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Abstract: Evapotranspiration (ET) is a key variable in the hydrological cycle and it directly impacts
the surface balance and its accurate assessment is essential for a correct water management. ET is
difficult to measure, since the existing methods for its direct estimate, such as the weighing lysimeter
or the eddy-covariance system, are often expensive and require well-trained research personnel.
To overcome this limit, different authors developed experimental models for indirect estimation
of ET. However, since the accuracy of ET prediction is crucial from different points of view, the
continuous search for more and more precise modeling approaches is encouraged. In light of this,
the aim of the present work is to test the efficiency in predicting ET fluxes in a newly introduced
physical-based model, named Prospero, which is based on the ability to compute the ET using a
multi-layer canopy model, solving the energy balance both for the sunlight and shadow vegetation,
extending the recently developed Schymanski and Or method to canopy level. Additionally, Prospero
is able to compute the actual ET using a Jarvis-like model. The model is integrated as a component
in the hydrological modelling system GEOframe. Its estimates were validated against observed
data from five Eddy covariance (EC) sites with different climatic conditions and the same vegetation
cover. Then, its performances were compared with those of two already consolidated models, the
Priestley–Taylor model and Penman FAO model, using four goodness-of-fit indices. Subsequently a
calibration of the three methods has been carried out using LUCA calibration within GEOframe, with
the purpose of prediction errors. The results showed that Prospero is more accurate and precise with
respect to the other two models, even if no calibrations were performed, with better performances in
dry climatic conditions. In addition, Prospero model turned to be the least affected by the calibration
procedure and, therefore, it can be effectively also used in a context of data scarcity.

Keywords: evapotranspiration; GEOframe–Prospero model; Priestley–Taylor model; Penman–FAO
model; calibration

1. Introduction

The estimation of atmospheric turbulent fluxes (sensible and latent heat) at the land
surface has long been recognized as the most important issue in the determination of the
exchanges of energy and mass among hydrosphere, atmosphere and biosphere (e.g., [1–8])
and thus, it is of critical importance to the hydrological and energy cycles [9,10]. At global
scale, the overland latent heat represents the 38% of the net radiation absorbed and the cor-
responding evapotraspiration (ET) amounts to 40% of total precipitation. Transpiration (T)
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impacts on the ET up to 60%. However, ET, and, in particular, its separation in E and T [11],
is still difficult to directly measure, and, as reported in [12], current land surface models
provide different ratios of the T by vegetation to total ET. Moreover, for some ecosystems,
such as the forested mountains of the European Alps, there is a large uncertainty associated
with the vegetation response to water stress [13].

Plant water-use strategies are driven by plant functional traits (examples are leaf
size, toughness and longevity, seed size and dispersal mode, canopy height and structure,
capacity for nitrogen fixation, stomatal response to environmental forcing [14]). In recent
years, plant physiology studies provided an increasingly detailed knowledge of plant
behaviour [15], but only some of them were implemented in eco-hydrological models [16],
mostly confined to specific studies [17–19]. Vegetation hydraulic was recently reviewed
by Stroock et al. [20], providing the idea that a new synthesis is necessary between the
modelling of water and carbon fluxes, providing further evidence that an upscaling from
cells through plants to landscape is required.

In recent years, the development of worldwide networks such as the Long-Term Socio-
Ecological Research (LTSER) or FLUXNET has led to a deeper experimental knowledge of
plant–water interactions. At the same time, new and improved techniques for area-wide
observations (proximal sensing through Unmanned Aerial Vehicle (UAV) devices, Remote
Sensing (RS) platforms as European Space Agency (ESA) satellite Sentinel mission [21])
have provided new options for upscaling models to landscape-scale.

