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Abstract

The affine general linear group acting on a vector space over a prime field
is a well-understood mathematical object. Its elementary abelian regular
subgroups have recently drawn attention in applied mathematics thanks to
their use in cryptography as a way to hide or detect weaknesses inside block
ciphers. This paper is focused on building a convenient representation of
their elements which suits better the purposes of the cryptanalyst. Sev-
eral combinatorial counting formulas and a classification of their conjugacy
classes are given as well.
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1. Introduction

The group of the translations of a vector space over a prime field is an
elementary abelian regular subgroup of the corresponding symmetric group,
and its normaliser, the affine general linear group, is a well-understood math-
ematical object. Regular subgroups of the affine group and their connections
with algebraic structures, such as radical rings [16] and braces [19], have
already been studied in several works [18, 24, 27, 28]. More recently, ele-
mentary abelian regular groups have been used in cryptography to define
new operations on the message space of a block cipher and to implement
statistical and group theoretical attacks [13, 15, 20]. All these objects are
well-known to be conjugated to the translation group, but this fact does
not provide a simple description and representation of their elements which
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is useful to the cryptanalyst. For this reason, we address the problem of
giving a convenient matrix representation of some elementary abelian reg-
ular subgroups of the affine groups and, in some cases, we classify them in
terms of their conjugacy classes. The idea behind the cryptographic attack
resulting from this work is the one of using alternative group structures on
the message space of a block cipher to detect a bias in the distribution of
the encrypted messages, as we will describe in the following section in more
detail. Although the approach of using alternative operations in place of the
XOR (the usual sum over a binary vector space) is not new [1, 7], the idea
of using groups isomorphic to the translation group was never considered.

1.1. Organisation of the paper

The paper is organised as follows. In Section 2 we introduce the nota-
tion and present the main focus of the work, also providing a description
of the idea which is behind the use of translation groups in cryptography.
In Section 3 we present our main result, i.e. Theorem 3.11, which proves
a description of the translation groups useful in block ciphers cryptanaly-
sis. Section 4 is mainly devoted to the case of binary fields, to combinatorial
aspects of the topic and to a classification of conjugacy classes in low dimen-
sion. In Theorem 4.1 and Theorem 4.7 we provide a bound on the numbers
of groups as in Theorem 3.11.

2. Preliminaries

Let us start by introducing the notation used throughout this work.

Let p be a prime number, n ≥ 2 a positive integer and V
def
= (Fp)

n be the
n-dimensional vector space over Fp. The i-th component of the vector v ∈ V
is denoted by vi ∈ Fp. The canonical basis of V is composed by the vectors

{ei}
n
i=1, where e j

i = 1 if and only if i = j, otherwise it is 0. The vector sub-
space generated by vectors v1, . . . , vm ∈ V is denoted by Span{v1, . . . , vm},
where m ≥ 1. Let Sym(V ) be the group of all the permutations on V . In
this paper we use postfix notation for function evaluation, i.e. if g ∈ Sym(V )
and v ∈ V we write vg to mean g(v). The identity of Sym(V ) is denoted
by 1V and if g1, . . . , gm ∈ Sym(V ), where m ≥ 1, we denote by 〈g1, . . . , gm〉
the group they generate. Let GL(V ) be the general linear group on V , i.e.
the group of the linear permutations of V , and let us denote by T the group
of all the translations on V , i.e. T

def
= {σa | a ∈ V, σa : V → V, x 7→ x + a}.

Then, let the affine general linear group AGL(V ), the normaliser of T in
the symmetric group, be represented as AGL(V ) = GL(V )⋉ T . Let (Fp)

i×j

denote the set of all matrices with entries over Fp with i rows and j columns.
The identity matrix is denoted by 1n.
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In this work we will also use some basic ring-theoretical notions that are
summarised here for the convenience of the reader. Let R be a ring. An
element r ∈ R is called nilpotent if rm = 0 for some m ≥ 1 and it is called
unipotent if r − 1 is nilpotent, i.e. (r − 1)m = 0 for some m ≥ 1. Analo-
gously, if H ≤ GL(V ) is a subgroup of unipotent permutations, then H is
called unipotent. An element M ∈ GL(V ) is said upper unitriangular in a
basis {v1, . . . , vn} on V if and only if viM − vi ∈ Span{vi+1, . . . , vn} for all
1 ≤ i ≤ n. The map M is called upper unitriangular if it is upper triangular
with respect to the canonical basis. The group of upper unitriangular linear
maps is here denoted by U(V ).

The idea of the cryptographic application of this study is described in
the following section.

2.1. Motivation and links to the theory of block ciphers

Let T < Sym(V ) be elementary abelian regular. As already mentioned,
from a result due to Dixon [23] (see also [5] for an easy proof), there exists

g ∈ Sym(G) such that T = T g def
= g−1Tg. Since T inherits from T its

regularity, and recalling that for each a ∈ V we denoted by σa ∈ T the
translation sending 0 to a, it is possible to represent T = {τa | a ∈ V },
where the map τa is the unique in T sending 0 to a. Once this labelling
is established, it is possible to define an additive law ◦ on V by letting for
each a, b ∈ V a ◦ b

def
= aτb. It is easy to check that (V, ◦) is an abelian group

whose corresponding translation group is T◦ = T . Moreover, letting the
multiplication of a vector by a non-zero element s ∈ Fp be defined as

sv
def
= v ◦ · · · ◦ v
︸ ︷︷ ︸

s

,

it is easily checked that if s, t ∈ Fp and v,w ∈ V , then

s(v ◦ w) = sv ◦ sw,

(s+ t)v = sv ◦ tv,

(st)v = s(tv),

and pv = 0 since T is elementary. This proves that (V, ◦) is a vector space
over Fp, and since |V | < ∞, (V, ◦) and (V,+) are isomorphic vector spaces.

