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Abstract — In this paper the expressions for the phasor parameter estimates returned by the Taylor-based
Weighted Least Square (TWLS) approach, achieved using either complex-valued or real-valued variables,
are derived. In particular, the TWLS phasor estimator and its derivatives are expressed as weighted sums
of the Discrete Time Fourier Transform (DTFT) of the analyzed waveform and its derivatives. The derived
expressions show that the TWLS algorithm is sensitive to lower order harmonics and inter-harmonics
located close to the waveform frequency when few waveform cycles are analyzed. Also, the algorithm
sensitivity to wideband noise is explained. The relationship between the TWLS phasor estimator and the
waveform DTFT is then specifically analyzed when either a static or a second-order dynamic phasor model
is assumed. Moreover, a simple and accurate procedure for evaluating the TWLS estimator of the dynamic
phasor parameters is proposed. The derived expressions for the real-valued version are then approximated
in order to reduce the required computational burden so achieving the Simplified TWLS (STWLS)
procedure. That procedure can be advantageously employed in real-time low-cost applications when the
reference frequency used in the TWLS approach is estimated run-time to improve estimation accuracy.
Finally, computer simulations show that the phasor parameter estimates returned by the STWLS procedure
when the waveform frequency is estimated by the Interpolated Discrete Fourier Transform method comply

with the M-class of performance if an appropriate number of waveform cycles is considered.

Index terms — Dynamic phasor estimation, power system monitoring, Taylor-based weighted least
squares algorithm, Discrete Fourier Transform, windowing.
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I.  INTRODUCTION

Phasor parameters of electrical waveforms are increasingly employed in power grids for monitoring,
control, and protection purposes. Smart devices called Phasor Measurement Units (PMUs) use different
algorithms to provide accurate measurements of waveform phasor, frequency, and Rate Of Change Of
Frequency (ROCOF) at instants synchronized with the Coordinated Universal Time (UTC). The
performance requirements of PMUs have been specified in the IEEE Standard C37.118.1-2011 about
synchrophasor measurements for power systems [1], recently updated in the Amendment IEEE Standard
C37.118.1a-2014 [2]. In these two documents (simply referred to as the Standard for the sake of notation)
the phasor measurement accuracy is defined in terms of the Total Vector Error (TVE), the Frequency Error
(FE), and the ROCOF Error (RFE). Recently, algorithms based on either a dynamic phasor model [3]-[17]
or a static model [18]-[20] have been proposed to estimate these parameters. Indeed, power waveform
parameters may be affected by time variations and algorithms that adopt a dynamic phasor model may
provide more accurate estimates, especially when the observed waveform length is more than a couple of
cycles. In particular, the so-called Taylor-based Weighted Least Squares (TWLS) algorithm [5], [6] is
capable of providing not only phasor measurements, but also Frequency Deviation (FD) and ROCOF
estimates [5], [12]. The classical TWLS algorithm considers complex-valued data, but a real-valued version
has been recently proposed [21]. Moreover, it has been shown that accurate phasor parameter estimates
usually need a reference frequency quite close to the waveform frequency [11], [17]. This requires runtime
frequency estimation and a significant increase in the computational burden of the TWLS phasor parameter
estimator due to the derivation of the related pseudoinverse matrix. In this respect, the real-valued TWLS
algorithm exhibits a higher processing efficiency [21]. In order to minimize the required processing effort,
a-priori computation and subsequent storage of pseudoinverse matrices related to different values of the
reference frequency have been proposed [11], [17]. It has been shown that limiting to integer frequency
values allow to achieve satisfactory estimation accuracy, even though this approach requires a significant
use of storage when the number of observed waveform cycles cannot be small as occurs when a good inter-
harmonics rejection is required [17]. At the best of the authors’ knowledge, no processing procedure has
been yet proposed in the scientific literature to avoid runtime computation of the pseudoinverse matrix
when estimating phasor parameters by the TWLS algorithm.

Another accurate dynamic phasor parameter estimator based on Discrete Fourier Transform (DFT)
samples has been recently proposed [15]. However, despite the close link between the TWLS approach and
the Fourier transform is well-known [5], [6], the relationship between the TWLS estimator of the dynamic
phasor parameters and the Discrete Time Fourier Transform (DTFT) of the analyzed waveform has not yet

been published in the scientific literature. This relationship is of interest because it would allow a better



understanding of the effect on estimation accuracy of some disturbance components superimposed to the
sinewave waveform, such as harmonics, inter-harmonics, and wideband noise. Moreover, this relationship
could suggest different procedures for the evaluation of the TWLS phasor estimator. Therefore, the aim of
this paper is twofold: at first linking the phasor parameter estimates provided by the TWLS algorithm and
the DTFT of the analyzed waveform, then using the obtained expressions to derive a procedure that
implement the TWLS algorithm without computing the matrix pseudoinverse.

The remainder of the paper is organized as follows. Section Il briefly summarizes both the complex-
valued and the real-valued version of the TWLS estimation approach. In Section Il the relationship
between the TWLS estimator of the dynamic phasor parameters and the DTFT of the analyzed waveform is
derived. The achieved expressions enable us to explain the effect on estimated phasor parameters of
disturbances like harmonics, inter-harmonics, and additive wideband noise. Also, two phasor models
widely adopted in the literature, i.e., the static phasor and the second-order dynamic phasor are specifically
considered. The expressions obtained in this latter case for the real-valued version of the algorithm are then
approximated in order to reduce the required computational effort so achieving the Simplified TWLS
(STWLS) procedure. In Section 1V it is shown that the phasor parameter estimates returned by the STWLS
procedure when the waveform frequency is estimated by the Interpolated Discrete Fourier Transform
(IpDFT) method (i.e. the STWLS-IpDFT procedure) comply with the requirements of the M-class of
performance when an appropriate number of waveform cycles is considered. Moreover, the accuracies of
the phasor parameter estimates provided by the STWLS procedure are analyzed when the coefficients
involved in the derived expressions are evaluated by means of simple polynomials. The computation

burden required by the considered TWLS procedures is also discussed. Finally, Section V concludes the

paper.
II. COMPLEX-VALUED AND REAL-VALUED TWLS APPROACHES

The analyzed electrical waveform is modeled as:
, . . , 1
X(t) = a(t) cos(2zf t + (1)) = Re{p(t)e >™ = %(p(t)e‘“"‘ +p*(t)e ), )
where p(t) = a(t)e!?® is the so-called complex dynamic phasor of the waveform x(-) synchronized to the

reference frequency fo, and Re{-} denotes the real part of its argument. The components of the phasor p(t)
are the time-varying amplitude and angle a(t) and ¢(t), respectively. It is worth noticing that when f; is

equal to the nominal frequency f, (50 Hz or 60 Hz), the phasor p(t) is simply called the synchrophasor.



