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Abstract — In this paper the expressions for the phasor parameter estimates returned by the Taylor-based 

Weighted Least Square (TWLS) approach, achieved using either complex-valued or real-valued variables, 

are derived. In particular, the TWLS phasor estimator and its derivatives are expressed as weighted sums 

of the Discrete Time Fourier Transform (DTFT) of the analyzed waveform and its derivatives. The derived 

expressions show that the TWLS algorithm is sensitive to lower order harmonics and inter-harmonics 

located close to the waveform frequency when few waveform cycles are analyzed. Also, the algorithm 

sensitivity to wideband noise is explained. The relationship between the TWLS phasor estimator and the 

waveform DTFT is then specifically analyzed when either a static or a second-order dynamic phasor model 

is assumed. Moreover, a simple and accurate procedure for evaluating the TWLS estimator of the dynamic 

phasor parameters is proposed. The derived expressions for the real-valued version are then approximated 

in order to reduce the required computational burden so achieving the Simplified TWLS (STWLS) 

procedure. That procedure can be advantageously employed in real-time low-cost applications when the 

reference frequency used in the TWLS approach is estimated run-time to improve estimation accuracy. 

Finally, computer simulations show that the phasor parameter estimates returned by the STWLS procedure 

when the waveform frequency is estimated by the Interpolated Discrete Fourier Transform method comply 

with the M-class of performance if an appropriate number of waveform cycles is considered. 
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I. INTRODUCTION  

 

Phasor parameters of electrical waveforms are increasingly employed in power grids for monitoring, 

control, and protection purposes. Smart devices called Phasor Measurement Units (PMUs) use different 

algorithms to provide accurate measurements of waveform phasor, frequency, and Rate Of Change Of 

Frequency (ROCOF) at instants synchronized with the Coordinated Universal Time (UTC). The 

performance requirements of PMUs have been specified in the IEEE Standard C37.118.1-2011 about 

synchrophasor measurements for power systems [1], recently updated in the Amendment IEEE Standard 

C37.118.1a-2014 [2]. In these two documents (simply referred to as the Standard for the sake of notation) 

the phasor measurement accuracy is defined in terms of the Total Vector Error (TVE), the Frequency Error 

(FE), and the ROCOF Error (RFE). Recently, algorithms based on either a dynamic phasor model [3]-[17] 

or a static model [18]-[20] have been proposed to estimate these parameters. Indeed, power waveform 

parameters may be affected by time variations and algorithms that adopt a dynamic phasor model may 

provide more accurate estimates, especially when the observed waveform length is more than a couple of 

cycles. In particular, the so-called Taylor-based Weighted Least Squares (TWLS) algorithm [5], [6] is 

capable of providing not only phasor measurements, but also Frequency Deviation (FD) and ROCOF 

estimates [5], [12]. The classical TWLS algorithm considers complex-valued data, but a real-valued version 

has been recently proposed [21]. Moreover, it has been shown that accurate phasor parameter estimates 

usually need a reference frequency quite close to the waveform frequency [11], [17]. This requires runtime 

frequency estimation and a significant increase in the computational burden of the TWLS phasor parameter 

estimator due to the derivation of the related pseudoinverse matrix. In this respect, the real-valued TWLS 

algorithm exhibits a higher processing efficiency [21]. In order to minimize the required processing effort, 

a-priori computation and subsequent storage of pseudoinverse matrices related to different values of the 

reference frequency have been proposed [11], [17]. It has been shown that limiting to integer frequency 

values allow to achieve satisfactory estimation accuracy, even though this approach requires a significant 

use of storage when the number of observed waveform cycles cannot be small as occurs when a good inter-

harmonics rejection is required [17]. At the best of the authors’ knowledge, no processing procedure has 

been yet proposed in the scientific literature to avoid runtime computation of the pseudoinverse matrix 

when estimating phasor parameters by the TWLS algorithm.   

Another accurate dynamic phasor parameter estimator based on Discrete Fourier Transform (DFT) 

samples has been recently proposed [15]. However, despite the close link between the TWLS approach and 

the Fourier transform is well-known [5], [6], the relationship between the TWLS estimator of the dynamic 

phasor parameters and the Discrete Time Fourier Transform (DTFT) of the analyzed waveform has not yet 

been published in the scientific literature. This relationship is of interest because it would allow a better 



understanding of the effect on estimation accuracy of some disturbance components superimposed to the 

sinewave waveform, such as harmonics, inter-harmonics, and wideband noise. Moreover, this relationship 

could suggest different procedures for the evaluation of the TWLS phasor estimator. Therefore, the aim of 

this paper is twofold: at first linking the phasor parameter estimates provided by the TWLS algorithm and 

the DTFT of the analyzed waveform, then using the obtained expressions to derive a procedure that 

implement the TWLS algorithm without computing the matrix pseudoinverse.  

