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ABSTRACT

During wakeful rest, individuals make small eye movements during fixation. We examined how these13

endogenously-driven oculomotor patterns impact topography and topology of functional brain networks.14

We used a dataset consisting of eyes-open resting-state (RS) fMRI data with simultaneous eye-tracking15

(Nilsonne et al., 2016). The eye-tracking data indicated minor movements during rest, which correlated16

modestly with RS BOLD data. However, eye-tracking data correlated well with echo-planar imaging17

time series sampled from the area of the Eye-Orbit (EO-EPI), which is a signal previously used to18

identify eye movements during exogenous saccades and movie viewing. Further analyses showed that19

EO-EPI data were correlated with activity in an extensive motor and sensory-motor network, including20

components of the dorsal attention network and the frontal eye fields. Partialling out variance related to21
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EO-EPI from RS data reduced connectivity, primarily between sensory-motor and visual areas. It also22

produced networks with higher modularity, lower mean connectivity strength, and lower mean clustering23

coefficient. Our results highlight new aspects of endogenous eye movement control during wakeful rest.24

They show that oculomotor-related contributions form an important component of RS network topology,25

and that those should be considered in interpreting differences in network structure between populations,26

or as a function of different experimental conditions.27

AUTHOR SUMMARY

We studied how subtle eye movements made during fixation, in absence of any other task, are related to28

resting-state connectivity measured using fMRI. We used a dataset for which eye-tracking and BOLD29

resting-state were acquired simultaneously. We correlated brain activity with both eye-tracking metrics as30

well as timeseries sampled from the area of the Eye Orbits (EO-EPI). Eye-tracking data correlated well31

with the EO-EPI data. Furthermore, EO-EPI correlated with BOLD signal in sensory-motor and visual32

brain systems. Removing variance related to EO-EPI reduced connectivity between sensory-motor and33

visual areas and resulted in more modular resting-state networks. Our findings show that34

oculomotor-related contributions are an important component of resting-state network topology, and that35

they can be studied using EPI data from the eye orbits.36

INTRODUCTION

The study of human brain activity during resting state (RS) is of considerable interest in both basic and37

clinical brain research. For mechanistically-oriented perspectives, RS activity patterns identify38

constraints that may govern task-evoked activity as seen by relations between RS connectivity and39

inter-individual differences in various cognitive tasks (e.g., Kelly, Uddin, Biswal, Castellanos, & Milham,40

2008; Rosenberg, Hsu, Scheinost, Constable, & Chun, 2018). And because RS connectivity is related to41

structural connectivity (e.g., Honey et al., 2009; Mišić et al., 2016), it is considered an important42

mediator between anatomical organization and task-evoked activity. From the perspective of predictive43

models of interindividual differences in healthy and clinical populations, the quantification of RS features44

(using time-domain, network-based analyses, spatiotemporal clustering, or control-based approaches, to45
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name a few) is used for machine-learning or statistical learning. This has proved promising in contexts46

such as prediction of IQ (e.g, Dubois, Galdi, Paul, & Adolphs, 2018), personality (e.g., Nostro et al.,47

2018), or the likelihood of developing clinical conditions (e.g., de Vos et al., 2018).48

Resting-state data measured via fMRI reflect endogenous neural activity, but also additional sources49

that introduce fluctuations in the signal. Some of these are physiological artifacts (e.g., cardiac and50

respiratory effects, Birn, 2012; J. Chen et al., 2020), or head and body motion (e.g., Parkes, Fulcher,51

Yücel, & Fornito, 2018). For machine learning, these non-neural effects on the BOLD signal may be52

informative; for example, motion-related patterns could differ across populations (e.g., Zacà, Hasson,53

Minati, & Jovicich, 2018). However, motion and physiological effects complicate drawing conclusions54

about brain systems mediating endogenous information-computation during wakeful rest. For this55

reason, researchers often remove effects of motion and physiology from RS data prior to analysis, even56

though some effects of physiology could be meaningfully related to central neural systems involved in57

control of autonomic activity (e.g., Iacovella, Faes, & Hasson, 2018; Iacovella & Hasson, 2011) .58

Here we examined how RS connectivity is related to a distinct factor, which is eye movement during59

rest (while fixating with eyes open). For purposes of understanding endogenous computations,60

spontaneous eye-movement at rest straddles the boundary between an interesting neurobiological61

phenomenon reflecting the output of endogenous activity and a nuisance factor reflecting motor activity.62

On one hand, eye-movement can be considered a truly integral component of wakeful rest, because at63

minimum, retinal input is continuously refreshed to minimize adaptation (for review, see Rucci & Poletti,64

2015). On the other hand, oculomotor control differs from prototypical covert, non-motor processes65

exactly because motor control involves planning, execution, efference copy, feedback and correction66

(e.g., West, Welsh, & Pratt, 2009). Oculomotor-control during rest may therefore require coordination67

between brain systems that otherwise present modest levels of connectivity.68

Statistically, eye movements during rest could therefore produce stronger connectivity between69

regions. Perhaps more importantly, it could produce a more integrated (less-modular) view of RS70

connectivity networks, because eye movement is supported by a widely distributed fronto-parietal71

network and occipital regions (e.g., Balslev, Albert, & Miall, 2011; Mort et al., 2003). From a theoretical72

perspective, identifying neural systems controlling eye movement during rest could allow better73

partitioning between relatively more ‘active’, (oculo)motor-related aspect of RS as opposed to other more74
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covert, non-motor-related aspects of RS. Finally, eye-movement themselves could be a possible75

confounder when studying healthy and clinical populations that differ in oculomotor control including76

autism (e.g., Takarae, Minshew, Luna, Krisky, & Sweeney, 2004), Parkinson’s Disease (e.g., Pretegiani &77

Optican, 2017; Zhang et al., 2018) or schizophrenia (e.g., Dowiasch et al., 2016; Morita, Miura, Kasai, &78

Hashimoto, 2020).79

Current knowledge80

There is relatively little prior work on the relationship between eye movements and RS activity. Using81

fMRI, Fransson, Flodin, Seimyr, and Pansell (2014) studied neural correlates of horizontal or vertical82

guided fixations, as well as spontaneous fixations during RS. Guided fixations produced activity in83

systems typically involved in oculomotor movement including visual cortex, frontal eye fields (FEF),84

supplementary motor area (SMA), cerebellum, and a few other regions. To quantify correlates of85

spontaneous eye movement during RS they derived a gaze-velocity time series from the eye tracking86

data, reduced its dimensionality using PCA, convolved the resulting timeseries with a hemodynamic87

response function and used the result as a regressor in a whole-brain analysis. Interestingly, this latter88

analysis identified fewer regions, which furthermore did not overlap with those found for guided89

saccades, and which were all associated with the Default Mode Network (DMN): the posterior cingulate90

cortex (PCC) and dorsomedial prefrontal cortex (dmPFC). As the authors noted (p. 3833), “at first glance91

it would seem more likely to expect the neuronal control for slow changes in eye position during fixation92

to be localized to visual cortices and attention-related cortical networks”. It is unclear how slow93

fluctuations in the DMN impact eye movement.94

McAvoy et al. (2012) used Electro-oculography (EOG) to monitor eye movement during fixation, in an95

analysis based on a relatively small sample of nine participants. Using the EOG they separated blinks96

from other eye movement during eyes-open RS. In the analysis of EOG during RS fixation they identified97

brain systems correlated with blinks, but no brain systems where activity correlated with other types of98

eye movements.99

Yellin, Berkovich-Ohana, and Malach (2015) examined correlations between fMRI BOLD fluctuations100

during rest and pupil size. They identified widespread negative correlations in sensory-motor areas and101

temporal areas, and positive correlations in the DMN. The study did not evaluate BOLD correlates of102

–4–



== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Spontaneous eye-movements and resting-state connectivity

Authors: Koba et al.

gaze location or velocity. However, it is possibly related to understanding systems related to spontaneous103

eye movement, because pupil-size measurements are known to be confounded with the deviation of the104

pupil from the center of camera view. That is, eye trackers will mis-report systematically decreasing105

pupil-size values – for the exact same pupil size – as the pupil deviates from the camera-axis (Hayes &106

Petrov, 2016). This mis-measurement is known as the Pupil Foreshortening Error (PFE). Specifically,107