The analyzed discrete-time waveform is achieved by sampling the continuous-time waveform (1)
using a sampling rate fs synchronized with the UTC. It is assumed that the following relationship holds for
the nominal normalized frequency w:

f,J 2

where J is integer and represents the number of analyzed nominal waveform cycles and M = 2Ny + 1
represents the odd number of analyzed samples. Also, the number of samples per nominal cycle N = fy/f, is
integer and the reference time t. = r/fs, r = 0, 1, 2,... is located exactly at the center of the r-th record of data,
whose duration is T = M/fs.

In the following of this section the well-known complex-valued TWLS phasor estimator is briefly

described, together with the most recent real-valued TWLS approach [21].

A. Complex-valued TWLS approach
According to the complex-valued approach the phasor p(t) is expressed by using its complex Taylor’s

series about the reference time t,, r =0, 1,2,... , truncated to the Kth order term, i.e.,

t, o |Af<iT

" (K) 3
p(t) = p(t,) + p'(tr)At+%Azt+...+pK—(ltf)AK @)

where At =t-t,, p®(t,), k=1, 2,.., K, is the k-th order derivative of p(t) computed at the reference time

t.. The coefficients of the Taylor’s polynomial (3) are then estimated as [6]:

~ _1 B
PO = 2(QHW *wQ, J QW fwx, = AlC, X, r=0,12,... (4)
where
hay A A A A A * A * A * A * 5
B = [BEC) B, B BB B Y, BT ©)

with p(t,) = p{& and p®(t,)=(k1f5)pS, k=12,...,K; Q« is a matrix of dimension Mx(2K + 2),

0 :{QK; QK,S] ©)
“ QK,Z QK,A,

with elements qi, defined as:

with entries:
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w = folfs is the normalized reference frequency, x, =[x(=N, +r)...x(r)...x(N,, +r)]" is the vector of

the observed data, and W =diag[w(—NH)w(—NH +1)...w(0)...w(N, —)w(N, )] is the diagonal matrix
formed by the samples of the adopted window w(-). Finally A =%Q,§‘W "WQ, represents the Gram’s

matrix and C, =Q;/W "W . In the above expressions, (-)*, ()", and (-)" denotes the conjugation, Hermitian,

and transposition operators, respectively.

B. Real-valued TWLS approach

The waveform (1) can be rewritten as:

X(t) = c(t) cos(27f t) — s(t) sin(2f,t), 8)

in which c(t) = a(t)cos(g(t)) and s(t) = a(t)sin(¢(t)). These two waveforms are expanded by using Taylor’s

series about the reference time t,, r =0, 1,2,..., truncated to the K-order terms, i.e.:

. (x)
ot) = c(t,) +¢'(t, )At + & 2(t|) A2t+...+CK—(ltf)AKt, 9.3)

and

S"(t ) \2

s(K)
s(t) = s(t,)+5s'(t, ) At+——2 A%t 4+ + K(ff) A%t, (9.b)

where c¢®(t.)and s®(t,) , k =1, 2., K, are the k-th order derivative of c(t) and s(t), respectively,

computed at the reference time t.. The coefficients of the Taylor’s polynomials (9) are then estimated as
[21]:

PR =(UIW™WU, J'UIWTWX, =BDyx,, r=012,... (10)
where

O o ) R
P& = [CK,r Ck1r-+-Cor Cor =Sor = Spres = Skear = Sk ]T , (11)



in which c(t,)=Co,. S(t;)=So,. c®(t,)=(k!f5)c,, and s®(t,)=(k1f¥)s,, . k=12...K;: Ugis a

matrix of dimension Mx(2K + 2), with elements un, defined as [21]:

U, | xa Yk (12)
K — ]
UK,2 UK,4
with entries:
K+1-h
(UK 1) =[|—M+l co§ Zﬁvo[M +1—Ij ' I:1,...,M and h=1...,K+]
+/lh 2 2 2
(u ) —|K+H‘COS(2 |) |=1 M d h=1. K+1 (13)
K2y = Vol ) =1..., 5 an =1..., +1,
h-1
(uK 3) :—(I—MH] sin 2nv0(M+1—lj, I:1,...,M and h=1...,K+1,
3/lh 2 2 2
(UK’4)|h:|hflSin(27rv0|), |=1,...,¥ and h=1..K+1

Moreover B, =U W WU, is the Gram matrix and D, =U W "W . According to (8) and (9), the
waveform phasor and its derivatives are then obtained as:

PR =¢, + S, k=01...,.K, (14)

It can be shown that p{% = p{?Y = p,, k=0,1...,K [21] (see the Appendix A). Thus, no distinction
between the phasor estimates returned by the two different approaches will be made in the remaining of the paper.
It is also worth noticing that the pseudoinverse matrices (i.e. A;'C, or B'D, for the complex-

valued or the real-valued versions, respectively) can be calculated off-line only once when the reference
frequency is known a-priori. However, when the reference frequency is estimated at run-time to improve
estimation accuracy [17], the computation of the pseudo-inverse matrix can require a relevant

computational burden.

C. Estimates of the phasor parameters

The phasor amplitude and angle can be estimated respectively as [21]:
8,(t)=|po.  #:(t)=angle(p,,). (15)

the Frequency Deviation (FD) between the frequency f of the electrical waveform at the instant t, and the
reference frequency, i.e. FD = f —fo, can be estimated as [21]:
Im{ﬁl,r f);,r} (16)
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and the waveform Rate Of Change Of Frequency (ROCOF) is estimated as [21]:
~ K ~ ~Kx ~ K 17
|m{p2,r Po.r }_ Re{pl,r Po.r } Im{pl,r pO,r} (17
~ 2
pO,r|

R 2
ROCOF(t,) ==
T

~ |4 !
po,r|

According to the Standard [1], the related estimation accuracy parameters are defined as, the Total Vector
Error (TVE):

a, (tr)ejfﬁx(tr) _ a(tr)ejcﬂ(tr)‘ (18)
[a(t, ) '

TVE(t,) =

the Frequency Error (FE):

FE(t,) =|FD, (t,) - FD(t,) (19)

and the ROCOF Error (RFE):