The remainder of the paper is organized as follows. Section II briefly summarizes both the complex-

valued and the real-valued version of the TWLS estimation approach. In Section III the relationship 

between the TWLS estimator of the dynamic phasor parameters and the DTFT of the analyzed waveform is 

derived. The achieved expressions enable us to explain the effect on estimated phasor parameters of  

disturbances like harmonics, inter-harmonics, and additive wideband noise. Also, two phasor models 

widely adopted in the literature, i.e., the static phasor and the second-order dynamic phasor are specifically 

considered. The expressions obtained in this latter case for the real-valued version of the algorithm are then 

approximated in order to reduce the required computational effort so achieving the Simplified TWLS 

(STWLS) procedure. In Section IV it is shown that the phasor parameter estimates returned by the STWLS 

procedure when the waveform frequency is estimated by the Interpolated Discrete Fourier Transform 

(IpDFT) method (i.e. the STWLS-IpDFT procedure) comply with the requirements of the M-class of 

performance when an appropriate number of waveform cycles is considered. Moreover, the accuracies of 

the phasor parameter estimates provided by the STWLS procedure are analyzed when the coefficients 

involved in the derived expressions are evaluated by means of simple polynomials. The computation 

burden required by the considered TWLS procedures is also discussed. Finally, Section V concludes the 

paper.           

 

II. COMPLEX-VALUED AND REAL-VALUED TWLS APPROACHES 

 

The analyzed electrical waveform is modeled as: 

{ } ( ),)()(
2
1)(Re))(2cos()()( 000 2*22

0
tfjtfjtfj etpetpetpttftatx πππϕπ −+==+=  

(1) 

where ,)()( )(tjetatp ϕ=  is the so-called complex dynamic phasor of the waveform x(⋅) synchronized to the 

reference frequency f0, and Re{⋅} denotes the real part of its argument. The components of the phasor p(t) 

are the time-varying amplitude and angle a(t) and ϕ(t), respectively. It is worth noticing that when f0 is 

equal to the nominal frequency fn (50 Hz or 60 Hz), the phasor p(t) is simply called the synchrophasor. 



The analyzed discrete-time waveform is achieved by sampling the continuous-time waveform (1) 

using a sampling rate fs synchronized with the UTC. It is assumed that the following relationship holds for 

the nominal normalized frequency νn: 
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where J is integer and represents the number of analyzed nominal waveform cycles and M = 2NH + 1 

represents the odd number of analyzed samples. Also, the number of samples per nominal cycle N = fs/fn is 

integer and the reference time tr = r/fs, r = 0, 1, 2,... is located exactly at the center of the r-th record of data, 

whose duration is T = M/fs. 

In the following of this section the well-known complex-valued TWLS phasor estimator is briefly 

described, together with the most recent real-valued TWLS approach [21]. 

 

A. Complex-valued TWLS approach 

According to the complex-valued approach the phasor p(t) is expressed by using its complex Taylor’s 

series about the reference time tr, r = 0, 1,2,... , truncated to the Kth order term, i.e.,  
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where ∆t = t - tr, )()(
r

k tp , k = 1, 2,..., K , is the k-th order derivative of p(t) computed at the reference time 

tr. The coefficients of the Taylor’s polynomial (3) are then estimated as [6]: 
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where  
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with entries: 
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ν0 = f0/fs is the normalized reference frequency, T
HHr rNxrxrNxx )]()()([ ++−=   is the vector of 

the observed data, and [ ])()1()0()1()( HHHH NwNwwNwNwdiagW −+−−=   is the diagonal matrix 

formed by the samples of the adopted window w(⋅). Finally K
HH

KK WQWQA
2
1

= represents the Gram’s 

matrix and WWQC HH
KK = . In the above expressions, (⋅)*, (⋅)H, and (⋅)T denotes the conjugation, Hermitian, 

and transposition operators, respectively. 

 

B. Real-valued TWLS approach 

The waveform (1) can be rewritten as: 
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in which c(t) = a(t)cos(ϕ(t)) and s(t) = a(t)sin(ϕ(t)). These two waveforms are expanded by using Taylor’s 

series about the reference time tr, r = 0, 1,2,... , truncated to the K-order terms, i.e.: 
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where )()(
r

k tc and )()(
r

k ts  , k = 1, 2,..., K, are the k-th order derivative of c(t) and s(t), respectively, 

computed at the reference time tr. The coefficients of the Taylor’s polynomials (9) are then estimated as 

[21]: 
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Moreover K
TT

KK WUWUB =  is the Gram matrix and WWUD TT
KK = . According to (8) and (9), the 

waveform phasor and its derivatives are then obtained as: 
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between the phasor estimates returned by the two different approaches will be made in the remaining of the paper. 

It is also worth noticing that the pseudoinverse matrices (i.e. KK CA 1− or KK DB 1− for the complex-

valued or the real-valued versions, respectively) can be calculated off-line only once when the reference 

frequency is known a-priori. However, when the reference frequency is estimated at run-time to improve 

estimation accuracy [17], the computation of the pseudo-inverse matrix can require a relevant 

computational burden.  

 

C. Estimates of the phasor parameters 

 The phasor amplitude and angle can be estimated respectively as [21]: 
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the Frequency Deviation (FD) between the frequency f of the electrical waveform at the instant tr and the 

reference frequency, i.e. FD = f – f0, can be estimated as [21]: 
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and the waveform Rate Of Change Of Frequency (ROCOF) is estimated as [21]: 
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According to the Standard [1], the related estimation accuracy parameters are defined as, the Total Vector 

Error (TVE):  
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the Frequency Error (FE): 
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and the ROCOF Error (RFE): 
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III. RELATIONSHIP BETWEEN THE TWLS PHASOR ESTIMATOR AND THE WAVEFORM DTFT 

 

The estimate of the phasor parameters returned by the real-valued TWLS approach can be expressed as 

(see (B.10) in the Appendix B): 
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where βlh, l, h = 1, 2,…, 2K + 2, are the elements of the inverse matrix ( ) 11 −− = K
HH

KK WUWUB , )(
2
⋅WX  is 

the DTFT of the analyzed waveform weighted by the square window w2(⋅) and )()(
2
⋅k

WX  is its k-order 

derivative, k = 0, 1, 2,…, K. 