Hayes and Petrov (2016) showed that deviations from center of camera-view produce systematic PFEs108

that can reach 12% at typical viewing distances. Significant PFEs were produced even with movements109

as small as 4 degrees from center.110

Ramot et al. (2011) used EOG to determine BOLD correlates of spontaneous eye movements during111

an eyes-closed condition. The relation to eyes-open oculomotor control is unclear, as eyes-closed RS112

conditions produce different patterns of brain activity (e.g., Marx et al., 2003) and connectivity (e.g.,113

McAvoy et al., 2012). Furthermore, saccades made under closed eye lids have different trajectories than114

those made with eyes open in complete darkness (Becker & Fuchs, 1969). For this reason we consider115

prior studies examining RS activity during eyes-open condition as more relevant for the current study.116

In addition, numerous neuroimaging studies have used various types of tasks, including117

visually-guided saccades, memory-guided saccades, anti-saccades and so-called “voluntary” saccades118

(either pre-cued [endogenous control] or freely initiated). However these studies used explicit tasks119

rather than study naturally occurring oculomotor control during eyes-open RS. Perhaps the essential120

difference is that controlled studies oftentimes orient the saccade towards, or away from a presented121

target (pro- vs anti-saccade). For this reason the brain systems identified could mediate visual detection122

and attention processes that have no parallel during rest. In a neuroimaging study demonstrating this123

point (Brown, Goltz, Vilis, Ford, & Everling, 2006), participants were required to saccade either towards124

a stimulus (prosaccade), away from a stimulus (antisaccade), or maintain fixation while inhibiting an125

orienting saccade (no-go). They documented numerous regions, including FEF, IPS, cingulate cortex and126

precuneus, all showing highly similar activation patterns for both prosaccade and no-go trials. The127

authors interpreted this as suggesting that “BOLD signal in cortical saccade regions might predominantly128

reflect visual detection and attention processes rather than saccade generation or inhibition. . . ” For this129

reason, it is unclear to what extent brain systems identified in typical studies of saccades are strongly130

involved in saccade control during the resting state.131
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Specific aims132

The two aims of our current study were: 1) to identify brain systems associated with endogenously driven133

eye movements during rest, and conjointly, 2) to determine how removal of eye-movement related134

activity impacts resting-state connectivity. We quantified eye movement during rest using both135

eye-tracking, and EPI data extracted from the eye orbit area. We validated the relationship between136

different features of eye movement (pupil size, gaze velocity, gaze location) and Eye Orbit EPI time137

series (EO-EPI) during rest. We then evaluated how removal of eye-related activity, as manifested in138

EO-EPI, impacts the topography and topology of RS networks. In doing so we examine how EO-EPI139

removal impacts global metrics of network connectivity including modularity, number of modules and140

properties of the degree distribution because these speak to large-scale, holistic changes to brain141

networks. In addition, we quantify the impact of EO-EPI removal on other, local metrics of connectivity142

(e.g., mean degree) in order to allow relating past and future results to our results.143

METHODS

Dataset144

We used resting state data from the Sleepy Brain study (Nilsonne et al., 2016). All data are available145

online from OpenNeuro, Dataset ds000201; https://www.openneuro.org/datasets/ds000201/. Full details146

of the dataset and imaging parameters are given in Nilsonne et al. (2016) and here we provide only the147

main details. Data were collected from 86 participants on a 3T MRI scanner (Discovery 750, General148

Electric) using an 8-channel head coil. Each participant was scanned on two different days. In each149

scanning session, a T1 structural image, two resting state functional EPI scans, and three task-related150

functional scans (emotional mimicry, empathy for pain, emotional reappraisal) were acquired. Our151

analyses rely only on the structural and resting-state scans.152

For the structural (T1) images, the relevant properties were as follows: slice thickness 1mm, sagittal153

orientation, whole brain acquisition. For the resting state EPI images: slice thickness 3mm no gap, axial154

orientation, 49 slices covering the entire brain, interleaved acquisition inferior to superior, TE = 30,155

TR = 2.5sec, flip angle 75◦.156
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Four resting-state data sets were acquired for each participant; two runs on each of two scanning days.157

In one of the two days, data were collected when participants were sleep deprived, and we did not158

analyze these data. Of the remaining two RS runs, one was typical, where participants were asked to159

fixate on a white cross presented a gray background for 8 minutes. The second run was quasi-rest in that160

in addition to fixation, it included self-rated sleepiness probes every two minutes. We only analyzed data161

from the typical RS session. To summarize, we processed one RS run per participant, which was a typical162

RS scan acquired in absence of sleep deprivation. Three participants did not provide these runs so 83163

participants were included in our initial sample. Participants belonged to two age groups: 20–30 y.o.a.164

(n = 45, Median = 23) and 65–75 y.o.a. (n = 38, Median = 68). We did not have specific hypotheses165

about how Age may mediate correlations between eye-movement and BOLD. Therefore, in investigating166

potential Age effects, our main intention was to understand whether this factor confounded any of the167

reported analyses. Because of the large difference between the age distributions, we treated Age as a168

categorical variable (age group) rather than as a continuous one.169

Pre-processing of eye tracking data170

Eye tracking data were available for 77 of the 83 participants for which we analyzed the RS data.171

Participants were required to maintain their gaze on a central fixation cross for the duration of the 8 min172

scan. Right-eye movement and pupil size were recorded using an ViewPoint EyeTracker (Arrington173

Research, USA) integrated into head-mounted goggles. Eye data were sampled at 60 Hz. Participants174

were monitored during the experiment to ensure that they did not have prolonged eye closures (> 5sec).175

When analyzing these data we observed a substantial proportion of missing values, likely due to loss of176

pupil tracking during the task. We therefore implemented a quality assurance procedure as detailed177

below. We constructed a histogram of the standard deviations of the gaze norm (defined as178 √
gaze2x + gaze2y), see Supplementary Figure 1. On the basis of the distribution of these values and179

visual inspection of the data, we set the upper bound to SDgaze = 0.32 and excluded participants with180

SDgaze above this threshold. We chose this threshold in order to maintain time series with relatively low181

proportion of potential artifact peaks, because the adaptive threshold algorithm we use for peak detection182

(described below) is applicable if peaks are relatively rare as compared to baseline. This step resulted in183

exclusion of 43 of the 77 datasets.184
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Manufacturer guidelines define artifacts as measurements where one of the pupil dimensions is outside185

the range of 0.1–0.5. Based on this definition, we removed an additional 2 participants for whom more186

than 50% of measurements were outside this range. For the remaining 32 subjects we performed the187

following analysis to detect eye-blinks and non-blink artifacts, based on estimations of the artifact188

duration. We first defined an artifact function as the sum of the following three functions (Eq 1:3, each189

normalized to its maximum value). In these equations, f1 is the pupil aspect ratio, whereas f2 and f3190

diverge when one pupil dimension approach the boundaries of the validity range 0.1-0.5.191

f1 = pupilwidth/pupilheight (1)

f2 = 1/(pupilwidth2) + 1/(pupilheight2) (2)

f3 = 1/((pupilwidth− .6)2) + 1/((pupilheight− .6)2) (3)

To individuate the artifacts’ start and end points, we applied an adaptive algorithm proposed by192

Nyström and Holmqvist (2010). This algorithm was originally developed for saccade-detection using193

gaze speed as input, and we adapted it to use the absolute value of the artifact function as input. In brief,194

this method consists of first detecting the peaks of the input through a locally adaptive threshold, which is195

then followed by detecting the artifact onset and offset as the closest point of minimum below that196

threshold. Supplementary Figure 2 shows an example of detected peaks of the artifact function. These197

peaks correspond to intervals of pupil size measurements outside the validity range.198