We will denote by AGL(V, ◦)
def
= AGL(V )g the normaliser of T◦ = T and

by GL(V, ◦) the stabiliser of {0} in AGL(V, ◦). Since in this paper we will
always deal with different operations at the same time, for sake of clarity
we will sometimes denote T as T+, AGL(V ) by AGL(V,+) and GL(V ) by
GL(V,+).
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The idea of using an application of the group-theoretical study of trans-
lation groups to block ciphers comes from the fact that the translation is
the standard way the user introduces its key in the encryption process (in
cryptographic terms, the key is XOR-ed to the message). In order to explain
this fact and to let the reader figure out the potential attacks coming from
alternative translation groups, we will give here a little and self-contained
introduction to block ciphers. A block cipher on the message space V is
a set of many invertible function in Sym(V ), called encryption functions.
Popular examples may be found e.g. in [11, 22]. Each encryption function
is of the type of

ρσk1ρσk2 . . . ρσkr ,

where ρ ∈ Sym(V ) and the parameter r ∈ N are fixed by the designer
and made publicly available, and the sequence (k1, k2, . . . kr) ∈ V r repre-
sents the encryption key chosen by the user. Once the key (k1, k2, . . . kr)
and the message m ∈ V to be sent are chosen by the sender, it delivers
mρσk1ρσk2 . . . ρσkr to the receiver. If the receiver is entitled to recover the
message, i.e. if it knows the secret key, it can apply the inverse of the en-
cryption function and obtain the original message m. The security of this
process, i.e. the inability of a non-authorised party to recover the message,
strongly relies on the way the function ρ is designed. Indeed, the process
of designing ρ is one of the most important phases in the definition of a
block cipher, and it is usually carried out in order to guarantee that the
obtained block cipher is resistant against each known attack (e.g. linear [25]
and differential [8] cryptanalysis). Giving details and properties that the
function ρ has to satisfy is out of the scope of this work, for whose pur-
poses is enough to know that a minimum and crucial requirement is that
ρ /∈ AGL(V ). As a matter of fact, the farthest it lies from the affine group,
the better. This guarantees that the group 〈 ρ, T 〉, called the group of the
round functions, is not the affine group AGL(V ). Such a group, introduced
in [21] for the first time, has been carefully studied ever since researchers
have shown that some of its properties can reveal weaknesses of the cipher
[2, 3, 4, 6, 17, 26, 29, 31, 32]. Although it is rather easy to select ρ such that
〈 ρ, T 〉 is different from AGL(V ), it not as easy to prove that 〈 ρ, T 〉 is not
contained in any conjugate of AGL(V ) in Sym(V ). If this is the case, i.e. if
there exists g ∈ Sym(V ) such that 〈 ρ, T 〉 < AGL(V )g, then there exists an
operation ◦ such that

〈 ρ, T 〉 ≤ AGL(V, ◦), (1)

which means that each encryption function is affine with respect to the op-
eration ◦, a serious threat for the security of the cipher. A description of the
attack that can be perfomed in this case is shown in [14]. Another example
in this regard, i.e. a successful attack against a block cipher which makes
use of an operation as described above, can be found in [20]. For the reason
explained before, since our interest is in determining if and when the group
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of the round functions is as in Eq. (1), we focus on investigating operations
◦ such that T < AGL(V, ◦). Such hypothesis is also decisive in the applica-
tion studied in [20], where the classical differential attack (see e.g. [9, 10])
is generalised to alternative operations. Moreover, we will always assume
T◦ < AGL(V ), since it guarantees fast computation, crucial in the appli-
cation to cryptanalysis. The related problem of determining conditions on
ρ /∈ AGL(V ) which ensure that ρ ∈ AGL(V, ◦) for some operation ◦ is still
open. Some partial results can be found in [13, 15, 20].

In the next section we will introduce our novel results and in particular
we will describe all elementary abelian regular groups T◦ < AGL(V,+) such
that T+ < AGL(V, ◦).

3. Abelian regular subgroups of the affine groups

Keeping in mind the construction of Sec. 2, we now focus on groups
conjugated to T which are affine groups. A seminal work for this research
is the paper [16], where the authors give an easy description of the abelian
regular subgroups of the affine group in terms of commutative associative
algebras that one can define on the vector space (V,+). Here we summarise
their main results. Recall that a Jacobson radical ring is a ring (V,+, ·) such
that (V, ⋄) is a group, where the operation ⋄ defined as a ⋄ b = a+ b+ a · b,
for each a, b ∈ V . Note that in general the operation ⋄ does not induce a
vector space structure on V . The proof of the next result may be found in
[16].

Theorem 3.1. Let K be any (finite or infinite) field, and (V,+) be a vec-
tor space of any dimension over K. There is a one-to-one correspondence
between

1. abelian regular subgroups of AGL(V,+),

2. commutative, associative K-algebra structures (V,+, ·) that one can
impose on the vector space structure (V,+), such that the resulting
ring is radical.

In this correspondence, isomorphism classes of K-algebras correspond to con-
jugacy classes of abelian regular subgroups of AGL(V,+), where the conju-
gation is under the action of GL(V,+) .

The correspondence mentioned in the previous result may be written ex-
plicitly, proceedings as follows. Let T < AGL(V ) be abelian and regular.
Since T is regular, reasoning as in Sec. 2 its elements can be labeled as
T = {τa | a ∈ V }. For each a ∈ V , from the hypothesis, there exists
Ma,T ∈ GL(V,+) and σb ∈ T+ for some b ∈ V such that τa = Ma,T σb. In
order to keep the notation lighter, Ma,T will be simply denoted by Ma. For
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any a ∈ V , let us define the map δa
def
= Ma−1V . Then, operation · defined on

V by letting x · a = xδa is such that the structure (V,+, ·) is a commutative
K-algebra and the resulting ring is radical. Moreover, notice that 0τa = a
by definition, then a = 0τa = 0Maσb = b, hence τa = Maσa for each a ∈ V .
Denoting by ◦ the operation induced by T , let us now define the set

Ω(T ) = Ω◦
def
= {Ma | a ∈ V } < GL(V ),

and denote by T◦ = T .

Proposition 3.2. Let T < AGL(V ) be an elementary abelian regular sub-
group. Then for each a ∈ V , Ma ∈ GL(V ) has order p and it is unipotent.
In particular Ω(T ) is a unipotent subgroup of GL(V ).

Proof. Let a ∈ V . Since T is elementary, τa has order p, so aτ p−1
a = 0. For

each x ∈ V we get

x = xτpa = (xMa + a)τ p−1
a = (xM2

a + aτa)τ
p−2

a = . . . = xMp
a + aτ p−1

a ,

therefore 0 = Mp
a − 1V = (Ma − 1V )

p.

Let us now define an important V -subspace:

W (T )
def
= {a | σa ∈ T } = {a | σa = τa}.