RFE(t,) =‘ROéOF(tr) — ROCOF(t,) (20)

I1l. RELATIONSHIP BETWEEN THE TWLS PHASOR ESTIMATOR AND THE WAVEFORM DTFT

The estimate of the phasor parameters returned by the real-valued TWLS approach can be expressed as
(see (B.10) in the Appendix B):

K+1 . K+1-1
ﬁl(<R—)k,r =Cy o + ISk iy = Iz_ll[ﬂ(kﬂ)l = 1Baks2-k) ]Re{(iJ X\/(vf+l_l)(v0)} (21)

K+1 . K+1-1
. ) j o
+ JZ[ﬂ(zmH)(zmw) + Jﬂ(k+1)(2|<+3|)]|m{(gj Xv(vf ! I)(Vo)}, k=01...,K
=]

where B, I, h =1, 2,..., 2K + 2, are the elements of the inverse matrix B,' = (U,E'W HWUK)_l, Xy, () is
the DTFT of the analyzed waveform weighted by the square window w?(-) and xvgkg (-) is its k-order

derivative, k=0, 1, 2,..., K.

A very similar relationship can be achieved when considering the complex-valued TWLS approach:

K+1-1 K+1-1

K+1 H K+1
ﬁl(<c—)k,r = Zza(kﬂ)l [ZLJ Xv(vfﬂ_l) (vo) + Zza(k+1)(2K+3—l)(iJ X\/(vf+l_l) (vg), k=01...,K, (22)
=1 T =1 27



in which ain, I, h=1, 2,..., 2K + 2 are the elements of the inverse matrix %A,;l = (QKHW "WQ, )_1 and can

be easily expressed in terms of the coefficients fGin, I, h =1, 2,..., 2K + 2 introduced in (21).

Expressions (21) and (22) show that the estimates of the phasor parameters returned by the TWLS

approach are weighted sums of X\g,kz) (-) . Moreover, the coefficients o andgin depend on the DTFT of the

square window w(-), W-(-) and its derivatives W,*) (-), k=0, 1,..., K (see (B.5) and (B.6) in the Appendix B).

It can be easily proved that the square window w(-) of a H-term cosine window w(-) (H > 2) is a
(2H - 1)—term cosine window. In particular, the 2k-power order of the two-term Maximum Sidelobe Decay
(MSD) (or Hann) window [22] is the (2k +1)-term MSD window. Fig. 1 shows the DTFT spectra of the
Hann window, the related square window w?(-) (i.e., the three-term MSD window) and its first and second
derivatives versus the normalized frequency expressed in bins 4 = (M - 1)v. Indeed, this choice for the
abscissa allows us to obtain a window sidelobe spectrum behavior almost independent of the number of
observed samples M, at least for the mainlobe and the first sidelobes. The spectra are expressed in dB with

respect to their maximum value, which occurs at 4 = 0 for the window and square window transforms W(-)
and Wa(-), respectively. Conversely, for the first derivative W, (-) the maximum of the spectrum is almost
proportional to the number of analyzed samples M and it occurs when A is close to 2. Conversely, the
maximum is almost proportional to M? for the second derivative W,? (:) and it occurs at 1 = 0 (see (B.5)

and (B.6) in the Appendix B).
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Fig. 1. Spectra of the DTFT of the Hann window w(:), the related square window w?(-), and its first and

second derivatives versus 1. Number of sample per nominal cycle N = 24, observation interval length J = 2.



Fig. 1 shows that, for small values of A, the spectrum of the square window and its first and second

derivatives are more spread than the Hann window. In particular, the spectrum side-lobe level increases as
the derivative order increases. In addition, unlike W(-) and W,(-), W, (-) and W,?(-) are not null at integer

values of A. Similar behaviors can be shown for any other classical cosine window [22]. As a consequence,

the following remarks about estimates returned by the TWLS algorithm can be drawn:

- when a low number of waveform cycles is analyzed (e.g. one or two cycles), the sensitivity of the
TWLS algorithm to lower order harmonics and inter-harmonics located close to the waveform frequency
is expected to be higher than a DTFT approach based on the same window w(-); indeed, the spectra of
the square window and its derivatives generally exhibit a stronger short-range leakage;

- when an integer number of waveform cycles is analyzed (i.e. coherent sampling occurs), the

contribution of harmonics to the estimated phasor parameters is not null since the spectra of the window
derivatives W, (), k=1, 2, ..., K are not null at the related frequencies;

- the sensitivity of the TWLS algorithm to wideband noise is expected to be higher than the DTFT
approach based on the same window w(-) due to the higher Equivalent Noise BandWidth (ENBW) of
the square window and its derivatives [23].

The above remarks are corroborated by computer simulations reported in several recently published

papers, such as [5], [6], [10], [13], and [17].

In the following, the results returned by (21) and (22) are analyzed for two specific phasor models
widely adopted in the scientific literature: the static phasor model (i.e. K = 0) and the second-order dynamic
phasor model (i.e. K = 2, which is the minimum Taylor’s series order allowing the estimation of the phasor

amplitude and angle, frequency deviation, and ROCOF).

A. Static phasor model (K =0)

Assuming a static phasor model, that is K = 0 in (3), the TWLS approach reduces to the well-known
three-parameter sine-fitting algorithm when applied in the special case of zero offset [24]. In this case both
(21) and (22) provide (see (B.15) in the Appendix B):

— W, (0) Xy, (vo) =W, (2v,) X\X/2 (vo) (23)
sz (0) _W22 (2v,)

or — '

where vy = folfs.

If the reference frequency corresponds to an integer number of observed cycles (i.e. v is integer), as often

occurs in practice, and a classical cosine window is employed, than W2(2w) = 0, and (23) simply becomes:



~ 2
= - 24
Po,r W, (0) XW2 (Vo) (24)

which shows that the TWLS method is equivalent to the simple DFT estimator based on the square window

w(+).

