + wm = 1, 0 ≤ wi ≤ 1, i = 1, . . . ,m such

that

QOWAψ,w(a1, . . . , am) = ψ−1

(
m∑

i=1

wiψ(bi)

)
,

where bj is the jth largest element of the multiset {a1, . . . , am}, and where ψ : I→ R is a continuous

and strictly monotone increasing function on an interval I ⊆ R.

QOWA functions resemble quasi-arithmetic means, but with the difference that the weights

are not associated to the position of the argument but to its value compared with the others’.

Quasi-arithmetic means were used, among others, by Aczél and Saaty (1983) to aggregate pairwise

comparisons in group decision making. In the following definitions, two special cases of QOWAψ,w
are recalled and will be used to rewrite inconsistency indices in equivalent forms.

Definition 3 (Ordered weighted averaging (OWA) functions (Yager, 1988)). When ψ is the iden-

tity function, the QOWA function collapses in the following,

OWAw(a1, . . . , am) =
m∑

i=1

wibi,

and it is simply called ordered weighted averaging (OWA) function.

The arithmetic mean and the maximum are well-known examples of OWA functions. Namely,

OWA(1/m,...,1/m)(a1, . . . , am) =
1

m

m∑

i=1

ai

OWA(1,0,...,0)(a1, . . . , am) = max{a1, . . . , am}.

Definition 4 (Ordered weighted geometric averaging (OWGA) functions (Chiclana et al, 2000)).

When ψ = log, the QOWA function collapses in the following,

OWGAw(a1, . . . , am) =
m∏

i=1

bwi
i ,

and is simply called ordered weighted geometric averaging (OWGA) function.

The geometric mean and the maximum are examples of OWGA functions. Namely,

OWGA(1/m,...,1/m)(a1, . . . , am) =

(
m∏

i=1

ai

) 1
m

OWGA(1,0,...,0)(a1, . . . , am) = max{a1, . . . , am}.

By using the definitions of OWA and OWGA functions we can rewrite the five inconsistency

indices GCI, CI∗, ICD, K and ATI in the following equivalent forms.
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GCI(A) = χnOWA(1/(n3),...,1/(
n
3))

(
ln
aijajk
aik

)2

(15)

CI∗(A) = OWA(1/(n3),...,1/(
n
3))

(
aijajk
aik

+
aik
aijajk

− 2

)
(16)

ICD(A) = OWGA(1/(n3),...,1/(
n
3))

max

{
aik
aijajk

,
aijajk
aik

}
(17)

K(A) = OWA(1,0,...,0) min

{∣∣∣∣1−
aik
aijajk

∣∣∣∣ ,
∣∣∣∣1−

aijajk
aik

∣∣∣∣
}

(18)

ATI(A) = OWA(1/(n3),...,1/(
n
3))

min

{∣∣∣∣1−
aik
aijajk

∣∣∣∣ ,
∣∣∣∣1−

aijajk
aik

∣∣∣∣
}
. (19)

Note that, by writing the five indices in the forms (15)–(19), we used a simplified notation that

needs a clarification. We wrote a single argument, but the number of arguments of the above

OWA functions is in fact m =
(
n
3

)
. More precisely, each one of the arguments corresponds to a

combination of three different indices (i, j, k) among n.

For sake of simplicity, in the rest of the discussion we shall consider OWA functions, which are

more popular in the literature and in applications. Nevertheless, extensions to the OWGA are

straightforward. The attitudinal character of an OWA can be represented by some indices, the

most important of which are orness and entropy (H),

orness(w) =
m∑

i=1

m− i
m− 1

wi, (20)

H(w) = −
m∑

i=1

wi lnwi (21)

Specifically, orness is the degree to which the OWA function resembles the maximum operator.

When orness is equal to 1, the OWA is the maximum. Conversely, when orness is equal to 0,

then the OWA is the minimum. Values between 0 and 1 represent trade-offs between minimum

and maximum. Entropy measures the dispersion of weights and it reaches its maximum when all

the weights are equal to 1/m. One family of methods for finding the most appropriate weight

vector considers the weight vector as the optimal solution of a given optimization problem. The

most popular optimization method was proposed by O’Hagan (1988) to find the vector w with a

priori specified orness(w) = γ ∈ [0, 1] and maximum entropy. That is, the following optimization

problem has to be solved.
maximize
(w1,...,wm)

H(w)

subject to orness(w) = γ

w1 + · · ·+ wm = 1

w1, . . . , wm ≥ 0 .

(22)

The weight vectors (1/m, . . . , 1/m), representing the average, and (1, 0, . . . , 0), representing the

maximum, can be obtained by solving the optimization problem (22) with values γ = 0.5 and

γ = 1, respectively. Fullér and Majlender (2001) showed that when (22) is solved with γ ∈ [0.5, 1]

the weights of the optimal solution respect the relation w1 ≥ · · · ≥ wn, which is the same condition

discussed by Can (2014) under the name of “monotonically decreasing vector”. We observe that

the condition w1 ≥ ... ≥ wn corresponds to giving more importance to larger local inconsistencies.
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It is worth noting that there is not a consensus in the literature on whether local inconsistencies

should be averaged, as done by indices GCI, CI∗, ICD and ATI, or instead, only the largest one

be considered, as done by index K. This latter view has been pushed forward by Koczkodaj and

Szwarc (2014) in contrast to approaches based on the averaging approach (Cavallo and D’Apuzzo,

2009; Peláez and Lamata, 2003). As illustrated in Figure 4, by using OWA functions we offer a

flexible and unifying framework which provides a continuous trade-off between these two different

approaches. We hope, in this way, to build a bridge between different points of view.