We will sometimes denote W (T ) by W◦. It is easily checked that W (T ) is a
subspace of (V,+) and (V, ◦). Such a subspace is nontrivial for the following
theorem, proven in [16]. It is straightforward but important to notice that
if a ∈ W (T ), then x + a = x ◦ a holds for each x ∈ V , and consequently
Ma = 1n.

Theorem 3.3 ([16]). Let T ≤ AGL(V,+) be an abelian regular subgroup.
If V is finite, then T ∩ T 6= 〈1V 〉.

We will show soon that W (T ) plays an important role for the characterisa-
tion of maps in the group T .

Our purpose is, given an operation ◦ induced by the group T = {τa |
a ∈ V }, to describe the matrices Ma for each a ∈ V , where τa = Maσa. We
show now some preliminary results.
Let U be a subspace of V . Then for all γ ∈ GL(V ) such that Uγ = U , the
action of γ over V/U is well defined by means of the map γ̄ : [v] 7→ [vγ] in
GL(V/U). Let us prove now the following characterisation, recalling that
U(V ) denotes the group of upper unitriangular linear maps.

Lemma 3.4. Let Mi ∈ U(V ) be a unitriangular map acting as the identity
on the quotient V/Span{ei+1, . . . , en}, for each 1 ≤ i ≤ n. Then, the affine
transformations Miσei generate a transitive subgroup of AGL(V ).
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Proof. Denote by τei the transformation Miσei . Let us start by observing
that for each 1 ≤ i ≤ n the action of Mi over V/Span{ei+1, . . . , en} is
well defined and from the hypotheses τei acts on vectors of V leaving the
first i − 1 coordinates unchanged. Let now v = (v1, v2, . . . , vn) and w =
(w1, w2, . . . , wn) be two elements of V and let us show that there exists
τ ∈ 〈τe1 , τe2 , . . . , τen〉 such that vτ = w. Let γ1 ∈ Fp such that v1+ γ1 = w1.
So

v (τe1)
γ1

= (w1, v2 + c2, . . . , vn + cn)
def
= v′,

for some ci ∈ Fp for 2 ≤ i ≤ n, where ci depends on v, τe1 and γ1. Analo-

gously, if γ2 ∈ Fp is such that (v′)2 + γ2 = w2, then

v′ (τe2)
γ2

= (w1, w2, v3 + d3, . . . , vn + dn),

for some d i ∈ Fp for 3 ≤ i ≤ n. In this way, we obtain

τ
def
= (τe1)

γ1

(τe2)
γ2

· · · (τen)
γn

such that vτ = w, hence the transitivity is proven.

Remark 3.5. Notice that in the conditions of Lemma 3.4, if ◦ denotes the
operation induced by T = 〈τe1 , τe2 , . . . , τen〉, then {ei}

n
i=1 is a basis of (V, ◦).

However, this is not true in general. In the following example on V = (F2)
3

indeed, the canonical basis is not a basis for (V, ◦). Let T◦ be defined in the
following way:

T◦

def
= 〈M(1,0,1)σ(1,0,1),M(0,1,1)σ(0,1,1),M(1,1,1)σ(1,1,1)〉,

where

M(1,0,1)
def
=





0 1 1
0 1 0
1 1 0



 ,M(0,1,1)
def
=





1 0 0
1 0 1
1 1 0



 and M(1,1,1)
def
= 1n.

Then the translations τe1 , τe2 , τe3 are respectively individuated by the ma-
trices

Me1
def
=





1 0 0
1 0 1
1 1 0



 ,Me2
def
=





0 1 1
0 1 0
1 1 0



 and Me3
def
=





0 1 1
1 0 1
0 0 1



 .

It is a straightforward check that e1 ◦ e2 = e3.

Let us now show a more general result which will be useful later. The
following well-known result (see e.g. [30, pag. 62]) is needed.

Theorem 3.6. Let H ≤ GL(V ) be a group of unipotent matrices. Then
there exists a basis of V in which all elements of H are upper triangular.
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Lemma 3.7. Let G < GL(V ) be a unipotent subgroup and let U ⊆ V be a
subspace such that for all v ∈ U and g ∈ G we have vg = v, i.e. G is a sub-
group of the pointwise stabiliser of U . Let d

def
= dim(U) and m

def
= n−d. Then

all elements of G are upper triangular in a basis {v1, . . . , vm, vm+1, . . . , vm+d},
where {vm+1, . . . , vm+d} is any basis of U .

Proof. Since G fixes all the elements of U , it acts as a group of unipotent
maps on V/U . From Theorem 3.6 there exists a basis [v1], . . . , [vm] of V/U ,
such that [vi]g − [vi] lies in Span{[vi+1], . . . , [vm]} for all g ∈ G. Then, all
elements of G are upper triangular in the basis {v1, . . . , vm, vm+1, . . . , vn},
since vig − vi = 0 for all m+ 1 ≤ i ≤ n.

The previous result reads in the way displayed below, when specified to our
case.

Corollary 3.8. Let T < AGL(V ) be an elementary abelian regular group.

Let d
def
= dim(W (T )) and let m

def
= n − d. Then all elements of Ω(T ) are

upper triangular in a basis {v1, . . . , vm+1, . . . , vn}, where {vm+1, . . . , vn} is
any basis of W (T ).

Proof. By Proposition 3.2, Ω(T ) is unipotent. Moreover, by definition, for
all v ∈ W (T ) and M ∈ Ω(T ) we have vM = v. Hence, the claim follows
from Lemma 3.7.

The results obtained so far may be summarised in the following theorem.
According to this result, when considering an operation ◦ we can always
assume, up to conjugation, that W◦ is generated by the last vectors of the
canonical basis.

Theorem 3.9. Let T < AGL(V ) be an elementary abelian regular group.

Let d
def
= dim(W (T )) and let m

def
= n− d. Then there exists g ∈ GL(V ) such

that Ω(T g) < U(V ) and W (T g) = Span{em+1, . . . , en}.

Proof. From Corollary 3.8, all the elements of Ω(T ) are upper triangular
with respect to a basis {v1, . . . , vn} of V , whose last d vector form a basis
of W (T ). Let g ∈ GL(V ) such that vig = ei for each 1 ≤ i ≤ n. It is easy
to check that Ω(T g) = Ω(T )g, then for all M ∈ Ω(T ) we have

eig
−1Mg − ei = viMg − vig = (viM − vi)g.

