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Abstract 

Detecting regularities in the sensory environment licenses predictions that enable adaptive behaviour. 

However, it is unclear whether predictions about object category, location, or both dimensions are 

mediated by overlapping systems, and relatedly, whether constructing predictions about both category 

and location is associated with processing bottlenecks. To examine this issue, in an fMRI study, we 

presented participants with image-series in which non-deterministic transition probabilities enabled 

predictions about either the location of the next image, its semantic category, both dimensions, or 

neither (the latter forming a “no-regularity” random baseline condition). Speaking to a common 

system, all three predictable conditions resulted in reduced BOLD activity in four clusters: left rostral 

anterior cingulate cortex; bilateral putamen, caudate and thalamus; right precentral gyrus, and left 

visual cortex. Pointing to a processing bottleneck, in some regions, a significant interaction between the 

two factors was found whereby category-predictable series were associated with lower activity – but 

only when location regularity was absent. Finally, category regularity decreased activation in areas of 

the ventral visual stream and semantic areas of lateral temporal cortex, and location regularity 

decreased activation in a dorsal fronto-parietal cluster, long implicated in the endogenous control of 

spatial attention. Our findings confirm and expand a role for dACC/dmPFC and striatum in monitoring 

or responding to uncertainty in the environment and point to a limited capacity bottleneck when 

multiple predictions are concurrently licensed.  

 

 

Keywords: uncertainty, prediction, statistical learning, predictive coding, disorder, entropy 
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1. Introduction 

Humans excel at detecting regularities. They can detect patterns matching chaotic (non-random) 

processes, differentiate fractal dynamics across multiple time scales, and recognize subtle interactions 

between multiple variables (Lewicki, Hill, & Czyzewska, 1992; Smithson, 1997; Stephen & Dixon, 

2011). This ability develops early (e.g., Saffran, Aslin, & Newport, 1996) and applies to both visual 

and non-visual input (for review, see Conway, Pisoni, & Kronenberger, 2009). Moreover, the ability to 

recognize temporally unfolding regularities or patterns in the sensory environment offers multiple 

advantages: it allows prediction when regularities exist, or conversely, an increased emphasis on 

bottom-up processing when the environment lacks regularity. 

Much of the neurobiological research to date has focused on brain regions whose activity tracks 

regularity of simple visual or auditory streams. This work has linked several brain regions to the 

processing of regularity, including lateral and dorso-medial prefrontal cortex (dmPFC; Behrens, 

Woolrich, Walton, & Rushworth, 2007; Huettel, Song, & McCarthy, 2005), hippocampus (Bornstein & 

Daw, 2012; Harrison, Duggins, & Friston, 2006; Strange, Duggins, Penny, Dolan, & Friston, 2005), 

posterior parietal sulcus (Huettel et al., 2005; Nastase, Iacovella, & Hasson, 2014), anterior cingulate 

cortex (ACC; Harrison, Bestmann, Rosa, Penny, & Green, 2011; Nastase, Iacovella, Davis, & Hasson, 

2015) and lateral temporal regions (e.g., Bischoff-Grethe, Proper, Mao, Daniels, & Berns, 2000; Tobia, 

Iacovella, & Hasson, 2012; Tremblay, Baroni, & Hasson, 2013).  

While the use of simple tonal or visual series has proved effective for identifying mechanisms by which 

regularities are coded or deployed for purposes of prediction, these paradigms have not examined an 

important use of environmental regularities: making predictions about semantic features and location of 

elements in the environment that have yet to appear. In particular, it is unclear whether contexts that 

allow for joint predictions about the location and identity of future stimuli involve those neural systems 

engaged when only location or identity are predictable. It is also unclear whether the ability to predict 

both dimensions is associated with a processing bottleneck. As we review in detail below, there are two 

views on this issue. One view posits that separate systems code for different dimensions of the 

environment (location, visual features, etc’; see Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003), and 

these systems operate in parallel to encode location and category information (what appears where). In 

the other, a single core fronto-parietal system mediates anticipation of future locations and identity 

(Egner et al., 2008)  

To address these issues, we conducted an fMRI study in which participants observed series of images 

that were drawn from four semantic categories and presented at four screen locations. The four types of 

series were constructed so that the transition structure allowed for predictions about i) just the location 

of the next image, ii) just its category, iii) both dimensions (dual regularity), or iv) neither dimension 

(the latter forming the “no-regularity” baseline condition). We examined activity in the baseline no-

regularity condition vis-à-vis activity in the other three conditions, where predictions regarding 

location, category, or both were licensed. This allowed for identification of neural systems sensitive to 

statistical regularities in these domains and second, identification of systems where the ability to 

predict both location and category produced activation patterns consistent with a processing bottleneck.  
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From the perspective of experimental design, a bottleneck in predictive processing would appear as an 

interaction between the levels of location and categorical predictability. If the two dimensions were 

tracked by independent systems, those would show main effects of regularity in the categorical and 

location domains. However, if the two systems are integrated or interact each other, then the level of 

location regularity should affect the expression of categorical predictability or vice-versa. This 

interaction may be expressed in different forms and we were particularly interested to see if there 

would be brain areas where the dual regularity condition was associated with higher activity than both 

the location- and category-regularity conditions.  

Our work assumes that environmental statistics are vital information for systems that mediate 

predictive coding – a computation in which systems associated with higher level functions generate 

predictions about expected environmental states – that is, construct a model of expected neural activity 

in low-level sensory regions (Friston, 2009; Grossberg, 2009; Rao & Ballard, 1999; Summerfield & 

Egner, 2009). Satisfied – i.e., correct -- predictions are associated with reduced prediction errors, and 

lower activity in sensory regions (Feldman & Friston, 2010; Kok, Rahnev, Jehee, Lau, & de Lange, 

2012). Predictions may be instantiated and evaluated via interactions between frontal regions and 

sensory systems (Bar et al., 2006; Summerfield et al., 2006), or via interactions between sensory 

regions (den Ouden, Friston, Daw, McIntosh, & Stephan, 2009). A representation of stimulus regularity 

can license predictions about what is likely to appear where. This not only speeds up orientation 

towards, but also improves the identification of, a future stimulus via pre-sensitization of systems that 

code for its expectation. (e.g., Esterman & Yantis, 2010). The predictive coding framework makes 

well-defined hypotheses about the impact of statistically induced predictions regarding location and 

identity. However, as we detail below, it leaves open the neurobiological question of whether the 

potential to anticipate both location and category is associated, at any level, with increased difficulty as 

compared to conditions where only one of the dimensions is predictable.  

With respect to location regularities, it has been shown that individuals are highly sensitive to them 

(Marcus, Karatekin, & Markiewicz, 2006; Walthew & Gilchrist, 2006). They respond faster to targets 

appearing in more predictable locations, either because these target locations have higher marginal 

frequencies (Geng & Behrmann, 2002, 2005; Jones & Kaschak, 2012) or because they are linked to 

stronger transition probabilities (Remillard, 2003, 2009). We therefore expected that being able to 

predict location transitions would serve as an endogenous cue, resulting in increased activity in regions 

associated with recruitment and directing of spatial attention, specifically the bilateral intraparietal 

sulcus and the frontal eye fields (see Corbetta & Shulman, 2002, and also Szczepanski & Kastner, 

2013, for recent review). At the same time, the greater proportion of correct predictions should translate 

in reduced activity in visual cortex when location is predictable (~ V1; Kok et al., 2012). 