0.5 1

AM maxtrade-offs mean-max︷ ︸︸ ︷

0

Figure 4: AM = arithmetic mean. Using levels of orness between 1/2 and 1 allows to trade-off
between averaging local inconsistencies and considering only the largest.

An interesting trade-off between the average and the maximum could be, for instance, the OWA

function with the weight vector solving (22) with orness equal to 0.75. The weights obtained with

this value of orness would represent a halfway compromise between the average and the maximum.

More generally, a suitable value of γ can be chosen depending on the faced problem. The obtained

inconsistency index will accordingly take care of both the mean inconsistency among the
(
n
3

)
triples

(i, j, k) and the requirement of avoiding large local inconsistencies. The following example shows

that differently balancing the relevance of the two objectives may lead to different consistency

rankings.

Example 1. Consider the two pairwise comparison matrices

A1 =




1 4 9/2 9

1/4 1 3 6

2/9 1/3 1 2

1/9 1/6 1/2 1


 A2 =




1 3 9/2 9

1/3 1 3 6

2/9 1/3 1 5

1/9 1/6 1/5 1




and let us evaluate their inconsistency by means of an index (7) where
⊕

is an OWA operator with

associated weighting vector w = (w1, . . . , w(43)
) obtained by solving the maximum entropy optimiza-

tion problem (22) for different levels of orness. We further assume that the local inconsistencies

are modeled by means of the following function,

f(αijk) = αijk +
1

αijk
− 2 , (23)

which coincides with the the function f used by index CI∗. In Figure 5, we consider a so constructed

inconsistency index and we plot its value for A1, A2 and different levels of orness, γ. The plot

shows that the two matrices are differently ranked according to their inconsistency depending on

the orness of the OWA function. More precisely, if we focus on the presence of a single high local

inconsistency, thus using a high value of orness, A1 is classified as more inconsistent than A2.

Conversely, if we mainly focus on average of local inconsistencies, thus choosing γ close to 0.5, A2

is considered more inconsistent than A1 .

Needless to say, not all the OWA functions can be used to generate new inconsistency indices

satisfying P1–P6. For example, following the requirements of Theorem 1, and bearing in mind

that the OWA functions replace
⊕

, one deduces that the OWA function should have w1 > 0 so

that it is strictly monotone increasing in its maximum argument. We are then ready to formalize

our findings in the following corollary.
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Figure 5: Inconsistency of matrices A1 and A2 as a function of the orness of the maximum entropy
OWA when f is defined as in (23).

Corollary 2. If
⊕

is an OWA function with w1 > 0 and f respects the properties listed in

Theorem 1, then a function in the form
⊕

1≤i≤j≤k≤n f(αijk) is an inconsistency index satisfying

the properties P1–P6.

4.2 Triangular conorms

Triangular-norms (t-norms) and triangular conorms (t-conorms) were proposed as metrics in prob-

abilistic metric spaces. Nonetheless, the use of t-norm and t-conorms has gone beyond its original

purpose and nowadays they are widely employed in other fields, most notably in fuzzy sets theory

(Klir and Yuan, 1995) and as aggregation functions (Grabisch et al, 2009).

Definition 5 (t-conorm). A t-conorm is a function ⊥ : [0, 1]2 → [0, 1] with the following properties:

• ⊥(a, 0) = 0 (neutral element 1)

• ⊥(a, b) = ⊥(b, a) (commutativity)

• ⊥(a,⊥(b, c)) = ⊥(⊥(a, b), c) (associativity)

• ⊥(a, b) ≥ ⊥(c, d) if a ≥ c and b ≥ d (monotonicity)

Definition 6 (Strictly monotone t-conorm). A t-conorm is strictly monotone if a ≥ c and b ≥ d

and at least one of these two inequalities is strict, implies that ⊥(a, b) > ⊥(c, d).

Triangular conorms are, in their basic form, functions ⊥ : [0, 1]2 → [0, 1], but thanks to associa-

tivity they can be extended to map points in the m-ary unit cube into the interval [0, 1]. It can be

shown that, with some caution, some t-conorms can be used to model inconsistency indices.

Corollary 3. If
⊕

is a continuous and strictly monotone t-conorm, f respects the properties listed

in Theorem 1 and the image of f is in [0, 1], then a function in the form
⊕

1≤i≤j≤k≤n f(αijk) is

an inconsistency index satisfying the properties P1–P6.

Example 2. We have previously seen that the index K can be rewritten by means of OWA func-

tions. Index K is a special case of

K(A) = ⊥i,j,k min

{∣∣∣∣1−
aik
aijajk

∣∣∣∣ ,
∣∣∣∣1−

aijajk
aik

∣∣∣∣
}

where ⊥ = max. Different results, for example differentiability, can be obtained by replacing max

with another t-conorm.

13



5 Discussion and conclusions

In the current scientific debate, conflicting points of view have been expressed on the concept of

inconsistency index. Many authors (Cavallo and D’Apuzzo, 2009; Lamata and Peláez, 2002; Siraj

et al, 2015) proposed approaches to average local inconsistencies whereas some others claimed

that only the inconsistency of the most inconsistent triple should matter (Duszak and Koczkodaj,

1994). We believe that both approaches can coexist and be applied to capture different facets of the

concept of inconsistency. The results presented in this paper will hopefully serve as a trait d’union

between the two aforementioned viewpoints. Furthermore, besides unifying different approaches,

this research could also constitute a bridge between the study of inconsistency of preferences and

the theory of aggregation functions (Beliakov et al, 2007; Grabisch et al, 2009).
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