In summary, we analyzed data from 32 (of 77) participants (25 from the younger participants group, 7199

from the older). For these, the proportion of artifacts was on average 18± 2%. Blinks occurred with an200

average period of 2.36± 0.21sec.201

Pre-processing of fMRI data and creation of eye-orbit EPI regressors202

We include the analysis workflow described below as supplementary materials, also available online via a203

github repository at https://github.com/KobaCemal/SleepyBrain.204

First, we applied brain extraction and tissue segmentation (Gray Matter, White Matter, CSF) to the205

structural T1 images using the antsBrainExtraction function of ANTs software (Avants, Tustison, &206
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Song, 2011). We used ANTs for all registration routines in our pipeline. We registered each participant’s207

structural image to standard space using non-linear registration (ICBM 2009 non-linear assymetric208

template; Fonov, Evans, McKinstry, Almli, & Collins, 2009), and saved the inverse of the warps. We209

also registered the structural and functional images using affine transformation. We used the combination210

of these two transformations to align data from each participant’s original space to common space, or211

vice versa, in a single step.212

To delineate each participants “eye orbit” area, we first marked this area on the common-space213

template. We then transformed this mask to each participant’s original space, and made any additional214

modifications therein, if required. Specifically, we delineated anatomical masks of the “eye orbit” area in215

common space using MRICRON (Rorden, Karnath, & Bonilha, 2007), for which we used an MNI216

template provided with FSL (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). Both eye orbits217

were included in the mask. The masks’ location was transformed to each participant’s individual space218

using the combination of the MNI→T1 and T1→subject space alignment matrices mentioned above. We219

also created cerebral-spinal fluid (CSF) and white matter masks in MNI space and transformed them to220

individual space, where they were eroded by one voxel from their outer boundaries to be more221

conservative. We then extracted the mean time series from these white matter and CSF masks. These222

were used as nuisance regressors in an initial regression (details below).223

We used AFNI (Cox, 1996) for analyzing the functional RS images. We implemented the following224

steps: slice time correction, motion correction (base image: first volume of the run), and band-pass225

filtering (0.01− 0.1Hz). To remove other nuisance sources of variance from the functional times series226

we implemented preliminary data-cleaning using regression with the following regressors: i) motion227

parameters estimated during motion correction, ii) mean white matter and CSF time series, and iii)228

frame-wise displacement values. We considered the residuals of this regression as a “cleaned” time series229

that was the entry point for further analyses.230

To improve signal to noise of the subsequent regression models which were of primary interest, we231

then spatially-smoothed the cleaned time series with a 6mm FWHM kernel. From this time series we also232

derived an Eye-Orbit EPI regressor, which was defined as the mean time series from both eye-orbit233

masks, after spatial smoothing, which we refer to as EYEraw. We convolved the EYEraw with an HRF234
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basis function (Using AFNI’s waver command), producing a EYEconv time series. In separate analyses we235

used either EYEraw or EYEconv as “seed” regressors, to identify EO-EPI-correlated brain areas.236

Determining correlation between eye-tracking measures and EO-EPI time series237

We were interested in the relationship between several measures of eye movement and the EPI time238

series sampled from the eye-orbit regions (EO-EPI series). We derived 12 time series from the239

eye-tracking data: the measured gaze location, GazeX and GazeY (mean normalized for horizontal240

center per participant), their squared values, their temporal derivatives (vel GazeX , vel GazeY ), gaze241

amplitude: GazeX2 +GazeY 2, gaze power: vel GazeX2 + vel GazeY 2, Pupil size (de-meaned), its242

first derivative vel Pupil size, and squared value Pupil size2. We were also interested in the blink243

function (coding for 1 whenever a blink was present; 0 otherwise), but we determined the relation244

between blinks and EO-EPI in a different manner as detailed below. Pupil size was defined as245

(pupil width+ pupil height)/2. We note that with our instrumentation, as well as many other eye246

trackers, the pupil size measure may be confounded with gaze position (Hayes & Petrov, 2016), resulting247

in significant correlations between pupil size and gaze location in both x and y directions (p < .01 for248

30 of the 32 participants in the current study).249

For each of the 12 eye-tracking quantities mentioned above (with the exception of blinks) we250

performed the following procedure: We first down-sampled the time series to the fMRI frequency rate251

(0.4 Hz). Rather than assume that the relation between the eye-tracker data and EO-EPI is mediated by a252

typical hemodynamic response function, we used a simple statistical learning approach to estimate and253

validate this relationship. Specifically, we calculated a kernel function to describe the relation between254

the eye tracking quantity and the EO-EPI envelope. We computed a kernel as follows. First, for each255

oculomotor time series we considered as meaningful oculomotor ‘events’ the top 10% of the peak-values256

in the given series. Second, we calculated the mean EO-EPI signal in the interval [−10, 10] seconds257

around those peak events. For each participant, the triggered mean was normalized to that participant’s258

absolute maximum value, in this way producing the participant’s event triggered average (ETA). To259

maintain independence between estimation and testing, the kernels linking an eye-tracking measure to260

the EO-EPI signal were calculated using a leave-one-participant-out procedure. That is, for each261

participant the kernel was derived as the mean of the ETAs calculated from all other participants. This262
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kernel was convolved with the (left-out) participant’s eye tracking time series, and a correlation with263

EO-EPI computed. The resulting correlation values (32 in all) were then Fisher-Z transformed and264

analyzed on the group level using a T-test.265

We used a different approach to evaluate the relation between blinks and EO-EPI dynamics. The blink266

time series was sparse and binary, with ‘1’ coding blink presence. We down-sampled this time series to267

consecutive 2.5 sec windows, assigning to each window the value 1 if at least one blink was coded in the268

original series. For each participant we computed a blink-related event-triggered-average by averaging269

the EO-EPI data around each blink (as described above). To determine the statistical significance of270

blinks and EO-EPI we evaluated the reliability of the ETAs across participants: We calculated for each271

participant the correlation between his/or own ETA and the average of the ETAs of all the other subjects.272

We then tested the distribution of these (Fisher-Z transformed) correlation values at the group level using273

a T-test.274

Statistical Inference for fMRI analyses275

Correlates of Eye-tracking metrics: We examined whole-brain correlations between RS activity and276

several eye tracking measures: GazeX , GazeX2, vel GazeX , vel GazeX2, Pupil size, and blink277

function. The BOLD data modeled were the “cleaned” time series from which only typical artifact278

sources were removed. We implemented two modeling approaches: In the first, we resampled each279

eye-tracking measure of interest to the sampling resolution of the MR acquisition (0.4Hz) and convolved280

the result with canonical HRF via AFNI’s waver function to construct a regressor. In the second, we used281

a Finite Impulse Response (FIR) function modeling approach where the BOLD impulse response was282

estimated using six tent functions (using AFNI’s tent basis function). This approach does not assume a283

fixed shape. From these estimates, we averaged the first three beta coefficients (corresponding to284

0− 7.5sec post eye-tracker dynamics) and propagated the value to a group-level analysis. Family wise285

error correction was implemented using FSL’s TFCE implementation.286

Correlates of EO-EPI Regressors: Beta values associated with EYEconv or EYEraw were transformed to287

MNI space. To identify clusters where these beta values were significantly positive or significantly288

negative, we computed voxel-wise statistics using a Wilcoxon signed-rank test, and then implemented289
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cluster-level control for family-wise-error using permtuations as described below. We used a290

non-parametric test because the relevant beta values data did not satisfy typical parametric assumptions.291

We defined statistically-significant clusters as ones where the statistical significance (uncorrected) at292

the single voxel level was below p = .01, and where the cluster size (volume) passed a value determined293

from the sampling distribution we derived using the following permutation procedure. In each of 10,000294

permutations, we reversed the signs of 42 of the 83 datasets, and we implemented a Wilcoxon295

signed-rank test (Siegel & Castellan, 1956) to identify all clusters consisting of voxels where the296

statistical significance of the difference from chance (zero; 0) exceeded p < .01 and where all values297

were positive (we limited to positive values so that the resulting clusters could not combine both negative298

and positive values, as our main analysis also probed for clusters where all values were either positive or299

negative). We saved the largest cluster size from each permutation, and the resulting set of 10,000 values300

of largest-cluster sizes defined the sampling distribution. The 95% percentile rank entry of the sampling301

distribution served as the critical value. This value was used to define statistically-significant clusters in302

the experimental data. In addition, in those clusters defined as statistically significant, we computed the303

voxel-level effect size of the test (see Poldrack et al., 2008). We used the effect size (r) definition for the304

Wilcoxon test, quantified as r = Z/
√

(N), where N is the number of participants (data-pairs). To305

determine whether the clusters identified by the EO-EPI/BOLD analyses were differentially driven by the306

young or older participant groups, for each of the statistically-significant clusters we compared the mean307

Beta value per cluster between the two groups. For each participant, we extracted the mean Beta from the308

EO-EPI/BOLD regression, per cluster. We then evaluated whether these values differed for older and309

younger participants (Mann-Whitney between groups non-parametric test).310

To evaluate whether significant EO-EPI correlates were found in areas dominated by artifacts, we311

calculated voxel-level temporal signal to noise ratio (tSNR) for each participant. To create a tSNR map312

for each participant, we used the raw functional images (before applying any signal processing steps), but313

after removal of the initial 10 stabiliziation images. We divided the absolute mean value of each voxel by314

its standard deviation. We then applied the statistically significant clusters found for EYEraw and EYEconv315

series as masks to determine Mean± SD of the tSNR in each statistically significant spatial cluster. The316

motivation for this analysis was a prior report (W. Chen & Zhu, 1997) showing that Nyquist ghosting317

artifacts can propagate eye signals into midbrain areas (in the case of axial acquisition). Two MR318
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physicists examined the QA reports produced by the scanner and did not find evidence for ghosting.319

