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Abstract

The purpose of this paper is to present several new, sometimes surprising, results con-
cerning a class of hyperholomorphic functions over quaternions, the so-called slice regular
functions. The concept of slice regular function is a generalization of the one of holomorphic
function in one complex variable. The results we present here show that such a generaliza-
tion is multifaceted and highly non-trivial. We study the behavior of the Jacobian matrix
Jf of a slice regular function f proving in particular that det(Jf ) ≥ 0, i.e. f is orientation-
preserving. We give a complete characterization of the fibers of f making use of a new notion
we introduce here, the one of wing of f . We investigate the singular set Nf of f , i.e. the set
in which Jf is singular. The singular set Nf turns out to be equal to the branch set of f ,
i.e. the set of points y such that f is not a homeomorphism locally at y. We establish the
quasi-openness properties of f . As a consequence we deduce the validity of the Maximum
Modulus Principle for f in its full generality. Our results are sharp as we show by explicit
examples.
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1 Introduction

Holomorphic functions of a complex variable are of central importance in mathematics. The
deep interplay between the analytic nature and the algebraic nature of these functions is one of
their peculiar features, which makes possible their applications to many areas of science.

Holomorphy is equivalent to complex analyticity, in particular complex polynomials are holo-
morphic. On a domain D of C the fibers of a non-constant holomorphic function f are discrete,
in particular f admits a holomorphic reciprocal out of a discrete set, provided f 6≡ 0. These are
examples of basic properties having relevant analytic and algebraic consequences for holomor-
phic functions. A remarkable differential characteristic of holomorphic functions is represented
by the equality between the determinant of the Jacobian matrix of f and the squared norm of
its complex derivative, i.e. det(Jf ) = |f ′|2. As a consequence f is orientation-preserving, i.e.
det(Jf ) ≥ 0. In addition y is a branch point of f if and only if y is a singular point of f , i.e. f
is not a homeomorphism locally at y if and only if the Jacobian matrix Jf (y) is singular. The
holomorphic function f is also an open map, independently from the presence of branch points.
Consequently, f satisfies the Maximum Modulus Principle.

These are a few fundamental results of the theory of holomorphic functions of a complex
variable, which one would desire to have in a generalization of this theory in dimension higher
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than two. During the last century several generalizations were introduced mainly over quater-
nions H, octonions O and Clifford algebras Rm, see [5, 27]. These generalized theories share
many analytic and differential behaviors with the theory of holomorphic functions of a complex
variable. However they do not include the classical theory of polynomials with noncommutative
coefficients on one side, see [29].

In 2006 Gentili and Struppa [13, 14] remedied to this ‘algebraic’ lack introducing a new theory,
the one of slice regular functions over quaternions. Such a theory was extended to octonions and
Clifford algebras in [8, 15, 16]. In paper [20] we gave a unified and generalized approach valid
over all real alternative ∗-algebras, based on the concept of stem function. The theory has
developed rapidly, see e.g. [12, 23] and references therein. It has proven also its effectiveness
in applications to quaternionic functional calculus and mathematical foundation of quaternionic
quantum mechanics (see e.g. [9, 17, 18]), classification of orthogonal complex structures in R4 (see
e.g. [3, 4, 10]), and operator semigroup theory in noncommutative setting (see e.g. [7, 24, 25]).

The stem function approach over quaternions reads as follows, see [20].
Let H be the real division algebra of quaternions and let SH = {J ∈ H | J2 = −1} be the

2-sphere of its imaginary units. For each J ∈ SH, we denote by CJ = Span(1, J) ≃ C the
subalgebra of H generated by J . Then we have the ‘slice’ decomposition

H =
⋃

J∈SH

CJ , where CJ ∩ CK = R for every J,K ∈ SH with J 6= ±K.

Given a (non-empty) subset D of C, we define the circularization ΩD of D as follows:

ΩD := {α+ Jβ ∈ H : α, β ∈ R, α+ iβ ∈ D, J ∈ SH}.

If x = α + Jβ ∈ CJ and z := α + iβ ∈ C, then Ω{z} is denoted by Sx and it is equal to the
2-sphere α+βSH if x 6∈ R and to the singleton {x} if x ∈ R. A subset S of H is said to be circular
if it is equal to ΩD for some D ⊂ C. This is equivalent to say that Sx ⊂ S for each x ∈ S.

In what follows we assume D is an open subset of C, invariant under the complex conjugation.
Consider the complexified algebraH⊗RC = {x+ıy |x, y ∈ H} of H, endowed with the product

(x+ıy)(x′+ıy′) := (xx′−yy′)+ı(xy′+yx′), so ı2 = −1. A function F = F1+ıF2 : D → H⊗RC is
called stem function if F is even-odd w.r.t. β in the sense that F1(z) = F1(z) and F2(z) = −F2(z)
for each z ∈ D. Note that the function F = F1 + ıF2 is holomorphic if F1 and F2 are of class C 1

and ∂F
∂β

= ı∂F
∂α

, i.e. ∂F1

∂α
= ∂F2

∂β
and ∂F1

∂β
= −∂F2

∂α
.

Consider now the circular open subset ΩD of H. A function f : ΩD → H is called (left) slice
regular function if there exists a holomorphic stem function F = F1 + ıF2 : D → H ⊗R C such
that, for each z = α+ iβ ∈ D, for each J ∈ SH and for each x = α+ Jβ ∈ ΩD,

f(x) = F1(z) + JF2(z).

If this is the case, we say that f is induced by F and we write f = I(F ). The even-odd character
of F ensures the coherence of definition of f = I(F ). Moreover, the slice regular function f is
induced by a unique stem function F .

Denote by SR(ΩD) the real vector space of all slice regular functions on ΩD. The pointwise
product FG of two holomorphic stem functions F and G is again a holomorphic stem function.
This allows to define the slice product of f = I(F ) and g = I(G) in SR(ΩD) by f · g :=
I(FG). The slice product makes SR(ΩD) a real algebra. Such an algebra preserves derivatives
in the following sense: the complex derivative ∂F

∂z
= ∂F

∂α
of F is again a holomorphic stem

function, which induces the element ∂f
∂x

= I(∂F
∂z

) of SR(ΩD), called slice derivative of f . As
we have just mentioned, a remarkable novelty of slice regularity theory is that the real algebra
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SR(H) contains as a subalgebra the algebra of polynomials with quaternionic coefficients on

the right. Indeed, such a polynomial p(x) =
∑d

n=0 x
nan is induced by the polynomial stem

function P (α+ iβ) =
∑d
n=0(α+ ıβ)

nan. Furthermore, the classical product of p(x) with another
polynomial q(x) =

∑e
n=0 x

nbn, obtained by imposing commutativity of the indeterminate with

the coefficients, coincides exactly with the slice product (p · q)(x) =
∑d+e

n=0 x
n(
∑

m+ℓ=n ambℓ).
Slice regular functions are real analytic in the usual real sense, see [20, Proposition 7(3)].

Slice regularity is equivalent to spherical analyticity, a new concept introduced in [38] (see also
[22]). In particular, locally at a real point a function f is slice regular if and only if it admits a
quaternionic series expansion of the form

∑
n∈N

xnan.
These facts reveal the algebraic and analytic relevance of slice regular functions.
The nature of the domain of definition ΩD is important in the study of slice regular functions.

If ΩD is connected and intersects the real line R, then it is said to be a slice domain. If ΩD
is connected and does not intersect R then it is called product domain. In the first case, D is
connected (it is a domain of C) and intersects R. In the second, D does not intersect R and
has two connected components D+ and D−, switched by complex conjugation; moreover, ΩD is
homeomorphic to the topological product SH ×D+. In general ΩD decomposes into the disjoint
union of its connected components, which are slice domains or product domains. Then, in the
study of slice regular functions, we can always assume ΩD is a slice domain or a product domain.
It is important to recall that, if ΩD is a slice domain, then the notion of slice regular function f
we give above coincides with the original one introduced by Gentili and Struppa [13, 14]; indeed
f is slice regular if and only if, for each J ∈ SH, the restriction of f to ΩD ∩ CJ is holomorphic
w.r.t. the complex structures defined by the left multiplication by J .

In spite of rapid development of the theory and of its applications, until now, some basic
features of slice regular functions f : ΩD → H are not well understood yet, as the nature of the
fibers of f in the case ΩD is a product domain and for general ΩD the behavior of the Jacobian
of f and the resulting structure of branch set of f .

In this paper we give quite an exhaustive study of these basic features. New concepts are
introduced. Several new, sometimes surprising, phenomena appear; they describe a manifold
geometric scenario, showing how the slice regularity theory is a wealthy and highly non-trivial
generalization of holomorphic function theory in one complex variable.

The results presented here are sharp in the sense that we are able to give explicit examples
for all the geometric configurations predicted by the results. We prove that the determinant of
the Jacobian matrix of f can be expressed in terms of the squared norm of a suitable Hermitian
product between the slice derivative ∂f

∂x
of f and another kind of derivative of f , the so-called

spherical derivative f ′
s of f . As a consequence f is orientation-preserving. We investigate deeply

the structure of fibers of f . We introduce the brand new notion of wing of f . If ΩD is a
product domain and JD is the complex structure on ΩD sending α + Jβ with β > 0 into the
left multiplication by J , then a wing of f is a complex analytic curve of (ΩD, JD) on which f is
constant. We denote by Wf the union of all wings of f and give an explicit analytic criterion to
detect whetherWf is empty or not. We establish the existence of exactly eight distinct situations
in which Wf can be either empty or formed by a unique wing, two wings or a S1-fibration of
wings. Combining the above positivity property of the Jacobian of f , the above properties of
the fibers of f and some fine results from differential topology, we are able to prove a completely
new ‘Quasi-open Mapping Theorem’ for f defined on general ΩD. As a consequence we deduce
the Maximum Modulus Principle for f in its full generality. The techniques developed in the
paper permit to show that the branch set of f is equal to the singular set of f as in the classical
holomorphic case. Furthermore, the singular locus Nf of f decomposes into three subsets, the
zero set Df of spherical derivative f ′

s, the set Wf \Df and their complement Nf \ (Df ∪Wf ).
Let df = dim(Df ), wf = dim(Wf \ Df ) and mf = dim(Nf \ (Df ∪Wf )). We prove that the
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triple (df , wf ,mf ) can assume exactly five values when ΩD is a slice domain and eleven when
ΩD is a product domain. Finally we give one more application of the positivity of the Jacobian
of f , by presenting a quaternionic counterpart of a classical boundary univalence criterion valid
for holomorphic functions of a complex variable.

The paper is organized as follows. In Section 2 we recall briefly some preliminary material.
Sections 3 and 4 deal with the sign of the Jacobian of f , and some explicit formulas for Jf . In
Sections 5 and 6 we study the fibers, the singular set and the quasi-openness of f . Section 7
concerns the mentioned boundary univalence criterion for f .

2 Preliminaries

Let us recall some basic material concerning slice functions over H, see [20] and also [19, 21, 22]
for a full account presented via the stem function approach, including generalizations.

Consider a (non-empty) open subset D of C invariant under complex conjugation. Let us
generalize the notion of slice regular function introduced above. A function f : ΩD → H is
a (left) slice function if there exists an arbitrary (not necessarily holomorphic) stem function
F = F1 + ıF2 : D → H ⊗R C such that, for each z = α + iβ ∈ D, for each J ∈ SH and for each
x = α+ Jβ ∈ ΩD, it holds

f(x) = F1(z) + JF2(z).

We say that f is induced by F and we write f = I(F ). Note that the definition of f is coherent.
Indeed, if x ∈ ΩD ∩ R then z = x, F2(x) = 0 and hence f(x) = F1(x). If x ∈ ΩD \ R then there
exist, and are unique, α, β ∈ R and J ∈ SH such that β > 0 and x = α+ Jβ = α+ (−J)(−β) so
F1(z)+JF2(z) = f(x) = F1(z)+(−J)F2(z), where z = α+iβ ∈ D. The slice function f is induced
by a unique stem function F = F1 + ıF2. Indeed, for each fixed J ∈ SH, if x = α+ Jβ ∈ ΩD and
z = α+ iβ ∈ D, then F1(z) =

1
2 (f(x)+f(x)) and F2(z) = −J

2 (f(x)−f(x)), where x denotes the
standard quaternionic conjugation of x. The latter fact implies that the slice function f satisfies
the following representation formula: if I ∈ SH and y = α+ Iβ ∈ ΩD, then

f(y) =
1

2
(f(x) + f(x))−

I

2
(J(f(x)− f(x))).