Since viM−vi ∈ Span{vi+1, ..., vn}, we have (viM−vi)g ∈ Span{ei+1, ..., en}.
In conclusion, from (τv)

g : x 7→ x (Mv)
g g + vg, we also obtain W (T g) =

W (T )g = Span{em+1, . . . , en}.

Till now we have assumed that the subgroup T is an affine group. For
reasons already explained in Sec. 2 and related to the application in cryp-
tography of this construction, we are interested in groups whose normalis-
ers contain the group of translations T+, i.e. in operations T◦ for which,
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given g ∈ Sym(V ) such that T = T g
+, we also have T+ < AGL(V, ◦) =

AGL(V,+)g. Let us report a result from [16] which is useful for our pur-
pose.

Lemma 3.10. Let T < AGL(V ) be abelian and regular. Then for each
σx ∈ T+ and τy ∈ T we have

[σx, τy] = σx·y,

where · denotes the product of the Fp-algebra related to T as in Theorem 3.1,

and [σx, τy]
def
= σ−1

x τ−1
y σxτy.

In our case, from Lemma 3.10 we obtain that T normalises T < AGL(V )
if and only if σx·y ∈ T for all x, y ∈ V . Indeed, if for all σx ∈ T we have
T σx = T , then

σx·y = σ−1
x τ−1

y σxτy ∈ T .

Conversely, if σx·y ∈ T for each x, y ∈ V , then

T ∋ σx·yτ
−1
y = σ−1

x τ−1
y σx.

Finally notice that the condition σx·y ∈ T for all x, y ∈ V is equivalent to
x · y · z = 0 for all x, y, z ∈ V .

We are now ready to prove one of the main results of this work, i.e. the
structure of affine translation groups whose normalisers contain the group
T+. Before doing so, let us recall that for sake of simplicity, proceeding as
in Sec. 2, given a group T = T◦ < AGL(V ), we denote by AGL(V, ◦) the
normaliser in Sym(V ) of T , which is AGL(V,+)g where g ∈ Sym(V ) is such
that T = T g.

Theorem 3.11. Let T < AGL(V,+) be elementary abelian regular and let

◦ be the operation induced on V . Let d
def
= dim(W (T )), let m

def
= n − d and

let us assume W (T ) = Span{em+1, . . . , en}. Then, T+ < AGL(V, ◦) if and
only if for all My ∈ Ω(T ) there exists a matrix By ∈ (Fp)

m×d such that

My =

(
1m By

0 1d

)

. (2)

Proof. By Theorem 3.9, there exists another group operation ⋄ on V such
that the corresponding translation group is conjugated, by an element of
GL(V ), to T◦ and satisfies W (T⋄) = W (T◦) and Ω(T⋄) = {Ma | a ∈ V } <
U(V ). Let y ∈ V and let Ay ∈ (Fp)

m×m an upper-triangular matrix and
By ∈ (Fp)

m×d such that

My =

(
Ay By

0 1d

)

.

9



Notice that the lower structure of the matrix derives by the property ei ∈
W (T⋄) for each m + 1 ≤ i ≤ n, i.e. y ⋄ ei = eiMy + y = y + ei for each
m+ 1 ≤ i ≤ n. Recall that

T+ < AGL(V, ⋄) ⇐⇒ ∀x, y ∈ V x · y ∈ W (T⋄) (3)

⇐⇒ ∀x, y ∈ V xMy − x ∈ W (T⋄), (4)

where the equivalence in Eq.(3) derives from Lemma 3.10. From Eq.(4)
instead, considering x ∈ Span{e1, . . . , em} we obtain that xMy −x ∈ W (T⋄)
if and only if Ay = 1m.

In order to conclude, we need to prove that each conjugate T◦ = T⋄
g

is such that all the matrices in the group Ω(T◦) are as in Eq. (2), pro-
vided that g ∈ GL(V ) and W (T◦) is spanned by the last d vectors of the
canonical basis. Let g ∈ GL(V ) such that T◦ = T g

⋄ . Since W (T⋄)g =
W (T⋄

g) = W (T◦), then Span{em+1, . . . , en}g = Span{em+1, . . . , en} and
also Span{em+1, . . . , en}g

−1 = Span{em+1, . . . , en}. Consequently

g =

(
G1 G2

0 G3

)

and g−1 =

(
G−1

1 G2
′

0 G−1
3

)

,

for some G1 ∈ (Fp)
m×m, G2, G2

′ ∈ (Fp)
m×d and G3 ∈ (Fp)

d×d. Thus, if
M ∈ Ω(T⋄) we have

Mg =

(
G−1

1 G2
′

0 G−1
3

)(
1m Bm×d

0 1d

)(
G1 G2

0 G3

)

=

(
1m B′

m×d

0 1d

)

,

therefore the claim follows from Ω(T◦) = Ω(T⋄
g) = Ω(T⋄)

g.

The characterisation given above allows to construct an isomorphism be-
tween the vector spaces (V, ◦) and (V,+), which can be computed very effi-
ciently (see [14]). This makes some attacks feasible [14, 20]. Moreover, Theo-
rem 3.11 can be used to determine the maps contained in GL(V, ◦)∩GL(V,+)
(see [13, 20]).

4. Even characteristic and combinatorial formulas

In this section we specialise our focus to the cryptographically-relevant
case of binary fields. Let us assume from now on that p = 2. In this case, we
can prove (see Theorem 4.1 and Theorem 4.7) an upper bound on the number
of the elementary abelian regular subgroups as in Theorem 3.11. Moreover,
we can calculate the number of these groups if the co-dimension of W (T◦)
is 2 or 3. To conclude, we report the full classification of the elementary
abelian regular subgroups of AGL(V,+) up to dimension 6. Before doing so,
let us prove the following result which bounds the dimension of the subspace
W (T◦).
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Proposition 4.1. Let T < AGL(V,+) be elementary abelian regular and

let d
def
= dim(W (T )). If T 6= T , then

(−1)n + 3

2
≤ d ≤ n− 2.

Proof. From Theorem 3.3 and from the hypothesis we have 1 ≤ d ≤ n − 1.
Let us now assume that W (T ) cointains n− 1 linearly independent vectors
v1, v2 . . . , vn−1 ∈ V and let vn ∈ V independent from v1, . . . , vn−1. Let ◦ be
the operation induced by T . Then, vi ◦ vn = vi + vn, thus viMvn = vi for all
1 ≤ i ≤ n − 1. Moreover, vn ◦ vn = 0 and so vnMvn = vn. Then, if v ∈ V ,
then

v ◦ vn =

(
∑

i<n

ξivi + ξnvn

)

Mvn + vn =
∑

i<n

αivi + αnvn + vn = v + vn,

which implies d = n, a contradiction. If n is even, then d > 1, i.e. T ∩ T
contains at least four elements. A proof of this fact may be found in [13].