However, we still wanted to evaluate if any EO-EPI whole-brain correlates were found in regions with320

low tSNR.321

To evaluate the specificity of our findings to the eye-orbit region we defined a control region of interest322

(ROI) in the maxillary sinus cavity below the eye, and analyzed the mean time series of that region323

identically to how we analyzed the data from the eye orbit region. Given the axial acquisition, ghosting is324

not likely to be propagated to this more inferior region.325

In addition, we evaluated the relation between the EO-EPI regressor and the framewise-displacement326

regressor to understand the contribution of the latter to the EO-EPI data. We computed the correlation327

between the FD regressor and EYEraw regressor per person, normalized the correlation values (Fisher-Z)328

and conducted a statistical test at the group level. We conducted a similar analysis to evaluate the329

relationship between EO-EPI and the Global Signal (GS). We defined GS as the mean whole-brain time330

series of all gray matter voxels, following removal of the motion artifacts, WM/CSF contributions, and331

subsequent to spatial smoothing. Because GS also contains neural information (e.g., Liu, Nalci, &332

Falahpour, 2017) we did not partial out GS, but evaluated its relationship to EO-EPI. We used the same333

approach we applied to framewise displacement.334

To study the relation between EO-EPI activity and regions previously linked to oculomotor control, we335

defined the frontal eye fields (FEF) and supplementary eye fields (SEF) as independent ROIs and for each336

each we examined correlations with the EO-EPI regressor. To create FEF and SEF ROIs, we used the337

NeuroSynth database (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). The probability mask338

corresponding to the keyword eye was saved and thresholded by z-score of 7 (max Z=9.1, generated from339

417 studies). From the thresholded image, regions around the intersection of precentral sulcus and340

superior frontal sulcus were marked as FEF, and a region around the medial frontal gyrus was marked as341

SEF (see Supplementary Figure 6). Those masks were spatially translated to the individual-subject space342

and mean activation of those two ROIs extracted from the cleaned and smoothed data. We constructed a343

regression model to predict the FEF and SEF ROIS’ activity from the EO-EPI series, per participant.344

Coefficients were analyzed using a Wilcoxon rank sum test.345
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Functional connectivity maps and derived network metrics: To create functional connectivity networks, we346

used a resting-state functional connectivity parcellation based on 500 ROIs (Schaefer et al., 2018). We347

spatially translated this parcellation into each participant’s individual space, where they were further348

limited to gray matter by multiplying all ROIs with the participant-specific gray matter mask (to limit the349

influence of data from non-gray matter areas). We extracted the mean time series from each ROI, for the350

two types of spatially-smoothed resting-state data we derived (one typical, and the other with EO-EPI351

EYEconv regressed). We examined the network features after thresholding the connectivity matrices at 12352

sparsity levels: 30%, 20% and 1–10%. In all, from each participant’s resting state network we derived the353

following metrics: node degree, strength, cluster coefficient, transitivity, assortativity, efficiency, number354

of communities, betweenness centrality and modularity. Subsequent to thresholding, the feature-values355

were processed as follows. We generally used non-binarized connections maintaining the original356

weights, with the following exceptions: i) for node degree we used binarized values; ii) For clustering357

coefficient, transitivity and betweenness centrality we used normalized values, per participant, per358

condition; iii) for betweenness centrality we used connection-length matrices as inputs. We calculated359

these using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010) (See Supporting Information for360

description of the metrics as described in the Brain Connectivity Toolbox). We calculated these361

parameters for the original and “clean” networks as defined above. We then tested which of these362

parameters differed as a result of the EO-EPI-removal procedure using paired-sample T-tests. We defined363

a robust result as one that was statistically significant across all twelve levels of sparsity thresholding. We364

report the results for all network metrics for completeness so that they could be cross-referenced again365

prior and future work. Because subsets of those features are expected to be correlated, we constructed366

correlation matrices (using across-participant variance) to identify positive and negative correlations367

between features in order to inform our discussion of changes to modularity.368

We also probed for changes in global topology by quantifying the impact of EO-EPI removal on the369

shape of the entire degree distribution (for the largest three sparsity levels; 10%, 20%, 30%). Following370

prior work (e.g., Fornito, Zalesky, & Bullmore, 2010) we fit an exponentially truncated power law371

function to each participant’s degree distribution. The function was Y = a×Xb × e(x×c), Where Y is the372

cumulative probability of the distribution and X is node degree. From this equation, we derived the373
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coefficient (a), power law exponent (b), and degree cut-off point (c). A paired-sample t-test was applied374

to each parameter to evaluate the impact of partialling out EO-EPI.375

We wanted to know whether fronto-parietal systems that mediate exogenous attention become less376

hub-like when EO-EPI is removed. To evaluate this, we used previously defined criteria (Xu et al., 2014)377

in order to detect network hubs, separately for each of the three largest sparsity thresholds. These criteria378

required that the value of a node be higher than 1 SD above the mean value for each of these empirical379

distributions: node strength, node degree and node betweenness centrality. Nodes matching all three380

criteria were considered hubs. The chance probability of a node being a hub (assuming a normal381

distribution) is ∼ 0.343 = .04. To evaluate whether removal of EO-EPI variance impacted whether a382

region satisfied hub criteria, for each region we counted the number of participants for which the region383

was classified as a hub, with our without EO-EPI removal. On a binomial, a difference would need to384

consist of at least 7 or more participants (binomial test parameters: N = 83;K = 7; p = .04).385

We also identified any specific pair-wise differences in regional connectivity for the raw and cleaned386

matrices. After applying Fisher’s Z transformation, pair-wise correlation values were subjected to387

paired-sample t-tests. We used false discovery rate (FDR) to correct for multiple comparisons.388

Dual Regression: We used dual regression to determine how removal of activity associated with the389

EO-EPI regressor impacted connectivity in previously-defined resting-state networks. The procedure was390

implemented in AFNI and followed workflows described previously (Beckmann, Mackay, Filippini, &391

Smith, 2009; Nickerson, Smith, Öngür, & Beckmann, 2017). In the first step we used 14 pre-defined392

resting-state network spatial masks (Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012) to extract393

‘seed’ time series for each of the networks. The 14 resting-state network masks were spatially transposed394

to individual space and multiplied by the gray matter mask of each participant to reduce contribution395

from non-gray-matter areas. For each participant we then produced two seed time-series for each of the396

14 networks: one from the functional data from which the EO-EPI variance was not removed, and one397

from the functional data from which this variance was removed using the EYEconv regressor.398

To determine whole brain connectivity of the seed regions we inserted all 14 time series into a single399

multiple regression. In effect, we conducted two separate regression models: Model #1 was a “typical”400
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model where the mask-derived seed time series produced from the original (typically-processed)401

functional data served as regressors to predict whole-brain resting state data. This process reproduces the402

typical dual regression procedure. Model #2 was an “EO-EPI-removed” model. Here, the dataset403

analyzed was the EO-EPI removed BOLD data. From that point on, the dual regression was carried out404

as usual, with seed time series (one per network) used conjointly to predict whole-brain activity.405

The produced beta weights were analyzed using group level repeated-measures test to identify406

seed-time-series whose connectivity differed between the two data sets; i.e., whose connectivity was407

impacted by the EO-EPI-removal procedure. We used FSL’s randomise function (Jenkinson et al., 2012).408

A within group T-test with 10000 permutations and threshold-free cluster enhancement was applied.409