B. Second order dynamic phasor model (K = 2)

The analytical relationship for the phasor parameters when K = 2 can be obtained from (4) or (10) by
inverting the 6x6 matrices Ay =%QKHW "WQ, or B, =UW'WU,, respectively. The expressions for

the entries of the inverse matrices have been determined by means of the Symbolic Math Toolbox of
MATLAB. It was observed that A ' is a Hankel matrix, but expressions returning the values of its entries
as a function of the adopted window are very complicated (each one has more than 50 terms). Conversely,
the matrix B;' is a symmetric Hankel matrix with only 12 different not-null entries S, fis, Bis, Bo2, Boa,

Pos, P33, [ss, Paa, Pas, Pss, and Fes, expressed in a quite simple way as a function of the adopted window
samples, and 18 null elements (see (B.18) and (B.19) in the Appendix B). Thus, the analytical relationships
that link the second-order TWLS estimator of the phasor parameters and the DTFT of the analyzed

waveform are:

Cor = P ReDX, ()~ 2 Relx 2 05 Refx P (v)

§O,r = P Im{xw2 (Vo)}"‘g_j: |m{xv(vlz) (Vo)}_% Im{xv(vzz) (Vo)}

&, =—Poy IMEX,y, (vo)}—g—j; Im{x{ (vo)}+%lm{x\i) (o)}
5. =P ReDXu, 001+ % RelX D o)+ 225 Refx 2 ) o5

Gy = P Re{Xe, ()}~ D RefX ) ()}~ 225 Refx 2 (),

Sor = i MK, (o)} + 22 mfx (o)} L% im{x P 1)}

The behaviors of the not null coefficients of the matrix B,* versus the reference frequency employed in
the algorithm are reported in Fig. 2 when the Hann window is adopted and M = 49 samples (i.e. J = 2
waveform cycles) (Fig. 2(a)) and M = 97 (i.e. J = 4 cycles) (Fig. 2(b)) are analyzed. It is worth noticing that
the reference frequency Ao = (M — 1) w is expressed in bins in order to obtain similar curves for different

values of M.
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Fig. 2. Behavior of the not null entries ; of the inverse matrix B," used in (10) versus Ao = (M - 1) w, for the

Hann window assuming (a) M =49 (J = 2 cycles) and (b) M =97 (J = 4 cycles).

As expected (see the Appendix B), Fig. 2 shows that when Aq is greater than 2-3 bins (obviously Ao
must be lower than (M — 1)/2 to avoid aliasing) we have: S = fis, B = foa, Paa = Pz, Pas = Pz, Pos = Poo,
and fss = S Also, the most relevant couples are almost independent of Ao and the difference between the
related couples of elements decreases as Ao increases.

Behaviors very similar to those reported in Fig. 2 were observed when considering different windows
and number of samples.

Observe also that the asymptotic (large values of o) values of the coefficients Sn depend on the
number of acquired samples M. In particular, it can be shown that the coefficients g related to the phasor
components cxr and skr, k = 0, 1, 2, multiplying the real or imaginary parts of Xu"(10) in (25) depend on
1/M®D_ Since Xwo"( 1) is proportional to M' (see (B.9) in the Appendix B) it follows that the contributions
Lin Xw2®(v) to cr and sir, k = 0, 1, 2, depend on 1/M¥,

As a consequence of the previous analysis, only six different matrix elements, i.e. fi1, fis, Sis, S,
Pea, and Pas, are needed for estimating the phasor parameters when Ao is greater than about 3 bins. In that

case (25) becomes:

ﬁo,r = 6O,r + j§0,r = ﬁ33XW2 (VO) _& X\Tv(zl) (VO) _:3_132 Xv(vzz) (VO),
2z 4r

A ~ i . x . . * 26
Por =Cop + ISy = =180 X, (Vo) + J’g_jzz_xv(\}z) (vo) + J%Xw(zz) (o), (26)

~ ~ -~ ﬂ * ﬁ
Por =Cor + iS2, = P13 Xy, (Vo) - Xw(zl) Vo) ——112 Xv(vzz) (Vo)
2 Ar



which expresses the relationships between the TWLS estimator and the analyzed waveform DTFT in a
quite simple way.

The dynamic phasor parameter estimator based on expressions (26) will be called the Simplified
TWLS (STWLS) procedure in the following.

IV. ACCURACY ASSESSMENT OF THE STWLS PROCEDURE

This Section is organized in three different subsections. The first one is aimed at verifying if the
phasor parameter estimates returned by both the proposed TWLS and STWLS procedures comply with the
requirements of the M-class of performance when the waveform frequency is a-priori estimated by the
IpDFT method, i.e. when the TWLS-IpDFT or the STWLS-IpDFT procedures are used, respectively. Then,
the accuracy that can be achieved by evaluating the coefficients fin(v) by means of polynomials with low
degree is analyzed. Finally, the computational burden required by the considered TWLS procedures is

discussed in the last subsection.

A. Compliance to Standard requirements of the TWLS-IpDFT and the STWLS-IpDFT procedures

In this subsection the compliance to the requirements of the M-class of performance is checked for
the phasor parameter estimates returned by both proposed procedures when the reference frequency is
estimated run-time by the IpDFT algorithm [17] under steady-state, dynamic, and transients conditions
specified in the Standard.

The worst-case off-nominal frequency, 2nd harmonic, 3rd harmonic, amplitude modulation (AM) and
phase modulation (PM) testing conditions specified in the Standard for the M-class of performance are
considered in Table I. Also, the related threshold values specified in the Standard are reported for
comparison. The Hann window is adopted, N = 24 sample/cycle, J = 3, 4, 5, and 6 cycles, and the Taylor’s
series order is K = 2. The maximum values of the considered accuracy parameters were determined
considering 960 subsequent records (corresponding to 40 nominal cycles of the analyzed waveform) shifted
each other sample by sample. For each estimated parameter, the results returned by the proposed TWLS
estimator (25) and the STWLS estimator (26) are reported in Table I.

As expected, the results reported in Table | show that the STWLS procedure can be as accurate as the
TWLS procedure when a sufficient number of waveform cycles are observed. In particular, the STWLS
procedure returns phasor parameter estimates compliant with the Standard requirements as soon as J > 5 in

the off-nominal and 2nd harmonic testing, and when J > 3 in the 3rd harmonic and modulation testing.



Table I. Maximum magnitude of the TVE, FE, and RFE values returned by the proposed TWLS estimator
(25) and the STWLS estimator (26) when the reference frequency fo is estimated run-time by the IpDFT
algorithm. The Hann window is adopted and J = 3, 4, 5, and 6 cycles. The worst-case testing conditions
specified in the Standard for the M-class of performance are considered.