In addition, we studied the impact of regularities governing the semantic categories from which visual 

images were drawn. This examination was more exploratory, since there is little if any prior work that 

informs this issue. Individuals are sensitive to the presence of fixed sequences of images drawn from 

basic-level categories (Brady & Oliva, 2008; Goschke & Bolte, 2012), but whether this extends to 

stochastic contexts has not been examined. As far as regions that might be sensitive to category in the 
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context of visual regularity, prior results point to lateral occipital cortex and the fusiform. These 

regions show stronger repetition-suppression effects when repetitions are more predictable, which has 

been taken to suggest they mediate anticipatory predictions (Mayrhauser, Bergmann, Crone, & 

Kronbichler, 2014; Summerfield, Trittschuh, Monti, Mesulam, & Egner, 2008). Importantly, reduced 

activity in these regions likely also reflects long-term familiarity with the stimuli (i.e., not solely a 

visual representation) as the pattern of repetition suppression in the fusiform depends on stimulus 

familiarity; Henson, Shallice, & Dolan, 2000). We thus hypothesized that being able to make category-

level predictions would result in reduced activity across the lateral occipital cortex and fusiform. We 

note that our paradigm evaluated whether predictions could be made on the abstract level (of category, 

not specific tokens) as in our study all images were unique and presented once, making it impossible to 

predict the specific feature of the next image. 

As mentioned above, some have argued that coding for multiple input streams relies on separate 

systems (e.g., Keele et al., 2003), whereas others have suggested that anticipating location and identity 

relies on a single system (e.g., Egner et al., 2008). Current approaches to statistical learning are 

similarly concerned about whether the capacity to learn the statistics of an input stream is mediated by 

a single, modality-general system, or carried out by additional more modality-specific systems (Frost, 

Armstrong, Siegelman, & Christiansen, 2015). Our own prior work on this matter, which manipulated 

regularities in auditory-only or visual-only streams, showed that separate systems might be involved 

(Nastase et al., 2014). In support of the separate-system view, work that examined sequential (as 

opposed to statistical) learning suggested that the coding of two sequence streams does not accrue 

additional costs (quantified behaviorally) beyond what is necessary to code for a single dimension 

(Mayr, 1996). This supports the modular approach, in which separate processes code the regularity of 

different stimuli dimensions (see Goschke & Bolte, 2012; Mayr, 1996, for supportive behavioral data). 

Such findings have been interpreted within a framework in which sequential structures in different 

stimuli dimensions are processed by different modules (Keele et al., 2003). Consistent with this view, 

Bubic et al. (2011) found that different neural systems are involved in evaluating predictions regarding 

object identity, location, and presentation time. Other studies have shown that odd-ball (unexpected) 

auditory or visual events produce patterns corresponding to surprise or prediction error in respective 

sensory cortices (Kok et al., 2012; Mustovic et al., 2003; Todorovic, van Ede, Maris, & de Lange, 

2011).  

However, an alternative viewpoint emerges from neuroimaging work that suggests that predictions are 

mediated by a single fronto-parietal system that codes for both stimulus features and stimulus locations. 

For example, Egner et al (2008) manipulated the validity of cues in a cue-target paradigm and found 

that more informative cues evoked higher activity in fronto-parietal regions, not only when cues 

informed about a future location, but also when they informed about a specific visual feature of the to-

be presented item. Similarly, Cristescu et al. (2006) studied responses to cues that predicted either the 

semantic category of a to-be-presented word or its spatial location, and the authors identified a similar 

network to that reported by Egner et al. (2008), with greater activity for diagnostic cues.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 6 

Thus, in the current study we hypothesized that i) predictable location streams would be associated 

with reduced metabolic demands seen in lower BOLD signal (prediction-related saving) in visual 

cortex as compared to the no-regularity baseline, ii) that predictable category streams would resulted in 

reduced BOLD activity in lateral occipital cortex and fusiform, iii) that location regularity could 

produce increased activity in fronto-parietal systems linked to valid cuing. Finally, we did not have a 

precise prediction regarding the dual regularity condition. On the one hand, the increased predictability 

in that condition within both streams, should produce reduced activity when compared to baseline, if 

only because the location dimension itself is easier to track. On the other hand, the work by Egner et al. 

and Cristescu et al. strongly suggests there is a core system mediating cue-based prediction, in which 

case making both predictions could produce a bottleneck, seen in greater activity in the dual-regularity 

condition than the single-regularity conditions or alternatively, as an “annulment of saving” that the 

latter offer as compared to baseline.  

2. Methods 

2.1 Participants 

Twenty-five right-handed participants (M = 24.6 y.o.a, SD = 3.9, 12 female) with no history of 

psychiatric or neurological diseases, and normal or corrected-to-normal vision, participated in the fMRI 

study. They underwent an interview with a board-certified M.D to evaluate exclusion criteria and 

provided informed consent. The Ethical Review Board of the University of Trento approved the study 

and all participants provided informed consent prior to their participation. All participants were 

debriefed following their participation. 

2.2 Materials, procedure and task 

The stimuli were unique color images showing exemplars from the four categories: faces, flowers, 

houses and tools. Images were collated with permission from multiple databases and collections: faces 

from the colored neutral-expression collections (all age groups) from the Center for Vital Longevity 

Face Database (Minear & Park, 2004); flowers from the image-net.org synset; houses and tools from a 

collection culled from the internet. All images were unique as verified manually and through image 

matching software (DupDetector, http://www.keronsoft.com/dupdetector.html). 

The experiment entailed looking at series of images. The structure of each series was determined by 

two factors (see Figure 1): i) location transition constraints for successive images, and ii) category 

transition constraints for successive images. There were four possible locations in the screen quadrants 

and four semantic categories from which unique image exemplars were drawn: faces, flowers, houses 

and tools. The transition constraints that governed the location or category regularities were either low 

(no constraints) or high (relatively strong constraints, but still stochastic). In the low-regularity case 

(formally, a random process), any of the four possible transitions within a dimension was equally 

probable, including a repetition of an image location or category. With high-regularity there was a 75% 

probability for specific location or category transitions and a 25% probability for repetitions. In the 

location dimension, high regularity transitions were: top-left → top-right → bottom-left → bottom-

right → top-left, etc. In the category dimension, high probability transitions were: face → flower → 
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house → tool → face, etc. These transition mappings were maintained throughout the experiment. Note 

that the transition structure was generated separately for the locations and the category transitions so 

there was no mutual information between the input streams; i.e., learning and prediction about each 

stream could only be achieved if that stream was tracked, even in the condition when both streams were 

regular (dual regularity; see Figure 1). 

Series were presented in one randomized assignment to all participants. A trial consisted of a central 

fixation circle (483ms) followed by the image screen (333ms) for a total trial duration of 816ms. Each 

series consisted of 49 trials. Images were presented via a projector with a 60Hz refresh rate and were 

observed via a headcoil-mounted mirror. The apparent screen distance was 135cm, image size was 4.5° 

x 4.5° and the center of each image was 4.95° from center. There was a distance of 7° between images.  

The fMRI experiment comprised 5 runs, each 8min in length. Each run included 8 series: 2 series of 

each of the 4 conditions, for a total of 40 series. Each run began with a 15.4s fixation screen to allow 

for T1 stabilization effects. Each of the 8 series in the run was preceded by a 2.7s screen displaying the 

instruction ‘READY….’. The series was then presented as a block lasting 39.5s. Participants were 

 

 

Figure 1: The four conditions used in the study. In each condition, images from four categories were 

presented at four screen locations. The four conditions were created by crossing random/regular transition 

matrices that determined location with random/regular transition matrices that determined the next category. 

In the NR condition neither dimension was predictable, in the DR condition both were predictable, and in 

the LR and CR conditions either location or category were predictable. In all cases, the series that governed 

locations and category were not mutually informative. 

Location transitions Category transitionsCondition
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2. Location regular
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instructed to simply observe the images and be prepared to click when prompted after each series, to 

show they are still alert. Following each series, there was 19s presentation of the fixation cross. The 

presentation of the cross was interrupted at a jittered period between 2 and 6 seconds after the onset by 

a red ‘CLICK NOW’ instruction which stayed on screen for 2s or until participants had responded. 

