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Abstract 

Mechanical milling is a suitable technique to enhance various properties of copper by the severe 

plastic deformation involved during the process. Contamination from milling media is one of the 

major problems of mechanical alloying. In this study, the behaviour of copper powder during 

mechanical milling was investigated in order to minimize iron and chromium contaminations. Hence, 

three different parameters have been studied to highlight the high influence of ball milling parameters 

on the final products. The parameters included the type of process control agent (none, toluene or 

stearic acid), the ball-to-powder weight ratio (33:1 or 10:1) and finally, a change in the milling cycle 

(interrupted or continuous) in an interactive procedure according to the experimental results. As a 

result, the best morphology and contamination level combination was observed in powder milled with 

stearic acid; it was 10:1 for the ball to powder ratio when using a continuous milling cycle. Once the 

best milling conditions were determined, the resulting samples were exposed to spark plasma sintering 

(SPS). The sintering parameters were selected based on a previous thermal gravimetrical measurement 

of the milled powders to avoid residual porosity. The final density of all of the samples is very good, 

99%, confirming an effective densification process and sintering activated by severely strain-hardened 

and nanostructured particles. 
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1 Introduction 

Mechanical alloying is a solid-state powder processing technique involving repeated welding, 

fracturing and re-welding of powder particles in a high-energy ball mill [1]. In recent years, ball 

milling has attracted considerable interest due to the wide range of materials exhibiting good 

properties that can be fabricating using this process, especially in the production of metal matrix 

composites [2-5]. A major issue with this process is the contaminations that arise from the milling 

medium and the atmosphere [6-8]. Copper contaminations could negatively affect the electrical and 

thermal conductivity by acting as a barrier to the electrical and thermal flow [6-9]. Even if milling in a 
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highly pure inert atmosphere or a vacuum avoids contaminations from the atmosphere [1], 

contaminations resulting from the milling medium are unavoidable. Contaminates depend on the 

nature of the raw materials [10-12] and the milling conditions. Here, the importance of optimizing the 

milling parameters are discussed [13].  

It was found that metallic powder can easily form a thin coating on the surface of grinding balls and 

the inner walls of the containers, especially in the case of ductile powders [14]. This coating may 

decrease contamination by preventing the milling medium from contacting the milled powders [15]. 

Creating a ductile coating on the milling medium surface prior to the addition of the hard particles 

could be a good solution in the production of metal matrix composites. Process parameters such as the 

use of a process control agent, the ball-to-powder weight (charge) ratio and the milling time play an 

important role in the nature and kinetics of the formation of the protective layer [1].  

The use of a process control agent (PCA) overcomes the contamination of the final powder caused by 

the repeated collision that the powders sustain against the grinding bodies [6]. Moreover, in the 

absence of a process control agent, there is a predominance of welding events over the fractures, 

which resulted in the production of hollow spherical particles up to millimetres in diameter [9; 16]. 

Therefore, it is also important to inhibit welding events to produce a fine powder, and it is generally 

necessary to use a specific process control agent or to cool the vial by an interrupted milling cycle [1]. 

The choice of a PCA depends on the nature of the powder being milled and the purity of the final 

products [17-19].  

Another important variable in the milling process is the ball-to-powder mass ratio (BPR). At a high 

BPR, the number of collisions per unit time increases; consequently, more energy is transferred to the 

powder particles. Mechanical alloying occurs faster [20-21], but at the same time, the abrasion of the 

milling medium increases at a high BPR. Moreover, a high BPR decreases the milling time while 

increasing the internal temperature, which may promote unwanted reactions [22].  An interrupted 

cycle is, therefore, preferable in order to cool the vial, even if it increases the milling time.   
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Mechanical alloying refines the structure of the powders, leading to ultrafine and nanosized grain size. 

Such features are required to be maintained during sintering to obtain materials with high mechanical 

resistance. Spark plasma sintering (SPS) is perhaps the most suitable technology for this purpose. The 

simultaneous application of pressure and pulsed continuous current, the fast heating rate and the short 

sintering time make SPS an excellent technology by which highly dense, bulk, ultrafine and 

nanostructured materials can be obtained [23-28].  