Let us now prove that if T normalises T and the co-dimension of W (T )
is at most 5, then we also have that T normalises T .

Proposition 4.2. Let T < AGL(V ) be elementary abelian regular, and let ◦

be the operation induced. Let d
def
= dim(W (T )) and m

def
= n−d. If 2 ≤ m ≤ 5,

then AGL(V, ◦) contains T .

Proof. The claim follows if we prove that if x, y ∈ V , then x ·y ∈ W (T ). Let
x, y ∈ V and let us assume by contradiction x ·y /∈ W (T ). Then there exists
z /∈ W (T ) such that x ·y ·z 6= 0. Let us show that x, y, z, x ·y, x ·z, y ·z, x ·y ·z
are linearly independent. Let ξi ∈ F2 for 1 ≤ i ≤ 7 such that

ξ1x+ ξ2y + ξ3z + ξ4x · y + ξ5x · z + ξ6y · y + ξ7x · y · z = 0.

By multiplying each member of the previous equation by y · z we obtain
ξ1x · y · z = 0, which implies ξ1 = 0. In the same way, by multiplying by
x · z we prove ξ2 = 0. Proceeding in this way one proves that ξi = 0 for
each 1 ≤ i ≤ 7. This proves that x, y, z, x · y, x · z, y · z, x · y · z are linearly
independent and none of these belongs to W (T ). Using a similar argument
one proves that Span{x, y, z, x · y, x · z, y · z, x · y · z} ∩W (T ) = {0}. This
implies m ≥ 6, a contradiction.

We have presented the previous result in the way which best fit our
needs. However, it can be stated more generally in the following way.

Proposition 4.3. Let T1,T2 < Sym(V ) be elementary abelian regular. Let

d be such that 2d = |T1∩T2|, m
def
= n−d and let us assume 2 ≤ m ≤ 5. Then

T1 is contained in the normaliser of T2 if and only if T2 is contained in the
normaliser of T1.

11



Example 4.4. Notice that Proposition 4.2 does not hold, in general, for
m ≥ 6. Let (V,+, ·) be the exterior algebra over a vector space of dimension
three, spanned by e1, e2, e3. Hence a basis of V is composed by

e1, e2, e3, e4 = e1 ∧ e2, e5 = e1 ∧ e3, e6 = e2 ∧ e3, e7 = e1 ∧ e2 ∧ e3.

The associated translation group T◦ is such that W (T◦) = Span{e7}, but we
have

Me1 =














1 0 0 0 0 0 0

1 0 1 0 0 0

1 0 1 0 0
1 0 0 0

1 0 0
1 1

1














.

From Theorem 3.11, AGL(V, ◦) cannot contain the group T+.

Let us now point out, starting from Theorem 3.11, some properties of
the matrices in Ω(T◦) defining the operation ◦. Let us assume T◦ < AGL(V )

be elementary abelian regular and let us denote, as usual, d
def
= dim(W (T◦))

and m
def
= n− d. Let 1 ≤ i 6= j ≤ m. Since ei ◦ ei = eiMei + ei = 0 we obtain

that the i-th row of Bei is zero, where

Mei =

(
1m Bei

0 1d

)

.

Instead, from ei ◦ ej = eiMej + ej = ejMei + ei = ej ◦ ei, we obtain that the
j-th row of Bei equals the i-th row of Bej . Moreover, let x ∈ V . Then

x ◦ ei ◦ ej = (xMei + ei) ◦ ej

= (xMei + ei)Mej + ej

= xMeiMej + eiMej + ej

= xMeiMej + ei ◦ ej,

which proves that Mei◦ej = MeiMej , i.e.

Mei◦ej =

(
1m Bei +Bej

0 1d

)

.

This fact is easily generalised as follows.

Proposition 4.5. Let T◦ < AGL(V ) be an elementary abelian regular group.

Let d
def
= dim(W (T◦)) and m

def
= n − d. Moreover, let us assume W (T◦) =

Span{em+1, . . . , en} and T < AGL(V, ◦). Let x ∈ V , x = ξ1e1 ◦ · · · ◦ ξnen
for some ξi ∈ F2. Then

Mx =

(
1m

∑m
i=1 ξiBei

0 1d

)

.
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Proof. From the hypothesis we have that the canonical basis of (V,+) is a
basis also for (V, ◦) (see Remark 3.5). Moreover, Bei 6= 0 for 1 ≤ i ≤ m and
Bei = 0 for m ≤ i ≤ n. The claim follows straightforwardly by writing x in
terms of eis in (V, ◦).

4.1. Some combinatorial results

In this section we will examine some combinatorial aspects of our topic,
focusing on counting the number of abelian regular subgroups of the affine
group which are useful in cryptographic contexts. In the next result we will
count them in terms of points of a given geometric variety. Let T◦ be as in
Proposition 4.5. For each 1 ≤ i ≤ m we will denote the entries in the matrix
Mei in the following way:

Mei =













b
(i)
1,1 . . . b

(i)
1,d

1m
...

...

b
(i)
m,1 . . . b

(i)
m,d

0 1d













. (5)

In what follows, in order to keep the notation more compact, given a positive
integer s we will denote by [s] the set {1, . . . , s}.