This prompt was included to maintain and evaluate alertness during the study. These clicks were 

monitored in real time and participants alerted if not responding during the run. 

 

2.3 MRI Acquisition 

Images were acquired with a 4-T MRI scanner (Bruker Medical, Ettlingen, Germany) at the University 

of Trento, using a birdcage-transmit, 8-channel receiver head coil (USA Instruments, Inc., OH, USA). 

Two T1-weighted 3D MPRAGE structural images were acquired (1x1x1 mm3, GRAPPA iPAT=2, 

5:36min each). One was optimized for optimal contrast between gray and white matter tissue 

(MPRAGE_CNR; TE/TR/TI/flip angle = 4.18ms/2700ms/1020ms/7°) and the other was optimized for 

signal to noise ratio in gray and white matter tissue (MPRAGE_SNR; TE/TR/TI/flip angle = 

3.37ms/2500/1200ms/12°; Papinutto & Jovicich, 2008). These two structural images were aligned and 

averaged to obtain a structural image with high signal-to-noise ratio. For fMRI, single-shot EPI BOLD 

functional images were acquired using the point-spread-function distortion correction method (Zaitsev, 

Hennig, & Speck, 2004). Two hundred and thirty-six EPI volumes lasting 519.2s were acquired during 

each of the 5 functional runs (for 944 total volumes and 2,076.8s).  

2.4 fMRI analysis 

2.4.1 Image pre-preprocessing 

fMRI preprocessing was carried out using FEAT (FMRI Expert Analysis Tool v. 6), part of FSL 

(FMRIB's Software Library; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). The first six 

volumes of every fMRI image were deleted. The following pre-statistics processing was applied: 

motion correction using MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002); slice-timing 

correction using Fourier-space time-series phase-shifting; non-brain removal using BET (Smith, 2002); 

spatial smoothing using a Gaussian kernel of 5mm FWHM; grand-mean intensity normalization of the 

entire 4D dataset by a single multiplicative factor; highpass temporal filtering (Gaussian-weighted 

least-squares straight line fitting, with sigma=50.0s). 

We implemented a strict control for motion effects. Confound matrixes were created using the dvars 

metric (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) using the fsl_motion_outliers tool. The 

dvars metric measures intensity differences between volumes adjacent in time after realignment 

(motion correction); i.e., it is a differenced time series of the motion vector. Volumes that exceeded a 

boxplot cutoff threshold of (1.5 x interquartile range) were included in a confound matrix to be 

excluded in the first level general linear model (GLM) as an effect of no interest. Such volumes 

accounted for a mean of 5.6% of the data. In this way, we excluded from further analysis the signal 

from volumes with large intensity differences relative to volumes adjacent in time. This method is 
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similar to excluding outlier time points from the regression model, but it does so without adversely 

affecting temporal filtering or autocorrelation estimations. 

2.4.2 Normalization 

The two SNR- and CNR-optimized structural images were averaged to create a single mean structural 

image used in all subsequent processing. This structural image was preprocessed using the fsl_anat 

script where they were: reoriented to MNI orientation (fslreorient2std), automatically cropped 

(robustfov), bias field corrected (FAST), nonlinearly registered to a whole brain MNI template 

(FNIRT), FNIRT-brain extracted based on the alignment to the whole brain MNI template, and finally 

segmented by tissue type (FAST) and subcortical structure.  

Following the first level analysis regression model, we aligned the statistical maps to MNI space in a 

single transformation based on matrices generated in the following three steps: 1) Aligning each 

structural image to the first EPI image in each run (i.e., the first image of the 6 discarded acquisitions; 

the image with the strongest anatomical contrast) using a 3 degrees of freedom (translation-only) linear 

FLIRT alignment, 2) using boundary-based registration (BBR; Greve & Fischl, 2009) to co-register the 

first EPI volume to the bias corrected, FNIRT-based brain extracted, and segmented structural image, 

3) nonlinearly aligning the bias corrected, FNIRT-based brain extracted structural image to the MNI 

template (12 degrees of freedom linear initial step followed by non-linear registration with warp 

resolution of 10mm).  

2.4.3 Single-participant regression models 

Single-participant analyses were conducted using FEAT (FMRI Expert Analysis Tool v. 6). GLM was 

carried out using FILM with local autocorrelation correction (Woolrich, Ripley, Brady, & Smith, 

2001). The main analysis was conducted as a block design, with 4 regressors of interest: one for each of 

the four experimental conditions. These were 39.5 sec blocks, convolved with a gamma HRF. There 

was also one regressor modeling the click event. Regressors of no interest included the standard and 

extended motion parameters (6 standard regressors-- 3 translation, 3 rotation -- the derivatives of those, 

the squared version of the standard regressors, the squared version of the derivatives), and the dvars 

determined motion confound matrix which consists of a 1 volume event for any volume that exceeded a 

dvars boxplot cutoff threshold of (1.5 x interquartile range).  

Our primary interest was the effect of regularity on stimulus bound responses.  However, the presence 

of repetitions in our design constitutes a form of low-level regularity.  In all conditions, the probability 

of repetitions (both location and category) was matched at 25% (see Fig. 1) To evaluate the impact of 

category or location repetitions in each of the four conditions we implemented a similar analysis that 

only differed in that it consisted of a larger number of regressors of interest, as we separately modeled 

location and category repetitions (and their temporal derivatives) as separate event types for each 

condition.  
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2.4.4 Group-level analysis 

Second-level (group) analyses were conducted as follows. Beta estimates for all conditions estimated 

within each run were averaged within participants using a fixed effects model. All group analyses were 

then carried out using FLAME (FMRIB's Local Analysis of Mixed Effects, stage 1 and stage 2 with 

automatic outlier detection; Woolrich, 2008). All contrasts were thresholded at Z > 2.3, followed by a 

cluster significance threshold of p = 0.05 adjusted for multiple comparisons using the Gaussian 

random-field theory method (Worsley, Taylor, Tomaiuolo, & Lerch, 2004). 

2.4.5 Region of interest analysis 

In addition to the whole-brain analyses that used cluster-based family-wise error correction, we also 

focused on several specific subcortical structures using ROIs, given our specific hypotheses about their 

role in statistical learning, anticipation and evaluation of predictions. Subcortical regions of interest 

(ROIs) were defined using the Harvard-oxford subcortical atlas. Based on prior work on coding of 

regularity we selected the bilateral thalamus, caudate, putamen, pallidum, hippocampus and nucleus 

accumbens as regions of interest. These were selected based on prior work linking them to the coding 

of regularities (Haruno & Kawato, 2006; Reddy et al., 2015; Turk-Browne, Scholl, Johnson, & Chun, 

2010). Subcortical ROIs were transformed from common MNI space to original space using the inverse 

of the transformation we derived to convert them from original space to MNI space. Mean signal 

change values in each ROI were extracted for each participant for each condition, by collapsing across 

all voxels in each ROI. Voxels with signal change estimates greater than 5% were excluded to alleviate 

possible impact of outliers. Statistical analysis were performed using R’s linear mixed effects model 

package (nlme; Pinheiro, Bates, DebRoy, Sarkar, & Team, 2013). For each region, a 2 (category 

information) x 2 (location information) linear mixed effects model was conducted. Family-wise error 

was implemented using a false-discovery rate applied to all p values of main effects and interactions 

reported by the ANOVAs for these regions.  

2.4.6 Post-hoc analyses 

We conduced two analyses after observing the main results in order to better understand several aspects 

of activity organization in the brain regions identified.  These consisted of a Psychophysiological 

interaction analysis examining the connectivity of areas that showed reduced activity in all predictable 

conditions, and a multivariate examination of brain activity patterns in those regions. 