As a consequence, the slice function f is uniquely determined by its values on ΩD∩CJ . Moreover,
f is affine on each 2-sphere Sx if x 6∈ R. We denote by S(ΩD) the real vector space of all slice
functions on ΩD, endowed with the standard pointwise defined operations.

Let f = I(F ), g = I(G) ∈ S(ΩD), with F = F1 + ıF2 and G = G1 + ıG2. Evidently, the
pointwise product FG = (F1G1 −F2G2) + ı(F1G2 +F2G1) is again a stem function. In this way
we can define the slice product f · g ∈ S(ΩD) of f and g by setting f · g := I(FG). This product
makes S(ΩD) a real algebra, containing SR(ΩD) as a subalgebra.

Given J ∈ SH, the slice function f = I(F1+ ıF2) is called CJ -slice-preserving if F1 and F2 are
CJ -valued. Note that the slice function f is CJ -slice-preserving if and only if f(ΩD ∩CJ) ⊂ CJ .
We denote by SRCJ

(ΩD) the set of all CJ -slice-preserving slice regular functions on ΩD, which
turns out to be a subalgebra of SR(ΩD). We say that f is one-slice-preserving if it is CJ -slice
preserving for some J ∈ SH and we denote by SRC(ΩD) the set of all one-slice-preserving slice
regular functions, i.e. SRC(ΩD) =

⋃
J∈SH

SRCJ
(ΩD).

The slice function f = I(F1 + ıF2) is called slice-preserving if it is CJ -slice-preserving for
each J ∈ SH. This is equivalent to require that F1 and F2 are real-valued. Note that if f is
slice-preserving, the slice product f · g coincides with the pointwise product fg for any slice
function g. The same is true if f is any slice function and G = G1 + ıG2 takes values in H, i.e.
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G2 ≡ 0. We denote by SRR(ΩD) the set of all slice-preserving slice regular functions on ΩD,
which coincides with the subalgebra

⋂
J∈SH

SRCJ
(ΩD) of SR(ΩD).

Consider again the slice function f = I(F ) ∈ S(ΩD), with F = F1 + ıF2. Denote by
F c : D → H ⊗R C the stem function defined by F c(z) := F1(z) + ıF2(z) for every z ∈ D. The
slice function f c ∈ S(ΩD) induced by F c is called conjugate function of f and the slice function
N(f) := f · f c ∈ S(ΩD) is said to be the normal function of f . Some authors use the term
symmetrization f s of f instead of normal function N(f) of f . It is immediate to verify that
N(f) is slice-preserving, and f c is slice regular if and only if f is. In particular, if f ∈ SR(ΩD)
then N(f) ∈ SRR(ΩD).

The slice function f = I(F ) is called slice-constant if F is locally constant on D. This is
equivalent to say that f is slice regular and its slice derivative ∂f

∂x
(see the Introduction for the

definition) vanishes identically on ΩD. We denote by SC(ΩD) the subalgebra of SR(ΩD) formed
by slice-constant slice functions on ΩD.

Given a quaternion y, we denote by Re(y) the real part of y and by Im(y) the imaginary part
of y, i.e. Re(y) = 1

2 (y + y) ∈ R and Im(y) = y − Re(y) = 1
2 (y − y). The normal function of the

polynomial x 7→ x− y is called characteristic polynomial of y. It is denoted by ∆y and it holds:

∆y(x) = x2 − 2Re(y)x+ |y|2,

where |y| is the Euclidean norm of y ∈ H ≃ R4. The zero set of ∆y coincides with Sy.
Let us recall the definition of spherical derivative of f = I(F1 + ıF2). The function D \R →

H⊗RC, sending α+ iβ into F2(α+iβ)
β

, is β-even so it is a stem function, which takes values in H.

The slice function on ΩD \ R induced by such a stem function is denoted by f ′
s and it is called

spherical derivative of f . The zero set Df of f ′
s is called degenerate set of f . It is immediate

to verify that f is constant on some Sx with x 6∈ R if and only if f ′
s(x) = 0 or equivalently

Sx ⊂ Df . Furthermore, f ′
s(x) =

1
2 Im(x)−1(f(x)− f(xc)) for every x ∈ ΩD. As a consequence, if

f ∈ SR(ΩD), then f
′
s is real analytic; hence its zero set Df is closed and real analytic in ΩD \R.

We denote by V (f) the zero set of f = I(F ), i.e. V (f) = {x ∈ ΩD : f(x) = 0}. A quite
important fact is that V (N(f)) =

⋃
y∈V (f) Sy. If ΩD is connected, f ∈ SR(ΩD) and N(f) 6≡ 0,

then the elements x of V (f) can be of three types: real zeros of f if x ∈ R, spherical zeros of f
if x 6∈ R and Sx ⊂ V (f), or isolated non-real zeros of f if Sx 6⊂ V (f).

Finally, we recall the notion of total multiplicity of a zero of f ∈ SR(ΩD) we will use in
Propositions 6.9 and 6.10 below. A point y in ΩD belongs to V (f) if and only if ∆y divides N(f)
in SR(ΩD). Suppose that y ∈ V (f) and f 6≡ 0 on the connected component of y in ΩD. Given
a non-negative integer s, we say that y is a zero of f of total multiplicity s if ∆s

y divides N(f)
and ∆s+1

y does not divide N(f) in SR(ΩD). We denote such a non-negative integer s by mf (y).

Notation 2.1. Throughout the remaining part of the paper, we assume that ΩD is a slice domain
or a product domain. Moreover, for simplicity, we often use Ω instead of ΩD.

3 Sign of the Jacobian

Let f = I(F1 + ıF2) ∈ SR(ΩD). Suppose ΩD is a slice domain. Since F2 is β-odd and real

analytic, there exists a (unique) β-even real analytic function F̂2 : D → H such that F̂2(α, β) =
F2(α,β)

β
on D \ R. Note that F̂2 = ∂F2

∂β
= ∂F1

∂α
= ∂f

∂x
on D ∩ R. Proposition 7(3) of [20] ensures

that I(F̂2) is a real analytic function. In particular it is the unique continuous extension of f ′
s

on ΩD. We define the extended spherical derivative f̂ ′
s of f as f̂ ′

s := I(F̂2). Note that f̂ ′
s = f ′

s on

ΩD \ R and f̂ ′
s =

∂f
∂x

on ΩD ∩R. If ΩD is a product domain, then we set F̂2 := F2 and f̂ ′
s := f ′

s.

5



Proposition 3.1. Let f ∈ SR(Ω), let y ∈ Ω ∩ CI and let J ∈ SH be orthogonal to I. Let
∂f
∂x

(y) = q0 + q1I + q2J + q3IJ and Jf̂ ′
s(y) = p0 + p1I + p2J + p3IJ , with qi, pi ∈ R for

i = 0, 1, 2, 3. Then the real differential dfy of f at y is represented w.r.t. the basis {1, I, J, IJ} of
H ≃ R4 by the matrix

Jf (y) =




q0 −q1 p0 −p1
q1 q0 p1 p0
q2 −q3 p2 −p3
q3 q2 p3 p2


 . (1)

Proof. Let x = x0 + x1I + x2J + x3IJ ∈ Ω. Let f = I(F ). Since ∂f
∂x

= I
(
∂F
∂z

)
, the Cauchy-

Riemann equations satisfied by F give

∂f

∂x0
(y) =

∂f

∂x
(y) and

∂f

∂x1
(y) = I

∂f

∂x0
(y) = I

∂f

∂x
(y) = −q1 + q0I − q3J + q2IJ.

We are left to prove that

∂f

∂x2
(y) = Jf̂ ′

s(y) and
∂f

∂x3
(y) = IJf̂ ′

s(y). (2)

Assume y ∈ Ω \ R. Let y = α + Iβ with α, β ∈ R, β > 0, and let z := α + iβ ∈ C. The
smooth arc γJ : R → Sy defined by γJ (t) := α + Iβ cos (t/β) + Jβ sin (t/β) has tangent vector

γ′J(0) = J at y. Moreover, f(γJ(t)) = F1(z) +
(
γJ (t)−α

β

)
F2(z). Therefore

f(γJ (t))− f(y) =

(
F1(z) +

(
γJ(t)− α

β

)
F2(z)

)
−

(
F1(z) +

(
γJ (0)− α

β

)
F2(z)

)

= (γJ(t)− γJ(0)) f
′
s(y)

and then
∂f

∂x2
(y) = lim

t→0

f(γJ(t))− f(y)

t
= γ′J(0)f

′
s(y) = Jf ′

s(y).

The second equality in (2) is proved in the same way using the analogous curve γIJ .
If y ∈ Ω ∩ R, the result follows by passing to the limit as x ∈ (Ω \ R) ∩ CI tends to y.

For any I ∈ SH, let πI : H → H denote the orthogonal projection onto the real vector subspace
CI and let π⊥

I = idH − πI . Given a quaternion x, let Lx and Rx be respectively the operators of
left and right multiplication by x.

Proposition 3.1 allows to obtain a property of the differential dfy already observed in [10, §3].

Corollary 3.2. Let f ∈ SR(Ω). If y ∈ Ω ∩ CI , then the differential of f at y can be written as

dfy = R ∂f
∂x

(y) ◦ πI +R
f̂ ′
s(y)

◦ π⊥
I .

In particular, if y ∈ Ω ∩ R, then dfy = R ∂f
∂x

(y).

Proof. Let J be as in Proposition 3.1. Since πI(H) = CI = Span(1, I) and π⊥
I (H) = Span(J, IJ),

the result comes easily from the form of the representing matrix Jf (y).

We can now generalize a result proved in [33, Theorem 1]. For any I ∈ SH, let (H, LI) denote
the complex manifold obtained equipping H with the complex structure LI .

Corollary 3.3. Let f ∈ SR(Ω) and let y ∈ Ω∩CI . The differential dfy is a linear holomorphic
mapping from the space (H, LI) into itself.
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Proof. The thesis follows immediately from Corollary 3.2 using the commutativity of LI with
the operators of right multiplication and with πI .

Theorem 3.4. Every slice regular function f ∈ SR(Ω) preserves the orientation of H ≃ R4.
More precisely, for each y ∈ Ω, the Jacobian matrix Jf (y) has even rank and its determinant is
non-negative. When y ∈ Ω ∩ R the rank can assume only the values 0 or 4.

Proof. Let y ∈ Ω and let I, J ∈ SH be such that y ∈ CI and J is orthogonal to I. The
complex manifold (H, LI) is CI -biholomorphic to C2

I by means of the mapping sending x =
x0+x1I +x2J +x3IJ to (x0+x1I, x2+x3I). From Corollary 3.3, the linear map dfy : C2

I → C2
I

is holomorphic, therefore its determinant is the squared norm of a complex Jacobian determinant.
To compute the rank of dfy, consider the representing matrix Jf (y) given in (1). Since the first
two columns and the last two ones generate two CI -complex subspaces, the rank is 0, 2 or 4.
The last statement follows from Corollary 3.2.

Remark 3.5. Theorem 3.4 implies in particular that every polynomial with quaternionic coef-
ficients on one side has non-negative Jacobian, a fact recently proved in [36] with completely
different techniques. The case of quaternionic powers xn was already considered in [31].

Remark 3.6. The evenness of the rank of dfy was already proved in [10, Proposition 3.3].

4 A formula for the Jacobian

The argument used in the proof of Theorem 3.4 can be applied also to obtain an explicit formula
for the Jacobian determinant of a slice regular function f . Equip the manifold H \ R with
the quaternionic valued R-bilinear form defined as follows. For y ∈ (H \ R) ∩ CI , given two
quaternions u, v in the tangent space Ty (H \ R) ≃ H, we set

(u, v)y := πI(uv) = 〈u, v〉I ∈ CI ,

where 〈u, v〉I denotes the standard Hermitian product on H w.r.t. the complex structure LI .
The choice of a unit J orthogonal to I induces the CI -linear isomorphism (H, LI) ≃ C2

I sending
u = u0 + u1I + u2J + u3IJ to (u1, u2) = (u0 + u1I, u2 + u3I). The product 〈u, v〉I does not
depend on J , since

uv = (u1 + u2J)(v1 + v2J) = u1v1 + u2v2 + (u2v1 − u1v2)J

and then 〈u, v〉I = u1v1 + u2v2 = πI(uv).

Theorem 4.1. Let f ∈ SR(Ω) and let y ∈ Ω. If y ∈ Ω \ R then

det(Jf (y)) =

∣∣∣∣∣

(
∂f

∂x
(y), f ′

s(y)

)

y

∣∣∣∣∣

2

.

If y ∈ Ω ∩ R, then det(Jf (y)) =
∣∣∣∂f∂x (y)

∣∣∣
4

.