Because our interest was in evaluating the impact EO-EPI-regressor we adopted a liberal approach of not410

correcting for multiple comparisons across the 14 networks tested in the dual regression procedure. We411

also note that the 14 time series used for dual regression were relatively weakly correlated in this data set:412

to determine collinearity, on the single participant level we computed the 14× 14 cross-correlation413

matrix and then averaged these across participants. The highest mean correlation was 0.55, which414

licensed separate analyses for each network regressor.415

Relation between analyses and control for multiple comparisons: Taken together, we report two core416

independent analyses: 1) The first uses the EO-EPI regressor for whole-brain analyses, using a convolved417

or non-convolved regressor. Its findings constrain the findings from the pairwise functional connectivity418

analysis based on the 500-region parcellation, because regions identified by EO-EPI/BOLD are more419

likely to show reduced connectivity after removing the EO-EPI contribution; 2) The second analysis is420

the network-metric analyses: some of its findings (e.g., modularity, clustering) are independent of other421

analyses. The whole-brain analysis is corrected for family-wise error whereas the network-metric is not422

corrected for multiple tests in order to allow cross-referencing our network-level findings against prior423

and future literature. In addition, we report several analyses in order to offer insight into mechanisms, or424

for compatibility with prior studies. Specifically, the analyses of the relation between EO-EPI and eye425

tracking data are meant to elucidate the sources of the EO-EPI signal, rather than to provide further426

information on the relationship between eye movement and brain activity. This analysis is internally427
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corrected for family-wise error. The analysis relating eye-tracking to BOLD/fMRI is presented as a428

contrast to the EO-EPI and for consistency with prior work.429

RESULTS

Eye tracking data: Quality and correlation with whole-brain BOLD430

Based on our artifact rejection criteria, usable eye-tracking data were available for 32 of 77 participants431

for which eye tracking data were collected. A power-spectra analysis of the eye tracking data432

(Supplementary Figure 3) indicated higher broad-band power in all frequencies in the rejected data,433

including those approaching the Nyquist frequency of the eye-tracking data in the current study434

(f = 30Hz). Participants largely avoided making large eye movements during the resting-state session.435

To quantify these movements, we calculated the maximal displacement of gaze position in436

non-overlapping 2sec windows. The resulting empirical cumulative distribution functions (see Figure437

1A) indicated modest movement, with around 50% of analysis windows showing displacement values438

below 1◦ and only around 10% of windows showing displacement values above 3◦.439

Whole brain correlations with eye-tracking metrics were found for the blinkfunction and GazeX2
443

regressors and presented in Figure 1B, C (p < .05, corrected for multiple comparisons with FWE; see444

Supplementary Table 1 for coordinates). We note these findings were identified via a Finite Impulse445

Response (FIR) analysis (see Methods) which estimated the HRF shape per regressor. Regressions based446

on canonical HRF-convolved regressors produced results that were not statistically significant.447

Eye tracking data: Correlation with Eye Orbit EPI data448

We evaluated the correlation between each of the 12 types of eye tracking time series (see Methods) and449

the EO-EPI data. We controlled for the 12 tests using Bonferroni correction, because some of the450

eye-tracking measures were highly correlated (see Supplementary Figure 4). We identified three451

eye-tracking regressors that significantly predicted the EO-EPI envelope (Bonferroni corrected for 12452

tests): the gaze power (vel GazeX2 + vel GazeY 2), square of pupil size PupilSize2, and the gaze453

velocity in the vertical (Y) direction. The pupil size was evaluated as deviation from the subject’s mean454

value, so its squared value indicated absolute deviations from mean value. We used squared deviation455

rather than absolute value as the derivative of the exponent is better behaved than that of the absolute456
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Figure 1. Relation between eye-tracking measures and EO-EPI regressor from eye orbits. Panel A: modest eye movements in 2-sec non-overlapping time

windows. Panels B, C: whole brain correlates of resting-state BOLD with blink events and GazeX2. No other areas showed statistically significant effects.

Each analysis is corrected for multiple comparisons using FSL’s implementation of TFCE Family-wise-error control.

440

441

442

function. Figure 2A shows sample time series reflecting raw EO-EPI, its envelope and eye-tracking457

regressors, and Figure 2B shows the estimated Kernels for gaze power and square of pupil size.458

Pupil-size squared explained 7± 2% of the variance of the EO-EPI envelope and presented a463

significant positive correlation: ρ = 0.17± 0.05, t(30) = 3.45, p = .0017, d = 0.62. Gaze power464

explained 5.4± 1.6% of the variance of the EO-EPI envelope and had a significant negative correlation:465

ρ = −0.17± 0.03, t(30) = 5.18, p < .001, d = 0.93. These two variables jointly explained the 11± 3%466

of EO-EPI envelope’s variance, a significant improvement in model performance with respect to the467

single variable cases (∆BIC < −2). Gaze velocity in the Y direction had a weaker impact; it explained468

3.7± 1.0% of the EO-EPI’s envelope variance and had a significant positive correlation: ρ = 0.11± 0.03,469

t(30) = 3.67, p < .001, d = 0.66. Adding this variable to the preceding regression model did not470

significantly increase explained variance (∆BIC = −0.5). The exact numeric values corresponding to471

these kernels is given in Supplementary Table 2. Blinks were not significantly correlated with EO-EPI.472

Connectivity of EO-EPI regressors473

We identified an extensive system that correlated with the EO-EPI regressor. For the convolved version of474

the EO-EPI regressor (EYEconv) we found correlations in pre- and post-central gyri bilaterally, parts of the475

superior temporal gyrus and visual cortex (Figure 3A). We also identified strong correlations (of opposite476

sign) in the thalamus (Figure 4A). In addition, we identified whole-brain correlations for the477

non-convolved versions of the EO-EPI regressor (EYEraw). These were qualitatively similar, but reduced478
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Figure 2. Relation between eye-tracking measures and EPI Orbit (EO-EPI) regressor. Panel A: sample time window showing relationship between Raw

EO-EPI signal, EO-EPI Envelope used for Kernel computation, and Pupil Size and Gaze Power measures derived from simultaneously-acquired eye tracking

data. Panel B: Two Kernels estimated as relating the relationship between the EO-EPI envelope and Pupil Size (gray) or Gaze Power (green). Note that peaks

in eye-tracking gaze power (Time=0) precede a peak in EO-EPI envelope by around 2sec.

459

460

461

462

in extent (see Figures 3B, 4B). Whole-brain clusters in MNI space for the EYEraw and EYEconv regressors479

are reported in Supplementary Tables 3 and 4. We examined the effect size of the test for each voxel480

within these statistically-significant clusters. As shown in Supplementary Figure 7, effect-size values481

peaked at around 0.5 in sensorimotor and visual cortices. In addition, for each statistically significant482

cluster we evaluated whether correlations differed for younger and older participants, but no cluster483

showed a statistically significant result. A region of interest analysis indicated statistically significant484

correlations with EO-EPI in FEF (Wilcoxon z = 6.15, p < .001) but not in SEF (z = −1.28, p > .05).485

An identical analysis that used time series from the maxillary sinus cavity rather than the eye orbit area492

produced a different pattern of results: the distribution of clusters was mainly limited to the sinus and eye493

areas with some ghosting presented along the Z-direction, as expected. The distribution does not494

resemble that found for the (nearby) eye orbit area (see Supplementary Figure 9).495

In general, the tSNR of the raw time series was quite good across the cortex (see Supplementary496

Figure 8), with typical dropoff in low-signal areas and those susceptible to motion. Values were similar to497

the those reported by the Human Connectome Project for 2mm and 3mm non-cleaned data (Smith et al.,498

2013). We treated each cluster where BOLD activity correlated with EO-EPI (raw or convolved) as a499

functional ROI and calculated the Mean and SD of tSNR in each cluster across participants. Most of500
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Figure 3. Whole-brain connectivity maps for the EYEconv (Panel A) and EYEraw regressors (Panel B). These were produced by deriving a mean time

series from each participant’s eye orbit, correlating it with each voxel’s time series, and then producing family-wise-error corrected group-level maps using a

single-voxel threshold of p < .01, and cluster correction based on permutations. ’Convolved’ refers to an analyses where the orbital time series was convolved

with an HRF basis function, whereas ’Raw’ refers to non-convolved regressors.

486

487

488

489

these areas were associated with adequate tSNR, including the thalamus. This held for all statistically501

significant clusters picked up by the EYEraw regressor (see Supplementary Table 5). For EYEconv the502

clusters found in the left and right cerebellum were associated with low tSNR (and relatively503

systematically across participants, see Supplementary Table 6), as was a cluster in the mid occipital gyrus504

bilaterally (potentially as it includes time series from the field of view between the two hemisphere).505

EO-EPI regressor: variance, power-spectra, and relation to motion parameters and global signal506

Across participants, the time series of the EO-EPI regressor presented a larger range of standard-deviation507

values than found in other ROIs. Figure 5A presents a histogram of the SD values for EYEraw in the508

participant group, and comparative values from the temporoparietal junction (TPJ). The SD values for TP509

were relatively low and tightly clustered in the range of 5-45, with a mode of 10. In contrast, for the510

EO-EPI regressor, there was much less systematicity in the spread of values across participants: the511
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Figure 4. Axial slices showing whole-brain connectivity for the EYEconv (Panel A) and EYEraw regressors (Panel B). The figure reports the results of the

same analysis depicted in Figure 3, but overlaid on axial slices.