Psychophysiological interaction 

In order to investigate the effect of category regularity on functional connectivity we performed 

psychophysiological interactions (PPI) analyses (Friston et al., 1997) with FSL. We conducted a PPI 

analysis separately for each of the four functional regions of interest that showed reduced activity in all 

3 predictable conditions (as compared to baseline). Each PPI analysis was conducted as follows: the 

(demeaned) average time series served as the physiological variable. The psychological regressor 

was category regularity (−1 for no category predictability (the NR condition), 1 for category regularity 

(the CR condition)). The PPI regressor for each of the 4 PPI analyses was computed as the product of 

the demeaned functional region of interest and the zero centered psychological regressor. We also 
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included the location predictability and dual predictability conditions as regressors of no interest. All 

pre-processing, normalization, group analysis, and thresholding were identical to the regression 

analysis outlined above.  

Prior to conducting the PPI analysis, we evaluated the correlations amongst the time series derived for 

the four seed regions, since high correlations practically guarantee similar PPI results for the different 

regions. For each participant we derived the 6 pair-wise correlation values amongst the 4 regions and 

examined those values at the group level. The highest average correlation was found between the ACC 

and R. PCG [M = 0.43, SD=0.15) and the lowest was between visual cortex and R. PCG (M = 0.18, 

SD=0.1), with a mean pairwise correlation of 0.28 for all 6 pairwise values. Thus, separate PPI 

analyses were licensed.  

Multivariate analysis 

In this analysis, we focused on four regions of interest defined by the fact that they all reduced activity 

in each of the regular condition (CR, LR, DR) as compared to the NR condition. For each participant 

we treated that activation in each cluster as an activation pattern and examined its correlation to 

activation patterns in the other conditions. This produced three pairwise correlation values (CR:LR, 

CR:DR, LR:DR). We Fisher-Z transformed these correlation values, and the resulting value (3 values 

per participant per region) were inserted into a repeated measure ANOVA. The ANOVA indicated 

whether there was a significant difference in correlation patterns across the three conditions.  We note 

that in this analysis, the raw pair-wise correlation values between conditions are less theoretically 

meaningful. To the extent that the spatial distribution of local activity in a region of interest is 

determined by a non-specific factor (e.g., Gray matter concentration) then the distributed activity 

patterns across conditions will be highly similar even if computations are slightly different.  For this 

reason, the analysis examines differences in pair-wise correlations (independent of absolute 

magnitudes). 

3. Results  

In reporting the results we first report the differences of each of the regular conditions (CR, LR, DR) in 

relation to the baseline condition (NR) using simple main effects. We then consider conjunctions of 

regularity effects, with respect to the NR condition. We then report analyses focusing on the 

interactions between the regularity of 'what' and 'where' attributes.  

3.1 Contrasts against baseline condition 

When compared to the No Regularity (NR; baseline) condition where no regularities existed for either 

location or category, all three conditions with regularity resulted in reduced activity levels. We did not 

identify any case where a condition that contained regularities showed greater activation than the NR 

condition. Figure 2 presents regions where the NR condition associated with greater activity than the 

CR, LR or DR conditions, also showing relative overlaps in reduced activation (see Table 1 for cluster 

descriptives). As the figure shows, the right superior frontal gyrus (SFG), ACC, and parts of visual 

cortex showed reduced activation for all three regular conditions compared to NR (white color; CR < 
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NR & LR < NR & DR < NR). In the temporal cortex, bilaterally, we found reduced activity for 

category regularities (green; CR < NR), and, on the left, there was also reduced activity for the DR 

condition (marked in green and blue). The left ACC showed reduced activity for location regularity 

(red and pink; LR < NR; [LR < NR] & [DR < NR]).  

A left posterior midline cluster extending across the cuneus, lingual gyrus and parahippocampal gyrus 

(PHG) showed reduced activity for the LR and CR conditions but not the DR condition (marked in 

yellow; [LR < NR] & [CR < NR]). In general, location-predictability associated with reduced activity 

in dorsal aspects of pre- and post-central gyri bilaterally. The CR condition was also associated with 

reduced activity in visual cortex, covering the occipital pole and posterior fusiform. However, a direct 

contrast between the location-predictable and category-predictable conditions produced a null effect. In 

the discussion we mention possible reasons for this and similar prior findings. 

 

3.2 Frontal, occipital and basal-ganglia/thalamus show less activity in all statistically regular 

conditions 

To identify areas where all three regular conditions showed significantly less activity than the baseline 

condition, we constructed a composite image, where each voxel was assigned the minimum T value of 

the three contrasts (Voxel_value = MinT ([NR vs. CR], [NR vs. LR], [NR vs. DR]), and this image was 

thresholded using standard cluster-based thresholding (see Methods; this analysis corresponds to 

identification of a “conjunction null” (Nichols, Brett, Andersson, Wager, & Poline, 2005) upon which 

we also perform cluster-based family-wise error correction). Thus, a significant cluster found for this 

composite image would indicate that in the given cluster all three conditions with regularity 

 

Figure 2: Regions showing less activation for location-regular, category-regular or dual-regularity 

series as compared to the baseline no-regularity condition. No brain region showed less activity for the 

no-regularity condition, in any of the three contrasts. 

Dual Category

Location

Left

Right
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significantly exceeded the necessary single-voxel threshold, so all three showed significantly less 

activity in the cluster compared to the NR condition.  

This analysis revealed four clusters: one in the anterior cingulate, one in occipital cortex, one in right 

PCG, and one in bilateral putamen extending into the thalamus. These locations match the areas shown 

in white in Figure 3, indicating that the overlaps found there are not attributable to a chance (see Table 

2). 

In each of these 4 clusters we calculated the 

between-condition similarity of multi-voxel 

response profiles in the CR, LR and DR 

conditions to answer the following questions: 

First, do these regularity-related decreases in 

activity simply reflect an overall mean 

fluctuation, while maintaining the multivariate 

pattern of activity in the regions across the three 

conditions with regularities; second, do the 

activity profiles in the DR condition more 

strongly resemble those of the LR or CR 

conditions, and thirdly, are the reductions in 

activity driven by the degree of attentional load, 

in which case responses in the LR and CR 

conditions should be most similar to each other.  

For each participant we computed the pair-wise 

similarities between multi-voxel activation 

patterns in the three conditions, and then analyzed 

those on the group level after normalizing the 

correlation values using a Fisher-Z 

transformation. In the ACC, correlations were 

high (pair-wise mean Pearson’s R values between 

.69 and .72) but did not differ across conditions. 

In the right PCG correlations were moderate 

(pair-wise means between 0.52 and 0.62) and 

without significant difference. In the subcortical 

putamen/thalamus cluster and in the occipital 

cluster correlations were moderate to high, and 

varied depending on condition-pair examined (see 

Figure 3b). For the subcortical cluster, a repeated-

measures ANOVA on the Fisher Z-transformed 

correlation values showed a significant effect of 

condition-pair F(2, 26)=3.89, p<.05, as the 

 

Figure 3. Areas where all three regular conditions 

were associated with reduced activity as 

compared to the NR condition. Panel A: location of 

the four clusters. Panel B: multivariate similarity 

patterns in two regions that differentiated the regular 

three conditions. 
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LR:CR correlation was strongest, and significantly differed from the CR:DR correlation t(23)=2.54, 

p<.05. A similar ANOVA applied to the correlation values in the occipital cluster revealed a similar 

pattern F(2, 44)=3.99, p<.05, with a significant difference between the LR:CR correlation and the 

CR:DR correlation t(24)=3.54, p=.002. To summarize, the four regions identified here showed reduced 

activity in each of the three conditions that manifested statistical regularities, but for the putamen and 

visual cortex we also found evidence of differential within-region organization, depending on the 

specific condition.  