Despite the large number of existing ET empirical models [22], the increasing experi-
mental knowledge of plant’s hydrology and the availability of high-resolution observations,
there is still a lack of appropriate modelling methods able to incorporate this information
in a physically consistent way [23], while gathering and blending information from atmo-
spheric boundary layer meteorology, hydrology, plant physiology, thermodynamics and
fluid dynamics. In fact, there is a need to build reliable, robust and realistic predicting
modelling tools, to translate this observational knowledge in mathematical and numerical
form, combining functional complexity with practical needs [24].

Modellers had to face different challenges, such as joining the plant physiology with
the biosphere and considering the interactions with water, soil and atmosphere (including
spatial and temporal patterns). These tasks involve: (i) an appropriate modelling of the
environmental conditions [25,26]; (ii) the mathematical description of the water flow in the
soil and subsoil, considering the interaction roots and the reciprocal influence of plants
for accessing nutrient resources [27]; (iii) a more accurate separation of soil E (E) from
T [28]; (iv) the need to upscale the mathematics of plants behaviour at the landscape scale,
with the appropriate degree of complexity [29]; (v) development of user-friendly tools [30]
for applied purposes that can easily be integrated in large modelling frameworks [31].

In an attempt to address the previous points, the scope of this work is to present
a new model, the GEOframe-Prospero, which considers both the E from the soil and T
from the canopy, both shaded and at sunlit. The E from soil is computed with a Penman–
Monteith (called PM) FAO process [32], with specific coefficients for soil E depending on
the case study. T is computed starting from the Schymanski and Or method [33] (SO).
In fact, this approach has the advantage of an explicit solution to the surface energy budget
as the classical PM model, but it has ensured the best estimation of latent heat from a
leaf. However, the SO equation has been upscaled in order to face the canopy T and
the mass conservation. The model is implemented as a component in the GEOframe
modelling system [34,35], which allows for the simulation of all the hydrological variables
of the water budget at catchment scale. The integration of Prospero model within the
GEOframe environment allows for the flexibility required to deal with multiple scale
processes, and to switch different componentsoff or on, depending on the specific user’s
needs. The component-based modelling system, built on top of the Object Modelling
System [31] allows for multiple modelling solutions for the same physical process, such as,
for instance, ET.
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The Prospero (PS) model has been tested in five different Eddy-covariance sites across
the world, belonging to the FLUXNET network. The sites are: (i) AU-Dry in Northern
Territory of Australia located at an elevation of 180 m a.s.l.; (ii) US-Cop in Utah, United
States with an altitude of 1520 m; (iii) US-Var in California, United States at 129 m a.s.l;
(iv) IT-Tor in Aosta Valley, Italy at the altitude of 2160 m a.s.l.; (v) GL-ZaH in Sermersooq,
Greenland at 38 m. a.s.l. They differ in terms of climatic regime but not in terms of
land cover. Indeed, the sites are located in tropical, arid, temperate, continental and
polar climates which are the five main climate groups, and the dominant vegetation type is
grassland. In detail, the grassland cover mainly consists of herbaceous and other understory
systems in AU-Dry, perennial grasses in US-Cop, grasses and herbs in US-Var, herbaceous
types in IT-Tor and patches of mosses in GL-ZaH. The grassland cover has been selected as
it is one of the largest biomes on earth [36]. The accuracy of PS in predicting ET has been
compared to those of the Priestley–Taylor and Penman FAO models, which are two of the
most widely used methods in the scientific literature [37] in case of both calibrated and
non-calibrated approaches.

2. Methodology
2.1. Case Studies

Five Eddy-covariance experimental sites have been selected as case studies. They
belong to the global FLUXNET network (https://fluxnet.org/, accessed on 27 April 2021),
which provides observational data of eddy covariance fluxes at different flux tower sites
around the world. The chosen sites are:

• AU-Dry (10.18140/FLX/1440197) in Northern Territory of Australia;
• US-Cop (10.18140/FLX/1440100) in Utah, United States;
• US-Var (10.18140/FLX/1440094) in California, United States;
• IT-Tor (10.18140/FLX/1440237) in Aosta Valley, Italy;
• GL-ZaH (10.18140/FLX/1440224) in Sermersooq, Greenland.