Proof. Let assume y ∈ (Ω \ R) ∩ CI . Let ∂f
∂x

(y) = q = q0 + q1I + q2J + q3IJ and Jf ′
s(y) = p =

p0 + p1I + p2J + p3IJ be as in Proposition 3.1. Set q1 = q0 + Iq1, q
2 = q2 + Iq3, p

1 = p0 + Ip1,
p2 = p2 + Ip3 ∈ CI . From Proposition 3.1, it follows that the differential dfy has CI -valued
representing matrix

JCI

f (y) =

[
q1 p1

q2 p2

]
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w.r.t. the CI -basis {1, J} of (H, LI) ≃ C2
I . Therefore the CI -valued determinant of dfy is

det(JCI

f (y)) = q1p2 − q2p1 = 〈q1 + q2J, p2 − p1J〉I = 〈q,−Jp〉I =
(
∂f
∂x

(y), f ′
s(y)

)
y
.

From Corollary 3.3, we obtain that

det(Jf (y)) =
∣∣∣det(JCI

f (y))
∣∣∣
2

=

∣∣∣∣∣

(
∂f

∂x
(y), f ′

s(y)

)

y

∣∣∣∣∣

2

.

If y ∈ Ω ∩ R, the equality det(Jf (y)) =
∣∣∂f
∂x

(y)
∣∣4 follows by passing to the limit as x ∈

(Ω \ R) ∩ CI tends to y.

Remark 4.2. At a point y ∈ (Ω \ R)∩CI , the Hermitian product 〈u, v〉I decomposes as follows:

〈u, v〉I = 〈u, v〉 − I ωI(u, v),

where 〈u, v〉 is the Euclidean scalar product of u, v as vectors in R4, and ωI(u, v) = 〈Iu, v〉 =
−〈u, Iv〉 = u0v1 − u1v0 + u2v3 − u3v2 is the corresponding fundamental form. Therefore

det(JCI

f (y)) =

〈
∂f

∂x
(y), f ′

s(y)

〉

I

=

〈
∂f

∂x
(y), f ′

s(y)

〉
+ I

〈
∂f

∂x
(y), If ′

s(y)

〉
.

Since I = Im(y)/| Im(y)|, we can write the real Jacobian in terms of the Euclidean product as

det(Jf (y)) =

〈
∂f

∂x
(y), f ′

s(y)

〉2

+

〈
∂f

∂x
(y),

Im(y)

| Im(y)|
f ′
s(y)

〉2

. (3)

Remark 4.3. In [26], making use of Dieudonné determinant, the authors proved the following

partial result: det(Jf (y)) = 0 if and only if
(
∂f
∂x

(y), f ′
s(y)

)
y
= 0.

5 The fibers of a slice regular function

In this section we describe the fibers of a slice regular function f ∈ SR(Ω). Given c ∈ H, the
fiber f−1(c) of f over c is the zero set V (f − c). If Ω is a slice domain, then the zero set of a not
identically vanishing slice regular function on Ω consists of isolated points or isolated 2-spheres
of the form Sx (see e.g. [12, Theorem 3.12]). Therefore if f is not constant, every fiber of f has
this structure. If Ω is a product domain, a new phenomenon appears. We will show that a fiber
of a not slice-constant f can contain also a complex analytic curve. We will also see that the
structure of the fiber is controlled by the normal function N(f − c).

On product domains Ω it can happen that N(f) ≡ 0 even if f 6≡ 0. In [21, Corollary 4.17],
it was shown that if N(f) 6≡ 0, then V (f) is a union of isolated points or isolated 2-spheres Sx.
Let c ∈ f(Ω). If N(f − c) 6≡ 0, then the fiber f−1(c) is a union of isolated points or isolated
2-spheres. If instead N(f − c) ≡ 0, then every 2-sphere Sx, with x ∈ Ω, intersects the fiber
V (f − c) in a point, or it is entirely contained in V (f − c) (see e.g. [20, Theorem 17]). In the
latter case, Sx is contained in the degenerate set Df of f , provided x 6∈ R.

In the next statement, the complex structure on SH ≃ CP1 is the one induced by the structure
J on H \ R defined at x by left multiplication by Im(x)/| Im(x)|.

Notation 5.1. We define D+ := {α+ iβ ∈ D : β > 0} and C+
J := {α+ Jβ ∈ CJ : β > 0} for

any J ∈ SH.
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Proposition 5.2. Let Ω = ΩD be a product domain and let f ∈ SR(Ω) be non-constant. Fix
c ∈ f(Ω) such that N(f − c) ≡ 0. Then there exists a holomorphic function φ : D+ → SH such
that the fiber f−1(c) is equal to Df ∪Wf,c where

Wf,c = {α+ φ(α, β)β ∈ Ω : α+ iβ ∈ D+}.

Moreover, Df is empty or is a union of isolated spheres, and the map sending z = α+ iβ ∈ D+

to α+φ(α, β)β ∈Wf,c is holomorphic from D+ to (H\R, J). We call the complex analytic curve
Wf,c a wing of f (of value c induced by φ).

Proof. Let f = I(F1 + ıF2). Let D̃+ be the set of points z ∈ D+ such that the 2-sphere Ω{z} is

not contained in V (f − c). Note that D+ \ D̃+ = {z ∈ D+ |F2(z) = 0}. By [21, Theorem 4.11]
we know that C+

J ∩ V (f − c) is closed and discrete in Ω+
J = Ω ∩ C+

J or it is the whole set Ω+
J .

Since f is non-constant, the set C+
J ∩ V (f − c) is discrete for at least one J ∈ SH. It follows

that D+ \ D̃+ is a closed and discrete subset of D+. Let z = α + iβ ∈ D̃+ and let Sx = Ω{z}.
Bearing in mind that F2(z) 6= 0, we deduce that the (unique) point α+ φzβ in the intersection
V (f − c) ∩ Sx is given by the formula

φz = (c− F1(z))F2(z)
−1.

This formula defines a real analytic map φ : D̃+ → SH, sending z to φz . Deriving the equality

F1(α, β) + φ(α, β)F2(α, β) = c,

and using the holomorphicity of F1 + ıF2, we get

∂φ

∂α
F2 = −φ

∂φ

∂β
F2,

∂φ

∂β
F2 = φ

∂φ

∂α
F2.

Since F2 6= 0 on D̃+, we deduce that the map φ : D̃+ → (SH, J) is holomorphic. It remains to

show that φ extends holomorphically to D+. Let z0 ∈ D+ \ D̃+ and assume that the punctured

open disc Ḃ(z0, r) = B(z0, r) \ {z0} of C is contained in D̃+. Let J ∈ SH be fixed. As we
have just recalled C+

J ∩ V (f − c) is closed and discrete or it is the whole set Ω+
J . In the latter

case, φ is constantly equal to J on D̃+, and then it extends to D+. In the other case, taking a
smaller r > 0 we can assume that ΩḂ(z0,r)

does not intersect C+
J ∩ V (f − c). This means that

J 6∈ φ(Ḃ(z0, r)). Repeating the argument with other elements of SH, we obtain r0 > 0 such that
φ(Ḃ(z0, r0)) avoids at least three points in SH. The Big Picard Theorem permits to conclude. If
ψ : D+ → (H \R, J) denotes the function ψ(α+ iβ) = α+φ(α, β)β, then the equality ∂φ

∂β
= φ ∂φ

∂α

implies at once ∂ψ
∂β

= φ∂ψ
∂α

.

Note that Wf,c is closed in Ω and it is a real analytic submanifold of Ω of dimension 2.

Corollary 5.3. Let f ∈ SR(Ω) be non-constant. If Ω is a slice domain, then every fiber of
f is the union of a set of isolated points and a set of isolated 2-spheres of the form Sx. If Ω
is a product domain, every fiber of f is the union of a set of isolated points, a set of isolated
2-spheres of the form Sx and (possibly) one wing Wf,c. Moreover f−1(c) ⊃ Wf,c if and only if
N(f − c) ≡ 0. In the latter case f−1(c) = Df ∪Wf,c. If there are at least two fibers containing
a wing, then Df = ∅.

Proof. It remains to prove the last statement. Since two distinct fibers cannot intersect a 2-sphere
Sx where f is constant, if there are two wings the degenerate set Df is empty.
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Notation 5.4. Let f ∈ SR(Ω). If Ω is a product domain, we denote by Wf the union of all the
wings of f . If Ω is a slice domain, we say that f has no wing and we define Wf := ∅.

In the following we shall prove some results about the family of wings that a slice regular
function can have. In particular, we will show that a not slice-constant regular function has
no wings if it is slice-preserving. More generally, this holds for slice regular functions that are
slice-preserving up to an invertible quaternionic affine transformation, i.e. in the set

S̃RR(Ω) = {f ∈ SR(Ω) : ∃a, b ∈ H, ∃g ∈ SRR(Ω) such that a 6= 0, f = ga+ b}.

We shall consider also the larger set of slice regular functions that are one-slice-preserving up to
an invertible quaternionic affine transformation:

S̃RC(Ω) = {f ∈ SR(Ω) : ∃a, b ∈ H, ∃g ∈ SRC(Ω) such that a 6= 0, f = ga+ b}.

Note that the set of invertible quaternionic affine transformation is the group Aut(H) of
biregular automorphisms of H, i.e. the slice regular functions f : H → H having slice regular
inverse (see [12, Theorem 9.4]).

Denote by SC(Ω) the set of all slice-constant functions. Evidently, SC(Ω) coincides with the
set of all constant functions on Ω if and only if Ω is a slice domain. Also in the case of a product
domain Ω, every f ∈ SC(Ω) belongs to S̃RR(Ω). Indeed, f = I(F1 + ıF2) with F1 and F2

constant; hence we get f(x) = g(x)a+ b, where a = F2, b = F1 and g(x) = Im(x)
| Im(x)| ∈ SRR(Ω).

For every slice and product domains Ω = ΩD, we have the following chain of inclusions:

SC(Ω) ( S̃RR(Ω) ( S̃RC(Ω) ( SR(Ω).

In addition, thanks to the representation formula, if Ω is a product domain and f ∈ SC(Ω) is
non-constant then the set Ω ∩ C+

J is a fiber of f for each J ∈ SH.

Proposition 5.5. Every f ∈ S̃RR(Ω) \ SC(Ω) has no wings.

Proof. It is sufficient to prove the result for f ∈ SRR(Ω)\SC(Ω). Indeed, if f ∈ S̃RR(Ω)\SC(Ω),
then f = ga+ b, with g ∈ SRR(Ω) \ SC(Ω), a, b ∈ H, a 6= 0, and the fiber f−1(c) coincides with
the fiber g−1((c − b)a−1) of g. We then assume that f ∈ SRR(Ω) \ SC(Ω). As seen above, we
can suppose that Ω is a product domain. Let f = I(F ), F = F1 + ıF2, with F1, F2 real-valued.
Suppose that there is a fiber f−1(c) which contains a wing Wf,c. This implies that N(f − c) ≡ 0.
In particular,

(F1 − Re(c))F2 = 〈F1 − c, F2〉 = 0

and then F1 ≡ Re(c) would be constant and hence f would be slice-constant.

Proposition 5.6. Let Ω = ΩD be a product domain and let f ∈ S̃RC(Ω)\S̃RR(Ω). Suppose there
are at least two fibers of f containing (and then equal to) a wing. Then Df = ∅ and f has infinite

wings, parametrized by a circle C. More precisely, if f = ga+ b, with g ∈ SRCJ
(Ω)\ S̃RR(Ω) for

J ∈ SH, a, b ∈ H, a 6= 0, and f−1(d) =Wf,d, then f
−1(c) =Wf,c if and only if the quaternion c

belongs to the circle C defined by the following two conditions:

|c− b| = |d− b| and (c− d)a−1 ∈ C⊥
J . (4)

Furthermore, the set Wf coincides with f−1(C), it is a real analytic submanifold of Ω and
the restriction f | : Wf → C is a trivial fiber bundle with fiber D+. More precisely, the map
χ : D+ ×C →Wf , defined by χ(z, c) := α+(c−F1(z))F2(z)

−1β for every z = α+ iβ ∈ D+ and
c ∈ C, is a real analytic isomorphism such that (f | ◦ χ)(z, c) = c for every (z, c) ∈ D+ × C.
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Proof. It is sufficient to prove the result for f ∈ SRCJ
(Ω) \ S̃RR(Ω). First observe that Df = ∅.