3.3 Sub-additive effects of dual predictability  

We constructed an interaction term to probe whether the effect of category predictability depended on 

the presence/absence of location predictability. The interaction contrast [NR – CR] > [LR – DR] 

identified 7 clusters (see Figure 4; the reverse contrast returned a null result). These included the left 

angular gyrus and lingual gyrus, and the right anterior cingulate extending to superior frontal gyrus, 

orbital gyrus and precentral gyrus, as well as visual region V1 and V2 (bilaterally). All these regions 

showed the same pattern: a lower activation for the CR than NR condition indicating reduced activity 

that is linked to category predictability (significantly so in R. orbital, L. angular, L. lingual, L. V1, R. 

ACC), but no category-related savings for the DR as compared to the LR condition. In fact, in several 

regions DR was associated with significantly higher activity than LR; specifically, R. PCG, L. lingual, 

R. V1-V2. To summarize, in a large set of regions category predictability was associated with lower 

activity only when location was not predictable. In addition, in all these regions, activity was above 

baseline for all four conditions indicating modulation of activation rather than deactivation.  

 

Figure 4. Areas where reduced activity related to category 

regularity depended on location regularity.  
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3.5 Regions showing lower activity for dual regularity than single regularity series 

The above analyses were motivated by our hypothesis that dual regularities may be associated with 

processing costs or non-additive patterns of metabolic savings. Indeed, the BOLD data reported above 

show that the DR condition could be associated with greater activity than the CR condition or show a 

more subtle effect of annulling the potentially beneficial effect of category predictability. However, the 

additional processing load associated with dual predictions, may also be accompanied by facilitated 

processing in certain systems. In order to determine whether there were any regions that showed lower 

activity in the DR relative to both the LR and CR conditions we constructed a conjunction of the 

thresholded DR < LR and DR < CR contrasts (all contrasts were thresholded at Z > 2.3, followed by a 

cluster significance threshold of p < 0.05; see Methods). This identified a large cluster in the precuneus 

bilaterally. An examination of this cluster’s absolute activation values showed that the DR condition 

associated with near-baseline values, whereas the other conditions showed above-baseline levels.  

3.6 Repeats 

In all conditions and series, repetitions of category or location occurred 25% of time. This allowed us 

to evaluate whether the context of regularity impacted the processing of repetitions, even though their 

marginal frequencies were identical across conditions. We compared location repeats in the LR to the 

NR condition, and category repeats in the CR vs. NR condition (see Table 3).  

In the left inferior occipital cortex, location repeats were associated with less activity in the LR than 

NR condition. This cluster extends posteriorly to the right calcarine fissure and anteriorly to the 

posterior fusiform. However, location repeats were associated with greater activity in the LR than NR 

condition in the right middle frontal gyrus. For category repeats we found reduced responses to 

repetitions in the CR than NR condition in the left ventro-medial PFC.  

3.7 Subcortical regions 

Of the subcortical regions we examined (thalamus, caudate, putamen, pallidum, hippocampus, nucleus 

accumbens, all bilaterally), we found that all regions apart from the nucleus accumbens and right 

caudate showed sensitivity to location regularity (p < .05 FDR corrected for 36 tests; main effect of 

location, category and interaction tests for each of 12 regions). The modal pattern was lower activity 

for location regularity. None of the regions showed an effect of category regularity.  

However, some regions (bilateral thalamus, bilateral caudate, left pallidum, and right hippocampus) 

further showed a location x category regularity interaction. These patterns are shown in Supplementary 

Figure 1. As can be seen, the modal interaction pattern was a significant effect of location regularity 

when category regularity was low, which was much more moderate or non-existent when category 

regularity was high. For the hippocampus, we found significant sensitivity to location regularity both 

when category regularity was high, and when it was low.    

3.8 Psychophysiological interactions 

Our analyses to this point showed that predictability was largely associated with reduced activity in 

areas mediating the orientation of spatial attention or access to semantic content, with no region 

showing increased activation in predictable contexts. We next examined whether the four core regions’ 

decrease in activity was accompanied by an increase or decrease in synchronization with other brain 
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regions when category was predictable. This analysis was a post-hoc, non-planned analysis, but 

fundamental for evaluating whether the general pattern of decreased activity was accompanied by 

increased coupling between the identified regions and sensory cortices. Functionally, greater 

predictability could lead to increased coupling between these systems, while still being accompanied by 

reduced activity throughout the brain due to fewer cycles need to arrive at an ‘interpretation’ of the 

distal stimulus. We report our PPI results in terms of the beta coefficient reflecting the PPI effect.  A 

positive coefficient corresponds to a regularity dependent increase in the coupling of the target region 

to fluctuations in the seed region.   

For the ACC, R. PCG and the visual cortex cluster (but not the putamen), significant 

psychophysiological interactions were found. For the ACC seed region, negative Beta weights for the 

PPI regressor were found for right transverse temporal gyrus (TTG) and right insula. For the R. PCG 

seed region, we identified multiple regions with lower Beta weights for the PPI regressor, mostly in the 

right hemisphere: these included right superior temporal gyrus (STG), right inferior parietal lobule 

(IPL), postcentral gyri (bilaterally), right precuneus, right putamen and caudate, SMA, central part of 

cingulate gyrus, and lingual gyrus (V3), left middle and superior frontal gyrus. For the visual cortex 

seed region, we found an extended, mainly sensory network showing a negative Beta weight: these 

regions included PCG bilaterally, lateral STG and TTG bilaterally, posterior middle temporal gyrus 

bordering on V5 bilaterally, posterior cingulate/parahippocampal gyrus bilaterally, as well as right 

MFG, central part of cingulate gyrus, left putamen, left insula, left IPL, and left supramarginal gyrus 

(SMG). In all, we found a systematic pattern of decreased coupling in the CR condition. 

4. Discussion 

By manipulating the predictability of upcoming images’ location and semantic category, we were able 

to demonstrate effects of location regularity and semantic regularity and their interaction on brain 

activity. We found that location and category regularities, as implemented by transition constraints, 

reduced metabolic demands. All three conditions that contained regularities (LR, CR, DR) were 

associated with reduced activity not just in their respective sensory cortex but also in a common set of 

regions, supportive of a common system implementing regularity-related anticipation (specifically; 

visual cortex, ACC, putamen, R. PCG). Additionally, we identified activation patterns that were 

consistent with a processing bottleneck in certain systems: for certain areas category regularities only 

produced savings when not accompanied by location regularities. Finally, the LR and CR conditions 

produced patterns of reduced activity consistent with predictive processes related to saccade planning 

and access to category information. However, a direct contrast of these two conditions failed to reveal 

any regions with significantly different activity. 

4.1 A common system for category and location regularity  

The fMRI data identified a set of regions that showed reduced activity for all regular conditions in 

relation to the no-regularity baseline: dACC/vmPFC, primary visual cortex, the right PCG, and a dorsal 

striatal cluster spanning the bilateral putamen caudate and thalamus. Several of these regions have been 

repeatedly implicated in sensitivity to regularity or uncertainty.  
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In humans, the volatility of the environment correlates with dACC activity (Behrens et al., 2007), and 

ACC activity has also been linked to the coding of environmental uncertainty (Harrison et al., 2011). In 

studies of perceptual learning absent of a decision component, the ACC has been linked to rapid coding 

of uncertainty in auditory or visual stimuli (Nastase et al., 2014), and ACC connectivity with an 

extended network of brain regions further varies with uncertainty of auditory tonal series (Nastase et 

al., 2015). A meta-analysis of 9 studies of brain responses to uncertainty (White, Engen, Sorensen, 

Overgaard, & Shergill, 2014) identified the anterior cingulate, insula, dorsolateral prefrontal cortex and 

posterior parietal context as showing increased activity in contexts of greater uncertainty.  