A very similar relationship can be achieved when considering the complex-valued TWLS approach: 
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in which αlh, l, h = 1, 2,…, 2K + 2 are the elements of the inverse matrix ( ) 11

2
1 −− = K

HH
KK WQWQA  and can 

be easily expressed in terms of the coefficients  βlh, l, h = 1, 2,…, 2K + 2 introduced in (21). 

Expressions (21) and (22) show that the estimates of the phasor parameters returned by the TWLS 

approach are weighted sums of )()(
2
⋅k

WX . Moreover, the coefficients αlh andβlh depend on the DTFT of the 

square window w2(·), W2(⋅) and its derivatives )()(
2 ⋅kW , k = 0, 1,…, K (see (B.5) and (B.6) in the Appendix B).   

It can be easily proved that the square window w2(·) of a H-term cosine window w(·) (H ≥ 2) is a   

(2H - 1)–term cosine window. In particular, the 2k-power order of the two-term Maximum Sidelobe Decay 

(MSD) (or Hann) window [22] is the (2k +1)-term MSD window. Fig. 1 shows the DTFT spectra of the 

Hann window, the related square window w2(⋅) (i.e., the three-term MSD window) and its first and second 

derivatives versus the normalized frequency expressed in bins λ = (M - 1)ν. Indeed, this choice for the 

abscissa allows us to obtain a window sidelobe spectrum behavior almost independent of the number of 

observed samples M, at least for the mainlobe and the first sidelobes. The spectra are expressed in dB with 

respect to their maximum value, which occurs at λ = 0 for the window and square window transforms W(⋅) 

and W2(⋅), respectively. Conversely, for the first derivative )()1(
2 ⋅W  the maximum of the spectrum is almost 

proportional to the number of analyzed samples M and it occurs when λ is close to 2. Conversely, the 

maximum is almost proportional to M2 for the second derivative )()2(
2 ⋅W  and it occurs at λ = 0 (see (B.5) 

and (B.6) in the Appendix B).   

 
Fig. 1. Spectra of the DTFT of the Hann window w(⋅), the related square window w2(⋅), and its first and 

second derivatives versus λ. Number of sample per nominal cycle N = 24, observation interval length J = 2.  



 Fig. 1 shows that, for small values of λ, the spectrum of the square window and its first and second 

derivatives are more spread than the Hann window. In particular, the spectrum side-lobe level increases as 

the derivative order increases. In addition, unlike W(⋅) and W2(⋅), )()1(
2 ⋅W  and )()2(

2 ⋅W  are not null at integer 

values of λ. Similar behaviors can be shown for any other classical cosine window [22].  As a consequence, 

the following remarks about estimates returned by the TWLS algorithm can be drawn:  

-  when a low number of waveform cycles is analyzed (e.g. one or two cycles), the sensitivity of the 

TWLS algorithm to lower order harmonics and inter-harmonics located close to the waveform frequency 

is expected to be higher than a DTFT approach based on the same window w(·); indeed, the spectra of 

the square window and its derivatives generally exhibit a stronger short-range leakage; 

-  when an integer number of waveform cycles is analyzed (i.e. coherent sampling occurs), the 

contribution of harmonics to the estimated phasor parameters is not null since the spectra of the window 

derivatives )()(
2 ⋅kW , k = 1, 2, …, K  are not null at the related frequencies; 

-  the sensitivity of the TWLS algorithm to wideband noise is expected to be higher than the DTFT 

approach based on the same window w(·) due to the higher Equivalent Noise BandWidth (ENBW) of 

the square window and its derivatives [23]. 

 The above remarks are corroborated by computer simulations reported in several recently published 

papers, such as [5], [6], [10], [13], and [17]. 

 In the following, the results returned by (21) and (22) are analyzed for two specific phasor models 

widely adopted in the scientific literature: the static phasor model (i.e. K = 0) and the second-order dynamic 

phasor model (i.e. K = 2, which is the minimum Taylor’s series order allowing the estimation of the phasor 

amplitude and angle, frequency deviation, and ROCOF).  

 

A. Static phasor model (K = 0)    

Assuming a static phasor model, that is K = 0 in (3), the TWLS approach reduces to the well-known 

three-parameter sine-fitting algorithm when applied in the special case of zero offset [24]. In this case both 

(21) and (22) provide (see (B.15) in the Appendix B): 
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where ν0 = f0/fs. 

If the reference frequency corresponds to an integer number of observed cycles (i.e. ν0 is integer), as often 

occurs in practice, and a classical cosine window is employed, than W2(2ν0) = 0, and (23) simply becomes: 
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which shows that the TWLS method is equivalent to the simple DFT estimator based on the square window 

w2(·). 