The objective of this study was to systematically investigate how milling conditions affect 

contamination in the milled powder. Moreover, the decomposition of PCA has been analysed to 

determine the parameter of the SPS cycle to minimize the residual porosity. Meanwhile, the 

morphology of the milled powders, the microstructure, the density and the hardness of the sintered 

products were also investigated. 

2 Materials and Method 

A water atomized copper powder (99.55%) was used. Mechanical milling was conducted in a Fritsch 

Pulverisette 6 planetary mono mill at 400 rpm in a vacuum (0.13 mbar). A 0.5%wt PCA of either toluene 

or stearic acid was added. Vials and spheres in 100Cr6 (63 HRC) with diameters of 10 mm were used to 

obtain ball-to-powder ratios of 33:1 and 10:1 (in mass). Two different milling strategies were investigated: 

interrupted operation at 2 minutes on and 9 minutes off for an effective total milling time of 20 (time I) 

and 200 minutes (time II); continuous cycles for the same effective time period. In Table 1, all of the 

different milling conditions are reported. The powder morphology was characterized by quantitative 

image analysis of the metallurgical cross sections of the particles. To obtain statistical support, at least 10 

optical micrographs for each sample were considered. Two distinct parameters were analysed, namely, the 

particle cross sectional area and the aspect ratio, i.e., the ratio between the maximum and minimum length 

of each particle. The first parameter is representative of the particle size, while the second is representative 

of the particle morphology. The iron and chromium contamination of the powder was measured by an 

inductively coupled plasma mass spectrometry (ICP), while oxygen and carbon content were measured by 

combustion analysis (LECO). The same analyses were carried out on the sintered samples. Thermo-
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gravimetrical analyses of the milled powders were carried out in an argon atmosphere at a temperature of 

up to 1060°C and with a heating rate of 20°C/min; these analyses were combined with quadrupole mass 

spectrometry STA409CD (Netzsch). The powders were sintered in a DR.SINTER® SPS1050 (Sumitomo 

Coal & Mining, now SPS Syntex, Inc.) apparatus with graphite punches and dies. All samples had 

cylindrical geometry with a height of 5 mm and a diameter of 20 mm. SPS was performed at a nominal 

temperature (measured with a thermocouple inserted into a blind hole in the die wall) of 950°C, with a 

uniaxial pressure of 30 MPa applied at 700°C. The heating rate was 100°C/min up to 900°C and 50°C/min 

up to the sintering temperature. The maximum temperature and pressure were held for 1 and 3 minutes, 

respectively, before allowing the furnace to cool to room temperature. The density of the SPS-processed 

pellets was measured according to Archimedes’ principle, considering the theoretical densities of pure Cu 

as 8.96 gm/cm
3
. Vickers micro-hardness of sintered samples was measured using a Vickers Paar MHT-4 

micro-indenter by applying a load of 0.5 N at a rate of 0.05 N/s and with a dwell time of 10 s. Scanning 

electron microscopy (SEM) was performed with a Philips XL30 apparatus for the observation of the 

powder and of the fracture surface of the sintered specimens. The metallographic cross section of the 

sintered samples was obtained by precision micro-cutting with a diamond blade. Standard metallographic 

preparation was also accomplished, including grinding with SiC papers up to 4000 grit, final polishing 

with 3-μm and 1-μm diamond pastes, and chemical etching with 120 mL of distilled water, 30 mL of 

hydrochloric acid and 10 g of iron chloride [29]. The microstructure was also evaluated using an optical 

microscope.  