The striatum has long been implicated in learning (Atallah, Lopez-Paniagua, Rudy, & O'Reilly, 2007), 

and connectivity between the ventral and dorsal striatum is essential for learning (Belin & Everitt, 

2008). In a study by den Ouden et al. (2009), the putamen (and dorsolateral prefrontal cortex) have 

been implicated in the acquisition of cue-target learning over time as modeled by a Rescorla-Wagner 

model, and shown to be sensitive to unexpected outcomes even when those are task irrelevant and 

learned incidentally, as is the case in the current study. The putamen has been traditionally linked to 

motor-sequence learning and execution via a cortico-striatal loop that connects the SMA, putamen, 

pallidum and thalamic nuclei (Graybiel, 1998). However, it has also been linked to artificial grammar 

learning absent of motor execution (Lieberman, Chang, Chiao, Bookheimer, & Knowlton, 2004; 

McNealy, Mazziotta, & Dapretto, 2006) as well as to auditory anticipation for known materials 

(Leaver, Van Lare, Zielinski, Halpern, & Rauschecker, 2009). Thus, we take the involvement of these 

regions in the current study to reflect the coding of overall uncertainty, or successful learning of input 

contingencies.  

Another possibility is that regular sequences contained more predictable (non-salient) stimuli, so they 

were less ‘attention grabbing.’ Consequently, the differences identified in this set of brain areas would 

reflect the mean salience of the stimuli. However, a core finding in that neuroimaging literature is that 

stimulus saliency effects, as seen e.g., in the oddball vs. standard contrast, are localized in quite 

different areas (ventral attentional networks), which involves the SMG bilaterally and anterior insula 

(see, Downar, Crawley, Mikulis, & Davis, 2002, for findings in different modalities, and Kim, 2014, 

for meta-analysis). In addition, stimulus surprisal per se has been linked to activity in IPS and SFG 

(Strange et al., 2005). Thus, the set of regions identified here is less consistent with the possibility they 

were involved in computing the mean surprisal of series-stimuli. 

While the ACC and putamen are likely linked to coding of uncertainty, associative learning or 

evaluation of outcomes in relation to a prediction, prior work suggests that reduced activity in visual 

cortex may reflect the reduced prediction error associated with location and category predictions. In a 

study that manipulated the frequency of left/right screen-side presentations of simple visual stimuli, 

presentation of stimuli on the unexpected side resulted in increased activity in V1 in a condition 

demanding no attention or evaluation of the stimuli (Kok et al., 2012). In another study where auditory 

tones predicted presence or absence of visual stimuli (den Ouden et al., 2009), surprising events -- 

either unexpected presentations or omissions of visual stimuli -- resulted in increased activity. Thus, the 

reduced activity we found could be due to the fact that the category- or location-regular conditions 
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were more frequently associated with confirmed predictions (i.e., a lower mean prediction error 

throughout the block of trials).   

When examining the connectivity patterns of these regions we found that the ACC, R. PCG and visual 

cortex all showed lower connectivity with multiple brain regions in the CR vs. NR condition. The 

predictability of an input stream is known to impact connectivity in certain systems. For instance, 

predictability of auditory streams produces stronger connectivity between ACC and both frontal and 

occipital regions (Nastase et al., 2015). In addition, simply anticipating a particular semantic category 

by monitoring for it in an input stream has shown to increase connectivity between frontal and occipital 

regions (Summerfield et al., 2006). Given that our paradigm relied on extended series where transitions 

could be learned with high accuracy over time (and predictions could, optimally, be correct 75% of the 

time), the lower connectivity seen here for the CR condition could reflect the outcome of more precise 

predictions. Within several theoretical approaches, correct predictions would be accompanied by fewer 

processing cycles between high- and low-level regions for arrival at the correct interpretation of the 

external stimuli (e.g., Friston, 2009; Grossberg, 2009). 

We note that while these regions commonly showed below-baseline activation, the internal 

organization of activation in the putamen and V1 clusters did vary across conditions as indicated by a 

multi-voxel analysis examining similarity of activation patterns across conditions. In both, activation 

patterns were most similar for the CR and LR conditions, and least so for the CR and DR conditions. 

This suggests that in these two regions, increased regularity was not associated with a uniform mode of 

processing, but one that was condition-sensitive.  

4.2 Location regularities 

For location regularity alone, we observed decreased activation in a cluster centered on the motor 

cortex, extending anteriorly to the bilateral MFG and ventrally to the IPS. This cluster corresponds 

broadly with the dorsal frontoparietal network for endogenous control of spatial attention (Corbetta & 

Shulman, 2002). As noted previously (Summerfield & Egner, 2009) differentiating the effects of 

prediction and attention is quite difficult. However, Kok et al. (2012) demonstrated it is possible to 

differentiate the two by showing that predictable stimuli (in visual cortex) tend to produce less activity 

when the stream is unattended, but greater activity when the stream is attended to. Thus, whether a 

certain cortical system shows reduced or increased activity to predictable stimuli (vs. unpredictable) 

may itself depend on attentional state.  

Utilizing information provided by valid cues is a function that has been associated with the same 

fronto-parietal system identified here, but in a markedly different manner. Egner et al (2008) 

manipulated the diagnosticity by which cues predicted the upcoming location and found that more 

diagnostic cues (as compared to less diagnostic or completely non-informative cues) were associated 

with increased activity in the fronto-parietal system we identified (compare their Figure 2A, our Figure 

2). The fact that we find less activity in this system for predictable series may point to a difference 

between computations elicited by exogenous cuing on the one hand, and endogenous learning-based 

predictions on the other. Note that our predictive conditions, by definition, had higher mean cue 

information (i.e., on average, cues reduced much more information in the predictable series). Yet, mean 
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activity in this fronto-parietal system was lower in the LR than NR condition. We are not aware of 

prior work where endogenous cueing resulted in decreased activation of this network. However, in a 

study of decision-making under uncertainty (Huettel et al., 2005) activity in the IPS has been shown to 

decrease in more predictable binary series (consistent with our findings). In addition, White et al. 

(2014) conducted a meta-analysis of 9 studies that manipulated uncertainty and concluded that more 

certain conditions associated with lower activity in ACC, Insula dlPFC and posterior parietal cortex, 

consistent with our findings. Thus, it may be that cue information (in attentional tasks) and overall 

series uncertainty drive this network in different ways. 

An exception to this pattern were responses to location repetitions in the LR vs. NR conditions. Here, 

returning to a repeated location evoked greater activity in LR than NR, consistent with a surprisal 

effect.  Note that in all conditions in the study, location repetitions constituted 25% of the trials (see 

Figure 1). Thus this effect can be strongly linked to violation of expectation.  This was accompanied by 

reduced activity in lower level visual regions. One possibility to be evaluated in future work is that in 

the LR condition participants sometimes prepared saccades towards the anticipated location, and when 

surprised by a return, had to correct the movement, leaving less time to dwell on the image and 

consequently, reducing activity in low-level regions. 

In conclusion, for location regularities, we find that they associated with a decrease in activity in a set 

of regions that closely resembles the dorsal fronto-parietal network for endogenous control of spatial 

attention. This decrease is consistent with the body of literature supporting predictive encoding (e.g., 

Friston, 2009; Mayrhauser et al., 2014; Rao & Ballard, 1999; Summerfield et al., 2008; Todorovic et 

al., 2011) and suggests that this system could benefit from reduced prediction error in the spatial 

domain. We conjecture that as the set of possible target locations becomes smaller the prediction error 

is resolved more quickly and efficiently, which produces less metabolic activation..  