490

491

distribution of SD values was relatively more uniform and showed much larger values, some with512

SD > 200. The mean number of voxels in these regions was 1270 for TPJ and 406 for EYEraw.513

The reason for these differences across participants is unclear. However, a byproduct is that when the514

EO-EPI regressor is correlated with brain activity in the context of regression, the resulting Beta values515

for this regressor have a very broad distribution with significant differences across participants and516

outliers. For this reason, using a parametric test on the group level can produce false-negatives or517

positives. To illustrate: in this current study, when non-parametric tests are used for group-level analysis,518

then both the Sign test and the Wilcoxon test produce group-level significance maps as reported here.519

AFNI’s multilevel analysis 3DMEMA (G. Chen, Saad, Nath, Beauchamp, & Cox, 2012), which520

down-weights beta values from participants with noisier beta estimates produces similar results, though521

statistically weaker. However, a typical group-level T-test of beta values against zero produced a null522

result.523
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The large standard deviation of the EO-EPI regressor was related to peaks in that signal. As indicated524

in the Methods section, applying a ‘despiking’ procedure reduced the sensitivity of the whole brain525

correlation analysis: its most extreme effect was flattening several time series from the eye-orbit area, and526

in other cases it impacted a large number of time points in that area (see Supplementary Figure 5 for527

illustration). An analyses of the spectral features of EO-EPI (Figure 5B) showed a strong peak in those528

time series at 0.04Hz, i.e., a cycle of 25sec. This is consistent with slow fluctuations sometimes529

observed in cortical regions. To summarize, the EO-EPI regressor, as would be expected, presented some530

time-domain features (spikes and strong inter-individual differences in spread) that differ from BOLD531

time series acquired in the brain and these need to be considered during pre-processing and group-level532

analyses. That said, its spectral power presented a strong peak at low frequencies of the sort seen for533

cortical BOLD time series.534

With rare exceptions, EYEraw was not-correlated with the estimated head-motion parameters.538

Significant correlations with any of the 6 motion parameters were found for 3 of the 83 participants: In539

the first case there was correlation with L/R displacement; in the second case there was correlation with540

L/R displacement and rotation; in the third case 5 of the 6 parameters were correlated. In all cases,541

correlation values were below 0.2. This lack of correlation suggests that variance in EYEraw signal is not542

related to head motion, though an extreme case of movement may be picked up in this signal as well. We543

also examined if the EYEraw EO-EPI regressor reflected framewise-displacement, as well as its relation to544

the Global Signal (defined as mean-gray matter signal after removal of motion, WM and CSF regressors;545

see Methods). For framewise-displacement the group-level test on Fisher-Z normalized correlation values546

indicated mean (and mode) value very close to zero (M = 0.006, SD = 0.14) producing a result that was547

not statistically significant at the group level, t(82) = 1.75, p > .05. For Global Signal the mean548

(Z-normalized) correlation was statistically significant at the group level, t(82) = 2.61, p < .01, but the549

absolute mean Fisher-Z value was still close to zero, (M = 0.04, SD = 0.14), which corresponds to a550

mean Pearson’s R value of around 0.04.551

Functional connectivity networks552

An analysis of the network metrics revealed that several were significantly impacted by EO-EPI-removal,553

across all sparsity thresholds. The raw connectivity matrices presented higher values for node strength554
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Figure 5. Spectral and spread-properties of EO-EPI regressor. Panel A: Across-participant distribution of standard deviations of EO-EPI time series and

(for comparison) average time series from temporoparietal-junction ROI. Panel B: Frequency distribution of convolved and raw EO-EPI series. Differences in

order of magnitude are due to convolution with HRF basis function.

535

536

537

(both maximum and mean), and mean cluster coefficient (and transitivity). Conversely, maximized555

modularity was greater for the clean (EO-EPI-removed) matrices. Difference values, effect sizes, and556

results of statistical tests are reported in Table 1 and in Supplementary File 1. As shown in the Tables,557

statistically significant results were associated with medium effect sizes in the range of 0.4–0.5. These558

results maintained almost without exception for networks at sparsity levels of 0.01 to 0.09 (see559

Supplementary File 1). Supplementary Table 7 reports the raw values for each metric, for the sparsity560

levels of 10%, 20%, 30%. In addition, we determined if Age modulated the impact of EO-EPI removal561

on network metrics. We computed for each person the impact of EO-EPI removal for each network562

property and then tested if these values differ between age groups. None of the tests were significant. An563

across-participant correlation analysis indicated that modularity was generally negatively correlated with564

measures that load on stronger connectivity, including degree, strength and clustering coefficient (see565

Discussion).566

Fitting the degree distributions using an exponentially truncated power law showed that the EO-EPI569

removed networks differed in the degree distribution (see Figure 6). As shown in the Figure, for 10%570

sparsity networks, EO-EPI removal impacted all three coefficients of the truncated power-law fit: power571
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law coefficient: t(82) = 3.33, p < .01, d = 0.37, power law exponent,572

t(82) = −3.70, p < .001, d = 0.41, and degree cutoff point, t(82) = 3.59, p < .001, d = 0.4. For the573

20% sparsity networks, differences were found for power law exponent ,574

t(82) = −3.13, p < .01, d = 0.37, and degree cutoff point, t(82) = 2.59, p < .01, d = 0.33. No575

statistically significant differences were found for 30% sparsity networks. Supplementary Figure 10576

presents mean degree-distributions for Raw and Clean networks for these sparsity levels.

Sparsity=0.1

Preserved nodes= 1248

Sparsity=0.2

Preserved nodes=2495

Sparsity=0.3

Preserved nodes=3743

Difference Cohen’s D T-stat Difference Cohen’s D T-stat Difference Cohen’s D T-stat

Max Degree 1.23 0.38 3.40** 0.74 0.37 3.33** -0.04 0.02 -0.22

Min Degree 3.45 0.04 0.38 -2.58 0.08 -0.76 -1.90 0.10 -0.92

Max Strength 2.45 0.49 4.41*** 2.11 0.46 4.13*** 1.91 0.42 3.79***

Min Strength 8.03 0.10 0.86 -4.59 0.16 -1.47 -2.51 0.14 -1.26

Mean Strength 0.99 0.49 4.36*** 1.22 0.46 4.14*** 1.38 0.44 3.94***

Max Cluster Coefficient 0.50 0.12 1.06 1.21 0.26 2.32* 1.87 0.32 2.90**

Min Cluster Coefficient 6.05 0.02 0.14 -3.52 0.08 -0.70 -1.43 0.07 -0.61

Mean Cluster Coefficient 1.08 0.46 4.11*** 1.65 0.47 4.22*** 1.84 0.44 3.94***

Transitivity 1.92 0.46 4.11*** 2.39 0.46 4.14*** 2.49 0.45 3.99***

Assortativity 0.31 0.06 0.54 1.44 0.22 1.95 2.12 0.28 2.46*

Efficiency 0.12 0.18 1.60 0.58 0.49 4.39*** 0.80 0.46 4.07***

Max Number of Community 0.02 0.01 0.10 -0.02 0.05 -0.42 -0.02 0.05 -0.44

Maximized modularity -0.007 0.44 -3.95*** -0.005 0.38 -3.36** -0.003 0.34 -3.03**

Max betweenness centrality -0.21 0.02 -0.16 0.12 0.01 0.10 0.65 0.07 0.63

Mean betweennes centrality 0.86 0.41 3.70*** 0.76 0.39 3.50*** 0.25 0.14 1.29

Table 1. Difference of network metrics between Raw and Clean (EO-EPI-removed) functional connectivity matrices. Differences shown are in units of

percentage apart from the number of communities and maximized modularity which maintain the original scale. *=p<.05, **=p<.005, ***=p<.001

567

568

577

We determined which areas tended to show changes in connectivity as function of EO-EPI removal. In582

general, this analysis is not independent of the whole-brain correlation with the EO-EPI time series used583

as a regressor, but it is more sensitive in identifying strongest pairwise differences. For each of the584

124,500 pairwise correlations we conducted a T-test to determine whether the pairwise correlations585

differed for raw and EO-EPI-removed connectivity matrices. The results (FDR corrected; Figure 7)586

showed that connectivity matrices constructed from the raw matrices presented stronger connectivity587

between sensory-motor areas and temporoparietal, dorsal-attention, visual cortex, and other588

sensory-motor regions. There were relatively few regions that showed stronger connectivity in the589

–24–



== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Spontaneous eye-movements and resting-state connectivity

Authors: Koba et al.