 

B. Second order dynamic phasor model (K = 2)    

The analytical relationship for the phasor parameters when K = 2 can be obtained from (4) or (10) by 

inverting the 6x6 matrices K
HH

KK WQWQA
2
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=  or K
TT

KK WUWUB = , respectively. The expressions for 

the entries of the inverse matrices have been determined by means of the Symbolic Math Toolbox of 

MATLAB. It was observed that 1−
KA  is a Hankel matrix, but expressions returning the values of its entries 

as a function of the adopted window are very complicated (each one has more than 50 terms). Conversely, 

the matrix 1−
KB  is a symmetric Hankel matrix with only 12 different not-null entries β11, β13, β15, β22, β24, 

β26, β33, β35, β44, β46, β55, and β66, expressed in a quite simple way as a function of the adopted window 

samples, and 18 null elements (see (B.18) and (B.19) in the Appendix B). Thus, the analytical relationships 

that link the second-order TWLS estimator of the phasor parameters and the DTFT of the analyzed 

waveform are: 
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The behaviors of the not null coefficients of the matrix 1
2
−B  versus the reference frequency employed in 

the algorithm are reported in Fig. 2 when the Hann window is adopted and M = 49 samples (i.e. J = 2 

waveform cycles) (Fig. 2(a)) and M = 97 (i.e. J = 4 cycles) (Fig. 2(b)) are analyzed. It is worth noticing that 

the reference frequency λ0 = (M – 1)ν0 is expressed in bins in order to obtain similar curves for different 

values of M.   

 



  

(a) (b) 

Fig. 2. Behavior of the not null entries βij of the inverse matrix 1
2
−B  used in (10) versus λ0 = (M - 1)ν0 for the 

Hann window assuming (a) M = 49 (J = 2 cycles) and (b) M = 97 (J = 4 cycles). 

 

 As expected (see the Appendix B), Fig. 2 shows that when λ0 is greater than 2-3 bins (obviously λ0 

must be lower than (M – 1)/2 to avoid aliasing) we have: β26 ≅ β15, β35 ≅ β24, β44 ≅ β33, β46 ≅ β13, β55 ≅ β22, 

and β66  ≅ β11. Also, the most relevant couples are almost independent of λ0 and the difference between the 

related couples of elements decreases as λ0 increases.  

Behaviors very similar to those reported in Fig. 2 were observed when considering different windows 

and number of samples.  

Observe also that the asymptotic (large values of λ0) values of the coefficients βlh depend on the 

number of acquired samples M. In particular, it can be shown that the coefficients βij related to the phasor 

components ck,r and sk,r, k = 0, 1, 2,  multiplying the real or imaginary parts of Xw2
(i)(ν0) in (25) depend on 

1/M(k+i). Since Xw2
(i)(ν0) is proportional to Mi (see (B.9) in the Appendix B) it follows that the contributions 

βlh Xw2
(i)(ν0) to ck,r and sk,r, k = 0, 1, 2,  depend on 1/Mk.  

 As a consequence of the previous analysis, only six different matrix elements, i.e. β11, β13, β15, β22, 

β24, and β33, are needed for estimating the phasor parameters when λ0 is greater than about 3 bins. In that 

case (25) becomes: 
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(26) 



which expresses the relationships between the TWLS estimator and the analyzed waveform DTFT in a 

quite simple way.  

The dynamic phasor parameter estimator based on expressions (26) will be called the Simplified 

TWLS (STWLS) procedure in the following. 

 

 

IV. ACCURACY ASSESSMENT  OF THE STWLS PROCEDURE 

 

This Section is organized in three different subsections. The first one is aimed at verifying if the 

phasor parameter estimates returned by both the proposed TWLS and STWLS procedures comply with the 

requirements of the M-class of performance when the waveform frequency is a-priori estimated by the 

IpDFT method, i.e. when the TWLS-IpDFT or the STWLS-IpDFT procedures are used, respectively. Then, 

the accuracy that can be achieved by evaluating the coefficients βlh(ν) by means of polynomials with low 

degree is analyzed. Finally, the computational burden required by the considered TWLS procedures is 

discussed in the last subsection.    

 

A. Compliance to Standard requirements of the TWLS-IpDFT and the  STWLS-IpDFT procedures  

In this subsection the compliance to the requirements of the M-class of performance is checked for 

the phasor parameter estimates returned by both proposed procedures when the reference frequency is 

estimated run-time by the IpDFT algorithm [17] under steady-state, dynamic, and transients conditions 

specified in the Standard.  

The worst-case off-nominal frequency, 2nd harmonic, 3rd harmonic, amplitude modulation (AM) and 

phase modulation (PM) testing conditions specified in the Standard for the M-class of performance are 

considered in Table I. Also, the related threshold values specified in the Standard are reported for 

comparison. The Hann window is adopted, N = 24 sample/cycle, J = 3, 4, 5, and 6 cycles, and the Taylor’s 

series order is K = 2. The maximum values of the considered accuracy parameters were determined 

considering 960 subsequent records (corresponding to 40 nominal cycles of the analyzed waveform) shifted 

each other sample by sample. For each estimated parameter, the results returned by the proposed TWLS 

estimator (25) and the STWLS estimator (26) are reported in Table I.  

As expected, the results reported in Table I show that the STWLS procedure can be as accurate as the 

TWLS procedure when a sufficient number of waveform cycles are observed. In particular, the STWLS 

procedure returns phasor parameter estimates compliant with the Standard requirements as soon as J ≥ 5 in 

the off-nominal and 2nd harmonic testing, and when J ≥ 3 in the 3rd harmonic and modulation testing. 

 



Table I. Maximum magnitude of the TVE, FE, and RFE values returned by the proposed TWLS estimator 
(25) and the STWLS estimator (26) when the reference frequency f0 is estimated run-time by the IpDFT 
algorithm. The Hann window is adopted and J = 3, 4, 5, and 6 cycles. The worst-case testing conditions 
specified in the Standard for the M-class of performance are considered.  