Theorem 4.6. Let d ≥ 1. The number of elementary abelian regular sub-
groups T◦ < AGL(V,+) such that dim(W (T◦)) = d and T+ < AGL(V, ◦)
is [

n

d

]

2

· |V(Im,d)|, (6)

where m = n − d, Im,d is the ideal in F2

[

b
(s)
i,j

∣
∣
∣i, s ∈ [m], j ∈ [d]

]

generated

by S0 ∪ S1 ∪ S2 ∪ S3 with

S0
def
=

{(

b
(s)
i,j

)2
− b

(s)
i,j

∣
∣
∣
∣
i, s ∈ [m], j ∈ [d]

}

,

S1
def
=







m∏

i=1

d∏

j=1

(

1 +
∑

s∈S

b
(s)
i,j

)
∣
∣
∣
∣
∣
∣

S ⊆ [m], S 6= ∅






,

S2
def
=
{

b
(s)
i,j − b

(i)
s,j

∣
∣
∣i, s ∈ [m], j ∈ [d]

}

,

S3
def
=
{

b
(i)
i,j

∣
∣
∣i ∈ [m], j ∈ [d]

}

,

V(Im,d) is the variety of Im,d and
[
n
d

]

2

def
=
∏d−1

i=0
2n−i−1
2d−i−1

is the Gaussian bi-
nomial.
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Proof. The claim follows by applying together Theorem 3.11 and Theo-
rem 3.9. Let us start by computing the number of the groups as in Theorem
3.11, and then all the conjugates one can obtain from these. Notice that a
group T◦ < AGL(V,+) such that W (T◦) is generated by the last d vectors
of the canonical basis of V and such that T+ < AGL(V, ◦) is determined
if the matrices Me1 , . . . ,Mem (and so, equivalently, Be1 , . . . , Bem) are indi-
viduated, since Mei = 1n for the remaining m < i ≤ n. We will show that
to each set of admissible matrices {Be1 , . . . , Bem} corresponds one point in
V(Im,d) and vice versa, from a point of V(Im,d) we can obtain one set of ad-
missible matrices {Be1 , . . . , Bem}. Let T◦ < AGL(V,+) be such that W (T◦)
is generated by the last d vectors of the canonical basis of V and such that
T+ < AGL(V, ◦). Let us denote by {Me1 , . . . ,Mem} the matrices defining
the operation. If ∅ 6= S ⊆ [m] and x = ©

i∈S

ei, then, from Proposition 4.5,

Mx =













∑

s∈S b
(s)
1,1 . . .

∑

s∈S b
(s)
1,d

1m
...

...
∑

s∈S b
(s)
m,1 . . .

∑

s∈S b
(s)
m,d

0 1d













.

Since Mx 6= 1V , then there exist i, j such that
∑

s∈S

b
(s)
i,j = 1,

which happens if and only if

m∏

i=1

d∏

j=1

(

1 +
∑

s∈S

b
(s)
i,j

)

= 0.

For simmetry we also have that the conditions given by set S2 hold. More-
over, since ei is fixed from Mei , we also obtain a solution for set S3. To
conclude, S0 is trivially satisfied, since the matrices are binary.
Vice versa, from a solution of the ideal Im,d, we can construct Be1 , . . . , Bem

as in Eq. (5). Consequently, we can consider the group T generated by the

affine maps τei
def
= Meiσei for 1 ≤ i ≤ n, where for 1 ≤ i ≤ m

Mei
def
=

(
1m Bei

0 1d

)

and Mei
def
= 1n for m < i ≤ n. Since the conditions of Lemma 3.4 are

satisfied, T is transitive, and it is abelian from the condition expressed by
set S2. Moreover, if x ∈ V and 1 ≤ i ≤ m, then

xτ2ei = (xM2
ei
+ eiMei + ei).
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Computing M2
ei

we obtain

M2
ei
=

(
1m Bei +Bei

0 1d

)

= 1n.

Hence, since from the condition given by set S3 we obtain eiMei = ei, and
so τ2ei = 1V , i.e. T is elementary. Moreover, T is regular, since it is abelian
and transitive.
This shows a one-to-one correspondence between the points of V(Im,d) and
the subgroups T◦ < AGL(V,+) such that W (T◦) = Span{em+1, . . . , en} and
T+ < AGL(V, ◦). To conclude, consider a d-dimensional vector subspace
W < V and let ∆ = |V(Im,d)|. Let us denote by T1, . . . ,T∆ the distinct ele-
mentary abelian regular groups such that W (Ti) = Span{em+1, . . . , en} and
let g ∈ GL(V,+) be a transformation such that Wg = Span{em+1, . . . , en}.
Then the groups (T1)

g−1
, . . . , (T∆)

g−1
are pairwise distinct andW ((Ti)

g−1
) =

W for each 1 ≤ i ≤ ∆. Now, let T⋄ be an elementary abelian regu-
lar subgroup such that W (T⋄) = W . We have W ((T⋄)

g) = W (T⋄)g =
Span{em+1, . . . , en}, which implies (T⋄)

g = Ti for some i, and so T⋄ =
(Ti)

g−1
. Our claim follows from the fact that the number of d-dimensional

vector subspaces of an n-dimensional vector space over F2 is
[
n
d

]

2
.

In the next result, we give an upper bound on the number of points of the
variety V(Im,d) defined in Theorem 4.6. A lower bound to |V(Im,d)| has been
given in [13], where it is also shown that the upper bound of Theorem 4.7
is tight.

Theorem 4.7. Let Im,d be defined as in Theorem 4.6. Then

|V(Im,d)| ≤ 2d
m(m−1)

2 − 1−
m−2∑

r=1

(
m

r

)(

2d − 1
)(m−r

2 )
.

Proof. Let B = (b
(1)
1 , . . . , b

(1)
m , b

(2)
1 , . . . , b

(2)
m , . . . , b

(m)
1 , . . . , b

(m)
m ) ∈ V(Im,d),

where b
(s)
i = (b

(s)
i,1 , . . . b

(s)
i,d ) ∈ (F2)

d for all i, j as in (5), i.e. b
(s)
i is the i-

th row of the matrix Bes .
We aim at counting how many vectors B satisfy the constrains of set S1, S2

and S3 as in Theorem 4.6. We proceed in two steps: we consider first all
the solutions for S2 and S3 and then we exclude some of those for which the
equations of S1 are not satisfied.

First step. As already pointed out before Proposition 4.5, from the condi-

tions in S3 we have b
(i)
i = 0 for all i, and from those in S2, b

(i)
j = b

(j)
i for all

i, j. Therefore, the matrix Be1 is determined only by the rows b
(1)
2 , . . . , b

(1)
m ,

being its first row equal to zero. Analogously, Be2 is determined only by

the rows b
(2)
3 , . . . , b

(2)
m and by b

(1)
2 , since the first row of Be2 is equal to the
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second row of Be1 and since the second row of Be2 equal to zero. Iterating
this argument we can consider only the vector composed as

B = (b
(1)
2 , . . . , b(1)m
︸ ︷︷ ︸

, b
(2)
3 , . . . , b(2)m
︸ ︷︷ ︸

, . . . , b
(m−2)
m−1 , b(m−2)

m
︸ ︷︷ ︸

, b(m−1)
m
︸ ︷︷ ︸

)

and thus we have 2d
m(m−1)

2 solutions to the equations in S2 ∪ S3.