4.3 Category regularities 

Category regularity was also associated with reduced activity in areas known to mediate access to 

conceptual knowledge as well as those linked to visual processing. For visual cortex, it could be that 

reduced BOLD is linked with shorter fixation durations (a typical finding for predictability in reading 

studies; Frisson, Rayner, & Pickering, 2005). We also observed a significant decrease in activation of 

the middle temporal cortex and bilateral fusiform, areas who’s activity has been strongly and 

consistently found to be related to the visual semantics of our categories (Grill-Spector & Malach, 

2004). We also observed significantly reduced activity in left angular gyrus, left middle frontal gyrus, 

and bilateral orbital frontal cortex, areas that have been suggested to be involved in visual semantics 

(Gerlach, 2007) but that are outside of what is considered the core visual category-selective perception 

network. Interestingly these areas have been strongly implicated in the semantics of language (Binder, 

Desai, Graves, & Conant, 2009; Price, 2012), and there is evidence for a commonality of neural 

representations of words and pictures (Bright, Moss, & Tyler, 2004; Chee et al., 2000; Gates & Yoon, 

2005; Shinkareva, Malave, Mason, Mitchell, & Just, 2011).  

Decreased activation in the ventral stream for category regularities is consistent with a subset of the 

repetition suppression (RS) literature. Repetition suppression refers to the decrease in a BOLD 
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response found for repeated stimuli (Grill-Spector, Henson, & Martin, 2006). In support of a predictive 

coding explanation, RS in the visual domain has been shown to be stronger when repetitions are more 

likely (Mayrhauser et al., 2014; Summerfield, Behrens, & Koechlin, 2011; Summerfield et al., 2008). 

On this perspective, sensory cortex may be primed in a top down manner, resulting in reduced 

prediction error, and more efficient processing. However, this result has not always been replicated 

(Kaliukhovich & Vogels, 2011; Kovacs & Vogels, 2014). Our findings speak to this issue as they too 

support the idea that a statistical regularity can result in more precise predictions and reduced 

prediction error. Our account further shows that predictions can be made at the level of abstract 

categories as all images in this study were unique and presented once. Consistent with this possibility, 

Fairhall et al. (2011) demonstrated repetition suppression to categorical representation of images. Here 

we extend this finding from repeated categories to expected categories.   

Finally, we note that none of the subcortical regions we examined, including the hippocampus, showed 

sensitivity to whether there existed regularity in the category stream. This prima facie, appears 

inconsistent with prior work showing that the hippocampus responds to learned associations between 

stimuli of the sort presented here (Reddy et al., 2015; Turk-Browne, Scholl, Johnson, & Chun, 2010). 

However, a crucial difference is that in those studies the statistical relations were implemented in the 

form of a deterministic associative relation between two specific images. This, coupled with a much 

slower presentation rate, and tasks that demanded responses to each stimulus (in those studies) could 

have boosted hippocampal involvement in those studies. 

Although the patterns for location regularity (NR – LR) and category regularity (NR – CR) differed 

qualitatively (Figure 2), we do not interpret these differential patterns as identifying separate ‘systems’. 

The direct contrast between the LR and CR conditions did not identify any significant difference. One 

possibility is that the coding of location regularities is accompanied by less organized activity in the 

semantic system (as compared to NR), and that the coding of category regularities is accompanied by 

less organized activity in areas specifically mediating location planning (as compared to NR). This 

would explain the somewhat non-intuitive result that both LR and CR differed from baseline, including 

in seemingly non-shared brain regions, but still did not significantly differ in a direct contrast. This is 

clearly an account that needs further investigation, but we note that a very similar pattern has been 

previously documented by Marois et al. (2000). In that study, a “standard” stimulus was presented 

repeatedly in the same location, interrupted by either infrequent location odd-balls (the standard image 

presented in another location) or identity odd-balls (another item in the same location as standard). The 

authors found that location odd-balls activated mainly the dorsal stream and identity odd-balls mainly 

the visual stream. However, a direct contrast between the conditions revealed very little differences (at 

uncorrected threshold).   

4.4 Dual regularities 

In the dual-regularity condition both the location and category streams were regular but composed of 

different series so that information from one stream could not be used to generate predictions about the 

other. Thus, optimal behavior could be achieved only if parallel predictions were derived from the two 

dimensions and integrated to create a detailed prediction regarding ‘what will be presented where’ on 
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the next trial. (Given the independent 75% probability for correct prediction of location/ category on 

each trial, a person continuously predicting would correctly predict both on ~ 50% of the trials in this 

condition).  

The DR condition produced reduced activity in neural systems sensitive to location regularities and 

those sensitive to category regularities compared to the baseline NR condition. Qualitatively, these 

reductions in activity were moderate relative to the single regularity conditions. Few regions showed 

these kinds of savings for the DR condition but not the LR or CR conditions.  

Most importantly, an interaction test identified a large set of regions where category regularities were 

associated with reduced activity when not accompanied by location regularities, but increased activity 

when accompanied by location regularities (i.e., CR < NR showed reduced activity related to category 

predictability, but conversely DR > LR showed an additional load with category predictability). This 

pattern was most robust in the left lingual gyrus and right PCG (see Figure 4). This “annulment of 

saving” pattern suggests increased computational load in the DR condition, and it rules out a simple 

model of purely additive savings because of regularity. The involvement of the right PCG is consistent 

with increased difficulty in prediction, as this region has been linked to explicit predictions of both 

visual and auditory attributes (Schubotz & von Cramon, 2002, 2004). There was one region in which 

the DR condition was associated with the least activity; the precuneus bilaterally. The precuneus is not 

traditionally associated with coding of temporally unfolding uncertainty, but it is often implicated in 

shifts in spatial attention or representation of high-level visual features.  

It is again informative to compare these findings to those obtained in explicit cue-target paradigms. 

Egner et al. (2008) orthogonally manipulated cue informativeness with respect to item-location or a 

specific visual feature of an item. They identified a fronto-parietal system that tracked cue-

predictability in both dimensions, and they did not find any evidence for an interaction between the two 

factors, suggesting that, “these sites harbor integrated but independent representations of spatial and 

feature-based search information.” (p. 6147). Our findings for the dual regularity condition show strong 

non-additive (interactive) responses (though mostly outside fronto-parietal regions, see Figure 4) and 

suggest that constructing predictions when licensed by two independent statistical streams can produce 

processing bottlenecks throughout the cortex.  

Finally, the findings for the DR condition have implications for theories of brain activity in relation to 

stimulus entropy/uncertainty. In prior work, we and others have examined whether there are brain 

regions whose activity tracks overall input uncertainty (Harrison et al., 2006; Nastase et al., 2015; 

Nastase et al., 2014; Strange et al., 2005; Tobia, Iacovella, Davis, & Hasson, 2012; Tobia, Iacovella, & 

Hasson, 2012; Tremblay et al., 2013). However, the activity patterns found for the DR condition are 

largely inconsistent with an uncertainty-based explanation of brain activity. Formally, the uncertainty 

removed by each stimulus -- its information content or “surprisal” in a Bayesian sense -- was highest in 

the NR condition (4 bit/stimulus: 2 bits in the category stream and 2 in the location stream), mid-level 

in the CR and LR conditions (2.81 bit/stimulus: 2 bit in the unpredictable stream, 0.81 in the 
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predictable stream) and lowest in the DR condition (1.62 bits/ stimulus)
1
. Thus, from an entropy-based 

approach, responses in the DR condition should have been either the highest or lowest of all conditions, 

if activity were to scale monotonically with uncertainty.  In other words, our results are more consistent 

with the effect of predictability on stimulus bound responses - in which more predictable stimuli are 

processed more efficiently, resolving prediction errors more rapidly, but with potential bottlenecks 

when multiple predictions are licensed concurrently. This contrasts with a neuronal encoding of the 

predictability per se in terms of entropy or uncertainty about the stimulus before it appears. 