Test type  J 
[cycle] 

TVEmax [%] FEmax  [mHz] RFEmax  [Hz/s] 

eq. (25) eq. (26) eq. (25) eq. (26) eq. (25) eq. (26) 

off-nominal frequency  

3 0.00 0.44 0.00 2.62 0.00 11.0 

4 0.00 0.09 0.00 0.05 0.00 1.23 

5 0.00 0.01 0.00 0.01 0.00 0.10 

6 0.00 0.00 0.00 0.00 0.00 0.02  

Standard threshold  1 5 0.1 

2nd  harmonic 

3 1.21 1.33 72.1 72.1 53.3 55.3 

4 0.13 0.15 8.80 8.86 3.14 3.45 

5 0.03 0.03 2.01 2.02 0.43 0.48 

6 0.01 0.01 0.63 0.63 0.09 0.10 

 

3rd harmonic 

3 0.01 0.17 1.28 3.10 0.36 3.93 

4 0.00 0.03 0.21 0.28 0.03 0.36 

5 0.00 0.01 0.05 0.06 0.01 0.06 

6 0.00 0.00 0.02 0.02 0.00 0.01 

Standard threshold   1 5(1)-25(2)  

amplitude modulation 

3 0.00 0.17 0.81 2.52 0.02 3.98 

4 0.01 0.04 1.81 1.77 0.02 0.41 

5 0.04 0.04 3.30 3.28 0.03 0.07 

6 0.07 0.07 5.25 5.24 0.05 0.05 

phase modulation 

3 0.00 0.18 15.3 17.3 0.44 4.52 

4 0.01 0.04 26.9 26.9 0.75 1.14 

5 0.03 0.04 41.5 41.5 1.16 1.23 

6 0.07 0.07 58.8 58.8 1.65 1.66 

Std. thresh.  3 300 14 

 Note: Threshold values are related to a Reporting Rate RR ≤ 20 (1) or RR > 20 (2). 
 
 

It is worth noticing that the results related to the frequency ramp testing are almost equal to those 

related to the off-nominal frequency testing, while the results obtained when the analyzed waveform is 

affected by harmonics decreases as harmonic order increases. 

The most severe testing condition related to the M-class of performance is the out-of-band 

interference. It is known that the GTWLS-IpDFT algorithm provides phasor parameter estimates compliant 



with the Standard requirements when the Reporting Rate (RR) is equal to 50 readings/s only when J ≥ 8 

cycles [17]. The maximum TVE, FE, and RFE estimates returned by both procedures when the analyzed 

waveform is affected by out-of-band interference, J = 8 and 9 cycles and the RR = 50 readings/s. The worst 

case testing conditions are considered, i.e. fin = 47.5 Hz with interfering frequency fih = 25 Hz and fin = 52.5 

Hz with fih = 75 Hz. The results obtained when the original waveform is analyzed or the interference is 

removed from that waveform after the estimation of its parameters by the IpDFT method are reported in 

Table II.    

 

Table II. Out-of-band interference: maximum magnitude of the TVE, FE, and RFE values returned by the 
TWLS estimator (25) and the STWLS estimator (26) when reference frequency f0 is estimated run-time by the 
IpDFT algorithm. The Hann window is adopted and J = 8 and 9 cycles. The worst-case testing conditions 
specified in the Standard for the M-class of performance when RR = 50 readings/s are considered.  

Test parameters J 
[cycle] 

TVEmax [%] FEmax  [mHz] RFEmax  [Hz/s] 

eq. (25) eq. (26) eq. (25) eq. (26) eq. (25) eq. (26) 

fin = 47.5 Hz,  fih = 25 Hz 
8 0.02 0.02 6.72 6.72 0.33 0.33 

9 0.13 0.13 3.37 3.37 0.62 0.63 

fin = 47.5 Hz,  fih = 25 Hz(1) 
8 0.39 0.39 7.63 7.63 1.35 1.35 

9 0.01 0.01 1.25 1.25 0.03 0.03 

fin = 52.5 Hz, fih = 75 Hz 
8 0.02 0.02 6.72 6.72 0.32 0.32 

9 0.12 0.12 3.36 3.36 0.62 0.62 

fin = 52.5 Hz, fih = 75 Hz(1) 
8 0.38 0.38 7.52 7.52 1.33 1.33 

9 0.01 0.01 1.22 1.22 0.03 0.03 

Standard threshold   1.3 10  

Note: (1) Out-of-band interference removed from the analyzed waveform  
 

As expected, when considering the same testing conditions, both procedures return very close results 

and they comply with the Standard requirements as soon as J ≥ 8 cycles. It is worth emphasizing that the 

out-of-band interference removal when J = 8 results in worse estimates. This happens because of the poor 

parameter estimation performed by the IpDFT method due to the significant spectral interference from the 

fundamental component. That phenomenon does not occur when J = 9, since the interference parameters 

are accurately estimated.     

The performances of the proposed procedures has been assessed also under transient conditions 

specified in the Standard. The results obtained when using RR = 50 readings/s are reported in Table III.   

 
 
 



Table III. Waveform amplitude or phase step: absolute value of the worst-case overshoot or undershoot, 
and phasor, frequency, and ROCOF response times returned by the TWLS estimator (25) and the STWLS 
estimator (26) when the reference frequency f0 is estimated run-time by the IpDFT algorithm. The Hann 
window is adopted and J = 3, 4, 5, and 6 cycles.  