3 TVEmex [%] FEmex [MHZ] RFEmex [H2/S]
Testtype [cycle] | eq.(25) | eq.(26) | eq.(25) | eq.(26) | eq.(25) | eq.(26)
3 | 000 | 044 | 000 | 262 | 0.00 11.0
offnomil freauency 4 | 000 | 009 | 000 | 005 | 0.00 1.23
5 | 000 | 001 | 000 | 001 | 0.00 0.10
6 | 000 | 000 | 000 | 000 | 0.00 0.02
Standard threshold — 1 5 0.1
3 | 121 | 133 | 721 | 721 | 533 55.3
o berronic 4 | 013 | 015 | 880 | 886 | 3.14 | 345
5 | 003 | 003 | 201 | 202 | 043 0.48
6 | 001 | 001 | 063 | 063 | 0.09 0.10
3 | 001 ] 017 | 128 | 310 | 036 3.93
4 | 000 | 003 | 021 | 028 | 0.03 0.36
3rd harmonic 5 | 000 | 001 | 005 | 006 | 001 | 0.06
6 | 000 | 000 | 002 | 002 | 0.00 0.01
Standard threshold — 1 50-25@) —
3 | 000 | 017 | 081 | 252 | 002 3.98
4 | 001 | 004 | 181 | 177 | 0.02 0.41
ampltude modation 5 | 004 | 004 | 330 | 328 | 003 0.07
6 | 007 | 007 | 525 | 524 | 005 0.05
3 | 000 | 018 | 153 | 173 | 044 | 452
“hase modulaton 4 | 001 | 004 | 269 | 269 | 0.75 1.14
5 | 003 | 004 | 415 | 415 | 1.16 1.23
6 | 007 | 007 | 588 | 588 | 1.5 1.66
Std. thresh. — 3 300 14

Note: Threshold values are related to a Reporting Rate RR <20 @ or RR > 20 @,

It is worth noticing that the results related to the frequency ramp testing are almost equal to those
related to the off-nominal frequency testing, while the results obtained when the analyzed waveform is
affected by harmonics decreases as harmonic order increases.

The most severe testing condition related to the M-class of performance is the out-of-band

interference. It is known that the GTWLS-IpDFT algorithm provides phasor parameter estimates compliant



with the Standard requirements when the Reporting Rate (RR) is equal to 50 readings/s only when J > 8
cycles [17]. The maximum TVE, FE, and RFE estimates returned by both procedures when the analyzed
waveform is affected by out-of-band interference, J = 8 and 9 cycles and the RR = 50 readings/s. The worst
case testing conditions are considered, i.e. fi, = 47.5 Hz with interfering frequency fin = 25 Hz and fi, = 52.5
Hz with fi, = 75 Hz. The results obtained when the original waveform is analyzed or the interference is
removed from that waveform after the estimation of its parameters by the IpDFT method are reported in
Table Il.

Table Il. Out-of-band interference: maximum magnitude of the TVE, FE, and RFE values returned by the
TWLS estimator (25) and the STWLS estimator (26) when reference frequency fo is estimated run-time by the
IpDFT algorithm. The Hann window is adopted and J = 8 and 9 cycles. The worst-case testing conditions
specified in the Standard for the M-class of performance when RR = 50 readings/s are considered.

J TVEmax [%0] FEmax [mHZ] RFEmax [Hz/s]
Test parameters |
[cycle] | eq. (25) | eq.(26) | eq.(25) | eq.(26) | eq.(25) | eq.(26)
8 0.02 0.02 6.72 6.72 0.33 0.33
fin =475 HZ, fih =25Hz
9 0.13 0.13 3.37 3.37 0.62 0.63
8 0.39 0.39 7.63 7.63 1.35 1.35
fin =475 HZ, fih =25 HZ(l)
9 0.01 0.01 1.25 1.25 0.03 0.03
8 0.02 0.02 6.72 6.72 0.32 0.32
fin =525 HZ, fih =75Hz
9 0.12 0.12 3.36 3.36 0.62 0.62
8 0.38 0.38 7.52 7.52 1.33 1.33
fin =525 HZ, fih =75 HZ(l)
9 0.01 0.01 1.22 1.22 0.03 0.03
Standard threshold — 1.3 10 —

Note: @ Out-of-band interference removed from the analyzed waveform

As expected, when considering the same testing conditions, both procedures return very close results
and they comply with the Standard requirements as soon as J > 8 cycles. It is worth emphasizing that the
out-of-band interference removal when J = 8 results in worse estimates. This happens because of the poor
parameter estimation performed by the IpDFT method due to the significant spectral interference from the
fundamental component. That phenomenon does not occur when J = 9, since the interference parameters
are accurately estimated.

The performances of the proposed procedures has been assessed also under transient conditions

specified in the Standard. The results obtained when using RR = 50 readings/s are reported in Table IlI.



Table I11. Waveform amplitude or phase step: absolute value of the worst-case overshoot or undershoot,
and phasor, frequency, and ROCOF response times returned by the TWLS estimator (25) and the STWLS
estimator (26) when the reference frequency fo is estimated run-time by the IpDFT algorithm. The Hann
window is adopted and J = 3, 4, 5, and 6 cycles.

J Overshoot Phasor Frequency ROCOF
[cycles] (undershoot) response time response time response time
Test type [%] [nominal cycles] [nominal cycles] [nominal cycles]
eq.(25) | €d.(26) | eq.(25) | €d.(26) | eq.(25) | €d.(26) | eq.(25) | eq.(26)
3 0.6 0.5 0.8 0.8 2.3 2.3 2.63 115
amplitude 4 0.5 0.5 0.9 0.9 2.9 2.9 3.42 12.0
step 5 0.5 0.5 1.1 1.1 35 35 417 413
6 0.5 0.5 1.3 1.3 4.1 4.1 4.92 4.92
3 5.4 5.6 0.9 0.9 2.5 2.5 2.71 115
4 49 4.8 11 11 3.2 3.2 3.54 12.0
phase step
5 4.7 4.7 1.3 1.3 4.0 4.0 4.38 4.38
6 4.6 4.6 15 15 4.7 4.7 5.21 5.21
Std. thresh. 10 70 14 14

Note: @ Threshold values are related to RR = 50.

Moreover, the delay times related to amplitude and phase steps have also been determined. The
maximum delay time returned by simulations was equal to 1.67 ms when J = 5 or 6 cycles in the case of
amplitude step, and to 2.5 ms for all considered values of J when phase step occurs. In any case the
obtained delay times were significantly smaller than the upper threshold of 5 ms specified in the Standard
for RR =50 readings/s.

Simulations show that both procedures exhibit almost the same performances when J > 3 cycles,
except for the ROCOF response time where the same value is achieved only for J > 5 cycles. However,
both procedures comply with the Standard requirements in all the considered testing conditions.