Otherwise f would be constant, contradicting the hypothesis f 6∈ S̃RR(Ω). If f−1(d) ⊃ Wf,d,
then N(f − d) ≡ 0, i.e. |F1 − d| = |F2| and 〈F1 − d, F2〉 = 0. Let c ∈ H such that |c| = |d| and
c− d ∈ C⊥

J . Then 〈F1 − c, F2〉 = 〈F1 − d, F2〉 = 0 and

|F1 − c|2 = |F1|
2 + |c|2 − 2Re〈F1, c〉 = |F1|

2 + |d|2 − 2Re〈F1, d〉 = |F1 − d|2 = |F2|
2,

that is N(f−c) ≡ 0. Conversely, if N(f−d) = N(f−c) ≡ 0, then 〈F1−c, F2〉 = 0 = 〈F1−d, F2〉
and |F1 − d| = |F2| = |F1 − c|. It follows that

〈d− c, F2〉 = 0, |c|2 − |d|2 = 2Re〈F1, c− d〉. (5)

Let w ∈ D+ and let a := F2(w) 6= 0. If F2a
−1 were real-valued, then the holomorphy

of F would imply that fa−1 is, up to an additive constant, a slice-preserving function, i.e.
f ∈ S̃RR(Ω), which is a contradiction. We can then assume that the real vector subspace
〈F2(D)〉 of H generated by the image of F2 is the plane CJ . By (5), N(f − c) ≡ 0 if and only
if c satisfies (4) (with a = 1 and b = 0). If f has at least two wings, then d 6= 0 and the set C
defined by (4) is a circle.

Thanks to Proposition 5.2, we know that f−1(c) = Wf,c for each c ∈ C. Consequently,
f−1(C) =Wf . To complete the proof, it is now sufficient to observe that the real analytic map
Wf → D+ × C, y 7→ (Re(y) + i| Im(y)|, f(y)) is the inverse of χ.

Proposition 5.7. Let Ω = ΩD be a product domain and let f ∈ SR(Ω) \ S̃RC(Ω). Then there
exist at most two fibers of f containing a wing.

Proof. Let f = I(F ) ∈ SR(Ω) \ S̃RC(Ω), F = F1 + ıF2. Suppose that there is at least one fiber
f−1(d) which contains a wing Wf,d. We can suppose that d = 0, otherwise we consider the slice
regular function f − d. This means that N(f) ≡ 0, i.e.

|F1| = |F2|, 〈F1, F2〉 = 0. (6)

Let c 6= 0. The fiber f−1(c) contains a wingWf,c if and only if N(f−c) ≡ 0, that is |F1−c| = |F2|
and 〈F1 − c, F2〉 = 0. By (6), the latter equations are equivalent to the following

2〈F1, c〉 = |c|2, 〈F2, c〉 = 0. (7)

Let w ∈ D+ be such that F2(w) 6= 0. We can suppose that F2(w) = 1, otherwise we replace f
with fF2(w)

−1. We distinguish three cases. First suppose that F2 is real-valued. In this case, the
holomorphy of F would imply that f is, up to an additive constant, a slice-preserving function,
which is a contradiction. Assume now that the real vector subspace 〈F2(D)〉 of H generated by
the image of F2 is a CJ -plane for some J ∈ SH. Then, using again the holomorphy of F , we infer
the existence of a constant q ∈ H such that F1 − q is CJ -valued. Therefore f ∈ S̃RC(Ω) which
is a contradiction. The third case is the one in which the image F2(D) contains three elements
{1, q, q′} independent over R. From the second equation in (7) we get that c belongs to a real
line of H ≃ R4 through the origin. Being F1 not identically zero, from the first equation in (7)
we have that c belongs to a sphere through the origin. Therefore there is at most one value c 6= 0
satisfying (7).

Combining the results [12, Proposition 3.9 & Theorem 3.12] and [21, Corollary 4.17] men-
tioned above with Propositions 5.2, 5.5 and 5.6, one immediately obtains a quite explicit descrip-
tion of all the fibers of an arbitrary slice regular function.
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Theorem 5.8. Let f = I(F1 + ıF2) ∈ SR(ΩD) and let c ∈ H. Define D≥, N (f, c) and N ′
s(f, c)

by

D≥ := {α+ iβ ∈ D : β ≥ 0},

N (f, c) := {z ∈ D≥ : |F1(z)− c| = |F2(z)|, 〈F1(z)− c, F2(z)〉 = 0},

N ′
s(f, c) := {z ∈ N (f, c) : F2(z) = 0}.

Then each of the subsets N (f, c) and N ′
s(f, c) of D≥ is closed and discrete or it coincides with

the whole D≥, and one of the following holds:

1. If N (f, c) = N ′
s(f, c) = D≥ then f ≡ c.

2. If N (f, c) = D≥ and N ′
s(f, c) is discrete then ΩD is a product domain and f−1(c) = Df ∪

Wf,c, where Df coincides with the circularization of N ′
s(f, c) andWf,c is a wing of f induced

by the unique holomorphic function φ : D≥ = D+ → SH such that φ(z) = (c−F1(z))F2(z)
−1

for every z ∈ D+ \ N ′
s(f, c).

3. If N (f, c) and N ′
s(f, c) are discrete, then f−1(c) = SZ ⊔ RZ ⊔ INRZ , where

• SZ =
⋃
z∈N ′

s(f,c)\R
Ω{z} is the set of spherical zeros of f − c,

• RZ =
⋃
z∈N ′

s(f,c)∩R
{z} is the set of real zeros of f − c,

• INRZ =
⋃
z=α+iβ∈N (f,c)\N ′

s(f,c)

{
α+ (c− F1(z))F2(z)

−1β
}
is the set of isolated non-

real zeros of f − c.

In particular, f(ΩD) = {c ∈ H : N (f, c) 6= ∅}.
Furthermore Wf = ∅ when ΩD is a slice domain. When Ω = ΩD is a product domain the set

Wf is closed in Ω and it holds:

4. Wf = Ω if f ∈ SC(Ω).

5. Wf = ∅ if f ∈ S̃RR(Ω) \ SC(Ω).

6. If f ∈ S̃RC(Ω)\S̃RR(Ω), then either Wf = ∅, or Wf coincides with a wing, or Wf is a real
analytic submanifold of Ω of dimension 3. In the latter case Wf is real analytic isomorphic
to D+ × C, where C is the circle of H defined in (4).

7. If f ∈ SR(Ω) \ S̃RC(Ω), then either Wf = ∅, or Wf coincides with a wing or with the
union of two disjoint wings.

All the six possibilities mentioned in points 6 and 7 of the preceding statement can happen.

Examples 5.9. Let Ω := H \ R and let η ∈ SC(Ω) be the function η(x) = 1
2 (1 − Ixi), where

Ix := Im(x)
| Im(x)| . Define f1, f2, f3 ∈ SRCi

(Ω) \ S̃RR(Ω) as follows:

f1(x) := x2 − 2xi, f2(x) := xη(x), f3(x) :=
(
x+ 1

x

)
η(x) − 1

x
.

Making use of Theorem 5.8 it is easy to describe the fibers of the preceding functions over an
arbitrary quaternion c = c0 + c1i+ c2j + c3k with c0, c1, c2, c3 ∈ R:

1. All the fibers of f1 contains at most two points. It follows that Wf1 = ∅.
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2. f2 has one planar wing f−1
2 (0) = Wf2,0 = C+

−i. All the other fibers of f2 contains at most

one point. If c 6= 0, we have: f−1
2 (c) = ∅ if and only if c1 ≤ 0, and f−1

2 (c) is a singleton if
and only if c1 > 0. It follows that Wf2 = C+

−i. Moreover, f2(Ω) = {c1 > 0} ∪ {0}.

3. f3 coincides with the identity on SH ∪ C+
i and has normal function N(f) ≡ −1. It holds

N(f3 − c) ≡ 0 if and only if c = aj+ bk for a, b ∈ R, a2 + b2 = 1. Therefore f3 has a circle
of wings as fibers. Consequently, Wf3 is a real analytic submanifold of Ω of dimension 3.

Consider now the functions f4, f5, f6 ∈ SR(Ω) \ S̃RC(Ω) defined by

f4(x) := x3 + x2i+ xj, f5(x) := (x2 + xj) · η(x), f6(x) := x−1f5(x) = (x+ j) · η(x).

Also in this case it is easy to verify the following:

4. f4 has no wings. Consequently, Wf4 = ∅.

5. f5 has only one non-planar wing f−1
5 (0) =Wf5,0 =Wf5 given by

Wf5,0 := {α+ φ5(α+ iβ)β ∈ Ω : α+ iβ ∈ C+},

where φ5 : C+ → SH is defined as follows

φ5(α+ iβ) :=
(1 − α2 − β2)i − 2βj + 2αk

1 + α2 + β2
.

6. f6 has exactly two wings (see [2, Example 2]): the planar wing f−1
6 (j) = Wf6,j equal to

C+
−i and the non-planar wing f−1

6 (0) =Wf6,0 equal to the non-planar wing Wf5,0 of f5 (see

Remark 5.13 below). It follows that Wf6 = C+
−i ∪Wf5,0.

We conclude with two examples illustrating the case covered by Proposition 5.2 in which a
fiber of a slice regular function is equal to the union of its degenerate set and a wing. Define
f∗
2 ∈ SRCi

(Ω) \ S̃RR(Ω) and f∗
5 ∈ SR(Ω) \ S̃RC(Ω) by f∗

2 (x) := (x2 + 1)η(x) and f∗
5 (x) :=

(x2 + 1)f5(x). It holds:

2 ∗. f∗
2 has a unique wing Wf∗

2
,0 = C+

−i =Wf∗
2
and (f∗

2 )
−1(0) = SH ∪ C+

−i.

5 ∗. f∗
5 has a unique wing Wf∗

5
,0 =Wf5,0 =Wf∗

5
and (f∗

5 )
−1(0) = SH ∪Wf5,0.

Remark 5.10. If f is not slice-constant and it has at least two wings as fibers, then at most
one of them can be a half-plane C+

J . If not, the representation formula would imply that f is
slice-constant.

The next result is a criterion for the existence of at most one wing for a slice regular function.
From now on, given any subset S of C, we denote by cl(S) the Euclidean closure of S in C.

Lemma 5.11. Let Ω = ΩD be a product domain and let f = I(F1 + ıF2) ∈ SR(Ω). Suppose
there exists a point z′ ∈ cl(D+) such that limD+∋z→z′ F2(z) = 0. Then f has at most one wing.

Proof. Suppose f has two distinct wings Wf,c and Wf,d, where c and d are two different quater-
nions. Let φc and φd be the holomorphic maps from D+ to SH inducing Wf,c and Wf,d, respe-
ctively. Since F1 + φcF2 = c and F1 + φdF2 = d on D+, it follows that (φc − φd)F2 = c − d.
Bearing in mind that |φc(z)− φd(z)| ≤ |φc(z)|+ |φd(z)| = 2 for every z ∈ D+, we deduce

c− d = lim
D+∋z→z′

(φc(z)− φd(z))F2(z) = 0,

which is a contradiction.
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As a consequence we obtain a ‘wing selection lemma’:

Lemma 5.12. Let Ω = ΩD be a product domain such that cl(D+)∩R 6= ∅ and let f ∈ SR(Ω) be a
slice regular function having at least one wing Wf,c. Suppose there exists a point r ∈ cl(D+)∩R

and a neighborhood U of r in H such that |f | is bounded on U ∩ Ω. Then the slice regular
function g ∈ SR(Ω) defined by g(x) := c+(x− r)(f(x)− c) has a unique wing Wg,c and it holds
g−1(c) =Wg,c =Wf,c.

Proof. First, observe that g−1(c) = V (g − c) = V (f − c) = Wf,c. Let f = I(F1 + ıF2) and
g = I(G1 + ıG2). Since |f | is bounded locally at r in Ω, |F1| and |F2| are bounded locally at r in
D+. Observe that G2(z) = (α−r)F2(z)+β(F1(z)−c) for every z = α+ iβ ∈ D+. Consequently,
limD+∋z→r G2(z) = 0. The preceding lemma implies the statement.

Remark 5.13. Lemma 5.12 applies to the functions f = f6 ∈ SR(H\R) and g = f5 ∈ SR(H\R)
defined in Examples 5.9. Indeed, if we put c = r = 0 in the statement of the mentioned lemma,
we obtain that f5 has a unique wing f−1

5 (0) = Wf5,0 = Wf6,0, as asserted in Examples 5.9.
Similar considerations can be repeated if f = η and g = f2.

Remark 5.14. In the statement of Lemma 5.11, the hypothesis ‘ limD+∋z→z′ F2(z) = 0’ can be
weakened by requiring the existence of a sequence {zn}n in D+ converging to z′ such that the
sequence {F2(zn)}n converges to 0. As an immediate application of this stronger version, we
have the following: if f = I(F1 + ıF2) ∈ SR(ΩD) has at least two wings then infcl(D+) |F2| > 0.

