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ABSTRACT This paper presents a tri-objective Optimal Phasor Measurement Units (PMUs) Placement
(OPP) strategy that is focused on the minimization of i) the total number of PMU channels, ii) the maximum
state estimation uncertainty based only on high-rate PMU data and iii) the sensitivity of state estimation
to line parameter tolerances. The proposed formulation keeps into account system observability with and
without contingencies due to single-line and PMU faults. Also, it includes the effect of possible zero-injection
buses and a-priori constraints on both the number of PMU channels and the type of PMU measurements
performed at each bus. Due to the nonlinear combinatorial nature of the proposed OPP problem, this is solved
through a custom implementation of the nondominated sorting genetic algorithm II (NSGA-II). The analysis
of the proposed OPP strategy is focused on distribution systems. The placement results obtained using four
test systems of different size show that increasing the number of buses instrumented with PMUs and/or the
number of PMU channels beyond given thresholds just leads to larger costs with negligible further reductions
in both state estimation uncertainty and sensitivity to line parameters tolerances. Moreover, if PMUs with
just two three-phase channels are used, we can avoid instrumenting between 30% and 40% of buses with
a minor impact on state estimation performance even in the case of contingencies. This percentage can be
slightly increased if multi-channel PMUs are used. However, this choice generally is not profitable.

INDEX TERMS Distribution system state estimation, multi-objective optimization, optimal PMU place-
ment, phasor measurement unit (PMU), power systems monitoring.

I. INTRODUCTION
Phasor Measurement Units (PMUs) are measuring devices
conceived to collect estimates of magnitude, phase, fre-
quency and rate of change of frequency of current or voltage
AC waveforms synchronized to the Coordinated Universal
Time (UTC) with reporting rates in the order of tens of
Hz [1]–[3]. The PMUs typically deployed in power trans-
mission systems since the ‘90s have played a key role for
protection purposes, namely to detect faults or other impend-
ing critical operating conditions timely. Unfortunately, due to
the high equipment cost and the huge amount of data that is
supposed to be collected by the so-called Phasor Data Con-
centrators, the deployment of PMUs is notoriously a delicate
problem, which is further complicated by the need to ensure
adequate system observability.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lin Zhang .

While the vast majority of research works on Optimal
PMUPlacement (OPP) relies on a cumulative single objective
function and is focused on transmission system deployment,
the main contribution of this paper is threefold, i.e.

• the definition of a multi-objective strategy where con-
trasting goals are considered;

• the inclusion of constraints not only for observability
under contingencies, but also on the number and the type
of PMUmeasurements that can be performed at each bus
(this aspect is disregarded in many papers on OPP);

• the focus on distribution systems, which is an emerging
field of application for PMUs.

The objective functions considered in this paper are: the
total number of PMU channels (which is one of the fac-
tor that most strongly affects the growth of instrumental
cost), the maximum state estimation uncertainty (assuming
that only high-rate PMU measurements are used) and the
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maximum sensitivity of state estimation uncertainty to line
parameter tolerances. Such objective functions are optimized
under different conditions, ranging from basic system observ-
ability to the ability to withstand critical contingencies such
as single-line outages or the loss of data from a PMU. Given
the tri-objective nonlinear formulation of the problem at
hand, a custom implementation of the Nondominated Sorting
Genetic Algorithm II (NSGA-II) is used to find the PMU sites
minimizing at least one objective function [4], namely the
Pareto frontier of the set of possible solutions [5].

Even though the proposed formulation can be applied to
any kind of power system, the results reported in this paper
refer specifically to the case of distribution systems because
nowadays the so-called distribution-level PMUs are regarded
as essential for real-time smart-grid and micro-grid future
flexible operations under changeable conditions of load and
generation [6]–[8]. Moreover, the chosen OPP strategy is
more suitable to the case of distribution systems due to the
large potential number of buses and quantities to bemeasured,
the greater uncertainty affecting grid line parameters and, last
but not least, the need to estimate state variables (e.g., the bus
voltage phasors) that differ from one another much less than
at the transmission level.

The rest of the paper is structured as follows. Section II
highlights more in detail the specific and novel features of
the proposed approach with respect to other OPP solutions.
In Section III the tri-objective OPP problem is formalized
and, after a general overview, the individual objective func-
tions are defined and justified. Section IV provides a short,
but exhaustive explanation of how the NSGA-II is imple-
mented and initialized in the case at hand. In Section V,
the results of the proposed OPP strategy using four test
distribution systems of increasing size are reported con-
sidering different constraints. Finally, after a cost analysis
example in Section VI, the main conclusions are drawn in
Section VII.

II. RELATED WORK
As outlined in the Introduction, most of the OPP problem
formulations rely on a single objective function. Their main
goal is to minimize PMU deployment cost (or sometimes
simply the total number of PMUs), while preserving full
system observability (namely the ability to estimate the state
of the whole grid at a given time), although some studies
on OPP in the case of incomplete observability were also
conducted, e.g. in [9].

Since both the total PMU deployment cost and the topo-
logical observability generally depend linearly on the number
of PMUs, initially the OPP problem was solved by using
standard integer (usually binary) linear programming opti-
mization methods [10]. For instance, an OPP Integer Linear
Programming (ILP) formulation was proposed by Xu and
Abur [11]. An alternative approach was proposed in [12]
to minimize the number of PMUs needed to attain com-
plete power system observability, while improving state esti-
mation robustness through redundant critical measurements.

A similar distinction between critical and redundant mea-
surements was proposed in [13] to detect bad data in state
estimation.

Over the years, the basic OPP problem has become more
andmore involved due to the inclusion of increasingly sophis-
ticated and heterogeneous operating conditions and con-
straints. These may include (but are not limited to):
• the use of conventional measurements [14]–[16], power
flow measurements [17], or smart meter data supporting
system observability [18];

• information provided by load loss and relaying [19],
or zero-injection buses [20], [21];

• contingencies due to line outages and/or PMU
losses [22]–[26];

• system component reliability data to reduce the redun-
dancy requirements for observability in the case of con-
tingencies [27];

• communication constraints [28], or limits in the number
of PMU channels [29]–[32].

The finite number of PMU channels (a constraint that was
often disregarded in past studies on OPP) can greatly affect
the results and the impact of PMU placement with and with-
out contingencies [33]. Indeed, if the number of channels
of a PMU is smaller than the number of lines connected to
the bus where the PMU is installed, a combinatorial amount
of possible line current phasor measurements exists [31].
Such configurations increase the number of conditions to be
included in the observability constraint [32]. Thus, including
such conditions in the problem formulation leads to a fast
growth in the number of rows of the connectivity matrix used
to implement the observability constraint. This situation can
be very hard to manage in distribution systems that usually
consist of a large number of nodes. For this reason, in this
paper the lines that are not observed directly by a PMU due
to the limited number of channels are decided a priori.