It is worth noticing that for J = 8 and 9 the maximum TVE, FE, and RFE estimates provided by both
the considered procedures under the off-nominal frequency, harmonics, AM, PM, and frequency ramp
testing conditions comply with the Standard requirements. In particular, negligible estimation errors are

obtained in the case of off-nominal frequency and harmonics testing.

B. Polynomial approximation of the S coefficients used by the STWLS procedure
In order to further lower down the computing complexity required when implementing the TWLS

algorithm (25) or (26), the coefficients g, (v) have been approximated by means of a least squares

polynomial fitting in the whole frequency range specified in the Standard for the M-class of performance,



i.e. considering a worst-case off-nominal frequency of 5 Hz. In that way, the phasor parameter estimation
can be implemented in real-time on low-cost hardware platforms even though the analyzed waveform

frequency is determined run-time to improve the phasor estimation accuracy. The value of the expression

V}/f mvax‘(,ém V)= B, (V))/ﬂlh (Vo)

%, i.e. the worst-case with respect to all the significant coefficients of

the maximum in the considered frequency range of the magnitude of the ratio between the approximation
error and the value g, (v,) of the related coefficient at the nominal frequency, is reported in Table IV as a
function of the approximating polynomial degree and J = 2, 4, and 6 nominal cycles. It is worth noticing

that even polynomials of low degree provide acceptable or negligible value for the maximum relative worst-

case error.

Table 1V: Worst-case of the maximum relative polynomial approximation error of the coefficients Sin for
different values of M and polynomial degrees. The Hann window is adopted, N = 24 sample per cycle and
the worst-case off-nominal frequency is 5 Hz.

J polyn. degree | polyn. degree | polyn. degree
[cycle] 5 6 7

2 0.33% 3.9-10% 4.2:10°%

4 2.0% 0.49% 8.6-10%

6 9.9% 6.1% 0.52%

Table V shows the accuracy (expressed in terms of TVE, FE, and RFE) provided by the TWLS
algorithm when the waveform is affected by off-nominal frequency up to 5 Hz and J = 2, 4, or 6 nominal
cycles are observed. Different implementations of the TWLS estimator are considered, that is: the classical
algorithm based on the waveform nominal frequency, expressions (25) and (26) based on the true
waveform frequency with coefficients S evaluated at run-time using exact expression or polynomials of
degree 3 or 5, respectively.

The accuracy of the TWLS algorithm reported in the first column of Table V is related to the most

efficient implementation in terms of computational effort, i.e., by assuming the nominal waveform
frequency so that the matrix B, can be computed offline. Compared to such an implementation, Table V

clearly shows how the approximation (26) has the main detrimental effect for the frequency estimates.
Moreover, for J = 2 cycles, it returns low accuracy results even if the exact coefficients are considered. A
radically different behavior is instead achieved when J = 4 cycles, where the accuracies of (25) and (26) are
very close, apart again from the frequency estimates. For J = 6 cycles both (25) and (26) provide highly

accurate results for all the estimated parameters. To summarize, the polynomial approximation of (25)



always returns better results than the TWLS algorithm at the nominal frequency but at the cost of an
increased computational effort. To reduce that effort, expressions (26) can be used, which are very effective
if at least 4 waveform cycles are observed. Not surprisingly, the accuracy obtained by both (25) and (26)
scales with the degree of the approximating polynomial and, hence, with the needed computation effort, but

with a lower extent than the number of observed waveform cycles.

Table V: Maximum magnitude of the TVE, FE and RFE values returned by different implementations of
the TWLS estimator when the off-nominal frequency testing specified in the Standard for the M-class of
performance is considered. The Hann window is adopted and N = 24 sample/cycle.

TWLS at TWLS based on (25) STWLS based on (26)

J Phasor nominal
[cycle] parameters freq | exactcoeff.| pol. deg. 3 | pol. deg. 5 | exact coeff.| pol. deg. 3 | pol. deg. 5

TVEmax [%0] 7:10 27108 | 75102 | 2.0.10® | 1.1.10' | 1.810% | 1.1-10?

2 FEmax [MHZ] 77.4 2,510 14 4.9-102 279 279 279

RFEnx[Hz/s] | 51 | 86.10%2 | 27 8.0-102 3.1 5.7 3.2

TVEmax [%0] 1.4.10% | 3.6:10® | 7.3.10° | 4.8.10* | 1.810° | 7.3-10° | 4.8:10*

4 FEmax [MHZ] 269 2,310 | 4.0.10* | 8.8-10° 2.3 2.3 2.3

RFEma [Hz/s] | 1.1.10% | 2.9-.10% | 2.0-10" | 1.3102 | 3.3-10° 2:101 1.3:10

TVEmax [%] 6.5-10* | 3510 | 2.7.10° | 4.8.10* | 5.9-107 | 2.7-10° | 4.8.10*

6 FEmax [MHZ] 566 21.10* | 1.6-10* | 2.1.10% | 2810 | 2.8.10" | 2.8-10%

RFEma [Hz/s] | 3.4.102 | 1.3:.10% | 3.4.102 | 6.1.10° | 5.1.107 | 3.410% | 6.1-10°

C. Computational burden

In this section, the computational burdens requested by the different implementations of the real-valued
TWLS phasor parameter estimator proposed in the paper are compared each other. To this aim it is worth
noticing that the procedure (10) requests a pseudoinverse computation, whose complexity varies according
to the adopted algorithm (e.g., the Greville’s method, the Singular VValue Decomposition, the full rank QR
factorization, optimized iterative methods). However, since the matrix WUk has a particular structure (see
(B.16) for K = 2), the pseudoinverse computation is less than O(M? (2K+2)) needed, for example, by the
Singular Values method, as also reported in [25]. In practice, the complexity required for the pseudoinverse
is slightly higher than computing explicitly the Sin(v) in (B.19) and then applying expression (25). For
example, on a standard Laptop equipped with a 2.8 GHz Intel Core i7 with 16 GB of RAM and Yosemite
OsX running Matlab, the mean time is 59.3 us for pseudo-inverse computation and it is 56.2 us when (25)

is applied; in both situations the sample standard deviation of observations is about 8 ps.