3 Results and discussion 

3.1 Powder characterization 

Figure 1 shows a SEM micrograph of the atomized Cu powder and a metallographic cross-section 

obtained using the optical microscope. Copper is characterized by the irregular morphology typical of the 

water atomization process and by particle sizes smaller than 75 microns.  Figure 2 shows the SEM 

micrographs of the milled powder. The particle size increases after mechanical milling because copper is 

very ductile; this favours the predominance of welding events over fracturing actions. The particle size 
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increases with milling time, and the morphology changes towards a flake shape, especially without any 

PCA use. The benefit of using a PCA is evident because it impedes the clean metal-to-metal contact 

necessary for cold welding and leads to the dispersion of aggregates. In turn, milling efficiency is 

improved, especially in the case of toluene (Fig. 2). Additionally, the image analysis results confirm the 

effectiveness of PCA in reducing the particle size (Fig. 3). When using toluene after 200 minutes, the 

particles are smaller (Fig. 2 cI-II), more uniform and more equiaxed than after 20 minutes (Fig. 3b). 

Instead, when using stearic acid, the particles show intense flake morphology and a size decrease after 20 

minutes (Fig. 3a). Meanwhile, increasing the milling time allows the particles to become larger and 

thicker because welding prevails on fracturing and the aspect ratio tends to decrease due to the 

achievement of a more equiaxed morphology (Fig. 3b). Nevertheless, particle size is smaller than in the 

case of dry milling (Fig. 2 dII-bII), and the improved morphology using toluene and stearic acid is 

highlighted by the lower aspect ratio after 200 minutes of milling (Fig. 3b). From the morphological point 

of view, toluene is the best process control agent due to its high wettability, which allows intense 

fragmentation of the particles for a longer milling time and results in powders that are fine and uniformly 

sized, even after 200 minutes. 

PCA has two effects on ball milling. One effect is the decrease of the viscosity of the slurry of the powder 

mixture which enhances the grinding rate [19]. The other effect is the reduction of wear on the hard and 

brittle balls and, in turn, of the contamination of the milled powder. The second benefit is attested to by 

the ICP test, as shown by the results of the chemical analysis of the milled powder reported in Figure 4, 

relevant to the interrupted cycle with a ball-to-powder ratio of 33:1. 

The content of Fe end Cr impurities in the milled powder increases when the milling time increases. 

The lowest amount of contamination is observed when using stearic acid; for example, with reference 

to dry milling, the iron contamination decreases from 0.25% and 0.35% after 20 and 200 minutes, 

respectively, to 0.04% and 0.06%. Stearic acid aids in the creation of a protective layer all over the 

balls and the vial. This avoids the excessive abrasion of the milling medium caused by the high impact 

events. This result is very important for those applications using copper that have a relationship with 
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its outstanding electric and thermal properties [6; 9]. Therefore, in spite of the larger particle size 

obtained with the stearic acid with respect to toluene, the former PCA was selected for the next step in 

this work. 

The influence of the BPR has also been studied, and Figure 5 shows the powder morphology after 

milling with a BPR of 10:1.  

In Figure 5, the morphology of the powder changes drastically towards a lamellar morphology, 

especially after 200 minutes, compared to Figures 3dI-II. After 20 minutes of milling, the powder 

presents a flaky morphology, but the particles are thicker than after being milled for 200 minutes. With 

a large BPR, mechanical milling has the tendency to produce larger aggregates with an increased 

milling time due to the higher amount of impact events and the increase in the internal temperature 

[15; 17]. Instead, with a small BPR, fracturing predominates the welding, especially for long milling 

times (Fig. 5e-II). Less heat input due to the use of a lower BPR does not require cooling pauses, and 

this allows for the replacement of the interrupted cycle with the continuous one. The final product 

must guarantee the requested properties. The morphology of the powder from the continuous cycle is 

shown in Figure 6. It is clear that the particle dimensions are not increased with respect to the 

interrupted cycle, and no aggregates are present. Especially for a longer milling time, the powder still 

shows a lamellar morphology but a smaller size than in the case of an interrupted cycle.  

As far as contamination is concerned, the choice of a lower BPR and a continuous cycle seems to be 

the right one, as shown in Table 2. Chromium contamination is not reported because it was 

approximately zero compared to the previous results. It is evident how decreasing the ball-to-powder 

ratio from 33:1 to 10:1 significantly decreases the amount of Fe contamination.  