The location of each site is shown in Figure 1.

Figure 1. Location of the five eddy covariance stations.

The sites differ in terms of climatic conditions: they are located in (i) A (tropical), (ii) B
(arid), (iii) C (temperate), (iv) D (continental), and (v) E (polar) climates according to the
Koppen classification [38]. In terms of land cover, grassland is the dominant vegetation in
each site and was selected as the reference ecosystem, since it is one of the most widespread

https://fluxnet.org/
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among all the major biomes on Earth. In addition, it occurs under a wide range of climatic
conditions [36]. As regards the climatic conditions, each of the five main groups selected
for the present study is defined by temperature criteria, except for the B climate, which has
a low amount of annual rainfall. Group A is characterized by the temperature of the coolest
month, higher than or equal to 18 ◦C. Type C has the temperature of the coldest month,
ranging between−3 ◦C and 18 ◦C, and the temperature of the warmest month, above 10 ◦C.
Group D has the coldest month, with a temperature lower than −3 ◦C, while the hottest
month featured an average temperature higher than 10 ◦C. Climate E has at least one month
of the year with temperatures lower than 10 ◦C. The input datasets, required by the selected
ET models, include measurements of precipitation, wind speed, relative air humidity, air
temperature and solar radiation, at a sub-hourly time-step. The Dry River station (AU-
Dry) [39–41] is characterized by Tropical savanna climate (identified by the symbol Aw
according to Koppen classification). The flux tower of the site consists of a LI-7500A (LI-
COR, Lincoln, NE, USA) infrared gas analyser and a CSAT3 sonic anemometer (Campbell
Scientific, Logan, UT, USA). In addition, a CS702 tipping bucket rain gauge (Campbell
Scientific, Logan, UT, USA), TCAV soil thermocouple probes, CN3 heat flux plates and a
CNR1- net radiometer complete the equipment. The Corral Pocket site (US-Cop) [42–44]
has a cold, semi-arid climate (BSk). The equipment of the study site consists of an eddy
covariance (EC) station, a meteorological station and soil moisture and soil temperature
sensors. The Eddy covariance station called Vaira Ranch “US-Var” [45,46] is located in an
area with a hot-summer Mediterranean climate (Csa). The site includes a 2-meter-high
eddy covariance tower with a triaxial sonic anemometer (Model 1352, Gill Instruments Ltd.,
Lymington, UK) and a CO2 and water infrared gas analyser (IRGA, Li 7500, Li-Cor Inc.,
Lincoln, NE, USA). In addition, the site is equipped with a net radiometer, a pyranometer,
a shielded and aspirated sensor and a reflectometry sensor. The experimental site of
Torgnon (IT-Tor) [47,48] is characterized by a subarctic climate. The EC station is equipped
with a CSAT3 three-dimensional sonic anemometer and a LI-7500 open-path infrared
gas analyser. The Eddy covariance station called Zackenberg Heath (GL-ZaH) [49,50] is
located in an area with Tundra climate. The flux measurements have been provided by
an EC system consisting of an infrared gas analyzer LI-7000 (LI-COR, Lincoln, NE, USA)
and a 3D sonic anemometer Gill R3 (Gill Instrument Ltd, Lymington; Hampshire, UK ).
In addition, a meteorological station allows for additional weather measurements. The
five aforementioned sites have been selected among a wide range of EC experimental
locations belonging to the Fluxnet platform with the required climate and vegetation types,
since they offer the longest flux time series and more complete datasets, including all
the variables required in the present study, with few or no periods of gaps or missing
data. The sites climatic characterizations, with the monthly patterns of precipitation and
air temperature can be found in Figure 2. The rainfall and temperature data used for the
climate characterization of the sites have been provided by climate-data.org, whose archives
are based on European Centre for Medium-Range Weather Forecasts (ECMWF) data.
The model uses more than 1.8 billion datapoints and and has a resolution of 0.1–0.25 grade.
The rainfall/temperature data span moves from 1999 and 2019. The moisture index (IDM)
proposed by de Martonne [51] has been calculated for each investigated site so as to provide
a more detailed climatic characterization. It can be estimated as