4.5 Limitations and future directions 

In the current work we aimed to study the natural, implicit process related to processing regularities.  

For this reason we avoided tasks that would explicitly focus participants on statistical structure, as such 

tasks impact responses to regular vs. irregular series (Aizenstein et al., 2004). We also avoided using a 

task demanding particular attention to the stimuli beyond passive viewing as attention to an input 

stream affects brain responses to predictable vs. non-predictable stimuli (Kok, Rahnev, Jehee, Lau, & 

de Lange, 2012). Consequently, we cannot say whether series with different regularity were uniformly 

attended, and in particular whether participants were less interested in regular series (thus accounting 

for the reduced activity). However, prior behavioral work suggests that if anything, regular streams 

draw greater attention than random ones. People prefer associative information (Trapp, Shenhav, 

Bitzer, & Bar, 2015), in the temporal domain attention is biased towards regularities (Zhao, Al-

Aidroos, & Turk-Browne, 2013), and visual statistical learning enhances (rather than detracts from) 

memory for elements in regular sequences (Otsuka & Saiki, 2016). Thus, prior work would suggest that 

that regular (though not deterministic) series of the sort used here are not typically associated with 

greater disengagement.  

Another limitation of the work is that our analysis and interpretive approach implicitly assumes that 

participants’ psychological response monotonically tracks the probability/surprisal of each stimulus 

(entropy being mean surprisal across the series). Behaviorally, it has been shown that stimuli that are 

neither highly predictable nor highly unexpected draw more attention (Kidd, Piantadosi, & Aslin, 2012, 

2014), thus demonstrating a non-linear relation between probability and psychological response. 

Functional connectivity between certain brain systems also tracks regularity in an inverse-U shaped 

manner (Nastase, Iacovella, Davis, & Hasson, 2015). These sorts of effects dissociate psychological 

surprise from formal predictability, and, in the limit, may suggest that our more regular conditions 

could have been, at the same time, more attention grabbing.  Similarly, it is likely that participants’ 

responses at any given point do not reflect their coding of the stationary distribution from which the 

stimuli were drawn, but also reflect the impact of stimuli in the very recent past (Bornstein & Daw, 

2012; Harrison, Bestmann, Rosa, Penny, & Green, 2011). Thus, participants’ learning rate is a 

constraint that mediates the relation between the likelihood (predictability) of each stimulus and the 

psychological response to that stimulus, and this is an aspect we have not modeled in the current study. 

                                                 
1
 Shannon entropy of all series was 2 bits as they differed only in transition probabilities, not marginal frequencies.  Markov 

entropy was 0.81 bit for regular streams and 2bits for the random ones. 
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Finally, due to absence of oculomotor measures in the study we cannot say whether part of these effects 

was related to the impact of condition on saccade performance or dwell time. It is possible that there 

were more eye movements in conditions where location was not predictable, which would result in 

greater activity in frontal and parietal eye fields. This would be consistent with the reduced activity in 

the LR vs. NR we reported. However, a prior neuroimaging study (Burke, Bramley, Gonzalez, & 

McKeefry, 2013) suggests that conditions that facilitate saccades do not necessarily result in reduced 

activity. That study contrasted saccades made on a predefined deterministic path to saccades made to 

random locations; it found that the deterministic condition was associated with faster, more accurate 

saccades as expected. Yet, this was accompanied by greater (rather than lower) activity in the 

deterministic condition as compared to the random. We also cannot exclude the possibility that 

decreased activity in low level visual cortices (in the CR condition) was due to reduced observation 

times of images due to a prior prediction (in fact we conjecture this is highly likely). That is, in the CR 

condition participants may have spent relatively more time observing the fixation cross and less time 

on the target image (there was constant input to visual cortex throughout the trial; what differed was the 

sort of input participants fixated on). However, this account would also predict more activity in visual 

cortex for location-regular conditions: Given the relatively short (333ms) image presentation time, 

prior knowledge of location could afford much longer observation times (taking into account 50-70ms 

saccade planning time, and additionally the time involved in saccade itself). This, prima facie, would 

also produce longer observation times in the location-predictable locations, which does not match the 

BOLD response profile that we observed. Obtaining accurate eye tracking data during such studies 

would be important to address these issues in the future. 

4.6 Summary 

We found that category regularity decreased activation in the ventral visual stream and semantic areas 

of lateral temporal cortex, whereas location regularity decreased activation in a dorsal fronto-parietal 

system implicated in the endogenous control of spatial attention. In addition, all predictable conditions 

produced lower activity in four brain regions indicating a core system sensitive to input regularity. But 

predictability can come with a cost: when regularities existed in both location and category dimensions, 

participants identified and used them for prediction, as evident by reduced activity in the dual regularity 

condition compared to baseline. At the same time, being able to predict both location and category 

resulted in an interaction indicative of a processing bottleneck; in several regions, category regularity 

only produced lower activity when location was predictable, but not when location was unpredictable. 

Most generally, our findings suggest that results obtained for single streams of information may not 

extend to multiple information streams, and that more predictable streams may not necessarily be the 

ones associated with least processing effort. 
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Table 1. Areas where conditions with regularities were associated with reduced BOLD signal 

Cluster 

index 

Volume 

[cc] 

Max 

Zscore 
MNI coordinates of Max Center of Gravity [MNI] 

   X Y Z X Y Z 

 
NR > LR 

3 34.940 4.6 -2 45 -13 -3.77 9.74 30 

2 6.070 3.67 -21 -61 -6 -19.8 -50.8 -1.51 

1 3.481 3.94 19 -61 63 25.7 -48.2 57.9 

NR > CR 

7 45.359 4.22 -67 -14 -23 -6.68 -69.2 0.721 

6 37.262 4.68 -11 49 49 -11.4 25.4 43.6 

5 5.456 5.15 -40 -64 44 -44.4 -59.6 33.9 

4 5.315 3.87 -16 3 16 -0.853 -1.75 14.2 

3 4.038 3.99 65 -9 -19 55.6 -14.9 -11.4 

2 3.690 4.43 39 31 -7 43.7 30.5 -7.54 

1 2.962 4.33 -43 22 -13 -42.4 23.1 -13.2 

NR > DR 

3 27.316 4.08 13 -35 -9 2.3 -16.2 14.8 

2 21.186 4.62 -15 39 45 -16.2 29.3 34.1 

1 3.569 3.45 -46 -24 -13 -44.8 -31.8 -9.4 
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Table 2. Areas where all three conditions with regularity showed reduced activity compared to 

the no-regularity condition 

Cluster 

index 

Volume 

[cc] 

Max 

Zscore 
MNI coordinates of Max Center of Gravity [MNI] 

   X Y Z X Y Z 

 
4 1.872 3.29 -11 35 20 -12 37.4 35 

3 1.693 3.44 7 -2 2 -3.71 -2.73 14.5 

2 1.328 3.18 20 -7 30 24.9 -5.57 36.7 

1 0.829 3.4 -4 -99 7 -6.22 -96.3 18.8 
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Table 3. Effects of repetition 

Cluster 

index 
Volume [cc] 

Max 

Zscore 
MNI coordinates of Max Center of Gravity [MNI] 

   X Y Z X Y Z 

Condition Repeats (NR > CR) 

1 4.816 3.49 -3 45 43 -2.56 38.9 51.1 

Location Repeats (NR > LR) 

1 7.614 4.02 -35 -79 -16 -29.1 -84.8 -5.01 

Location Repeats (LR > NR) 

1 3.799 3.45 28 50 29 26.3 46.4 32.4 

 

 