According to the present results, the continuously milled copper powder with 0.5wt% stearic acid, a 

BPR of 10:1 and a continuous cycle have been selected for the next sintering process.  

The presence of stearic acid may result in C and O contamination that may affect the behaviour of the 

powder during sintering. In Table 3, the amount of oxygen and carbon after milling are reported.  
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The oxygen and carbon contents increase significantly. The higher level of oxygen after 200 minutes 

of milling is associated to the oxidation of the powder occurring during ball milling. In Figure 7, the 

results of the TGA are displayed for atomized copper and for copper milled for 20 and 200 minutes 

with stearic acid. The diagram of the atomized copper shows a continuous mass loss until 500°C is 

reached. Conversely, the milled powder shows a higher mass loss with an increase in milling time, 

indicating that three different events occurred at different temperatures, i.e., 150°C, 300°C and 450°C. 

According to quadrupole mass spectrometry, these events could be correlated with different gas 

emissions, as follows: 

(a) 100°C - 1000°C, continuous water evaporation; 

(b) 300°C, water evaporation and production of CO and especially CO2; 

(c) 450°C, H2 production. 

In the case of atomized copper, only water evaporation occurs as long as a continuous weight loss has 

been detected by the TGA up to 500°C and no PCA is present. In the case of milled powder, the slope 

of the TGA curve also depends on the mass of the evaporated element. For this reason, the second 

segment (300°C) presents a higher slope due to the higher mass of CO and CO2 than that of the H2O 

and H2 molecules. The powder milled for 20 minutes exhibits intermediate behaviour because the 

milling time is not sufficient to ensure a complete homogenization of the powder. In this way, the test 

is affected by the powder batch selected. In fact, the CO2 peak at 300 °C is less evident compared to 

the case of the powder milled for 200 minutes; this is due to the incomplete dispersion of stearic acid 

in the powder. From these results, in order to allow proper decomposition of the stearic acid and to 

avoid any gas entrapment favouring porosity, the pressure during SPS will be applied only when the 

temperature reaches 700°C. 

 

3.2 Spark Plasma Sintering 

Figure 8 displays the load and vacuum curves during the SPS cycle for the atomized and mechanically 

milled powders. First, there is an excellent correspondence between the vacuum trend (Fig. 8) and the 
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ion current recorded by quadrupole mass spectroscopy (Figs.7a-b-c). This agreement highlights the 

reliability of the vacuum level as a useful measurement for the analysis of gas emissions. Finally, the 

residual oxygen and carbon measurements after sintering were completed, and the results are reported 

in Table 4.  

It is clear how the amounts of oxygen and carbon are drastically decreased during sintering. An 

important result is that the amount of oxygen and carbon residual is halved after sintering, confirming 

the release of some gases, especially CO and CO2. The final oxygen content (0.21 and 0.37%) can be 

attributed to the presence of magnesium in the starting powder, which easily oxidizes at high 

temperature and promotes the formation of stable magnesium oxide [30]. Figure 9 displays the lower 

punch displacement curves for the as atomized powder (dashed line) and the milled powder after 20 

minutes (solid line) and after 200 minutes (bold line), respectively. Notably, the sharp displacement at 

700°C is due to the pressure application at this temperature. 

The displacement curve is widely accepted as a densification measure as a function of the sintering 

temperature. However, in spite of the high and similar density after sintering (99%) (Table 5), the final 

displacement of the atomized powder (7 mm) is much higher than that of the milled powders (~4 mm).  

The reason for this apparently anomalous behaviour is found in the apparent density of the two powders. 

The milled powder is characterized by a flaky morphology and smaller particle size (Fig. 6 fI-II) than the 

atomized copper (Fig. 1). This promotes a high packing factor associated with a higher apparent density 

[31-34]. It is also believed that the presence of residual stearic acid in the milled powder aids the particle 

rearrangement by its lubricating action. Finally, it is clear that this powder can reach the same density with 

a shorter punch stroke and, therefore, a lower final displacement. Figure 9 shows that, in all cases, the 

displacement reaches a plateau, confirming the complete densification. 