Nowadays, the OPP problem formulation includes most
of the conditions listed above within a unique framework.
Moreover, also the objective function has gradually become
increasingly complex and it is given by a linear or quadratic
combination of multiple terms. However, this function gen-
erally takes into account only economic and observability
aspects, whereas the impact of PMUs performance is typ-
ically disregarded at all. Just to provide some examples,
Chakrabarti et al. [34] proposed an integer quadratic pro-
gramming OPP formulation, in which the objective function
consists of two terms: one representing the redundancy level
of PMU placement and another one quantifying the overall
PMU installation costs. The single-objective cost function
adopted in [35] aims at minimizing the number of PMUs
deployed in the system, while maximizing network observ-
ability and minimizing the sensitivity to grid parameters.
The objective function defined in [36] includes not only the
total deployment costs, but also additional terms keeping into
account the cost of redundancies to enhance system observ-
ability and the cost of network unobservability both in normal
operating conditions and under contingencies.
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The main downside of single-objective optimization is the
need to aggregate different quantities into a scalar cost func-
tion so that a single solution is obtained. Such an aggregation
is usually performed byweighing the objectives considered in
the problem. However, the outcome of this approach strongly
relies on the chosen weights, which may eventually lead to
lack of stability and/or diversity [37].

On the other hand,‘‘the generalization of the OPP problem
considering multiple objectives including not only installa-
tion cost, but also redundancy, performance, and other plan-
ning constraints’’ is currently regarded as one of the main
future research direction in this field [38]. At the moment,
just a limited number of research works on OPP are based
on a multi-objective formulation, most of them including
two objectives. In [39] and [37], the PMU placement is
driven by both the minimization of the number of PMUs
and the maximization of measurement redundancy, which
are indeed contrasting goals. However, again state estimation
uncertainty and sensitivity to line tolerances are not taken into
account, as instead it is done in our work.

The general idea of using such objective functions is quite
uncommon in the panorama of OPP solutions. Nevertheless,
at the distribution level this is justified by i) the need for
superior performance since the state variables of monitored
systems are characterized by small amplitude and angle dif-
ferences [40] and ii) the larger uncertainty affecting line
parameters compared to the case of transmission systems.
The idea of optimizing both accuracy and robustness is also
the basis of the placement technique described in [41]. How-
ever, that solution is totally different from the approach pro-
posed in this paper because i) it is focused on meter instead
of PMU placement and ii) it relies on a two-step optimization
procedure rather than a multi-objective one. In fact, while the
two-step optimization algorithms are likely to find solutions
that are just locally optimal, a proper multi-objective opti-
mization can provide deeper insights about benefits, draw-
backs and possible trade-offs between different nondomi-
nated solutions. To the best of Authors’ knowledge, the only
example of a tri-objective approach for OPP is described
in [42], which, similarly to our work, relies on the idea of
finding the best trade-off between PMU deployment cost and
power system monitoring robustness. However, the objective
functions in [42] (i.e., the best assessment of small signal
stability based on PMU data; the maximization of the proba-
bility of system observability if anomalous events occur and
the minimization of PMUs total cost) are inherently different
and hardly comparable with the approach adopted in this
paper. In fact, as stated in the Introduction, the proposed OPP
strategy is specifically conceived tominimize state estimation
uncertainty and sensitivity to line tolerances in grids that
exhibit very small state variables variations in bothmagnitude
and phase.

As far as the OPP problem solver is concerned, a compre-
hensive review of possible techniques is presented in [43].
However, even though a variety of heuristic algorithms exists
to find satisfactory sub-optimal solutions within a reasonable

time (e.g., tabu search, simulated annealing, particle swarm
optimization, spanning-tree search, genetic algorithms, and
binary harmony search [44]), in this paper a custom version
of the NSGA-II algorithm is implemented. The use of a
genetic algorithm for multi-objective OPP is in line with
the approaches adopted in other papers [37], [39]. Among
them, NSGA-II is particularly versatile and suitable to find
the Pareto frontier with high accuracy, as confirmed by a
large number of tests on benchmark problems [45], and by
the fact that the same algorithm has been already used for
OPP, although the problem formulation in [42] is completely
different. Two further key factors that make the NSGA-II
approach particularly suitable in the case at hand are: the
easiness in generating a good initial population and the use
of penalties to remove infeasible solutions.

III. PROBLEM FORMULATION
Given a grid consisting of N buses and L lines, let
x ∈ X = {0, 1}N be a binary vector whose ith element
xi is set to 1 or 0 depending on whether a PMU is deployed to
the ith bus or not. In general, if the number of PMU channels
is large enough to measure the current phasors of some of
the lines connecting a given bus with the adjacent ones,
a PMU can potentially observe not only the state variables of
the bus where the PMU is deployed directly, but also those
of all the buses that are connected through the monitored
lines. However, if there are Zero-Injection (ZI) buses with a
zero-injection observation depth smaller than or equal to 1
(as generally occurs at the distribution level), an auxiliary
binary decision vector u can be introduced to relax system
observability [21]. In particular, the ith element ui of u can
be set to 1 if bus i is a ZI bus and, for a given placement
configuration x, all nodes adjacent to bus i (except at most
one) are observed directly or indirectly.

On the basis of the vector variables defined above, if func-
tion C(x) represents the total number of PMU channels
available for grid monitoring based on the placement given
by x, U(x) is the corresponding maximum state estimation
uncertainty and S(x) is the maximum sensitivity to grid
parameter tolerances (further details on the definition of such
objective functions are reported in Subsections III-A-III-C),
the proposed tri-objective OPP problem can be formalized as
follows;

min
x∈X

(C(x),U(x),S(x)) (1)

subject to two sets of constraints, i.e. those ensuring full
system observability using only PMU measurements and
those that keep into account the PMU measurements that can
be actually performed at each bus if the number of PMU
channels is limited. Both constraints are formalized below.

1) System observability based only on PMU measure-
ments and ZI buses can be guaranteed without contin-
gencies through the following inequality [11], i.e.

A(x+ u) ≥ 1 (1a)
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where 1 is an all-one vector and A is the N × N
symmetric binary connectivity matrix of the undirected
graph modeling the considered grid (i.e., aij = 1 if
either i = j or buses i and j are directly connected,
and aij = 0 otherwise). However, if one PMU is lost
or a single line fault occurs, a stricter observability
constraint than (1a) is needed, i.e. Ã1

...

ÃN

 (x+ u) ≥ 1 and

Â
1

...