We conclude this section describing a technique to construct slice regular functions f with
tridimensional Wf .

Proposition 5.15. Let Ω = ΩD be a product domain and let g : Ω∩C+
i → Ci be a holomorphic

function such that g is non-constant and nowhere zero. Denote by f ∈ SR(Ω) the unique slice
regular function such that

f(x) = g(x) for each x ∈ Ω ∩ C+
i and f(x) = −

1

g(x)
for each x ∈ Ω ∩ C+

−i.

Then the fiber f−1(c) is a wing if and only if c ∈ C⊥
i and |c| = 1. Consequently, Wf is a real

analytic submanifold of Ω of dimension 3.

Proof. Denote by F = F1 + ıF2 : D+ → H⊗ C the stem function inducing f . We have:

F1(z) =
1
2

(
g(z)− 1

g(z)

)
and F2(z) = − i

2

(
g(z) + 1

g(z)

)
for every z ∈ C+ = C+

i .

By a direct computation we see that 〈F1(z), F2(z)〉 = 0 and |F1(z)|2 − |F2(z)|2 = −1 for every
z ∈ D+, i.e. N(f) ≡ −1. It follows that, given c ∈ H, N(f − c) ≡ 0 if and only if 〈c, F2(z)〉 = 0
and |c|2 − 2〈c, F1(z)〉 = 1 for every z ∈ D+. Since F2 is not constant (because g is not), we
deduce c ∈ C⊥

i and |c| = 1.

6 Singular set and quasi-openness

Following the notation of [12, §8.5], we define the singular set of f ∈ SR(Ω) as the following real
analytic subset Nf of Ω:

Nf := {x ∈ Ω : dfx is not invertible} = {x ∈ Ω : det(Jf (x)) = 0}.

We can apply Theorem 4.1 to describe the singular set by means of slice and spherical
derivatives. This description is equivalent to the one given in [12, Proposition 8.18].
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Corollary 6.1. Let f ∈ SR(Ω). Then

Nf =

{
y ∈ Ω :

(
∂f
∂x

(y), f̂ ′
s(y)

)
y
= 0

}
=

⋃

I∈SH

{
y ∈ Ω ∩ CI : ∂f

∂x
(y)f̂ ′

s(y) ∈ C⊥
I

}

=
{
y ∈ Ω ∩ R : ∂f

∂x
(y) = 0

}
∪
{
y ∈ Ω \ R :

〈
∂f
∂x

(y), f ′
s(y)

〉
=

〈
∂f
∂x

(y), Im(y)f ′
s(y)

〉
= 0

}
.

In particular, Nf contains V
(
∂f
∂x

)
∪Df .

Remark 6.2. In [34] it was proved that the spherical derivative of a slice regular function is
indeed the result of a differential operation. Given the Cauchy-Riemann-Fueter operator

∂CRF =
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
,

for every slice regular function f ∈ SR(Ω) it holds ∂CRFf = −2f̂ ′
s on the whole Ω. Therefore we

have the following equivalent description of the singular set of f :

Nf =

{
y ∈ Ω :

(
∂f
∂x

(y), ∂CRFf(y)
)
y
= 0

}
.

Given f ∈ SR(Ω), let f̃ := ∂f
∂x

· (f ′
s)
c. The function f̃ is a slice function on Ω \ R, induced

by the stem function F̃ := ∂F
∂z

F 2

im(z) . Observe that, since F 2/im(z) takes values in H, the slice

product here coincides with the pointwise product: f̃(x) = ∂f
∂x

(x)f ′
s(x) for each x ∈ Ω \ R.

Let y = α + Iβ ∈ Nf \ R be fixed (with α, β ∈ R, I ∈ SH) and let p = f̃0
s (y), q = βf̃ ′

s(y).

Then f̃(x) = p+ Jq for x = α+ Jβ ∈ Sy. Corollary 6.1 gives

Nf ∩ Sy = {x = α+ Jβ ∈ Sy : 〈p+ Jq, 1〉 = 〈p+ Jq, J〉 = 0}

= {x = α+ Jβ ∈ Sy : Re(p+ Jq) = Re(q − Jp) = 0} .

Let p = p0 + p1i+ p2j + p3k, q = q0 + q1i+ q2j + q3k and J = j1i+ j2j + j3k. The set Nf ∩ Sy
is the intersection of the 2-sphere Sy with a real affine subspace of H ≃ R4:

Nf ∩ Sy = Sy ∩ {x = α+ Jβ ∈ H : p0 − j1q1 − j2q2 − j3q3 = q0 + j1p1 + j2p2 + j3p3 = 0} . (8)

We now use this description of the singular set to obtain some of its basic properties.

Proposition 6.3. Let f ∈ SR(Ω). Given any y ∈ Ω \ R, one of the following holds: Nf ∩ Sy
is empty, it is a singleton, it consists of two distinct points, it is a circle or it is the whole Sy.

Moreover, the latter is true, namely Sy ⊂ Nf , if and only if Sy ⊂ Df or Sy ⊂ V
(
∂f
∂x

)
.

Proof. Let f̃ , y = α + Iβ ∈ Nf \ R, p and q be as above. By (8), Nf ∩ Sy is the intersection
between the 2-sphere Sy of R

3 ≃ α+R3 with one of its affine subspaces. Moreover, Nf ∩Sy = Sy,

i.e. Sy ⊂ Nf , if and only if p = q = 0 or equivalently f̃ |Sy ≡ 0. Since f ′
s is constant on Sy, if

f̃ |Sy ≡ 0 and f ′
s(y) 6= 0 then Sy ⊂ V

(
∂f
∂x

)
.

Theorem 6.4. Let f ∈ SR(Ω). The following holds:

1. f ∈ SC(Ω) if and only if Nf has an interior point in Ω or, equivalently, Nf = Ω.

2. If f ∈ S̃RR(Ω), then Nf = V
(
∂f
∂x

)
∪Df . In particular, Nf is a circular set.
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3. Suppose f ∈ SRCJ0
(Ω) for some J0 ∈ SH. Then Nf ∩ CJ0

=
(
V
(
∂f
∂x

)
∪Df

)
∩ CJ0

and

the set N∗
f := Nf \

(
V
(
∂f
∂x

)
∪Df ∪ CJ0

)
is empty or it is a S1-fibration in the following

sense: for every y ∈ N∗
f , the set Nf ∩ Sy is equal to the circle Cy obtained intersecting

Sy with the real affine plane of H ≃ R4 through y and orthogonal to CJ0
. Moreover,

Cy ∩
(
V
(
∂f
∂x

)
∪Df ∪ CJ0

)
= ∅. The same properties hold for any f = ga + b ∈ S̃RC(Ω),

with g ∈ SRCJ0
(Ω), a, b ∈ H, a 6= 0.

Proof. We begin proving 1. If f ∈ SC(Ω), then Nf = V
(
∂f
∂x

)
= Ω. Conversely, let U be a

non-empty open subset of Ω contained in Nf . We can assume U ∩ R = ∅. Let y ∈ U . The
intersection U ∩ Sy is a non-empty open subset of Sy and hence p = q = 0 in (8). Therefore

f̃ = I(F̃ ) ≡ 0 on every 2-sphere Sy with y ∈ U . Let D′ be a (non-empty) open subset of D such

that ΩD′ =
⋃
x∈U Sx. On D′ the stem function F̃ = ∂F

∂z
F 2

Im(z) vanishes identically. Consequently,
∂F
∂z

≡ 0 or F2 ≡ 0 on the connected components of D′. Since F is holomorphic, this means that
∂F
∂z

≡ 0 on D′ and then ∂f
∂x

≡ 0 on the connected set Ω, i.e. f ∈ SC(Ω).
Let us show 2. It is sufficient to prove the result for f ∈ SRR(Ω). In this case p and q are real.

Then Nf ∩ Sy 6= ∅ if and only if p = q = 0 and Sy ⊂ Nf . By Corollary 6.1 and Proposition 6.3,

Nf \ R =
(
V
(
∂f
∂x

)
∪Df

)
\ R. Combining this equality with Nf ∩ R = V

(
∂f
∂x

)
∩ R we obtain 2.

It remains to prove 3. We can assume that J0 = i. Let y = α+Iβ ∈ N∗
f . Since f̃ ∈ SCi

(Ω\R),
then p, q ∈ Ci. Let I = i1i + i2j + i3k 6= ±i. From (8) it follows that a point x = α + Jβ with
J = j1i + j2j + j3k belongs to Nf ∩ Sy if and only if p0 − j1q1 = q0 + j1p1 = 0. Since y ∈ N∗

f ,

we deduce that p0 − i1q1 = q0 + i1p1 = 0 and i1 ∈ (−1, 1), ∂f
∂x

(y) 6= 0, f ′
s(y) 6= 0 and so

f̃(y) = ∂f
∂x

(y)f ′
s(y) 6= 0. In particular p and q are not both null. It follows that j1 = i1 is the

unique solution of the equations p0 − j1q1 = q0 + j1p1 = 0 for j1 ∈ R. Therefore Nf ∩Sy is equal
to the circle Cy = {x = α + Jβ ∈ Sy : j1 = i1}. Note that Cy ∩ CJ0

= ∅. Also Cy ∩ Df = ∅,
because Cy ⊂ Sy and Sy ∩Df = ∅.

It remains to show that Cy ∩ V
(
∂f
∂x

)
= ∅. Let x = α + Jβ ∈ Cy and let z := α + iβ ∈ D.

Define ξ := ∂F1

∂α
(z) ∈ Ci and η := ∂F2

∂α
(z) ∈ Ci. Since ξ + Iη = ∂f

∂x
(y) 6= 0, it holds that either

ξ 6= 0 or η 6= 0 and hence, being J 6= ±i, ∂f
∂x

(x) = ξ + Jη 6= 0. This completes the proof.

Our next aim is to obtain a generalization of the Open Mapping Theorem for slice regular
functions (see [11] and [12, Theorems 7.4 and 7.7] for slice domains and [1, Theorem 5.1] for
product domains; see also [23]). Our proof of this generalization is completely new. It is based
on properties of the Jacobian.

We recall that a continuous map g : X → Y between topological spaces X and Y is called
quasi-open if, for each point y ∈ g(X) and for each open set U in X that contains a compact
connected component of g−1(y), y is in the interior of g(U). Note that if g is quasi-open and
each of its fibers has a compact component then g(X) is open in Y . The map g is called light
if, for each y ∈ Y , the fiber g−1(y) is totally disconnected. If g is light and quasi-open, then g is
open (see e.g. [39]).

From now on, given any subset S of Ω, we denote by Cl(S) and ∂S the Euclidean closure of
S and the boundary of S in Ω, respectively.

We are now in position to present our ‘Quasi-open Mapping Theorem’.

Theorem 6.5. Let f ∈ SR(Ω) \ SC(Ω). The following holds:

1. f is quasi-open.

2. If Ω is a slice domain, then f(Ω) is open in H and the restriction f |Ω\Cl(Df ) is open.
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3. If Ω is a product domain, then the restriction f |Ω\(Df∪Wf ) is open. Moreover, if Wf = ∅,
then f(Ω) is open in H.

Proof. Point 1 of Theorem 6.4 ensures that the real analytic set Nf has dimension less then four.
Since the Jacobian does not change sign on Ω (Theorem 3.4), it follows from results of Titus and
Young [39] that f is quasi-open.

If Ω is a slice domain, then the zero set of a not identically vanishing slice regular function on
Ω consists of isolated points or isolated 2-spheres of the form Sx. It follows that the connected
components of the fibers of f are compact and so f(Ω) is open in H. Moreover the restriction of
f to the open set Ω\Cl(Df ) is open because it is light, being f−1(y)\Cl(Df ) = V (f−y)\Cl(Df )
discrete for each y ∈ H.

If Ω is a product domain, then thanks to the description of the fibers of f (Corollary 5.3) we
know that the restriction of f to the open set Ω \ (Df ∪Wf ) is light, being f

−1(y) \ (Df ∪Wf )
discrete for each y ∈ H. It follows that also such a restriction is open. Moreover, if Wf = ∅ then
the connected components of the fibers of f are compact (singletons or Sx indeed) and hence
f(Ω) is open in H.

Note that, if f is a non-constant function in SC(Ω), then f(Ω) is a 2-sphere of H ≃ R4.

Theorem 6.6. Let f ∈ SR(Ω) and let y ∈ Ω\R such that Df = Sy. Then Df ∩Cl(Nf \Df ) 6= ∅.