The densification behaviour can be studied considering two parts of the displacement curves, namely, 

before and after the application of pressure at 700°C. For comparison purposes with previous results [32], 

the first displacement derivative, which represents the densification rate, is reported as a function of the 

sintering temperature (Fig. 10).  
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Under a load-free densification regime, the atomized powder starts to densify at 400°C (dashed line). The 

punch displacement corresponds to a first peak at approximately 600°C (Fig. 10), which could be 

correlated with the previously determined bulk deformation values of Cu powders [32]. According to [32-

37], atomized Cu is not yet sintered at such a low temperature because the mass transport phenomena 

responsible for the neck formation and growth mainly occurs between 650°C and 900°C. When the 

pressure is applied at 700°C, the atomized powder shows a severe displacement increase because the 

deformation extends to the core of the particles, improving densification. The high compressibility of the 

atomized powder promotes a full densification associated with a higher displacement rate. In the case of 

the atomized powder, the densification process is successfully completed at 900°C when the displacement 

rate drops to zero. 

Powders milled for 20 minutes show an intermediate behaviour between those of the atomized and long-

time milled powders because the powders had not been uniformly milled. A first peak is evident at 400°C, 

followed by a second peak at 600°C; these could be correlated to the bulk deformation. When the load is 

applied, a third peak is evident at 750°C, which is less intense than in the case of the atomized powder 

because milled powders oppose a greater deformation resistance due to the strain hardening caused by 

milling. 

The displacement curves of the powders milled for 200 minutes (Fig. 9) show a gradual and progressive 

densification from the start of the process, i.e., still at very low temperature (>100°C). This behaviour 

highlights an activation of the process induced by the different morphology and the higher sinterability of 

the milled powders. First, the electrical resistance R= h/S (=el. resistivity of Cu, h=sample thickness, 

S=contact area between particles) decreases with the extension of the contact area [36]. This is ultimately 

reflected in an enhanced local deformation of the flake particles. Moreover, powders subjected to 

extensive mechanical milling undergo severe strain hardening and strong reduction of the crystallite size, 

allowing nanostructuring and an increased powder sinterability. For both these reasons, the bulk 

densification of the milled powder is also promoted by sintering. This supports the higher densification of 

milled powders for 200 minutes, as demonstrated by the higher displacement during the first regime (Fig. 
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9). Furthermore, the displacement rate of milled powder at 600°C is lower than the displacement rate of 

atomized copper because the densification begins earlier and occurs more gradually than in atomized 

powder.  

Under pressure, the displacement of milled powders is lower because most of the densification and 

sintering occurred in the previous step. The lower densification, also evidenced by the lower intensity of 

the displacement rate peak, can be attributed at least in part to the heavy plastic deformation induced by 

milling. In the case of milled powder, the densification the process is successfully completed at 850°C 

(Fig. 10). To better investigate the effectiveness of sintering, specimens were broken to observe the 

fracture surfaces, which are reported in Figure 11.  

The fully dimpled surfaces prove the ductile nature of the fractures and the effective consolidation of 

the material, especially for atomized powder. In the milled sample, the morphology of the dimples and 

the elongated perpendicularly to the deformation direction are clearly affected by the heavy straining 

of particles during mechanical milling. Additionally, a microstructural analysis has been completed, 

and the micrographs are reported in Figure 12. 

The sample sintered from the atomized powder (Fig. 12a) shows a uniform microstructure; however, 

the sample from the milled powders (Fig. 12b-c) shows an intrinsic anisotropy due to its flaky 

morphology, especially for powder milled for 200 minutes.  

As stated previously, the relative density of the samples from the milled powder is equal to the density 

from the atomized powder (99%), in spite of the higher hardness of the first powders (Table 5). This is 

supported by hardness measurements, which highlight a greater hardness for the milled samples even 

after sintering. It can be concluded that high temperature exposure, even if for a short time, does not 

completely remove the strain hardening effects induced by milling. Mechanical milling induces a 

hardness increase, and the promotion of hardening by longer milling times is confirmed by the higher 

hardness values after 200 minutes of milling. The measurements have been carried out on the surface, 

parallel to the direction of the force applied during SPS, even on the perpendicular surface. In this 

way, the intrinsic anisotropy is analysed for all of the powders. Even the starting powder shows a 
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difference between the two directions, so the anisotropy is related both to the morphology of the 

milled powder and to the sintering process. When the hardness load measurement is taken parallel to 

the compaction direction, the hardness is higher than in the opposite case.  