Figure 6. Analysis of degree distributions. Degree distributions were fit using an exponentially-truncated power law with 3 parameters: Coefficient, Power

law exponent, Power law cutoff point. The three bar plots show the mean values of these parameters across the three largest sparsity levels. Bar-pairs for which

a difference was significant are marked with a star (*). For sparsity of 0.1, all three parameters differed between raw and clean (EO-EPI removed) connectivity

matrices.

578

579

580

581

EO-EPI-removed condition, notably the posterior cingulate which showed stronger connectivity with590

multiple other brain areas.591

The dual regression analysis did not identify any pre-defined RS network for which connectivity596

changed significantly. A hub-focused analysis that examined whether there were regions more frequently597

identified as hubs in the raw or EO-EPI-removed series also produced a null result: the most extreme598

example was a region defined as hub for 20 participants in one case and 25 in another (a non-significant599

difference on a binomial). While the location of these hubs was not a central point of the current study,600

broadly speaking, for the 10% sparsity threshold (raw) matrices, hubs were localized to motor and601

sensory-motor areas (9 regions) Dorsal attention (6 regions), DMN (4 regions), temporal-parietal areas (4602

regions) and ventral attention (2 areas). Only one visual extrastriate area was identified as a hub.603
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Figure 7. Impact of EO-EPI removal on pairwise connectivity. For each participant, 500-region connectivity matrices were produced from time series from

which the variance attributable to EO-EPI was either removed (’clean’) or not (’raw’). Pairwise-connectivity differences were then computed at group level to

identify region-pairs where EO-EPI removal produced a change in connectivity strength. Family-wise control: Raw − Clean, p < .05 two tailed, for each

single connection, corrected for multiple comparisons using FDR.

592

593

594

595
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DISCUSSION

Neuroimaging is continuously expanding our understanding of the principles that determine organized604

patterns of RS connectivity. Our findings demonstrate that endogenous eye movements during RS605

contribute significantly to structured patterns of RS connectivity. Our main finding is that eye606

movements, measured via EPI time series recorded from the eye orbits, identified a sensory-motor system607

that appeared to be linked to oculomotor activity. Removal of activity accounted for by eye movements608

had systematic impact on whole-brain connectivity. We first address issues related to oculomotor609

measurement during the resting state that emerged in the study and then discuss the implications of the610

results for basic and applied research.611

Probing resting-state networks with eye tracking and eye-orbit EPI data612

As reviewed in the Introduction, few studies have studied brain activity patterns that are correlated with613

oculomotor activity during the resting state, and those have produced inconsistent and sometimes614

puzzling results. The most relevant is Fransson et al. (2014, N = 18): It derived gaze-velocity data from615

eye tracking during a resting-state scan, finding correlation with DMN activity. Also related is McAvoy616

et al. (2012, N = 9) which examined Brain/EOG correlations and reported a null result. In our own617

analyses of eye tracking data (N = 32), we found correlation between BOLD-RS and only two eye618

tracking metrics: horizontal eye displacement, and blinks. These relatively modest correlations could be619

the result of noise in the eye tracking data, which presented itself in higher power across all frequencies620

for rejected data as compared to analyzed data. We also note that participant-exclusion for the eye621

tracking data was more extensive in the older age group, and so future studies of related topics could622

prefer to collect data from younger participants unless there is a specific interest in the older population.623

We found correlations between the eye-tracking metrics and EPI data recorded from the eye orbit area624

(EO-EPI), Bonferroni corrected for 12 correlation tests. These were found for gaze power, pupil size625

(squared), and gaze velocity in the Y (horizontal) direction. These data are consistent with several prior626

reports. Beauchamp (2003) showed that peaks in the EO-EPI time series occur when an MR acquisition627

coincides with a rapid saccadic eye movement. Brodoehl, Witte, and Klingner (2016) and Son et al.628

(2019) showed that EO-EPI data can be used to estimate gaze location (when non-averaged; i.e., used in a629

multivariate context). In addition, Beauchamp’s observations suggest that for our interleaved acquisition,630
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eye movements occurring either during odd- (up direction) or even-numbered (down direction) slice631

acquisition could be picked up in the analysis, because we treated the entire eye orbit as a single ROI.632

Consequently, while the volume acquisition time was 2.5sec, our effective temporal resolution for the633

eye-orbit ROI could have been higher, as we could identify eye-movement during both the up- or down-634

acquisition direction. EO-EPI fluctuations are likely mainly driven by signal disturbances due to635

air/tissue motion, but we cannot exclude the possibility that the signal also contains a BOLD component,636

due to the metabolic activity in nearby muscles. In particular, Law (1998) used PET rCBF to study brain637

systems involved in generation of voluntary saccades and reported active areas in the eye-orbit,638

“primarily located close to the apex of the pyramidal shaped orbital cavity”. Our finding of a systematic639

delayed coupling in which changes in gaze power preceded local minima in EO-EPI fluctuations (the640

latter delayed by ∼2 sec), and of a strong peak frequency of 0.04Hz for EO-EPI are both consistent with641

the possibility that EO-EPI also reflects metabolic activity. We also found little independent evidence to642

suggest a strong contribution of motion artifacts to EO-EPI: beyond one participant for which 5 of 6643

motion parameters correlated with EO-EPI, we only found 2 additional correlations with motion644

elements, for two additional participants. In addition, regarding framewise-displacement (FD), this645

regressor too was removed prior to the EO-EPI analysis, and separately, we found no systematic relation646

between FD and EO-EPI on the single participant level. With respect to relation to Global Signal (derived647

here from gray matter), we found a statistically significant relation with EO-EPI, but the absolute648

magnitude of correlation was modest with mean Pearsons’s R value of around 0.04. A modest component649

of GS could therefore be related to eye movements.650

Note that task compliance during this RS study was good. First, participants were continuously651

monitored and experimenters verified participants did not drift off to sleep during the scan. Second, the652

eye-tracking data indicated compliance with the task instructions in that the eye movements that were653

made during fixation were modest in magnitude (see Figure 1A). When evaluating average654

eye-movement between successive 2sec epochs we found that in 75% of the cases, the magnitude was655

below 2 degrees, which corresponds to a small displacement. For this reason, we consider these data to656

be representative of typical compliant behavior during wakeful rest.657

Given these findings, it can still be asked whether, practically, one should control for oculomotor658

influences measured by EO-EPI in future work. On the basis of these findings we suggest that EO-EPI659

–28–



== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Spontaneous eye-movements and resting-state connectivity

Authors: Koba et al.

should not be treated as a nuisance factor with the exception of very specific circumstances. In contrast to660

factors such as head motion that are nuisance factor that complicate studying BOLD functions related to661

neural activity, EO-EPI/BOLD correlates do not appear to be spurious or necessarily linked to non-neural662

causes. For this reason, EO-EPI covariance should be maintained in the data, unless one has a very663

specific interest in those facets of brain connectivity (or dynamics) that are completely unrelated to the664

function of the brain’s motor systems. Otherwise, EO-EPI should be treated as an identifiable665

independent factor that is informative with respect to the natural function of oculomotor systems.666

Brain systems identified by Eye-Orbit EPI (EO-EPI) regressor667

When used as a whole-brain regressor, the EO-EPI time series correlated with an extensive bilateral668

sensory-motor system. In addition, activity was found in superior parietal lobule, the dorsal part of the669

superior frontal gyrus, supplementary motor areas, and the extrastriate cortex in occipital lobe (excluding670

striate cortex). There was no indication for differences between younger and older participants in these671

areas. Region-of-interest analyses indicated activity in frontal eye fields. The topography of this system672

does not match either the ventral or dorsal attention networks as usually defined, but it is quite similar to673

the frontal-eye-field connectivity map reported by Fox, Corbetta, Snyder, Vincent, and Raichle (2006). It674

is also highly similar to activity maps reported for simple eye movements in absence of attention, which675

have identified extensive activity in motor and premotor areas (e.g., Balslev et al., 2011) with little676

fronto-parietal involvement. A subset of these regions was also picked up by a non-convolved (‘Raw’)677

version of the EO-EPI regressor which may indicate that activity in these areas does not precede eye678

movements, but is relatively contemporaneous with them (to the extent that can be inferred from fMRI),679

or even that the eye movements reflected in the EO-EPI time series follow activity in those areas.680