As a consequence, in the following we compare the computational burden required by the

approximated solution (26) only with the expression (25). Both methods comprise the explicit computation

of X (v), which can then be neglected in the comparison. Considering K = 2 and assuming that the terms
n"w?(n) in (B.17) are pre-computed and stored in memory, the computational complexity of (B.17)
amounts to 14-M products and 8-M sums. Then, the evaluation of the 5, (v) coefficients in (B.19) needs 56

products and 20 sums, while the final estimates (25) require additional 18 products and 12 sums. To
summarize, the procedure (25) requires 74 + 14-M products and 32 + 8-M sums. On the other hand, the

adoption of (26) with an approximant polynomial of degree 7 asks for 6 products and 7 sums for the g,, (v)
approximants. Noticing that (26) makes use of only eight ,, (v) values, and hence asks for 10 products and

4 sums, the related overall computational complexity is 58 products and 60 sums, far less than the one

required when (25) is adopted.

V. CONCLUSIONS

In this paper the analytical relationship between the phasor parameter estimates returned by the
TWLS approach, expressed using either complex-valued or real-valued variables, has been derived. It has
been shown that the TWLS phasor estimator and its derivatives can be expressed as weighted summations
of the DTFT of the analyzed waveform and its derivatives. The analyzed waveform is weighted by the
square of the window adopted in the WLS problem, while the weights used in the summation depend on the
DTFT of the square window and its derivatives. As a consequence, the TWLS algorithm is sensitive to
lower order harmonics and inter-harmonics located close to the waveform frequency when few waveform
cycles are analyzed. In particular, phasor estimation errors due to harmonics are not null even though
coherent sampling occurs because of the contribution of window spectrum derivatives. Also, windows
squaring and derivation of waveform transform increase the sensitivity of the TWLS algorithm to wideband
noise.

In addition, the relationship between the TWLS phasor estimator and the waveform DTFT has been
specifically analyzed when either a static phasor model (i.e. the Taylor’s series order is zero) or a second-
order dynamic phasor model (i.e. the Taylor’s series order is equal to two) is considered. This latter model
is often adopted in the literature since it allows the estimation of the waveform phasor, frequency, and
ROCOF while exhibiting acceptable computational effort and disturbance sensitivity. Using the derived
expressions a procedure for the implementation of the TWLS algorithm without the calculation of the
pseudoinverse matrix has been proposed. Furthermore, the expressions related to the second-order dynamic
phasor model and the real-valued version of the TWLS algorithm have been approximated in order to



reduce the required computational effort and the STWLS procedure has been proposed. It has been shown
by means of computer simulations that the phasor parameter estimates returned by the STWLS procedure
when the waveform frequency is estimated by the IpDFT method comply with the M-class of performance
if the number of analyzed waveform cycles is properly chosen. Moreover, the coefficients involved in the
STWLS procedure can be evaluated by means of simple polynomials with high accuracy. Due to its lower
computational complexity, the proposed STWLS-IpDFT procedure can be advantageously implemented in

real-time low-cost measurement units.

Appendix A

Equivalence between the complex and real TWLS

Assume that Is,é(fr) is the solution of the complex-valued TWLS algorithm, as reported in (4). Hence,

for any nonsingular matrix T e R2¢D2(K+D \ye have:

APRS) =Cex,, or TATITRS =TC,x,, (A1)
forr=20,1, 2, .... Let us consider the following choice:
T :l{ I I_K_+1 } and T = P_Ku - jI—K+l:| (A.2)
2 jIK+1 _jIK+l IK+l jIK+1

where I, is the identity matrix of dimension K+1, while I, is the anti-diagonal identity matrix of

dimension K +1, i.e., a matrix filled with zeros and having all the elements of its anti-diagonal equal to one.

As a consequence, the matrix T expresses a linear combination of two terms at a time. With such a choice,
by simple algebraic manipulations immediately follows that Q, T ' =2U,andTQ/\ =Uy, where the

matrices are defined in (6) and (12).
Recalling (4) we have: TA, T =%TQ§'W AWQ, T =UW'WU, =B, , where Bg is defined in (10).

Moreover, considering again (10), we obtain: TC, =TQ/W "W =U W "W =D, . Substituting the last
two equations into (A.1), we achieve: BKTlséﬁ’ =D, X, . Since by the choice of T made so far it follows

that TR = PSR, the equivalence between the real-valued and the complex-valued approaches follows.

A major consequence of the equivalence is the simplification of the complex-valued TWLS solution

computation, which involves the inversion of the complex matrix A, . Indeed, inverting B (or, even,



approximate it using polynomials) is much less computational demanding. The inverse matrix of A, is then

obtain by Al =T 7B, 'T .

Appendix B

Derivation of the relationship between the TWLS and the DTFT phasor estimators

Let us consider the matrix B, =UyW "WU, employed in the real-valued TWLS phasor estimation

approach. After some algebra we can write:

whose entries are given by:

(B )in =CCoxiorn (Vo) 1=12,.,K+1, h=1,2,.. K +1

(bK,2)|h=CSK+|—h(VO)’ |=1,2,...,K+1, h=1,2,...,K+1
(bes)n =CSirn(o),  1=12, K +1 h=12,...,K+1
(bK,4)|h=SS|+h—2(V0)’ |=1,2,...,K+1, h=1,2,...,K+1,

where v = folfs and:

CC, (v)= NZanWZ(n)COSZ(Zﬁvn),

n=—Ny

SS, (v) = insz(n)sinz(van),

n=—Ny

CS, (v)= NZ n*w? (n) cos(2zvn)sin(2zvn).

n=—N,

(B.1)

(B.2)

(B.3)

This expression shows that CCy and SSk are nulls if k is odd, while CSi is null if k is even. Thus, the entries

of the matrix B can be expressed as:



2K+2-1-h
0,5(Lj M W22 0y p W 2K+ (91, 3] if 2K +2—1—h iseven
(bK,l)Ih = 2

0 if 2K+2-1-h isodd
j K+1+1-h
05j| — M WK oy, ), if K+l-h isodd
(B2 = ’(zzj 2 () (B.4)
0 if K+Il-h iseven
. K+1-1+h
o.Sj(i] M WK (2, if K—l+h isodd
(bK,3)|h = 27
0 if K-l+h iseven
I+h-2
o.5[ij M W02 (0) ~W, 812 (20,)], if 1+h—2 iseven
(b )i = 2
0 if 1+h-2 isodd
1=12,....K+1, h=12,...,K +1.
where:
1 & -
W, (v) == > w?(n)e ™", (B.5)
M n=—Ny
is the DTFT of the square window w?(-) and:
d'w,(v) 1, . Ny B
(k) _ 2 _ k Kyy,2 27zv
W, (V)—T—V(—jZﬂ) D nfw?(n)e 1#" (B.6)

n=—Ny
is the k-order derivative of the W(-). It is worth noticing that W) (.)is an even or odd function of its

argument when k is even or odd, respectively. Moreover, Wz(k) (0) is null when k is odd.