ÂL

 (x+ u) ≥ 1, (1b)

where matrix Ãb for b = 1, . . . ,N is obtained by
replacing the bth column of A with an all-zero vector.
Similarly, matrix Âl for l = 1, . . . ,L is obtained by
resetting the elements of A indexed by (i, j) and (j, i),
namely the elements corresponding to buses i and j that
are connected through the lth line. The former inequal-
ity ensures observability even if themeasurements from
the PMU installed at a generic bus b (for b = 1, . . . ,N )
are lost. The latter one mitigates the effect of a fault
occurring in any one of the L lines.

2) The PMU measurements that can be performed at the
ith bus depend on both the type of measurement and
the maximum number nci of available PMU channels.
It is worth reminding that many papers on OPP dis-
regard the number of PMU channels. In fact, not all
current phasors are actually monitored and used for
state estimation. In this paper instead, this inherent
technology-related constraint is taken into considera-
tion. Assuming that one channel of each PMU is used
for bus voltage phasormeasurement (namely to observe
the state variable directly), while the remaining nci − 1
are used for current phasor measurements, the con-
straint on the number of allowed measurements can be
formalized as follows, i.e.,[

IN 0
] [x

x

]
≤ nc (1c)

where nc is the column vector including the maximum
number of channels of all PMUs, IN is the N × N
identity matrix, and finally 0 is anN×N binary matrix
defining the current phasor measurements that can be
performed at every bus. In particular, the diagonal
entries γii of 0 for i = 1, . . . ,N are set to 1 only
if one channel of the PMU placed at bus i is used
to measure the injection current phasor at that bus.
Of course, the diagonal entries γii corresponding to
the ZI buses and the buses when no PMU is placed
are null. Similarly, the nondiagonal elements γij of 0
are set to 1 if the PMU placed at bus j is used to
measure the phasor of the current flowing through the
line connecting bus i with bus j. Note that matrix 0 is
not required to be symmetric because, if a given line
current phasor is monitored by a PMU at one end of the
line, the measurement of the same current phasor at the

other end of the line is not needed (i.e., if γij = 1, then
γji can be set to 0), unless some redundancy is required.
Observe also that if 0 coincides with the connectivity
matrix and nci is greater than or equal to the number
of lines connected to bus i plus 2, constraint (1c) is
always satisfied and therefore it can be omitted in OPP
formulation.

A. OBJECTIVE 1: MINIMUM TOTAL NUMBER OF PMU
CHANNELS
In most OPP problems, the cost function considered for PMU
deployment is assumed to grow linearly with the number of
measuring devices and often include multiple terms, e.g. the
costs due to service disruption for PMU installation in the
substations, the PMU hardware and labor costs, and variable
costs depending on the number of channels [46]. Due to the
large variability of such factors (as documented for instance
in [47]), in Authors’ opinion the use of a multi-parametric
cost function including a variety of economic terms is quite
questionable in the case at hand. In fact, the OPP results
and the related conclusions could be highly dependent on the
values of the chosen parameters, which in turn may strongly
change as a function of both technology andmarket-related or
context-specific aspects. Therefore, to keep the PMU place-
ment strategy as general as possible, in the rest of this paper
just the total number of PMU channels is considered as the
first objective function for OPP. Indeed, this quantity not
only grows with the number of deployed PMUs (which is
the most basic cost function in OPP problems), but it also
has a significant impact on equipment cost due to both the
PMU device per se and the voltage and current measurement
transducers connected to each channel. Thus, we have that

C(x) = cT · x (2)

where c ≤ nc is the column vector including the number of
PMU channels available for both voltage and current mea-
surements at all buses. Even if (2) cannot return a clear and
complete cost evaluation of a given PMU placement, it is sim-
ple and general enough to allow a sensible, although approx-
imate, economic comparison of different OPP solutions, as it
will be shown in the case study reported in Section VI.

B. OBJECTIVE 2: PMU-BASED MINIMAX STATE
ESTIMATION UNCERTAINTY
The objective function about state estimation uncertainty
depends on both the selected state estimator and the param-
eter chosen ‘‘to characterize the dispersion of the values that
could reasonably be attributed to the measurand’’ [48]. The
weighted least squares estimator adopted in this paper relies
on two assumptions, i.e.

1) only the information based on ZI buses and PMU data
are used for state estimation;

2) the state variables as well as the voltage and current
phasor measurements are transformed from polar to
rectangular coordinates as in [49], [50].

The former assumption is motivated by the purpose of this
study that intends to evaluate the potential impact of PMUs in
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a futuristic scenario where the state of active distribution grids
is estimated in real-time at a rate that could not be possible
with traditional measurements [51]. Thus, even though tradi-
tional measurements and pseudo-measurements can certainly
support observability and state estimation, they will not be
considered in the following. In fact, system observability is
provided by ZI buses and PMUs only. This assumption is
indeed quite common in research works on OPP strategies.

The choice of using rectangular variables stems instead
from the simple formalization of the linear system of equa-
tions used for state estimation [see expressions (3)-(6) in
the following], with relevant benefits from the computational
point of view [52].

Let x ∈ X be the binary vector expressing the buses
where the PMUs are placed. IfMV is the number of non-zero
elements of x, at least MV bus voltage phasor measurement
can be performed. Therefore, system state estimation relies
on i) MV bus voltage phasor measurement, ii) MI current
phasor measurements [depending on constraint (1c)], andMz
ZI current measurements (in fact, this number coincides with
the number of ZI buses). Such M = MV + MI + Mz ≥ N
measurement data (split into real and imaginary parts denoted
with subscripts R and I , respectively) can be merged into
a single 2M−long vector z = [zTVR , z

T
VI , z

T
IR , z

T
II , 0

T , 0T ]T .
If also the state variables (namely the bus voltage pha-
sors) are expressed into rectangular coordinates and are rear-
ranged into a 2N−long vector v = [vTR , v

T
I ]
T , the rela-

tionship between measurement data and state variables can
be expressed by the following linear system of equations,
i.e. [49], [50]

z =


zVR
zVI
zIR
zII
0
0

 = H(x)

[
vTR ,

vTI ,

]
+ ε (3)

where ε = [εTVR , ε
T
VI , ε

T
IR , ε

T
II , ε

T
z , ε

T
z ]
T is the column vec-

tor including the random uncertainty contributions affecting
different kind of measurements, and

H(x) =


Ĩ(x) 0
0 Ĩ(x)

G(x) −B(x)
B(x) G(x)
Gz −Bz
Bz Gz

 (4)

is 2M × 2N block matrix where
• the MV × N matrix Ĩ(x) is obtained from the N × N
identity matrix IN by removing the N − MV rows cor-
responding to the elements of x equal to 0, namely the
buses where no PMUs are placed. In practice, matrix Ĩ(x)
identifies the voltage phasors that can observed directly.