The brain areas we identify using EO-EPI (or eye tracking regressors) depart from ones frequently681

mentioned in studies of saccadic mechanisms, which prototypically reveal involvement of FEF/SEF and682

IPS. There are several possible explanations for this, which are not mutually exclusive. First,683

neuroimaging studies of saccades study saccade execution under exogenously determined conditions.684

Specifically, a distinction is made between two saccade categories, both externally-controlled: ‘reflexive’685

saccades that orient to peripheral (typically sudden) target appearance, and ‘voluntary’ saccades that are686

not oriented towards a target in an unmediated manner but rather require a cognitive judgment prior to687
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eye movement (for review, see Mort et al., 2003). These voluntary saccades are studied by paradigms688

such as anti-saccades (saccading to the opposite screen side of a target), memory-guided saccades689

(saccading to a location maintained in memory), or saccading to a location pre-cued by an arrow. Note690

that both reflexive and voluntary saccades are associated with few degrees of freedom with respect to the691

actual saccade-target, which constitutes a fundamental difference from the resting-state case. In addition,692

as indicated by Brown et al’s study (reviewed in the Introduction), activity in FEF/SEF/IPS may not be693

related to oculomotor control per se, but to the paradigm demands that require attention and detection of694

visual cues. In support of this possibility, a recent study (Agtzidis, Meyhöfer, Dorr, & Lencer, 2020)695

examining eye movements during naturalistic movie viewing similarly failed to identify a frontal parietal696

system related to saccades (neither dorsal nor ventral attention systems; see their Table 2), but instead697

documented saccade-related activity in visual cortex, and smooth-pursuit activity in precuneus, cingulate698

and occipital cortices. The authors attribute this failure to differences in paradigm, suggesting that natural699

viewing is associated with constant engagement rather than phasic shifts between fixation and saccades.700

This is also corroborated by a report by Son et al. (2019, N = 5) showing that during naturalistic701

viewing, data acquired from the eye orbits correlates with brain activity in areas that do not resemble the702

topography of attentional networks (see their Figure 5).703

Another possibility, which does not assume substantial differences between RS and active tasks, is704

technical in nature. It is possible that endogenous oculomotor-linked sensory motor activity during705

resting state is simply not often reported just because fixation is frequently used as an implicit baseline in706

many oculomotor studies. If the network we identify is correlated with oculomotor activity both during707

fixation and saccade-to-target epochs (either reflexive or voluntary), then it will not be identifiable in708

analyses against baseline because it is partialled out in the contrast.709

The impact of removal of EO-EPI properties from BOLD activity710

We examined the impact of removing the variance related to EO-EPI from brain activity using a few711

well-defined topographical and topological properties. For topography we found that removal did not712

have a statistically significant impact on connectivity in any of the 14 well-defined resting state networks.713

We also examined the impact of removal on pair-wise regional connectivity using a 500-ROI parcellation714

(Schaefer et al., 2018). We grouped these 500 regions into 7 main clusters for purposes of graphical715
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presentation (see Figure 7). The analysis produced statistically significant effects (FDR corrected),716

mainly showing that EO-EPI-removal was associated with reduced connectivity between the717

somatomotor regions and visual, temporoparietal and also few dorsal-attention network areas. Also as718

shown in Figure 7, connectivity within each system was weakly impacted by EO-EPI removal if at all719

(i.e., few changes along the diagonal), which is consistent with the dual-regression results. To conclude,720

EO-EPI-removal appeared to primarily impact cross-network connectivity rather than within-network721

connectivity. Finally, we did not find evidence that EO-EPI-removal impacted the distribution of722

network-hubs in the brain.723

However, robust results were found for both global and local topological metrics identified by a724

network analysis, and we found no evidence that these differed for the younger and older participants.725

Here we address findings that were consistent across the three largest sparsity thresholds: 10%, 20% and726

30% of connections. For global properties, we find that modularity (Q) was higher for the clean matrices.727

We note that, across participants, modularity negatively correlated with local properties including degree,728

strength. and clustering coefficient. It may be that the finding of reduced modularity for clean matrices729

owes to its relation to certain other connectivity measures. One specific possibility is that weaker730

connectivity necessarily produces lower modularity. This however seems not to be the case, as it has been731

shown that periods of high modularity can be found for epochs of both very high and very low732

connectivity. (Betzel, Fukushima, He, Zuo, & Sporns, 2016).733

For local properties, we found that the raw matrices were associated with greater node-strength values734

(indicating sum of connectivity linked to each node). For max-strength, the difference was 2.45% (effect735

size= 0.49). The mean cluster-coefficient (and strongly related, transitivity) were also impacted, showing736

reduced values (approaching 2.5% difference; effect-size=0.49) for the cleaned time series.737

These changes are consistent with our other findings. EO-EPI is correlated with occipital,738

sensory-motor and few fronto-parietal areas, and as shown, EO-EPI removal predominantly impacts739

inter-regional / inter-internetwork connections rather than intra-network connections. For this reason, its740

removal serves to increase the modularity of resting state networks.741

Implications for network studies of typical and special populations742
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Graph theoretical approaches are increasingly applied in the context of resting-state fMRI studies of743

clinical disorders (Hallquist & Hillary, 2018). In some cases, these features are deployed clinically to744

define new clinical subtypes, and in other cases, they are used to advance understanding of the brain745

systems that may be associated with the clinical deficit. Being able to link differences in746

graph-theoretic-metrics to the oculomotor systems can increase the specificity of the explanations747

provided by RS analyses, by linking differences to a specific behavior. It could also allow determining to748

what extent differences in RS connectivity between populations can be attributed to differences in749

oculomotor activity during resting-state acquisition.750

A number of examples present the logic of this approach. For example, Parkinson’s Disease (PD) is751

associated with changes to functional connectivity when analyzed both from dynamic and static752

perspectives (Kim et al., 2017). Neurophysiologically, it is associated with abnormality in eye movement753

control, including the generation of voluntary saccades. Anomalies are more evident for voluntary754

saccades, in early stages of disease (for review, see Pretegiani & Optican, 2017). A behavioral study755

(Zhang et al., 2018) showed that PD is linked to reduced fixation stability when fixation is required.756

Conversely, during free viewing of single images, PD patients make fewer saccadic eye movements, and757

within a more narrow range. Differences in network modularity for clinical populations have been758

documented in the case of autism, which present lower modularity (Rudie et al., 2013) and traumatic759

brain injury (Han et al., 2014) which has been associated with higher modularity and lower participation760

coefficient of sensory-motor systems (i.e., these areas are more weakly involved in between-module761

connectivity). In addition, schizophrenia (e.g., Alexander-Bloch et al., 2012) has been linked to changes762

in RS connectivity. Alexander-Bloch et al. showed that schizophrenia is associated with reduced763

modularity in functional networks, with motor areas bilaterally linked to different partitions. Individuals764

diagnosed with schizophrenia show lower mean saccade frequency during free gaze (Dowiasch et al.,765

2016) and during free viewing of photos, their gaze is limited to smaller areas of the photo (e.g., Morita766

et al., 2020; Silberg et al., 2019).767

Our findings could also have implications for the study of dynamic, time-varying connectivity in768

healthy and clinical populations. Knowing that some dynamic changes are associated with phasic states769

of eye movements would allow better interpretation of the drivers of time-varying dynamics. An early770

study of time-varying dynamics (Hutchison, Womelsdorf, Gati, Everling, & Menon, 2013) is consistent771
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with this possibility. It documented time points presenting phasic, strong connectivity between frontal772

eye fields, sensory-motor regions and occipital regions, whereas such connectivity was completely absent773

at other time points. This suggests temporary synchronization of multiple brain networks in relation to774

eye movement.775

Conclusions776

We found that oculomotor-movement provides a systematic contribution to RS connectivity in the human777

brain. It is correlated with activity in a brain network that largely involves sensory-motor and visual778

cortex, as well as the frontal eye fields. Removal of oculomotor contribution, as quantified via EPI time779

series sampled from the eye orbit area, produces changes to global topological features of RS networks.780

Isolating this contribution can produce a better understanding of activity sources that organize RS781

networks in health and disease, and could improve the use of RS network-features in the context of782

machine learning.783
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