Test type  

J 
[cycles] 

Overshoot 
(undershoot) 

[%] 

Phasor 
 response time 

[nominal cycles] 

Frequency 
 response time 

[nominal cycles] 

ROCOF 
 response time 

[nominal cycles] 

eq. (25) eq. (26) eq. (25) eq. (26) eq. (25) eq. (26) eq. (25) eq. (26) 

amplitude 
step  

3 0.6 0.5 0.8 0.8 2.3 2.3 2.63 11.5 

4 0.5 0.5 0.9 0.9 2.9 2.9 3.42 12.0 

5 0.5 0.5 1.1 1.1 3.5 3.5 4.17 4.13 

6 0.5 0.5 1.3 1.3 4.1 4.1 4.92 4.92 

phase  step 

3 5.4 5.6 0.9 0.9 2.5 2.5 2.71 11.5 

4 4.9 4.8 1.1 1.1 3.2 3.2 3.54 12.0 

5 4.7 4.7 1.3 1.3 4.0 4.0 4.38 4.38 

6 4.6 4.6 1.5 1.5 4.7 4.7 5.21 5.21 

Std. thresh.  - 10 7(1) 14(1) 14(1) 

             Note: (1) Threshold values are related to RR = 50. 

  
 

Moreover, the delay times related to amplitude and phase steps have also been determined. The 

maximum delay time returned by simulations was equal to 1.67 ms when J = 5 or 6 cycles in the case of 

amplitude step, and to 2.5 ms for all considered values of J when phase step occurs. In any case the 

obtained delay times were significantly smaller than the upper threshold of 5 ms specified in the Standard 

for RR = 50 readings/s. 

Simulations show that both procedures exhibit almost the same performances when J ≥ 3 cycles, 

except for the ROCOF response time where the same value is achieved only for J ≥ 5 cycles. However, 

both procedures comply with the Standard requirements in all the considered testing conditions. 

It is worth noticing that for J = 8 and 9 the maximum TVE, FE, and RFE estimates provided by both 

the considered procedures under the off-nominal frequency, harmonics, AM, PM, and frequency ramp 

testing conditions comply with the Standard requirements. In particular, negligible estimation errors are 

obtained in the case of off-nominal frequency and harmonics testing.  

 

B. Polynomial approximation of the βlh coefficients used by the STWLS procedure  

In order to further lower down the computing complexity required when implementing the TWLS 

algorithm (25) or (26), the coefficients )(νβ lh  have been approximated by means of a least squares 

polynomial fitting in the whole frequency range specified in the Standard for the M-class of performance, 



i.e. considering a worst-case off-nominal frequency of 5 Hz. In that way, the phasor parameter estimation 

can be implemented in real-time on low-cost hardware platforms even though the analyzed waveform 

frequency is determined run-time to improve the phasor estimation accuracy. The value of the expression 

( ) )()()(ˆmax.. 0,
νβνβνβ

ν lhlhlhhl
cw − %, i.e. the worst-case with respect to all the significant coefficients of 

the maximum in the considered frequency range of the magnitude of the ratio between the approximation 

error and the value )( 0νβ lh  of the related coefficient at the nominal frequency, is reported in Table IV as a 

function of the approximating polynomial degree and J = 2, 4, and 6 nominal cycles. It is worth noticing 

that even polynomials of low degree provide acceptable or negligible value for the maximum relative worst-

case error. 

 

Table IV: Worst-case of the maximum relative polynomial approximation error of the coefficients βlh for 
different values of M  and polynomial degrees. The Hann window is adopted, N = 24 sample per cycle and 
the worst-case off-nominal frequency is 5 Hz. 

J     
[cycle] 

polyn. degree 
5 

polyn. degree 
6 

polyn. degree 
7 

2 0.33% 3.9⋅10-4% 4.2⋅10-5% 

4 2.0% 0.49% 8.6⋅10-4% 

6 9.9% 6.1% 0.52% 
 

Table V shows the accuracy (expressed in terms of TVE, FE, and RFE) provided by the TWLS 

algorithm when the waveform is affected by off-nominal frequency up to 5 Hz and J = 2, 4, or 6 nominal 

cycles are observed. Different implementations of the TWLS estimator are considered, that is: the classical 

algorithm based on the waveform nominal frequency, expressions (25) and (26) based on the true 

waveform frequency with coefficients βlh evaluated at run-time using exact expression or polynomials of 

degree 3 or 5, respectively. 

The accuracy of the TWLS algorithm reported in the first column of Table V is related to the most 

efficient implementation in terms of computational effort, i.e., by assuming the nominal waveform 

frequency so that the matrix 1−
KB  can be computed offline. Compared to such an implementation, Table V 

clearly shows how the approximation (26) has the main detrimental effect for the frequency estimates. 

Moreover, for J = 2 cycles, it returns low accuracy results even if the exact coefficients are considered. A 

radically different behavior is instead achieved when J = 4 cycles, where the accuracies of (25) and (26) are 

very close, apart again from the frequency estimates. For J = 6 cycles both (25) and (26) provide highly 

accurate results for all the estimated parameters. To summarize, the polynomial approximation of (25) 



always returns better results than the TWLS algorithm at the nominal frequency but at the cost of an 

increased computational effort. To reduce that effort, expressions (26) can be used, which are very effective 

if at least 4 waveform cycles are observed.  Not surprisingly, the accuracy obtained by both (25) and (26) 

scales with the degree of the approximating polynomial and, hence, with the needed computation effort, but 

with a lower extent than the number of observed waveform cycles. 