Proof. Up to restricting Ω around Sy, we can assume Ω is a product domain. Write y = α+ Jβ
with α, β ∈ R, β > 0 and J ∈ SH. Define z := α+ iβ ∈ C \ R and q as the quaternion such that
f(Sy) = {q}. Suppose the statement is false. Then Wf = ∅ and there exists a closed disc E of C
centered at z and contained in C \R such that ΩE ⊂ Ω and Nf ∩ΩE = Df = Sy = f−1(q)∩ΩE .
Note that ΩE \ Sy is homeomorphic to (E \ {z}) × SH. In particular ΩE \ Sy has the same
homotopy type of S1 × S2; consequently its fundamental group π1(ΩE \ Sy) is isomorphic to Z.
By point 3 of Theorem 6.5, q is an interior point of f(ΩE). Let U be the interior of ΩE in Ω and
let g : ΩE → H be the restriction of f to ΩE . The set U is an open neighborhood of g−1(q) = Sy
in H contained in ΩE and the map g is proper. It follows that there exists an open ball B of H
centered at q such that B ⊂ g(ΩE) and g−1(B) ⊂ U . Denote by V the open subset g−1(B) of
H and consider the restriction ĝ : V \ Sy → B \ {q} of g. The map ĝ is surjective and a local
homeomorphism (a local diffeomorphism indeed).

Let us prove that ĝ is a covering space. To do this it suffices to show that the fibers of
ĝ are finite and the map ĝ is proper (or, equivalently, the map ĝ is closed). Suppose there
exists p ∈ B \ {q} with ĝ−1(p) infinite. Bearing in mind that ΩE is compact, there exists an
accumulation point p∗ of ĝ−1(p) in ΩE . Note that ĝ

−1(p) ⊂ f−1(p) so p∗ is also an accumulation
point of the fiber f−1(p) of f and p∗ ∈ f−1(p). It follows that p∗ ∈ Df ∪Wf . Since Wf = ∅, we
have that p∗ ∈ Df = f−1(q), which is impossible (being p 6= q). This proves that the fibers of
ĝ are finite. Let C be a closed subset of V \ Sy and let C∗ be a closed subset of ΩE such that
C = C∗ ∩ (V \ Sy). The set C∗ is compact in ΩE and hence the set g(C∗) is closed (compact
indeed) in H. Consequently, ĝ(C) = g(C) = g(C∗) ∩ (B \ {q}) is closed in B \ {q}. This proves
that the map ĝ is proper and hence it is a covering space.

The base space B \ {q} of ĝ is simply connected so the same is true for each connected
component of its total space V \ Sy. Choose a small loop γ of ΩE \ Sy around y contained in
(V \ Sy) ∩ C+

J whose homotopy class in ΩE \ Sy generates π1(ΩE \ Sy). Since the connected
component of V \Sy containing the loop γ is simply connected, the homotopy class of γ in V \Sy
is trivial. Consequently the same is true for the homotopy class of γ in ΩE \ Sy ⊃ V \ Sy. This
is impossible.

It is known that the continuous map g : X → Y is quasi-open if and only if ∂Y (g(U)) ⊂
g(∂XU) for every relatively compact open subset U of X , where ∂Y (g(U)) is the boundary of
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g(U) in Y and ∂XU the boundary of U in X (see [40, Chap. X, Theorem (4.4)]). In particular, if
X = Y = H and g is quasi-open, then maxCl(U) |g| = max∂U |g| for every relatively compact open
subset U of H. Indeed, thanks to the continuity of g and the compactness of Cl(U), g(Cl(U)) ⊂
Cl(g(U)) ⊂ g(Cl(U)) so g(Cl(U)) = Cl(g(U)) and ∂(g(Cl(U))) = ∂(Cl(g(U))) ⊂ ∂(g(U)). As a
consequence, being g quasi-open, ∂(g(Cl(U))) ⊂ g(∂U); hence maxCl(U) |g| = max∂U |g|.

Thanks to the latter property of quasi-open maps we obtain the Maximum Modulus Principle
for slice regular functions defined on product domains, see [12, Theorems 7.1 and 7.2] for the
case of slice domains and [1, Theorems 4.2] for a partial result in the case of product domains.
See also [23] for a different approach.

Theorem 6.7. Let Ω be a product domain, let f ∈ SR(Ω) and let U be a relatively compact
connected open subset of Ω. Then |f | assumes its maximum value M on Cl(U) at a point of ∂U .
Furthermore, if |f(p)| =M for some p ∈ U and p ∈ C+

I , then f is constant on Ω ∩ C+
I .

Proof. The statement is evident if f ∈ SC(Ω). Suppose f is not in SC(Ω). By Theorem 6.5, f
is quasi-open. Consequently, M = max∂U |f | > 0. Suppose there exists p = ξ + Iη ∈ U , ξ, η ∈ R

with η > 0, I ∈ SH, such that |f(p)| =M . The argument exploited in the proof of [12, Theorem
7.1] ensures that f is constant locally at p in CI . From point 3 of Theorem 6.5, we know that
f |Ω\(Df∪Wf ) is open. It follows that p ∈ Df or p ∈ Wf .

Assume that p ∈ Df . Then |f(q)| =M for every q ∈ Sp. Choose a point q = ξ+ Jη ∈ Sp ∩U
with J 6= I. Let f = I(F1 + ıF2) and let Ω = ΩD. Then f is constant locally at p in CI and
locally at q in CJ . Since F2(z) = (I − J)−1(f(zI) − f(zJ)) and F1(z) = f(zI) − IF2(z) for
z = α + iβ ∈ D, zI = α + Iβ and zJ = α + Jβ, it follows that F1 and F2 are locally constant
and hence f ∈ SC(Ω), which is a contradiction. Therefore p belongs to a wing Wf,c. Since f is
locally constant at p in CI , we deduce that Wf,c = Ω ∩C+

I .

The situation mentioned in the last assertion of the preceding statement can happen.

Example 6.8. Consider the slice regular map f2 ∈ SR(H \ R) defined in Examples 5.9. Recall
that f−1

2 (0) = Wf2,0 = C+
−i and f2(H \ R) = {0} ∪ {c0 + c1i + c2j + c3k ∈ H : c1 > 0}. Define

g ∈ SR(H \ R) as the (slice) reciprocal function of i + f2, namely g := (i + f2)
−• (see [12,

§5.1] and [21, §2] for the definition of the reciprocal function). Then g has a wing Wg,−i = C+
−i.

From the pointwise formula for the reciprocal function given in [12, Proposition 5.32], it follows
that |g(x)| < 1 for every x ∈ H \ (R ∪Wg,−i) and hence |g(y)| = 1 = supx∈H\R |g(x)| for each
y ∈Wg,−i.

In the following we need a refinement of [10, Theorem 3.9] to describe the behavior of the fibers
of a slice regular function near a singular point not belonging to Cl(Df ) ∪Wf . First, we recall
a characterization of singular points by means of the normal function, see [10, Proposition 3.6]
for slice domains and [2, Theorem 30] for product domains.

Proposition 6.9. Let f ∈ SR(Ω) and let y ∈ Ω. Then y ∈ Nf if and only if the total multiplicity
mf−f(y)(y) of f − f(y) at y is at least two. In particular if y ∈ Nf , N(f − f(y)) 6≡ 0 and n
denotes the integer mf−f(y)(y) ≥ 2, then there exists g ∈ SRR(Ω) such that N(f − f(y)) = ∆n

y g
and V (g) ∩ Sy = ∅.

Proposition 6.10. Let f ∈ SR(Ω) \ SC(Ω), let y ∈ Nf \ (Cl(Df ) ∪Wf ) and let U be any
neighborhood of y in Ω. There exist neighborhoods V, V ′ of y in Ω with V ⊂ V ′ ⊂ U , and an
integer n ≥ 2 such that, for every x ∈ V , the fiber f−1(f(x)) ∩ V ′ of f |V ′ is finite and the sum
of the total multiplicities of the points in f−1(f(x)) ∩ V ′ as zeros of f − f(x) is equal to n.
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Proof. Let f = I(F1 + ıF2). First, assume y ∈ Nf \ (Cl(Df ) ∪Wf ∪ R). Let y = α0 + J0β0,
z0 = α0 + iβ0 ∈ D+. For every r ∈ (0, β0), we denote by Vr the open neighborhood of y in H

defined by

Vr := {α+ Jβ ∈ H : α, β ∈ R, J ∈ SH, |α+ iβ − z0| < r, |J − J0| < r}.

Let Θr := {α+ iβ ∈ C+ : |α + iβ − z0| ≤ r} and let Ωr = ΩΘr
be the circular neighborhood of

y in H defined by Θr. We now proceed as in the proof of [10, Theorem 3.9]. Since y 6∈ Wf , the
normal function N(f − f(y)) is not identically vanishing. By Proposition 6.9, there exist n ≥ 2
and g ∈ SRR(Ω) such that N(f − f(y)) = ∆n

y g and V (g) ∩ Sy = ∅. After choosing a smaller
circular open domain containing y, we can suppose that V (g)∩Ω = ∅ and that f ′

s 6= 0 on Ω \R.
Choose r0 ∈ (0, β0) sufficiently small to have Ωr0 ⊂ Ω. Set M := maxz∈Θr0

(
|F2(z)|−1

)
> 0. Let

r′ ∈ (0, r0] be such that

|F1(z)− F1(z
′)|+ |F2(z)− F2(z

′)| ≤ r0/M

for every z, z′ ∈ Θr′. Let Ω
+
J0

:= Ω∩C+
J0
. By Hurwitz’s Theorem (see e.g. [37, §1.4]) applied to the

holomorphic function N(f − f(y))|Ω+

J0

, we can find a positive r ≤ r′ such that, for every y1 ∈ Vr,

the function N(f − f(y1))|Ω+

J0

has exactly n zeros in Ωr′ ∩Ω+
J0
, counted with their multiplicities.

Let y1 = α1 + J1β1 ∈ Vr and z1 := α1 + iβ1 ∈ Θr. The zero set V (N(f − f(y1))) ∩ Ωr′ is the
union of h disjoint spheres S1, . . . , Sh, while V (f − f(y1)) ∩Ωr′ = {y1, . . . , yh}, where yk ∈ Sk is
a non-spherical zero of f − f(y1) of total multiplicity mk for each k = 1, . . . , h, with

∑
kmk = n.

Since yk = αk+Jkβk ∈ Ωr′ for k = 2, . . . , h, then zk := αk+ iβk belongs to Θr′. Moreover, since
F1(zk) + JkF2(zk) = f(yk) = f(y1) = F1(z1) + J1F2(z1) for every k = 2, . . . , h, it holds

Jk − J1 = (F1(z1)− F1(zk) + J1(F2(z1)− F2(zk)))F2(zk)
−1.

Therefore |Jk − J0| ≤ |Jk − J1| + |J1 − J0| < r0 + r for every k = 2, . . . , h. We can then set
V := Vr and V ′ := {α+ Jβ ∈ H : α, β ∈ R, J ∈ SH, |α + iβ − z0| < r′, |J − J0| < r0 + r} ⊃ V .
If r0 is sufficiently small, we get the required inclusion V ′ ⊂ U .

If y ∈ Nf ∩ R, the thesis follows directly from [10, Theorem 3.9].

Let f ∈ SR(Ω) and let y ∈ Ω. Recall that f is said to be a local homeomorphism at y if
there exists an open neighborhood U of y in Ω such that f(U) is open in H and the restriction
of f from U to f(U) is a homeomorphism. Let Bf denote the branch set of f , the set of points
of Ω at which f fails to be a local homeomorphism. Evidently, Cl(Df ) ∪Wf ⊂ Bf and, by the
Implicit Function Theorem, Ω \Nf ⊂ Ω \Bf . Consequently, it holds:

Cl(Df ) ∪Wf ⊂ Bf ⊂ Nf for every f ∈ SR(Ω).

Theorem 6.11. Let f ∈ SR(Ω). Then Nf = Bf . More precisely, if U is a non-empty open
subset of Ω such that the restriction f |U is injective, then Nf ∩U = ∅. In particular, f is locally
injective if and only if Nf = ∅.