Moreover, after some algebra we obtain:



% n"x(n) w? (n) cos(27zv,n) r K
n=-Ny Re{(zi) X (v )}
T

% n““tx(n) w?(n) cos(2zv,n)

j K-1
n=-Ny -
: Re{z) X" (m}

Ny ) .
Ui = nzZNHX(n)W e VIV L A (B.7)
%x(n)wz (n)sin(27zv,yn) B Im{):(w2 (vo)}

) 'm{[ij X (Vo)}

n=—Ny

% n"tx(n) w?(n)sin(2zv,n)

() e
Z”Kx(n)Wz(n)Sin(vaon) | 2
where:
XWZ(V)— Zx(n)w (n)e ]Zm/n (BIS)

is the DTFT of the analyzed waveform weighted by the square window w?(-) and
d“Xp,(v) 1 v
O e VAN Zn x(n)w? (n)e 12", (B.9)

n=—Ny
is its k-order derivative.

By denoting the entries of the matrix B, ' with gn, I, h =1, 2,..., 2K + 2, from (11) and (B.9) it follows:

K+1 J K+1-1 K+1 J K+1-1
Cyyr = Zﬁ(k+l)l Re (_j X\f\/ljﬂfl)(‘/o) _Zﬂ(ku)(gmg,.) Im (—) Xv(v’:*l*')(vo) ., (B.10.a)
=) 27 = 27

k=01...,K

and

K+1 - K+1-1
Skokr = _z Bk Re{[ij X\,(Vljﬂ_l) (VO)} (B.10.b)
I=1

K+1 J K+1-1
+ Zﬂ(zKﬂ—k)(zma—l) 'm{g) (K+l_')(vo)} k=01,...,K

1=1

Finally, expression (21) easily follows from (B.10.a) and (B.10.b).



A. Static phasor model (K =0)
When K = 0, the relationship between the TWLS and the DTFT phasor estimators can be easily

achieved not only from the expressions above, but also directly from (4). Indeed, in this case the matrix Ag

has the following expression:

W,(0) W, (2"0)} (B.11)

1 _ HioH M
==—Q,W"WQ, =—
Po =g QW TR = X[wz(zl/o) W, (0
From (B.11) it is easy to obtain:

_2 1 W,(0)  —W,(2v,)
M W, (0) =W, (2v,) {—WZ (2vy) W, (0) } (B.12)

Ao—l

Moreover, in (4):

Xw, (Vo)
2 . B.13
X\;kv2 (Vo):l ( :

CoX, =QW"Wx, =M {

By substituting (B.12) and (B.13) in (4) it follows that:

- 2 : W, (O)X\i\/2 (vo) =W, (2‘/0))(\;:/2 Vo) ' (B.14)
W, (0) -W, (2v,) | W, (0) X, (vo) =W, (2vg) Xy, (Vo)

Por = Ac;lCo Xy

from which, using (5):

. RACK gvo) —W22(2vo)xvv2 (vo) (B.15)
’ W, (0) -W; (2‘/0)

The same result can be achieved using the real-valued TWLS phasor estimator approach, i.e. using (10) and

(11).

B. Second order dynamic phasor model (K = 2)

From (B.2) and (B.3) it follows that the matrix B, can be expressed as:
[a, 0 a, 0 c; O]
0 a, 0 ¢, 0 c4
_| 2% 0 a0 ¢ O (B.16)

0 ¢, 0 by O b,
c; 0 c,0 b, O
10 c; 0 b, 0 b, |

where:



Moreover:

A S 2 2
a,=CCy(v) = Y w?(n)cos?(2zv,n),

n=—N,

A Ny
a,=CC,(v,) = Y n*w?(n)cos?(2zv,n),

n=—Ny

A Ny
a,=CC,(v,) = D n*w?(n)cos?(2zv,n),
n=N,

A Ny (B.l?)
by =SSg(ve) = D w?(n)sin?(2zv,n),

n=—Ny

A Ny
b, =8S,(v,) = D_n?w?(n)sin?(2zv,n),

n=—N,

A Ny
b, =SS,(v5) = D_n*w?(n)sin?(2zv,n),

n=—N,

A Ny )
¢, =CS,(v,) = 0.5 > nw?(n)sin(4zv,n),

n=—N,

A Ny
C;=CS;(vp) =05 D n*w?(n)sin(4zv,n).

n=—N,

P 0 P O fis 0]
0 S 0 P2 0 P
11530 By 0 By 0 (B.18)
MO0 B2 O fu O P
Pis 0 P35 0 fes O

10 B 0 fus 0 Pes |

in which the expressions of the entries of the inverse matrix B returned by the Symbolic Math Toolbox of

MATLAB are:



Bi= M(c{ —agh,)/(a,cf —2a,c5¢; +b,aj +a,c3 —agh,a,),

Pz = =M (c,c; —a,b,) (a,c] —28,c4C, +bya; +a,C; —agh,a,),

Bis =M (a,¢, —c,a,) /(8,7 —2a,C4C, +b,aZ +a,cs —agh,a,),

Bz ==M (b5 +byb,) /(b,c; —2b,¢5¢, +a,b; +bycs —a,bgb,),

Bow = M(c,b, —c5b,)/(b,c? —2b,cqc, +a,bs +bycZ —a,byb,), (B.19)
Pas =—M(c1b, —byCy) /(bycf —2b,C4¢; +8,b; +byCs —a,hyh,),

2 2 2 2
Paz =—M(a,b, —c3)/(a,c; —2a,c,c, +b,a; +a,c5 —ayh,a,),

Pas = M(,Cy —a,C3) /(8,6 —2a,C5¢, +b,a5 +a,c5 —ah,a,),
Bay =M (8b, —c3)/(byc; —2b,¢5¢, +a,b; +bycs —a,bgh,),
Pas =—M(c1€3 —a,b,) /(bcy —2b,¢4c, +a,b; +bocs —a,bghy,),
Bss = M(a; —aga,)/(a,cf —2a,5¢, +b,a5 +a,c5 —aghya,),
Bes = M(ci —bya,) [(byc; —2b,c5e; +a,b; +bycs —a,bghy,).

Using (B.19), (B.10) provides the expressions (25) for the Taylor parameters estimates returned by the

TWLS approach for K = 2.
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