4 Conclusions 

In the first section of this study, the effect of different milling conditions was studied based on the use of 

stearic acid as a process control agent aiding the creation of a protective internal layer over the milling 

medium to overcome the contaminations problem. The use of a ball-to-powder ratio of 10:1 instead of 

33:1 considerably reduces the Fe and Cr contamination; moreover, it reduces the involved high impact 

energy and its associated increase in temperature. The lower heat input due to the lower BPR allowed 

cooling pauses to be avoided during milling, so the interrupted cycle was replaced with a continuous 

cycle. The absence of a pause to cool the temperature during milling did not negatively affect the final 

particle size or the contamination level. The TGA analysis allowed the best sintering cycle to be 

determined in order to limit the residual porosity of the final product. The SPS cycle could be properly 

designed with pressure (30 MPa) application at 700°C for 3 minutes and sintering at 950°C for 1 minute. 

In the second study section, densification and sintering was investigated. Densification is promoted by the 

correct evaporation of the residual gases of the process control agent during sintering. The final density of 

all of the samples is very good at 99%, confirming an effective densification process and sintering 

activated by severely strain-hardened and nanostructured particles. Moreover, the hardness increases with 

milling time, showing an intrinsic anisotropy due to both the high flaking level and the direction of the 

compaction pressure. 
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Step Sample PCA BPR Effective Time Cycle 

1 

b-I - 33 20 Interrupted 

b-II - 33 200 Interrupted 

c-I Toluene 33 20 Interrupted 

c-II Toluene 33 200 Interrupted 

d-I Stearic acid 33 20 Interrupted 

d-II Stearic acid 33 200 Interrupted 

2 
e-I Stearic acid 10 20 Interrupted 

e-II Stearic acid 10 200 Interrupted 

3 
f-I Stearic acid 10 20 Continuous 

f-II Stearic acid 10 200 Continuous 

Table 1: Different milling parameters 

 
Fe contamination (%) 

Milling Time 

(min) 

BPR 33:1 

Interrupted 

BPR 10:1 

Interrupted 

BPR 10:1 

Continuous 

20 0.04 0.01 0.01 

200 0.06 0.01 0.01 

Table 2: Fe contamination as function of ball to powder ratio (BPR) and type of cycle 

 

LECO Analysis 

Sample 
Powder 

O (%) C (%) 

Cu 0.14 0.01 

Cu + 0.5wt% S.A: milling time 20 min 0.49 0.36 

Cu + 0.5wt% S.A: milling time 200 min 0.84 0.34 

Table 3: Oxygen and Carbon contaminations in atomized and milled copper powders 

LECO Analysis 

Sample 
SPS 

O (%) C (%) 

Cu 0.02 0.01 

Cu + 0.5wt% S.A: milling time 20 min 0.21 0.06 

Cu + 0.5wt% S.A: milling time 200 min 0.37 0.14 

Table 4: Oxygen and Carbon contaminations after sintering 

 

Sample Relative density 

(%) 

HV 0.05 Perpendicular HV 0.05 Parallel 

Cu 99 94 110 

Cu + 0.5wt%S.A.:milling time 20 min 99 105 124 

Cu + 0.5wt%S.A.:milling time 200 min 99 124 137 

Table 5: Relative density and hardness measurements 
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Graphical abstract 
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Highlights 

The use of stearic acid as surfactant limits the milling medium contaminations 

Decomposition of residual stearic acid occurs by the emission of H2O, CO2, CO and H2 

Reliability of vacuum level of SPS as a measurement of gases emission is proved 

Residual porosity is properly avoid by an optimized sintering cycle 

 

 