Proof. If f ∈ SC(Ω), then the statement is evident, because Nf = Bf = Ω. Let f ∈ SR(Ω) \
SC(Ω). Let U be a non-empty open subset of Ω such that the restriction f |U is injective. Suppose
Nf∩U 6= ∅ and choose y ∈ Nf∩U . Since f is injective locally at y, it follows that y 6∈ Cl(Df )∪Wf .
Let V, V ′ be the neighborhoods of y with V ⊂ V ′ ⊂ U given in the statement of Proposition 6.10.
By point 1 of Theorem 6.4, V 6⊂ Nf . Choose x ∈ V \Nf . From Proposition 6.9 it follows that
x has total multiplicity 1 as zero of f − f(x). Then the fiber f−1(f(x)) contains at least two
distinct points in V ′, which is a contradiction.
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We now apply the preceding results to study the local dimension of the singular set Nf .
First we need to recall some basic definitions and facts concerning the dimension of a real

analytic set. Let V be a non-empty open subset of some Rn and let A ⊂ V be a real analytic set.
Consider y ∈ A and denote by Ay the germ at y of A. Let Ay =

⋃k
ν=1Ay,ν be the decomposition

of Ay into its irreducible real analytic components and, for every ν ∈ {1, . . . , k}, let pν ∈ N be the
dimension of the irreducible real analytic germ Ay,ν , defined by means of Weierstrass’ Preparation
Theorem as in [32, Proposition 2, p. 32]. The local dimension dimy(A) of A at y is given by
dimy(A) := maxν∈{1,...,k} pν and the dimension dim(A) of A by dim(A) := maxy∈A dimy(A),
see [32, Definition 3, p. 40]. If A 6= ∅ then each local dimension dimy(A) and the dimension
dim(A) of A are natural numbers ≤ n. Moreover, dimy(A) = dim(A ∩ U ′) for every sufficiently
small open neighborhood U ′ of y in V . For convention, we set dimy(A) := −1 if y ∈ V \ A and
dim(A) := −1 if A = ∅. Hence dimy(A) = −1 if and only if y ∈ V \ A, and dim(A) = −1 if and
only if A = ∅.

We remark that, since every real analytic set is triangulable (see [30]), the dimension of A as
a real analytic subset of V , the one recalled above, coincides with the topological dimension of
A as an arbitrary subset of V (see [28]).

The latter fact is important here. Indeed, in the proof of Theorem 6.12 below, we will
apply a result of Church [6, Corollary 2.3], that states the following: any light and open map
f : Rn → Rn of class C n (n ≥ 2) has empty branch set Bf or the topological dimension of Bf is
equal to n − 2. This result holds also locally. In particular, when f ∈ SR(Ω) \ SC(Ω), it holds:
Nf = Bf (Theorem 6.11), the restriction of f to Ω \ (Cl(Df ) ∪Wf ) is light and open (Corollary
5.3 and Theorem 6.5) and, given any y ∈ Nf \ (Cl(Df ) ∪Wf ), the local dimension dimy(Nf )
coincides with the ‘topological dimension’ of a sufficiently small open neighborhood of y in Bf .
Consequently, the mentioned result of Church implies that dimy(Nf ) = 4− 2 = 2.

Let f ∈ SR(Ω). By point 1 of Theorem 6.4, f ∈ SC(Ω) if and only if dimy(Nf ) = 4 for some
(or, equivalently, for every) y ∈ Ω. In particular, if f ∈ SC(Ω) then dim(Nf ) = 4. The next
result deals with the case f 6∈ SC(Ω).

Theorem 6.12. Let f ∈ SR(Ω) \ SC(Ω). Then the local dimensions dimy(Nf ), dimy(Df ) and
dimy(Wf ) belong to {−1, 2, 3} and the local dimension dimy(Nf \ (Cl(Df )∪Wf )) to {−1, 2} for
every y ∈ Ω. In particular, the dimensions dim(Nf ), dim(Df ) and dim(Wf ) belong to {−1, 2, 3},
and the dimension dim(Nf \ (Cl(Df ) ∪Wf )) to {−1, 2}.

More precisely, we have:

1. If Ω is a slice domain, then Nf = Cl(Df ) ∪ (Nf \ Cl(Df )) and if Nf 6= ∅ then one of the
following holds:

1.1. Df = ∅ and dim(Nf ) = 2.

1.2. dimy(Df ) ∈ {2, 3} for every y ∈ Df 6= ∅ and Nf = Cl(Df ) or dimy(Nf \Cl(Df )) = 2
for every y ∈ Nf \ Cl(Df ) 6= ∅.

2. If Ω is a product domain, then Nf = Df ∪Wf ∪ (Nf \ (Df ∪Wf )) and one of the following
holds:

2.1. Df = ∅, Wf = ∅ or dimy(Wf ) ∈ {2, 3} for every y ∈Wf 6= ∅, and Nf \ (Df ∪Wf ) = ∅
or dimy(Nf \ (Df ∪Wf )) = 2 for every y ∈ Nf \ (Df ∪Wf ) 6= ∅.

2.2. dimy(Df ) = 2 for every y ∈ Df 6= ∅, Wf = ∅ or dimy(Wf ) = 2 for every y ∈Wf 6= ∅,
and Nf \(Df∪Wf ) = ∅ or dimy(Nf \(Df∪Wf )) = 2 for every y ∈ Nf \(Df∪Wf ) 6= ∅.
However the case ‘dimy(Df ) = 2 for every y ∈ Df 6= ∅, Wf = ∅ and Nf \(Df ∪Wf ) =
∅’ cannot occur.
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2.3. dim(Df ) = 3, Wf = ∅, and Nf \ (Df ∪Wf ) = ∅ or dimy(Nf \ (Df ∪Wf )) = 2 for
every y ∈ Nf \ (Df ∪Wf ) 6= ∅.

Proof. Let f ∈ SR(Ω)\SC(Ω) and let y ∈ Nf . Since the function F2 : D → H is real analytic and
not locally constant, and Df is the circularization of the zero set V (F2) of F2, we have that the
local dimensions of V (F2) are either −1 or 0 or 1. Consequently, dimy(Df ) ∈ {2, 3} if y ∈ Df . By
Theorem 5.8 and [6, Corollary 2.3], dimy(Wf ) ∈ {2, 3} if y ∈Wf and dim(Nf \(Cl(Df )∪Wf )) = 2
if y ∈ Nf \ (Cl(Df ) ∪Wf ). Point 1 follows immediately from the fact that Wf = ∅ if Ω is a
slice domain. Suppose Ω is a product domain. If Df 6= ∅, then dim(Df ) = 2 (or, equivalently,
dimy(Df ) = 2 for every y ∈ Df) or dim(Df ) = 3. Moreover Wf = ∅ or Wf consists of a
single wing. In the latter case Proposition 5.2 implies that dim(Df ) = 2. By Theorem 6.6, if
dim(Df ) = 2 and Wf = ∅, then Nf \ (Df ∪Wf ) 6= ∅. This proves point 2.

Remark 6.13. If in point 2.2 of the preceding statement Df 6= ∅ and Wf 6= ∅, then Df is a
union of isolated spheres Sx, Wf is a single wing, the intersection Df ∩Wf consists of isolated

points and the Jacobian matrix Jf (y) is null, that is ∂f
∂x

(y) = f ′
s(y) = 0 for every y ∈ Df ∩Wf .

This follows immediately from Proposition 5.2, equality (1) and the transversality in H between
Df and Wf .

Corollary 6.14. Let f ∈ SR(Ω) \ SC(Ω). The following holds:

1. If y ∈ Nf and (Nf )y =
⋃k
ν=1(Nf )y,ν is the decomposition of (Nf )y into its irreducible real

analytic components, then the dimension of each (Nf )y,ν belongs to {2, 3}.

2. Nf does not have isolated points.

3. There does not exist any open subset U of Ω such that Nf ∩ U is homeomorphic to R.

Proof. By Theorem 6.12, dimy(Nf ) ∈ {2, 3} if y ∈ Nf ; hence dimy(Nf ) 6∈ {0, 1}.

All the dimensional configurations mentioned in the statement of Theorem 6.12 can happen.

Examples 6.15. Let Ω := H \ R and let f ∈ SR(Ω) \ SC(Ω). Define

df := dim(Df ), wf := dim(Wf ) = dim(Wf \Df), mf := dim(Nf \ (Df ∪Wf )).

By Theorem 6.12.2, the triple (df , wf ,mf) can assume at most eleven values:

(df , wf ,mf ) ∈
{
(−1,−1,−1), (−1,−1, 2), (−1, 2,−1), (−1, 2, 2), (−1, 3,−1),

(−1, 3, 2), (2,−1, 2), (2, 2,−1), (2, 2, 2), (3,−1,−1), (3,−1, 2)
}
.

We will give examples of f ∈ SRCi
(Ω) \ SC(Ω) in which each of these values is assumed.

First, we recall that η denotes the function in SC(H \R) defined by η(x) := 1
2 (1− Ixi), where

Ix := Im(x)
| Im(x)| . Observe that η(x) = 1 if x ∈ C+

i , η(x) = 0 if x ∈ C+
−i, η

c(x) = 1
2 (1 + Ixi),

ηc(x) = 0 if x ∈ C+
i and ηc(x) = 1 if x ∈ C+

−i. Thanks to the representation formula, given any
holomorphic function g : Ci \ R → Ci, the unique slice regular function f ∈ SRCi

(H \ R) such
that f |Ci\R = g can be written as follows:

f(x) = η(x)g(zx) + ηc(x)g(zx) for every x ∈ H \ R, where zx := Re(x) + i|Im(x)|.

Let us present our examples f , denoting F = F1 + ıF2 the stem function of f .

1. Evidently, if f(x) := x then Nf = ∅ and hence df = wf = mf = −1.
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2. Let f(x) := x2 − 2xi (i.e. f = f1 as in Examples 5.9). We know that Df =Wf = ∅. Note

that p = i is a point of Nf , because
∂f
∂x

= 2x − 2i. In particular, Nf \ (Df ∪Wf ) 6= ∅.
Consequently, (df , wf ,mf ) = (−1,−1, 2). This example was studied in [10, Section 6] to
construct a new non-constant orthogonal complex structure on open subsets of H.

3. Let f(x) := xη(x) (i.e. f = f2 as in Examples 5.9). We know that Df = ∅ and Wf = C+
−i.

By Corollary 6.1, Nf is equal to the set of solutions of the equations
〈
∂f
∂x

(x), f ′
s(x)

〉
=〈

∂f
∂x

(x), Im(x)f ′
s(x)

〉
= 0. By a direct computation, we obtain:

〈
∂f
∂x

(x), f ′
s(x)

〉
= 1

4

(
x1+| Im(x)|

| Im(x)|

)
and

〈
∂f
∂x

(x), Im(x)f ′
s(x)

〉
= x0

4

(
x1+| Im(x)|
| Im(x)|2

)
.

It follows that Nf = C+
−i. Consequently, (df , wf ,mf ) = (−1, 2,−1).

4. Let f(x) := η(x)g(zx), where g : C+
i → Ci is defined by g(z) := ez

2−2zi. Note that
F1(z) =

1
2g(z) and F2(z) = − i

2g(z) if z ∈ C+. Consequently, 〈F1, F2〉 = |F2|2 − |F1|2 ≡ 0.
Hence N(f − c) ≡ 0 with c ∈ H if and only if 2〈F1, c〉 − |c|2 = 〈F2, c〉 ≡ 0. Since F1 and
F2 are Ci-valued, the latter equations imply c = 0. This shows that Wf = f−1(0) = C+

−i.

Since g is nowhere zero, Df = ∅. Observe that ∂f
∂x

(x) = η(x)g′(zx), where g
′ is the complex

derivative of g. Since g′(i) = 0, p = i is a point of Nf \ (Df ∪ Wf ). It follows that
(df , wf ,mf) = (−1, 2, 2).

5. Let f(x) := η(x)zx − ηc(x) 1
zx

(i.e. f = f3 as in Examples 5.9). We know that f−1(c) =

Wf,c if and only if c ∈ C, where C := {q2j + q3k ∈ H : q2, q3 ∈ R, q22 + q23 = 1}. In
particular, Df = ∅. By a direct computation, we obtain:

〈
∂f
∂x

(x), Im(x)f ′
s(x)

〉
= x0

| Im(x)|

〈
∂f
∂x

(x), f ′
s(x)

〉
= x0

| Im(x)|
(1+|x|2)(x1(|x|

2+1)+| Im(x)|(|x|2−1))
4| Im(x)||x|4 .

It follows that f(Nf ) ⊂ C. Consequently, Nf = f−1(C) = Wf and hence (df , wf ,mf) =
(−1, 3,−1).

6. Let f(x) := η(x)ex − ηc(x) 1
ex

, where ex := ez
2
x−2zxi. By Proposition 5.15, we know that

Wf = f−1(C), where C is as in 5. In particular, Df = ∅. Since ∂f
∂x

(i) = 0 and f(i) = e 6∈
C, p = i is a point of Nf \ (Df ∪Wf ). It follows that (df , wf ,mf ) = (−1, 3, 2).

7. Let f(x) = (x2 + 4)(x2 − 2xi− 1). Evidently, Wf = ∅. By a direct computation, we easily

see that F2(z) = 0 if and only if z = ±2i, so Df = S2i. Since ∂f
∂x

(i) = 0 and i 6∈ S2i, p = i
is a point of Nf \ (Df ∪Wf ). Consequently, (df , wf ,mf) = (2,−1, 2).