• the MI × N matrices

G(x) =
[
Gl(x)
Gb(x)

]
and B(x) =

[
Bl(x)
Bb(x)

]
(5)

express the relationship between the current phasors
actually measured by the PMUs placed as specified
in vector x and the bus voltage phasors. In particular,
the rows of submatrices Gl(x) and Gb(x) include just
two non-zero elements with the same absolute value,
but with opposite sign, i.e. the conductance and sus-
ceptance values, respectively, of the lines monitored
by the deployed PMUs. Dually, submatrices Gb(x) and
Bb(x) comprise the rows of the real and imaginary
parts, respectively, of the grid admittance matrix corre-
sponding to the buses whose injection current phasors
(due only to loads in the case of purely passive sys-
tems) are measured by the available PMUs. The general
expressions of the line admittances and the elements of
the grid admittance matrix can be found for instance
in [53].

• Finally, matrices Gz and Bz are also extracted from
the grid admittance matrix, but they do not depend on
the PMU placement in x, as they include the rows of the
conductance and susceptance values, respectively, of the
elements corresponding to the ZI buses.

Assuming that the measurement uncertainty contributions ε
in (3) are normally distributed with zero mean and covariance
matrix R = E{εεT } (the expressions of the variances of
voltage or current phasor measurements expressed into rect-
angular coordinates are reported in the Appendix), the best
linear unbiased estimator of the system state is the weighted
least-squares estimator given by [49], [50]

v̂ = F(x)z = [HT (x)R−1H(x)]−1HT (x)R−1z, (6)

where symbol ·̂ denotes an estimated quantity (i.e., the state
vector in this case). Consider that, if all measurement uncer-
tainty contributions are assumed to be uncorrelated, R is
diagonal. Also, the elements associated with ZI current mea-
surements should be null. However, they are replaced by
very small (but non-zero) values (i.e., at least two orders of
magnitude lower than the other nonzero elements of R) to
make matrix R invertible.
Let ecv= (v̂R−vR)+j(v̂I−vI ) be theN×1 random complex

error vector resulting from the zero-mean estimation errors
of the real and imaginary parts of the state variables. Since
8c
v = E{ecvec

H

v } (with
H denoting the Hermitian operator) is

the covariance matrix of the complex state estimation errors,
a possible scalar and conservative function expressing the
state estimation uncertainty is

U(x) = max
{√∣∣Eig(8c

v)
∣∣} (7)

where function Eig(·) returns the eigenvalues of the argu-
ment matrix. The rationale for choosing (7) as the objective
function for estimation uncertainty is that, from a geomet-
rical standpoint, the maximum eigenvalue of 8c

v represents
the radius of the hypersphere circumscribing the ellipsoidal
uncertainty region around the estimated state [54].
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C. OBJECTIVE 3: MINIMAX SENSITIVITY TO LINE
PARAMETER TOLERANCES
No unique definition exists to express the sensitivity of sys-
tem state estimation to the uncertainty affecting grid param-
eters. In this paper, the sensitivity function S(x) is defined
as the maximum increment of the elements of the covari-
ance matrix of state estimation errors due to unknown (but
bounded) tolerances of line parameters for a given measure-
ment configuration. If the elements of matrix H(x) defined
in (4) are affected by uncertainty, then in the measurement
model (3), H(x) has to be replaced by H̃(x) = H(x)+ δH(x)
where

δH(x) =


0 0
0 0

δG(x) −δB(x)
δB(x) δG(x)
δGz −δBz
δBz δGz

 (8)

is the so-called perturbationmatrix due to possible tolerances.
Assuming that the estimation errors of the real and imag-
inary parts of the chosen state variables given by (6) are
rearranged into the 2N × 1 vector ev = [(v̂R − vR)T , (v̂I −
vI )T ]T , the covariance matrix of ev can be expressed
as [55]

8̃v=E(eveTv )= F̃(x)E{εε
T
}F̃T (x)= F̃(x)RF̃T (x) (9)

where F̃(x) = [H̃T (x)R−1H̃(x)]−1H̃T (x)R−1. To evaluate
the impact of line parameter tolerances on 8̃v regardless
of the uncertainty of the available measurements, the effect
of tolerances and measurement uncertainty in (9) has to
be decoupled. This result can be achieved if all measure-
ments are uncorrelated, the relative standard uncertainty of all
deployed PMUs is assumed to be the same and the PMUTotal
Vector Errors (TVEs) are evenly split between magnitude
and phase contributions. In particular, if σr denotes the rela-
tive standard uncertainty common to all measurements, then
matrix R can be rewritten as R = σ 2

r R̃. Therefore, recalling
that R̃−1 = R̃−1

T
, after a few steps (9) can be rewritten

as

8̃v= S̃(x)σ 2
r = [H̃T (x)R̃−1H̃(x)]−1σ 2

r (10)

where S̃(x) can be regarded as the sensitivity matrix, since
its elements represent the rates of change of the entries of
the covariance matrix of state estimation errors due just to
the tolerance values. If the elements of (8) are assumed to be
uniformly distributed around the respective nominal values
within a given relative fraction ±1 of Hij for j = 1, . . . , 2M
and i = 1, . . . , 2N , a possible scalar objective function
expressing the maximum sensitivity to line parameter toler-
ances is

S(x) = max
i,j=1,...,N

{
max

δHij∈[−1·Hij,1·Hij]

{
S̃ij
}}
. (11)

This function is in accordance with the definition provided at
the beginning of this Section.

FIGURE 1. Flowchart of the NSGA-II algorithm used to address the
multi-objective OPP problem (1).

IV. NSGA-II IMPLEMENTATION AND INITIALIZATION
In multi-objective optimization problems, a solution belongs
to the nondominated set (also called Pareto or efficient
frontier) if there does not exist another solution which per-
forms equal or better with respect to all the chosen objec-
tive functions. In practice, only the points belonging to the
Pareto set are good candidate solutions for the optimiza-
tion problem, while the dominated ones are certainly not
optimal.

As shortly explained in Sections I and II, due to the multi-
objective, nonlinear and combinatorial nature of the OPP
problem formalized in Section III, the NSGA-II algorithm
provides an effective approach to converge towards the Pareto
frontier of X within a reasonable time. The NSGA-II algo-
rithm selects the members of the next generation by adopting
two criteria.