 
Table V: Maximum magnitude of the TVE, FE and RFE values returned by different implementations of 
the TWLS estimator when the off-nominal frequency testing specified in the Standard for the M-class of 
performance is considered. The Hann window is adopted and N = 24 sample/cycle. 

 TWLS at 
nominal 

freq 

TWLS based on (25) STWLS based on (26) 
J  

[cycle] 
Phasor 

parameters exact coeff.  pol. deg. 3 pol. deg. 5 exact coeff.  pol. deg. 3 pol. deg. 5 

 
 

 2 

TVEmax [%] 7⋅10-2 2.7⋅10-13 7.5⋅10-2 2.0⋅10-3 1.1⋅10-1 1.8⋅10-2 1.1⋅10-2 

FEmax [mHz] 77.4 2.5⋅10-11 14 4.9⋅10-2 279 279 279 

RFEmax [Hz/s] 5.1 8.6⋅10-12 2.7 8.0⋅10-2 3.1 5.7 3.2 

 
 

 4 
 

TVEmax [%] 1.4⋅10-1 3.6⋅10-13 7.3⋅10-3 4.8⋅10-4 1.8⋅10-5 7.3⋅10-3 4.8⋅10-4 

FEmax [mHz] 269 2.3⋅10-11 4.0⋅10-1 8.8⋅10-3 2.3 2.3 2.3 

RFEmax [Hz/s] 1.1⋅10-1 2.9⋅10-12 2.0⋅10-1 1.3⋅10-2 3.3⋅10-5 2⋅10-1 1.3⋅10-2 
 

 
 6 
 

TVEmax [%] 6.5⋅10-1 3.5⋅10-13 2.7⋅10-3 4.8⋅10-4 5.9⋅10-7 2.7⋅10-3 4.8⋅10-4 

FEmax [mHz] 566 2.1⋅10-11 1.6⋅10-1 2.1⋅10-2 2.8⋅10-1 2.8⋅10-1 2.8⋅10-1 

RFEmax [Hz/s] 3.4⋅10-2 1.3⋅10-12 3.4⋅10-2 6.1⋅10-3 5.1⋅10-7 3.4⋅10-2 6.1⋅10-3 
 

 

C. Computational burden  

In this section, the computational burdens requested by the different implementations of the real-valued 

TWLS phasor parameter estimator proposed in the paper are compared each other. To this aim it is worth 

noticing that the procedure (10) requests a pseudoinverse computation, whose complexity varies according 

to the adopted algorithm (e.g., the Greville’s method, the Singular Value Decomposition, the full rank QR 

factorization, optimized iterative methods). However, since the matrix WUK has a particular structure (see 

(B.16) for K = 2), the pseudoinverse computation is less than O(M2 (2K+2)) needed, for example, by the 

Singular Values method, as also reported in [25]. In practice, the complexity required for the pseudoinverse 

is slightly higher than computing explicitly the βlh(ν) in (B.19) and then applying expression (25). For 

example, on a standard Laptop equipped with a 2.8 GHz Intel Core i7 with 16 GB of RAM and Yosemite 

OsX running Matlab, the mean time is 59.3 µs for pseudo-inverse computation and it is 56.2 µs when (25) 

is applied; in both situations the sample standard deviation of observations is about 8 µs. 



 As a consequence, in the following we compare the computational burden required by the 

approximated solution (26) only with the expression (25). Both methods comprise the explicit computation 

of )()(
2 ν

k
WX , which can then be neglected in the comparison. Considering K = 2 and assuming that the terms 

)(2 nwn h  in (B.17) are pre-computed and stored in memory, the computational complexity of (B.17) 

amounts to 14⋅M products and 8⋅M sums. Then, the evaluation of the )(νβ lh  coefficients in (B.19) needs 56 

products and 20 sums, while the final estimates (25) require additional 18 products and 12 sums. To 

summarize, the procedure (25) requires 74 + 14⋅M products and 32 + 8⋅M sums. On the other hand, the 

adoption of (26) with an approximant polynomial of degree 7 asks for 6 products and 7 sums for the )(νβ lh  

approximants. Noticing that (26) makes use of only eight )(νβ lh  values, and hence asks for 10 products and 

4 sums, the related overall computational complexity is 58 products and 60 sums, far less than the one 

required when (25) is adopted.  
 

V.  CONCLUSIONS 

 

 In this paper the analytical relationship between the phasor parameter estimates returned by the 

TWLS approach, expressed using either complex-valued or real-valued variables, has been derived. It has 

been shown that the TWLS phasor estimator and its derivatives can be expressed as weighted summations 

of the DTFT of the analyzed waveform and its derivatives. The analyzed waveform is weighted by the 

square of the window adopted in the WLS problem, while the weights used in the summation depend on the 

DTFT of the square window and its derivatives. As a consequence, the TWLS algorithm is sensitive to 

lower order harmonics and inter-harmonics located close to the waveform frequency when few waveform 

cycles are analyzed. In particular, phasor estimation errors due to harmonics are not null even though 

coherent sampling occurs because of the contribution of window spectrum derivatives. Also, windows 

squaring and derivation of waveform transform increase the sensitivity of the TWLS algorithm to wideband 

noise. 