8. Let f(x) := η(x)(z2x + 1) = (x2 + 1)η(x) (i.e. f = f∗
2 as in Examples 5.9). We know that

Df = SH and Wf = C+
−i. Using Corollary 6.1 again, we obtain

〈
∂f
∂x

(x), f ′
s(x)

〉
= (|x|2−1)(x1+| Im(x)|)

2| Im(x)| and
〈
∂f
∂x

(x), Im(x)f ′
s(x)

〉
= x0(|x|

2+1)(x1+| Im(x)|)
2| Im(x)|2 .

If follows that Nf = SH ∪ C+
−i = Df ∪Wf . Consequently, (df , wf ,mf ) = (2, 2,−1).

9. Let f(x) := η(x)(z2x − 2zxi + 3). Since z2x − 2zxi + 3 = 0 if and only if zx = 3i, and
C+

−i ⊂Wf,0, it follows that Df = S3i and Wf = C+
−i. Observe that ∂f

∂x
(x) = η(x)(2zx − 2i)

and hence ∂f
∂x

(i) = 0. Since p = i is a point of Nf \(Df∪Wf ), we deduce that (df , wf ,mf ) =
(2, 2, 2).

22



10. Let f(x) := x2. Evidently, Wf = ∅. By a direct computation, it is immediate to verify that
Nf = Df = Im(H). Consequently, (df , wf ,mf ) = (3,−1,−1).

11. Let f(x) := x3 + 3x. By a direct computation, we easily see that Df is the tridimensional
hyperboloid 3Re(x)2 − | Im(x)|2 +3 = 0, Wf = ∅ and Nf \ (Df ∪Wf ) = SH. Consequently,
(df , wf ,mf) = (3,−1, 2).

We summarize the data of above examples in the following diagram, in which we add nf :=
dim(Nf ) = max{df , wf ,mf}.

f ∈ SRCi
(Ω) \ SC(Ω), Ω = H \ R df wf mf p ∈ Nf \ (Df ∪Wf ) nf

1. f(x) := x −1 −1 −1 none −1
2. f(x) := x2 − 2xi −1 −1 2 p = i 2
3. f(x) := xη(x) −1 2 −1 none 2

4. f(x) := η(x)ex, ex := ez
2
x−2zxi −1 2 2 p = i 2

5. f(x) := η(x)zx − ηc(x) 1
zx

−1 3 −1 none 3

6. f(x) := η(x)ex − ηc(x) 1
ex

−1 3 2 p = i 3

7. f(x) := (x2 + 4)(x2 − 2xi− 1) 2 −1 2 p = i 2
8. f(x) := η(x)(z2x + 1) 2 2 −1 none 2
9. f(x) := η(x)(z2x − 2zxi+ 3) 2 2 2 p = i 2

10. f(x) := x2 3 −1 −1 none 3
11. f(x) := x3 + 3x 3 −1 2 p = i 3

Note that slice regular functions f ∈ SR(Ω) defined in the preceding examples 1, 2, 7, 10
and 11 extend to slice regular functions f ∈ SR(H), which give all the five possible values of
(df , wf ,mf ) predicted in Theorem 6.12.1.

Remark 6.16. If f ∈ S̃RR(Ω)\SC(Ω), then dimy(Df ) ∈ {−1, 3} for every y ∈ Ω = ΩD. Indeed,
without loss of generality we can assume that f = I(F1 + ıF2) ∈ SRR(Ω) \ SC(Ω). Then the
degenerate set Df is the circularization of the zero set V (F2) of the (real-valued) real analytic
function F2. Since F2 is harmonic and non-constant, V (F2) is empty or it is a real analytic
curve of D without isolated points. By Proposition 5.5 and Theorem 6.12, we know that, if
f ∈ S̃RR(Ω) \ SC(Ω), then

(df , wf ,mf ) ∈ {(−1,−1,−1), (−1,−1, 2), (3,−1,−1), (3,−1, 2)}.

All these four dimensional configurations can happen. For example, if Ω = H \ R, the va-
lues (−1,−1,−1), (3,−1,−1) and (3,−1, 2) are assumed for the above-mentioned slice functions
f(x) := x, f(x) := x2 and f(x) := x3 + 3x, respectively. Let f : H \ {0} → H be the slice regular
function f(x) := x − x−1. Note that f ′

s(x) = 1 + |x|−2, so Df = ∅; Wf = ∅ as well, because

H \ {0} is a slice domain. Since ∂f
∂x

(i) = 0, we have that (df , wf ,mf ) = (−1,−1, 2).

7 A boundary univalence criterion

We conclude this work by presenting one more result coming from the sign property of the
Jacobian of a slice regular function f ∈ SR(Ω) and from the lightness of f away from Cl(Df )∪Wf .
It extends to four dimensions a classical univalence theorem (see e.g. [35, Lemma 1.1]), which
states that if f is holomorphic on an open neighborhood of a closed disc D and injective on the
boundary of D, then f is injective on the whole D.
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Given any subset S of H, we denote by ClH(S) and ∂HU the closure and the boundary of
U in H, respectively. Recall that, if S ⊂ Ω, Cl(S) denotes the closure of S in Ω and hence
Cl(S) = ClH(S) ∩ Ω.

Theorem 7.1. Let f ∈ SR(Ω) and let U be a non-empty bounded connected open subset of Ω
(not necessarily circular) such that ClH(U) ⊂ Ω \ (Cl(Df ) ∪Wf ) and f(∂HU) = ∂Hf(U). If f is
injective on ∂HU , then f is injective on ClH(U) and Nf ∩ U = ∅.

Proof. Since ∅ 6= ClH(U) ⊂ Ω′ := Ω \ (Cl(Df ) ∪ Wf ), point 1 of Theorem 6.4 implies that
f 6∈ SC(Ω). Now, thanks to Theorem 6.5, f(U) is open in H and hence f(U) ∩ ∂Hf(U) = ∅. Let
d denote the Brouwer degree of f |U on the connected component of H \ f(∂HU) = H \ ∂Hf(U)
containing the connected set f(U). Since for regular values y ∈ f(U) of f |U it holds det(Jf (x)) >
0 for every x ∈ f−1(y) ∩ U , d is equal to the cardinality of f−1(y) ∩ U , whence d ≥ 1.

Let us show that d = 1. Suppose on the contrary that d ≥ 2. Denote by g : ClH(U) → H

the restriction of f to the compact subset ClH(U) of Ω′. Corollary 5.3 implies that g has finite
fibers. From Theorem 6.12, it follows that dim(Nf ∩ Ω′) ≤ 2. Moreover, thanks to Corollary 2
and Theorem VI 7 of [28, p. 46 and pp. 91-92], we deduce that the topological dimension of ∂HU
is equal to 3 and the compact set N∗ := g−1(g(Nf ∩ClH(U))) has topological dimension ≤ 2. In
particular, (∂HU) \ N∗ 6= ∅. Choose x ∈ (∂HU) \ N∗ ⊂ (∂HU) \ Nf and an open neighborhood
V of x in Ω′ such that f |V is injective. Let {xn}n be a sequence in (U ∩ V ) \ N∗ converging
to x. Since d ≥ 2, f |V is injective and each value f(xn) is a regular value of f |U , there exists
x′n ∈ U \V such that f(x′n) = f(xn). Extracting a subsequence if necessary, we can assume that
{x′n}n converges to some x′ ∈ ClH(U) \ V . It follows that f(x′) = f(x) ∈ f(∂HU). If x′ ∈ U
then f(x′) ∈ f(U) ∩ f(∂HU) = f(U) ∩ ∂H(f(U)) = ∅, which is impossible. Therefore x′ ∈ ∂HU ,
contradicting the injectivity of f on ∂HU . This proves that d = 1.

Let us show that f |U is injective. Suppose on the contrary that there exist p1, p2 ∈ U such
that f(p1) = f(p2). Take disjoint neighborhoods U1 of p1 and U2 of p2 in U . By Theorem 6.5,
the sets f(U1) and f(U2) are open in f(U). Consequently, f(U1) ∩ f(U2) is a non-empty open
neighborhood of f(p1). Since the topological dimension of g(Nf ∩ ClH(U)) is ≤ 2, we have that
M∗ := (f(U1) ∩ f(U2)) \ g(Nf ∩ ClH(U)) 6= ∅. Fix y ∈M∗. Observe that y is a regular value of
f |U , U1 ∩ f−1(y) 6= ∅ and U2 ∩ f−1(y) 6= ∅. This implies that d ≥ 2, which is a contradiction.
We have just proved that f |U is injective.

Since f |∂HU is injective and f(∂HU)∩ f(U) = ∅, it turns out that f |ClH(U) is injective as well.
The equality Nf ∩ U = ∅ was proved in Theorem 6.11.

In the preceding statement, condition ‘f(∂HU) = ∂Hf(U)’ cannot be omitted. Indeed, in
our next and last example, we give a slice regular function f : H \ {0} → H and a non-empty
circular bounded connected open subset U of H\{0} such that Df =Wf = ∅, ClH(U) ⊂ H\{0},
f(∂HU) 6= ∂Hf(U), f is injective on ∂HU , but f is not injective on U .

Example 7.2. Let f : H \ {0} → H be the slice regular function f(x) := x − x−1 and let
U := {y ∈ H : 1

3 < |y| < 4}. Note that f ′
s(x) = 1 + |x|−2, so Df = ∅; Wf = ∅ as well, because

(H \ {0}) ∩R 6= ∅. It holds Nf = S. It is also evident that ClH(U) ⊂ H \ {0}.
Let us prove that f(∂HU) 6= ∂Hf(U). For each r > 0, define Sr := {y ∈ H : |y| = r}. Note

that ∂HU = S 1
3
∪ S4. In this way, 8

3 = f(− 1
3 ) ∈ f(S 1

3
) ⊂ f(∂HU). On the other hand, 3 is a

point of U , f(3) = 8
3 , det(Jf (3)) = |1 + 3−2|4 6= 0 by Theorem 4.1, and hence 8

3 6∈ ∂Hf(U).
Let us show that f is injective on ∂HU . First, note that f(S 1

3
)∩ f(S4) = ∅. Indeed, if v ∈ S 1

3

and w ∈ S4, it holds:

|f(v)| = |v2 − 1||v|−1 ≤ |v|+ |v|−1 = 10
3 < 15

4 = |w| − |w|−1 ≤ |w2 − 1||w|−1 = |f(w)|.
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Let r ∈ { 1
3 , 4}. We have to show that f is injective on Sr. Note that f(x) = (|x|2x− x)|x|−2 =

(|x|2− 1)|x|−2Re(x)+ (|x|2 +1)|x|−2Im(x) for each x ∈ H \ {0}; consequently, f−1(R) = R\ {0}.
Thanks to the latter equality and to the fact that f is slice preserving, it suffices to prove that f
is injective on Sr ∩ Ci. Define the function fr : [0, 2π) → H by fr(t) := f(r cos(t) + ir sin(t)) =
(r − r−1) cos(t) + i(r + r−1) sin(t). Since r 6= 1, we have that r − r−1 6= 0; as a consequence, fr
is injective. This proves the injectivity of f on the whole ∂HU .

The function f is not injective on U ; indeed, 2 and − 1
2 belong to U , and f(2) = 3

2 = f(− 1
2 ).
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dimensional space. Birkhäuser Verlag, Basel, 2008.

[28] W. Hurewicz and H. Wallman. Dimension Theory. Princeton Mathematical Series, v. 4.
Princeton University Press, Princeton, N. J., 1941.

[29] T. Y. Lam. A first course in noncommutative rings, volume 131 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1991.

[30] S. Lojasiewicz. Triangulation of semi-analytic sets. Ann. Scuola Norm. Sup. Pisa (3),
18:449–474, 1964.

26



[31] J. Mawhin. Simple proofs of various fixed point and existence theorems based on exterior
calculus. Math. Nachr., 278(12-13):1607–1614, 2005.

[32] R. Narasimhan. Introduction to the theory of analytic spaces. Lecture Notes in Mathematics,
No. 25. Springer-Verlag, Berlin-New York, 1966.

[33] A. Perotti. Fueter regularity and slice regularity: meeting points for two function theories.
In G. Gentili, I. Sabadini, M. V. Shapiro, F. Sommen, and D. C. Struppa, editors, Advances
in Hypercomplex Analysis, Springer INdAM Series. Springer, Milan, 2013.

[34] A. Perotti. Slice regularity and harmonicity on Clifford algebras. In Topics in Clifford
Analysis – Special Volume in Honor of Wolfgang Sprößig, Trends Math. Springer, Basel,
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