Firstly, the fitness of the parent solutions (the fitter the
parent, the more it is likely to survive and to generate off-
spring) is put into effect by partitioning the population into
several subsets called fronts. The first front corresponds to the
set of nondominated solutions. The second front corresponds
to the set of nondominated solutions if the elements of the
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first front are removed from the population, and so forth.
This procedure, called nondominated sorting, is iterated until
all individuals of the population are assigned to one front.
Belonging to earlier fronts guarantees a greater chance of
survival.

Secondly, when two individuals belong to the same front,
the members that are farther from one another (namely
with a greater crowding distance) are preferred. In this way,
the entire front is more likely to be explored.

The flowchart of the proposed NSGA-II implementation,
including the aforementioned steps, is shown in Fig. 1.
Similarly to other evolutionary algorithms, the perfor-

mance and the convergence of NSGA-II depend on the pop-
ulation characteristics as well as the mutation and crossover
probabilities. In addition, the selection of a good initial popu-
lation and the way constraints (1a)-(1c) are implemented is
crucial to speed up convergence. As far as the initial pop-
ulation is concerned, a good initial set of feasible solutions
is found by solving a sequence of basic single-objective
ILP problems based on the same general observability and
measurement constraints as the main OPP problem. To this
end, first theminimum number of busesNPMU to be equipped
with PMUs can be found by solving the following ILP
subproblem:

NPMU = min
x∈X

1T x

subject to (1a) and (1c). (12)

Then, to create an initial population of given size P, the fol-
lowing ILP satisfiability subproblem is solved iteratively P
times, i.e.

min
x∈X

0T x

subject to (1a) and (1c)

1T x = NPMU
Dx = 0 (13)

where NPMU is the initial number of buses to be instrumented
with PMUs and it is increased linearly from NPMU to N ;
while D is a diagonal, binary matrix, including a number
of randomly generated unit elements which is kept reason-
ably smaller than N − NPMU to make the problem feasible.
Observe that constraint (1b) is not taken into account in
the formalization of subproblems (12) and (13). As a result,
the variety of the initial population chosen for NSGA-II
optimization is reasonably broad. All individuals are indeed
feasible starting points for the main OPP problem provided
that no contingencies occur. In (13), the cost function is triv-
ial, since the purpose of this subproblem is just to find a set of
well-spread suitable solutions for (1) regardless of their cost.
The two further constraints added to subproblem (13) play a
complementary role and ensure an adequate diversity of the
initial population. In particular, equation 1T x = NPMU estab-
lishes the number of buses that are instrumented with PMUs.
Therefore, by simply changing NPMU , a different member
of the initial population results. Equation Dx = 0 prevents
instead that a random amount of buses is instrumented with

PMUs. In this way, the starting PMU placements obtained
by solving (13) multiple times are likely to be different from
one another even if the same NPMU value is used. Both ILP
subproblems (12) and (13) are simple and converge to feasible
solutions quickly by using standard techniques despite their
combinatorial nature.

As far as the implementation of constraints (1a)-(1c) is
concerned, given that ‘‘a major obstacle in the application
of genetic algorithms is the embracement of the constraint
system’’ [56], instead of removing or avoiding infeasible
solutions, the proposed NSGA-II implementation artificially
assigns a large penalty to the solutions violating (1a)-(1c),
which makes their survival chances extremely low. To ensure
the effectiveness of this procedure, a final check is performed
to be sure that the solutions in the Pareto frontier meet con-
straints (1a)–(1c).

V. OPTIMAL PMU PLACEMENT RESULTS
To test the correct operation and to evaluate the benefits of
the proposed tri-objective OPP strategy, multiple simulation
results are reported in this Section. They refer to four distri-
bution systems of increasing size, i.e.
• the simple 18-bus distribution system adopted in [57];
• the IEEE 37-bus radial feeder1;
• the 85-bus network described in [58];
• a 141-bus portion of the distribution grid of the Caracas
metropolitan area [59].

Two different instances of the OPP problem (1) (shortly
referred to as Case A and Case B in the following) are solved
for each distribution system under test. In particular,
• in Case A we have 0 = IN and nc = 2. This is a
very conservative, but quite realistic situation in which a
PMU is assumed to have no more than two three-phase
input channels. Such channels are used to measure the
bus voltage phasors and the non-zero injection current
phasors, respectively.

• In Case B we have that 0 = A and nc = l + 2, where
l is the column vector including the number of lines
connected to each bus of the network. In this case, each
deployed PMU owns enough channels to measure not
only the phasors of bus voltages and injection currents,
but also the current phasors of all the lines connected to
the bus where a PMU is installed. This assumption holds
(often implicitly) in the majority of research works on
OPP and it implies that constraint (1c) is always met.
In this case, the PMU deployment cost should grow also
as a function of the amount of measurement channels.

Case A and Case B represent the two extreme cases of a
broad range of intermediate possible measurement config-
urations. In both cases, two further alternative subcases are
analyzed depending on whether contingencies are taken into
account or not. If no contingencies are considered the OPP
problem relies just on constraints (1a) and (1c). Otherwise,
constraint (1b) replaces (1a).

1http://sites.ieee.org/pes-testfeeders/resources/
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FIGURE 2. Hypervolume curves associated with the optimal PMU
placement in the 18-bus, 37-bus, 85-bus and 141-bus distribution systems
under study, assuming to use 2-channel PMU only (i.e., in Case A) without
including the constraints for contingencies.

In all simulated cases, the parameters of the NSGA-II
algorithm were tuned heuristically by following the crite-
ria suggested in [60]. In particular, mutation and crossover
probabilities were set equal to 10% and 100%, respectively,
since with these values the probability that the optimization
algorithm gets stuck in possible local minima is very low.
Moreover, the population size P (consisting of 1000 individ-
uals) and the number of generations (i.e., K = 120) were
chosen after a few iterations to ensure a good convergence
to the Pareto frontier in all cases. The convergence of the
NSGA-II OPP solver with the aforementioned settings was
studied by using the so-called hypervolume method [61].

After scaling all the objective functions to keep their values
boundedwithin [0, 1] (where 0 and 1 correspond to the lowest
and the highest values, respectively, returned in all genera-
tions), all the obtained feasible solutions are included within
a hypercube (i.e., just a cube in the three dimensional case at
hand) with hypervolume equal to 1. After each generation,
the hypervolume of the portion of space occupied by all
obtained solutions (including the dominated ones) is com-
puted. Of course, such a hypervolume is included within the
hypercube and generally it tends to grow as the Pareto frontier
expands towards the lower edge of the hypercube. When the
hypervolume value no longer increases noticeably from a
given generation onwards, this means that the Pareto frontier
does not change significantly. Therefore, convergence has
been reached. Fig. 2 shows the hypervolume curves as a
function of the number of generations resulting from OPP
in the four distribution systems under study, assuming to
use 2-channel PMUs only (i.e., in Case A) without including
the constraints for contingencies. The results in Case B and
those with contingency constraints exhibit a similar behavior.
Therefore, they have been omitted for the sake of brevity and
clarity. Observe that after K = 120 generations all hypervol-
ume curves converge to a steady-state value reasonably well
although the convergence rate slows down considerably as the
grid size grows, as expected.