In addition, the relationship between the TWLS phasor estimator and the waveform DTFT has been 

specifically analyzed when either a static phasor model (i.e. the Taylor’s series order is zero) or a second-

order dynamic phasor model (i.e. the Taylor’s series order is equal to two) is considered. This latter model 

is often adopted in the literature since it allows the estimation of the waveform phasor, frequency, and 

ROCOF while exhibiting acceptable computational effort and disturbance sensitivity. Using the derived 

expressions a procedure for the implementation of the TWLS algorithm without the calculation of the 

pseudoinverse matrix has been proposed. Furthermore, the expressions related to the second-order dynamic 

phasor model and the real-valued version of the TWLS algorithm have been approximated in order to 



reduce the required computational effort and the STWLS procedure has been proposed. It has been shown 

by means of computer simulations that the phasor parameter estimates returned by the STWLS procedure 

when the waveform frequency is estimated by the IpDFT method comply with the M-class of performance 

if the number of analyzed waveform cycles is properly chosen. Moreover, the coefficients involved in the 

STWLS procedure can be evaluated by means of simple polynomials with high accuracy. Due to its lower 

computational complexity, the proposed STWLS-IpDFT procedure can be advantageously implemented in 

real-time low-cost measurement units.  

 

Appendix A 

Equivalence between the complex and real TWLS 
 

Assume that )(
,

ˆ C
rKP  is the solution of the complex-valued TWLS algorithm, as reported in (4). Hence, 

for any nonsingular matrix )1(2)1(2 +×+∈ KKRT  we have: 

,ˆ )(
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where 1+KI  is the identity matrix of dimension K+1, while 1+KI  is the anti-diagonal identity matrix of 

dimension K +1, i.e., a matrix filled with zeros and having all the elements of its anti-diagonal equal to one. 

As a consequence, the matrix T expresses a linear combination of two terms at a time. With such a choice, 

by simple algebraic manipulations immediately follows that KK UTQ 21 =− and T
K

H
K UTQ = , where the 

matrices are defined in (6) and (12).  

Recalling (4) we have: KK
TT

KK
HH

KK BWUWUTWQWTQTTA === −− 11

2
1 , where BK is defined in (10).  

Moreover, considering again (10), we obtain: K
TT

K
HH

KK DWWUWWTQTC === . Substituting the last 

two equations into (A.1), we achieve: rK
C
rKK xDPTB =)(

,
ˆ . Since by the choice of T made so far it follows 

that )(
,

)(
,

ˆˆ R
rK

C
rK PPT = , the equivalence between the real-valued and the complex-valued approaches follows. 

A major consequence of the equivalence is the simplification of the complex-valued TWLS solution 

computation, which involves the inversion of the complex matrix KA . Indeed, inverting KB (or, even, 



approximate it using polynomials) is much less computational demanding. The inverse matrix of KA is then 

obtain by TBTA KK
111 −−− = .  

 

 

Appendix B 

Derivation of the relationship between the TWLS and the DTFT phasor estimators 
 

Let us consider the matrix K
TT

KK WUWUB =  employed in the real-valued TWLS phasor estimation 

approach. After some algebra we can write: 
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whose entries are given by: 
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where ν0 = f0/fs and: 
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This expression shows that CCk and SSk are nulls if k is odd, while CSk is null if k is even. Thus, the entries 

of the matrix B can be expressed as: 
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where: 
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is the DTFT of the square window w2(⋅) and: 
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is the k-order derivative of the W2(⋅). It is worth noticing that )()(
2 ⋅kW is an even or odd function of its 

argument when k is even or odd, respectively. Moreover, )0()(
2

kW  is null when k is odd. 

Moreover, after some algebra we obtain: 
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where: 
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is the DTFT of the analyzed waveform weighted by the square window w2(⋅) and 

( ) ,)()(21)(
)( 222)(

2 ∑
−=

−−==
H

H

N

Nn

njkk
k

W
k

k
W enwnxnj

Md
Xd

X πνπ
ν

ν
ν  (B.9) 

is its k-order derivative.  

By denoting the entries of the matrix 1−
KB with βlh, l, h = 1, 2,…, 2K + 2, from (11) and (B.9) it follows:  
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and 
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Finally, expression (21) easily follows from (B.10.a) and (B.10.b). 

 

 



A. Static phasor model (K = 0)    

When K = 0, the relationship between the TWLS and the DTFT phasor estimators can be easily 

achieved not only from the expressions above, but also directly from (4). Indeed, in this case the matrix A0 

has the following expression: 
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From (B.11) it is easy to obtain: 
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Moreover, in (4):  

.
)(

)(

0
*

0
00

2

2












×==

ν

ν

W

W
r

HH
r X

X
MxWWQxC  (B.13) 

By substituting (B.12) and (B.13) in (4) it follows that: 
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from which, using (5): 
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The same result can be achieved using the real-valued TWLS phasor estimator approach, i.e. using (10) and 

(11).  

 

B. Second order dynamic phasor model (K = 2)    

From (B.2) and (B.3) it follows that the matrix B2 can be expressed as: 
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where: 
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in which the expressions of the entries of the inverse matrix B-1
 returned by the Symbolic Math Toolbox of 

MATLAB are:  
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Using (B.19), (B.10) provides the expressions (25) for the Taylor parameters estimates returned by the 

TWLS approach for K = 2. 
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