Second step. The entries of B must satisfy also the constrains given by
S1, so for any subset S ⊂ [m] we can exclude the cases where

{

Bei = 0 if i ∈ S

Bei 6= 0 if i /∈ S.

In particular, we count when the entries of the matrices Bei with i ∈ S are
all zeros and the remaining entries of the matrices Bei with i /∈ S are all non-
zero. We start considering those vectors B obtained when exactly one Bei is
zero and others are non-zero, that is, we consider any set S with one element.
In this case n − 1 entries of B are zero and the others are all non-zero.
Similarly, if any pair (Bes , Bet) is equal to zero and the others are not, then
m− 1+m− 2 entries of B are zero and the others are all non-zero. Indeed,

assuming s < t, the zero entries of B must be b
(1)
s , ..., b

(s−1)
s , b

(s)
s+1, ..., b

(s)
m

in order to have Bes = 0, and b
(1)
t , ..., b

(t−1)
t , b

(t)
t+1, ..., b

(t)
m in order to have

Bet = 0. Considering that b
(s)
t is already zero, we have that m− 1 +m− 2

entries of B are zero. Iterating this argument, if we assume that r matrices
are zero, then

∑r
i=1(m− i) entries of B are zero and the others are all non-

zero. Then such r matrices can be chosen in
(
m
r

)
possible ways and any time

2d − 1 non-zero elements may be used to fill each of the other entries of B,
that are

m(m− 1)

2
−

r∑

i=1

(m− i) =

(
m

2

)

−
m−1∑

i=m−r

i

=

(
m

2

)

−
m−1∑

i=1

i+
m−r−1∑

i=1

i

=

(
m

2

)

−

(
m

2

)

+

(
m− r

2

)

=

(
m− r

2

)

.

The last case is when m − 1 matrices Bei are zero. By the conditions of
S2∪S3 also the last one is zero, and this happens only when B is zero. This
concludes the proof.
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The following results are derived from Theorem 4.6 and are related to
the special cases when dim(W (T◦)) ∈ {n − 3, n − 2}. Notice that the case
dim(W (T◦)) = n − 2 has been largely considered in [20], where it has been
used to perform a differential attack against a block cipher. The same
notation as in Theorem 4.6 in used. Recall that if T = T◦, from Propo-
sition 4.2, the hypothesis T◦ < AGL(V,+) is enough to guarantee that
T+ < AGL(V, ◦), and so also Theorem 3.11 applies.

Corollary 4.8. There exist

[
n

n− 3

]

2

·
(

23(n−3) − 7(2n−3 − 1)− 1
)

distinct elementary abelian regular groups T < AGL(V ) such that dim(W (T )) =
n− 3.

Proof. Proceeding as in Theorem 4.6, we need to compute the number of
groups T such that W (T ) = Span{e4, . . . , en}. Using the notation as in
Theorem 4.7, we have

Me1 =








1 0 0 0

1 0 b
(1)
2

1 b
(1)
3

1n−3








, Me2 =








1 0 0 b
(1)
2

1 0 0

1 b
(2)
3

1n−3








Me3 =








1 0 0 b
(1)
3

1 0 b
(2)
3

1 0

1n−3








, Me1Me2 =








1 0 0 b
(1)
2

1 0 b
(1)
2

1 b
(1)
3 + b

(2)
3

1n−3








Me1Me3 =








1 0 0 b
(1)
3

1 0 b
(1)
2 + b

(2)
3

1 b
(1)
3

1n−3








, Me2Me3 =








1 0 0 b
(1)
2 + b

(1)
3

1 0 b
(2)
3

1 b
(2)
3

1n−3








Me1Me2Me3 =








1 0 0 b
(1)
2 + b

(1)
3

1 0 b
(1)
2 + b

(2)
3

1 b
(1)
3 + b

(2)
3

1n−3








.

The following possibilities need to be ruled out:

1. Me1 = 1n ⇔ b
(1)
2 = 0 and b

(1)
3 = 0,

2. Me2 = 1n ⇔ b
(1)
2 = 0 and b

(2)
3 = 0,

3. Me3 = 1n ⇔ b
(1)
3 = 0 and b

(2)
3 = 0,
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4. Me1Me2 = 1n ⇔ b
(1)
2 = 0 and b

(1)
3 = b

(2)
3 ,

5. Me1Me3 = 1n ⇔ b
(1)
3 = 0 and b

(1)
2 = b

(2)
3 ,

6. Me2Me3 = 1n ⇔ b
(1)
2 = b

(1)
3 and b

(2)
3 = 0,

7. Me1Me2Me3 = 1n ⇔ b
(1)
2 = b

(1)
3 , b

(1)
2 = b

(2)
3 and b

(1)
3 = b

(2)
3 .

Therefore we obtain that 23(n−3) − 7(2n−3 − 1)− 1 is the number of distinct
subgroups T such that W (T ) = Span{e4, . . . , en}.

Corollary 4.9. There exist

[
n

n− 2

]

2

· (2n−2 − 1)

distinct elementary abelian regular groups T < AGL(V ) such that dim(W (T )) =
n− 2.

Proof. The proof is obtained using the same argument as in Corollary 4.8.

Let us now prove that the groups of Corollary 4.9 belong to the same
conjugacy class under GL(V ).

Proposition 4.10. Let T and T ′ elementary abelian regular subgroups of
AGL(V,+) such that dim(W (T )) = dim(W (T ′)) = n−2. Then, there exists
g ∈ GL(V ) such that T ′ = T g.

Proof. It is enough to prove the claim for T and T ′ elementary abelian reg-
ular subgroups of AGL(V,+) such that W (T ) = W (T ′) = Span{e3, . . . , en}.
Recall that such groups are defined by the corresponding (n−2)-dimensional
vectors, as shown in the proof of Theorem 4.7. Let us denote T = 〈τe1 , . . . , τen〉
and T ′ = 〈τ ′e1 , . . . , τ

′
en
〉, whose matrices are respectively individuated by the

vectors
B =

(

b
(1)
2,1, . . . , b

(1)
2,n−2

)

and B′ =
(

b
′(1)
2,1 , . . . , b

′(1)
2,n−2

)

.