TABLE 1. OPP computation times (expressed in hours) to reach full
convergence with the four distribution systems under study, in both
Case A and Case B with and without including the constraints for
contingencies.

Table 1 reports the OPP computation times for K = 120
generations (namely to reach convergence in all the four
distribution systems under study) in Case A and Case B and
including either the basic observability constraint or the con-
straint for contingencies. All simulations were performed on
a PC equipped with an Intel Xeon processor E31225 running
at 3.10 GHz, 16 GB of memory, a 64-bit operating system
and Matlab R2019b.

Quite importantly, the processing times tend to grow
almost linearly with the size of the problem. It is worth
emphasizing that they are strongly affected by the estima-
tion of the covariance matrices needed to compute functions
U(x) and S(x), given by (7) and (11), respectively. Indeed,
the covariance matrices of the state estimation errors (both
expressed in a complex form or in rectangular coordinates)
are evaluated through a Monte Carlo approach. The syn-
chrophasors data returned by all PMUs are indeed assumed
to be affected by normally distributed random contributions
with zero mean and a relative standard deviation such that
the TVE is not greater than 1%, in compliance with the
steady-state requirements of the IEC/IEEE Standard 60255-
118-1:2018 [62]. In practice, this result is obtained if σr =
0.0033. As a consequence, for each member of every gener-
ation, the system state is estimated 100 times through (6) by
changing randomly the PMU measurement errors. They are
assumed to be zero-mean random variables with zero mean
and standard deviations expressed into rectangular coordi-
nates as explained in the Appendix. The corresponding state
estimation errors result from the differences between the
values returned by (6) in every iteration and the actual state
values preliminarily computed through the Matpower tool-
box [63]. In addition, the maximum sensitivity matrix in (11)
is computed by varying the values of the line admittances
of each test distribution systems within 1 = ±20% of their
nominal values.

Fig. 3(a)-(d) shows the three-dimensional Pareto frontiers
of the solutions obtained with the NSGA-II algorithm in the
four test distribution systems under study, assuming that no
constraints for contingencies are considered. Each axis is
labeled with one of the objective functions (2), (7) and (11).
However, the uncertainty values are expressed as a percent-
age of the nominal slack bus voltage to improve readability.
The Pareto frontiers obtained by including the contingency
constraints are not shown for the sake of brevity, since they
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FIGURE 3. Three-dimensional Pareto fronts of the tri-objective OPP based on the proposed NSGA-II algorithm in the 18-bus, 37-bus, 85-bus and
141-bus distribution systems under study. Different markers and colors refer to the measurement configurations labeled as Case A and Case B,
respectively, assuming that no constraints for contingencies are considered.

are almost included in those shown in Fig. 3, as it will be
explained shortly. Even though the results in Fig. 3(a)-(d)
provide a qualitative rather than a quantitative overview of
OPP results, it is worth noticing that
• the Pareto frontiers are quite well-outlined although the
inherent granularity of the OPP problem and the chosen
population size makes visualization not always clear,
especially when the number of PMU locations is close
to the minimum value that ensures observability. In such
conditions, the values of sensitivity and relative uncer-
tainty tend to grow quickly and quite suddenly, although
they are kept bounded;

• in Case A the number of PMU channels is evidently
bounded by the constraint on the maximum number

of channels and on the type of allowed measurements.
Nonetheless, state estimation uncertainty and sensitivity
do not seem to increase dramatically if compared with
Case B;

• further results, obtained with different values of σr and
omitted for the sake of brevity, confirm that the maxi-
mum state uncertainty values of the Pareto frontier scale
accordingly, as expected;

• the projections of the Pareto frontiers onto plane
(S(x),U(x)) confirm that by increasing the number of
PMU channels, both maximum sensitivity and maxi-
mum state estimation uncertainty tend to decrease, thus
converging to the solutions clustered around the bottom
left corner of all plots.
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FIGURE 4. Lower envelopes of the projections onto planes (C(x),U(x)) in
(a) and (C(x),S(x)) in (b) of the Pareto frontiers of the Case A OPP
solutions in the four distribution systems under study. In (c) the number
of buses instrumented with PMUs in either system is plotted as a function
of the total number of PMU channels used for grid monitoring. Dashed
and solid lines refer to the results obtained with and without the
constraints for contingencies, respectively.

A more quantitative insight into the trade-offs between
the OPP solutions obtained with the proposed tri-objective
approach can be deduced from the curves shown in Figs. 4
and 5, which refer to Case A and Case B, respectively.
In Figs. 4(a)-(b) and 5(a)-(b), the lower envelopes of the
projections of the three-dimensional Pareto frontiers onto
orthogonal planes (C(x),U(x)) and (C(x),S(x)), respec-
tively, are plotted. The number of buses actually instru-

FIGURE 5. Lower envelopes of the projections onto planes (C(x),U(x)) in
(a) and (C(x),S(x)) in (b) of the Pareto frontiers of the Case B OPP
solutions in the four distribution systems under study. In (c) the number
of buses instrumented with PMUs in either system is plotted as a function
of the total number of PMU channels used for grid monitoring. Dashed
and solid lines refer to the results obtained with and without the
constraints for contingencies, respectively.

mented with PMUs in the considered distribution systems
is instead shown in Figs. 4(c) and 5(c) as a function of
the number of PMU channels. Observe that the curves
obtained with (dashed lines) and without (solid lines) the
constraints for contingencies are shown. The curves in Figs. 4
and 5 provide some interesting and quite general informa-
tion on PMU placement. The main remarks are summarized
below.
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• If no constraints for possible contingencies are con-
sidered, once the number of PMUs is large enough to
guarantee basic system observability, both themaximum
standard estimation uncertainty and the maximum sen-
sitivity tend to decrease quite sharply in both Case A
and Case B as the number of PMU channels grows.
This trend is consistent with some previous research
results, although they were obtained in totally different
and largely suboptimal conditions and with a different
(i.e., nonlinear) state estimator [64], [65]. The curves
obtained using smaller distribution systems look steeper.
This behavior is due to the fact that the impact of any
new PMU measurement on state estimation is stronger
in small systems than in large ones. Figs. 4(a)-(b) and
5(a)-(b) show that the law of diminishing returns holds:
when the total number of PMU channels is between
about 150% and 200% of the number of grid buses,
the decrease of both the maximum state estimation rel-
ative uncertainty and the maximum sensitivity to line
tolerances becomes negligible. Therefore, increasing the
number of deployed PMUs beyond given thresholds
(depending on the constraints of the channels that can
be used) is quite pointless, as it would just lead to higher
costs with no benefits.

• The values of U(x) and S(x) in Case A are larger than
those in Case B, as expected, due to the additional
current phasor measurements used for state estimation in
the latter case. However, if the number of measurements
(namely the PMU channels) is large enough, the maxi-
mum uncertainty and sensitivity curves tend to converge
to the same respective values.

• It is important to highlight that the number of PMU
channels should not be confused with the number of
PMU locations and, consequently, with the number of
measuring devices to be installed [provided that they
all have the maximum number of channels imposed
by constraint (1c)]. The curves in Figs. 4(a)-(b) and
5(a)-(b) shows that the number of PMU channels in
Case B is always larger than in Case A, as expected.
However, the minimum number of grid buses monitored
by a PMU in Case B is generally slightly smaller than in
Case A. This is visible by comparing Figs. 4(c) and 5(c),
and it is reasonable because the full availability of mea-
surement channels in Case B supports system observ-
ability. In particular, if no constraints for contingencies
are included in the problem, system observability of all
systems under study can be obtained by instrumenting
39% ± 5% or 32% ± 5% of grid buses in Case A and
in Case B, respectively. These values depend not only
on network structure, but also on the number and the
positions of ZI buses in the system.

• Quite interestingly, once the minimum number of PMU
locations and PMU channels satisfying constraint (1b)
is found, both the maximum state estimation relative
uncertainty and the maximum sensitivity curves are
almost overlapped with those computed without the

constraints for contingencies. This result is consistent
with the fact that constraint (1b) is stricter than (1a).
Therefore, the solutions in the Pareto frontiers obtained
including the constraints for contingencies are likely
to be subsets of the solutions obtained with the basic
observability constraint. Moreover, a solution of the
Pareto frontier that meets constraint (1b) generally
ensures also that the values of U(x) and S(x) are steadily
close to the respective lowest asymptotic values. In
addition, the minimum number of buses that need to
be instrumented with PMUs as well as the correspond-
ing number of channels becomes larger. This is quite
obvious because providing observability in the case of
single-line faults or losses of PMU data requires mea-
surement redundancy. In such conditions, between at
least about 50% and 60% of all buses have to be moni-
tored by PMUs.

It is worth mentioning that no clear connection was found
between PMU placement results and maximum state estima-
tion uncertainty or sensitivity to line parameter tolerances.
We have just observed that for a given instance of the OPP
problem, between 15% and 20% of buses are included in
almost all the Pareto frontier solutions. The set of common
PMU locations comprises always the slack bus or an adjacent
node, while all the others are quite evenly spread over every
considered grid.

VI. AN EXAMPLE OF COST ANALYSIS
To complete the present research, four meaningful OPP
results in both Case A and Case B are reported
in Table 2(a)-(d) for the 18-bus, 37-bus, 85-bus and 141-bus
distribution systems, respectively. Such OPP results corre-
spond to the points of the Pareto frontier envelopes shown in
Figs. 4(a)-(b) and 5(a)-(b) for which both the maximum state
estimation standard uncertainty and its maximum sensitivity
to line parameter tolerances reach approximately the respec-
tive lowest asymptotic values both with andwithout including
the constraints for contingencies. More in details,

• in Case A the solutions of the Pareto frontiers that rely
on 24, 50, 120 and 155 PMU channels for the 18-bus,
37-bus, 85-bus and 141-bus system, respectively, are
chosen.

• Similarly, in Case B we consider the solutions of the
Pareto frontiers for which 47 PMU channels (18-bus
system), 71 PMU channels (37-bus system), 180 PMU
channels (85-bus system) or 332 PMU channels
(141-bus system) are used.

Table 2(a)-(d) summarizes not only the bus numbers where
the PMUs are actually installed, but also their number of
channels. Note that both low state estimation uncertainty and
low sensitivity to line parameters tolerances are achieved even
if the PMUs are not installed at every bus. In fact, in Case A
between about 30% and 40% of buses (i.e., 6, 12, 24 and 60
out of 18, 37, 85 and 141 buses, respectively) are not equipped
with a PMU. This result is probably due to the presence of
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TABLE 2. Examples of OPP results for the 18-bus (a), 37-bus (b), 85-bus (c) and 141-bus (d) distribution systems under study in both Case A and Case B.
With either set of constraints on the measurement channels, the reported PMU placement refers to the point of the Pareto frontiers for which the
maximum standard estimation uncertainty and the maximum sensitivity to line parameter tolerances are close to the respective minimal values, while
the total number of PMU channels is kept as small as possible.
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ZI buses. In Case B the share of buses without PMUs is
slightly higher on average, i.e., from 32% to 46% depending
on network topology.

It is worth recalling that Case A and Case B represent the
extremes of a broad range of possible measurement configu-
rations depending on how constraint (1c) is actually imple-
mented. Of course, by changing constraint (1c) the actual
deployment costs may change considerably as a function not
only of the amount of installed PMUs, but also on the number
of their channels. Unfortunately, an accurate comparative
cost analysis of alternative PMU placement strategies can be
hardly done due to both the large variety of context-specific
factors and the huge differences between transmission and
distribution systems. Indeed, according to a study of the U.S.
Department of Energy, the overall PMU deployment cost
per measurement point at the transmission level (including
procurement, installation and commissioning) ranges from
about 40000 $ up to 180000 $ [47], with just a limited
fraction of the total amount due to measurement devices.
This range is quite large although it ‘‘does not reflect differ-
ences among utilities in required phasor data concentrators,
communications infrastructure upgrades, applications costs,
staff training needs, and physical substation constraints to
installing PMUs’’ [47].

At the distribution level, the overall PMU deployment
cost per measurement point is even unclearer, as just pilot
installations have been proposed so far. However, it should be
at least about one order ofmagnitude lower than the cost at the
transmission level to ensure a widespread use of PMUs. Due
to the lack of trustworthy general information on procure-
ment, installation, and commissioning costs at the distribution
level, only the bare instrumental costs will be considered in
the present analysis. In particular, two alternative scenarios
are analyzed, i.e.

• A traditional scenario based on classic multi-channel
PMUs (like those used in transmission systems);

• Apossible future scenario in which specific distribution-
oriented micro-PMUs are used.