Let us assume first that B and B′ have the same Hamming weight,
i.e. the same number of non-zero coordinates. In this case there exists a
permutation matrix P ∈ (F2)

(n−2)×(n−2) such that BP = B′. Let P ′ ∈
(F2)

n×n be the permutation matrix defined as

P ′ def
=










1 0 0 . . . 0
0 1 0 . . . 0
0 0
...

... P
0 0










.
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Note that when we multiply a matrix M by P ′ on the right we are permuting
the last n− 2 columns of M . On other hand, multiplying M by P ′−1 on the
left we are permuting the last n− 2 rows of M . Hence, we have

P ′−1τeiP
′ = P ′−1MeiP

′σeiP ′ = τ ′eiP ′ = τ ′eiπ

where π is the index permutation induced by P ′, thus P ′−1T P ′ = T ′. This
implies that two groups corresponding to vectors with the same weight are
conjugated.

Let us now assume that

B = (1, . . . , 1
︸ ︷︷ ︸

i

, 0, . . . , 0) and B′ = (1, . . . , 1
︸ ︷︷ ︸

i+1

, 0, . . . , 0),

for some 1 ≤ i ≤ n − 3. Let P ∈ (F2)
n×n be the matrix whose j-th row

Pj = ej if j 6= i+ 2 and Pi+2 = ei+2 + ei+3, i.e.

P
def
=












1 0 0 . . . 0
0 1 0 . . . 0
...

... 0
0 . . . 1 1 . . . 0
0 . . . 0 1 . . . 0
0 0 . . . 1












.

Note that P−1 = P . Note also that multiplying a matrix M by P on the
right we are updating its (i+3)-th column by summing up its (i+2)-th and
(i+3)-th columns. On the other hand, multiplying a matrix M by P−1 = P
on the left we are updating its (i+ 2)-th row by summing up its (i + 2)-th
and (i+ 3)-th rows. Therefore

PτejP = PMejPσejP = τ ′ej

for j 6= i+ 2 and
Pτ(ei+2+ei+3)P = τ ′ei+2

.

Notice that the group

〈τe1 , . . . , τei+1 , τ(ei+2+ei+3), τei+3 , . . . , τen〉

is exactly T , as τ(ei+2+ei+3)τei+3 = τei+2 . Therefore PT P = T ′. We have
also proved that, if B and B′ are such that the difference of their Hamming
weights is one, by arguments previously used, the associated groups T and
T ′ are conjugated in GL(V ).

To conclude, let us address the general case, i.e. the case of two groups
obtained by two vectors B and B′ having Hamming weight d1 and d2. Let
us assume, without loss of generality, d1 < d2. Let us define

B0
def
= (1, . . . , 1
︸ ︷︷ ︸

d1

, 0, . . . , 0), B1
def
= (1, . . . , 1
︸ ︷︷ ︸

d1+1

, 0, . . . , 0),
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. . . , Bd2−d1
def
= (1, . . . , 1
︸ ︷︷ ︸

d2

, 0, . . . , 0),

and denote by T (B0),T (B1), . . . ,T (Bd2−d1) the corresponding groups. Rea-
soning as above, we have that T and T (B0) are conjugated in GL(V ) since
B and B0 have the same Hamming weight, and the same can be proved for
T ′ and T (Bd2−d1). Moreover, from a previous argument T (Bi) is conjugated
in GL(V ) to T (Bi+1), for each 0 ≤ i ≤ d2− d1 − 1. Therefore, T and T ′ are
conjugated in GL(V ), which is our claim.

4.2. Conjugacy classes in low dimension

In this last section we will focus on spaces with low dimension, i.e. with
dimension up to 6. From Proposition 4.2 we obtain the following corollary.

Corollary 4.11. If dim(V ) ≤ 6, then T+ ⊆ AGL(V, ◦) if and only if T◦ ⊆
AGL(V,+).

The bound of the previous result is tight, as shown below.

Proposition 4.12. Let V be such that dim(V ) ≥ 7. Then there exists an
elementary abelian regular subgroup T◦ < AGL(V,+) such that AGL(V, ◦)
does not contain T+.

Proof. Let n ≥ 7 be the dimension of V . If n > 7, let us decompose V as
V = V1 ⊕ V2, where

V1
def
= Span{e1, e2, e3, e4, e5, e6, e7}

and
V2

def
= Span{e8, . . . , en},

otherwise we consider only V1. Let us impose over V1 the algebra structure
induced by the exterior algebra over a vector space of dimension 3, which is
the one defined by

e1 ∧ e2 = e4, e1 ∧ e3 = e5, e2 ∧ e3 = e6, e1 ∧ e2 ∧ e3 = e7,

and over V2 the algebra structure given by the trivial product x ∗ y
def
= 0 for

each x, y ∈ V2. Hence we can define the following product over V :

v · w = (v1 + v2) · (w1 + w2)
def
= (v1 ∧ w1 + v2 ∗ w2) = v1 ∧ w1,

where v1, w1 ∈ V1 and v2, w2 ∈ V2. It is easy to check that (V,+, ·) is a
commutative associative F2-algebra such that the resulting ring is radical.
From Theorem 3.1, such an algebra corresponds to an elementary abelian
regular subgroup T◦ of AGL(V,+). The claim follows from Lemma 3.10 and
from its consequences, since e1 · e2 · e3 6= 0.
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Let us now give a classification of all the elementary abelian regular
subgroups of AGL(V,+) up to dimension 6, considering only the relevant
cases when 2 < dim(V ) ≤ 6. The results, summarised in Table 1, derive
from Corollary 4.8 and Corollary 4.9 and from some computation performed
using MAGMA [12]. For each admissible value of n, we collect in Table 1
the number of conjugacy classes of elementary abelian regular subgroups
T◦ < AGL(V,+), the number of such subgroups in each class and the corre-
sponding dimension of W (T◦).

n # of classes classes size dim(W (T◦))

3 2
|C1| = 1 3
|C2| = 7 1

4 2
|C1| = 1 4
|C2| = 105 2

5 4

|C1| = 1 5
|C2| = 1085 3
|C3| = 6510 2
|C4| = 868 1

6 8

|C1| = 1 6
|C2| = 9765 4
|C3| = 234360 3
|C4| = 410130 3
|C5| = 820260 2
|C6| = 218736 2
|C7| = 54684 2
|C8| = 1093680 2

Table 1: Conjugacy classes
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