In the former scenario, a base PMU cost of 20000 $
plus 3000 $ per channel is considered [17]. In the latter
one, the cost of a micro-PMU can be assumed equal to
3500 $, as reported in [7]. According to device specifications,
micro-PMUs include 8 input lines. However, considering
that the phasors to be measured usually refer to three-phase
voltage and/or currents (possibly including a neutral con-
nection), no more than 2 three-phase measurements can be
performed with a single device. Therefore, in Case B about
d
nci
2 e micro-PMUs (where d·e is the function returning the

smallest integer value that is greater than or equal to its
argument) have to be installed at bus i if nci channels are
needed.

The results of the cost analysis in the two aforemen-
tioned scenarios in both Case A and Case B for the
OPP solutions shown in Table 2(a)-(d) are summarized
in Table 3. All amounts are expressed in thousands of USD

TABLE 3. Examples of total instrumental costs (expressed in thousands
of USD) associated with the optimal PMU placements shown
in Table 2(a)-(d) in both Case A and Case B, assuming to use either classic
transmission-oriented multi-channel PMUs or cheaper distribution
oriented 2-channel micro-PMUs.

and no scale economies are assumed. As expected, the costs
associated with micro-PMU placement are much lower than
those resulting from traditional PMU installation. Quite inter-
estingly, the use of more than two PMU measurements per
bus (i.e., Case B) usually is not profitable. As soon as the
values of maximum state estimation uncertainty and the max-
imum sensitivity to line parameter tolerances are low enough
(possibly with some redundancy to take contingencies into
account) adding further current phasor measurements usually
just increases the total costs with no benefits. Therefore,
the measurement constraint (1c) specified in Case A is gen-
erally preferable. The only exceptions occur when traditional
multi-channel PMUs are deployed in the 37-bus and 85-bus
systems because in such cases the increase in the number of
buses without PMUs from about 30% inCase A to about 45%
in Case B is greater than in the other systems under test and it
is large enough to counterbalance the additional costs due to
the larger total amount of PMU channels. Nevertheless, such
an increase in the number of buses that are not instrumented
is not enough to make Case B profitable when the 2-channel
micro-PMUs are used, since the total number of micro-PMUs
that have to be installed is globally greater than in
Case A.

VII. CONCLUSION
In this paper, the issue of installing Phasor Measurement
Units (PMUs) is addressed from a novel perspective, i.e.
by solving a tri-objective optimization problem whose objec-
tive functions are: the total number of PMU channels,
the maximum state estimation uncertainty based only on
high-rate PMU measurements, and the maximum state esti-
mation sensitivity to line parameter tolerances. In addition,
constraints on system observability (both with and without
considering constraints for contingencies) as well as on the
number of PMU channels and on the type of allowed PMU
measurements at every bus are included in the problem for-
mulation. The tri-objective optimization problem is solved
through a custom implementation of the genetic algorithm
NSGA-II. Other heuristic optimization algorithms could
maybe perform even better from the computational point
of view. Nevertheless, no significant changes are expected
either in the results or in the conclusions, since the proposed
NSGA-II algorithm clearly converges to the Pareto frontiers
of interest in all distribution systems under test. Indeed,
the focus of our study is on distribution systems, due to the
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growing interest in a widespread PMU deployment to support
smart grid operation. The results obtained using four test
distribution systems consisting of 18, 37, 85 and 141 buses,
respectively, reveal that if the number of buses instrumented
with PMUs exceeds given thresholds, the reduction of maxi-
mum state estimation uncertainty and maximum sensitivity
to line parameter tolerances becomes negligible, while the
instrumental costs tend to grow considerably. The results
obtained with the four distribution systems under study sug-
gest that between about 30% and 40% of all buses can be left
unmonitored even if PMUs with just two measurement chan-
nels are used. This fraction may grow by some percent if no
constraints exist on the number of PMU channels. However,
the latter choice usually is not economically profitable and
does not provide significant improvements in state estima-
tion. Quite interestingly, an optimal PMU placement config-
uration able to ensure small state estimation uncertainty and
sensitivity is likely to be robust to contingencies as well.

A topic for future research could be the application of
multi-criteria decision analysis methodologies such as, for
instance, the multi-attribute value theory (MAVT), to find
a unique ‘‘best’’ placement from the three dimensional set
of nondominated solutions. The use of these techniques
may also provide a way to integrate the decision makers’
expertise and preferences into an otherwise merely automatic
procedure.

APPENDIX - VARIANCE OF PMU MEASUREMENT DATA
IN RECTANGULAR COORDINATES
Let zX denote a generic current or voltage phasor measured
by a PMU where subscript X is replaced by V or I in (3)
depending on whether a voltage or a current phasor is mea-
sured. Since PMU data are typically expressed in polar coor-
dinates, any measured quantity can be rewritten as zX =
(X + εX )ej(ϕX+εϕX ), where X and ϕX are the actual values of
phasor magnitude and phase, while εX and εϕX are the corre-
sponding measurement uncertainty contributions. If a polar-
to-rectangular coordinates transformation is performed, then
the pair of real and imaginary parts of the phasor data used
for state estimation given by (3)-(6) can be rewritten as

zXR = (X + εX ) cos(ϕX + εϕX ) = (A.1)

= (X + εX )[cosϕX cos εϕX − sinϕX sin εϕX ]

zXI = (X + εX ) sin(ϕX + εϕX ) = (A.2)

= (X + εX )[sinϕX cos εϕX + cosϕX sin εϕX ].

Let us assume that, due to the superimposition of multiple
uncertainty contributions, both εX and εϕX can be modeled as
two zero-mean normally distributed random variables with
variances σ 2

X and σ 2
ϕX
, respectively. Since the maximum TVE

of a PMU must be lower than 1% (usually quite evenly
split between magnitude and phase errors) [62], both εX and
εϕX are small enough to assume that in (A.1) and (A.2) i)
sin εϕX ≈ εϕX and ii) all terms proportional to εX sin εϕX ≈
εXεϕX are negligible. Hence, if these approximations are used
to compute the variance of zXR and zXI , after simple algebraic

manipulations it results that

σ 2
XR = E(zXR − E(zXR )

2) = (A.3)

= X2σ 2
ϕX

sin2 ϕX + σ 2
X cos2 ϕX − XρσXσϕX sin 2ϕX

and

σ 2
XI = E(zXI − E(zXI )

2) = (A.4)

= X2σ 2
ϕX

cos2 ϕX + σ 2
X sin2 ϕX + XρσXσϕX sin 2ϕX

where |ρ| ≤ 1 is the correlation coefficient between εX and
εϕX due to the fact that the same device is used to measure
both phasor magnitude and angle. Expressions (A.3)-(A.4)
can be finally used to compute the elements of matrix R
in (6), (9) and (10), once the uncertainties of PMU phasor
magnitude and angle in polar coordinates are known.
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