IDM =
P

T + 10
(1)

where P is the annual mean precipitation in mm and T is the annual mean air tempera-
ture in ◦C. The moisture index is related to the climatic regime, indeed, Arid, Semi-Arid,
Mediterranean, Semi-Humid, Humid, Very Humid, Extremely Humid regions are respec-
tively defined by the ranges of IDM < 10; 10 ≤ IDM < 20; 20 ≤ IDM < 24; 24 ≤ IDM < 28;
28 ≤ IDM < 35; 35 ≤ IDM < 55; IDM > 55.

The value of the moisture index for the five sites and a summary of their main features
is available at Table 1.
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Figure 2. Monthly patterns of precipitation and air temperature for the five considered sites.
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Table 1. The five sites with their main characteristics. S-H stands for Semi-Humid, S-A stands for Semi-Arid, M stands for Mediterranean, E-H stands for Extremely-Humid. P and T
values refer to their annual means.

Site ID Site Name Latitude Longitude Climate IDM (Regime) Elevation (m) P (mm) T (°C) Prevailing Grassland
Species FLUXNET DOI:

AU-Dry Dry River −15.2588 132.3706 Aw 25.7 (S-H) 180 956 27.22 Eucalyptus and latifolia 10.18140/FLX/1440197

US-Cop Corral Pocket 38.09 −109.39 BSk 10.6 (S-A) 1520 234 11.98 Hilaria jamesii and Stipa
hymenoides 10.18140/FLX/1440100

US-Var Vaira Ranch 38.41329 −120.951 Csa 21.0 (M) 129 550 16.10 Purple false brome and
smooth cat’s ear 10.18140/FLX/1440094

IT-Tor Torgnon 45.84444 7.57806 Dfc 82.2 (E-H) 2160 1237 5.04 Nardus stricta L.and
Festuca nigrescens All. 10.18140/FLX/1440237

GL-ZaH Zackenberg Heath 74.47328 −20.5503 ET 99.0 (E-H) 38 801 −1.91 Cassiope tetragona and
Dryas integrifolia 10.18140/FLX/1440224



Water 2021, 13, 1221 7 of 22

2.2. GEOframe Modelling System

GEOframe-Prospero was implemented as a Java component within GEOframe, an open-
source, semi-distributed, component-based hydrological modeling system. It is developed
in Java and based on the environmental modeling framework Object Modeling System
V3 (OMS3) [31]. Within GEOframe, each part of the hydrological cycle is implemented in
a self-contained building block, commonly called component [52]. Components can be
joined together to obtain multiple modeling solutions that can accomplish from simple to
very complicated tasks. Thanks to its solid informatic infrastructure, GEOframe proved a
great flexibility and a great robustness in several applications (e.g., [35,53,54]). More than
50 components are available, which can be grouped in the following categories:

• Geomorphic and DEM analyses;
• Spatial extrapolation/interpolation of meteorological variables;
• Estimation of the radiation budget;
• Estimation of ET;
• Estimation of runoff production;
• Simulation of infiltration;
• Channel routing;
• Travel time analysis;
• Calibration algorithms.

Using the components for geomorphic and DEM analyses [55], the basin can be
discretized into Hydrological Response Units (HRUs), i.e., hydrologically similar parts,
such as a catchment or a hillslope or one of its parts. The meteorological forcing data can
be spatially interpolated using a geostatistical approach, such as the Kriging technique [56].
Both shortwave and longwave radiation components are available for the estimation of
the radiation budget [57,58]. ET can be estimated using three different formulations: the
FAO ET model [32], the Priestley–Taylor model [4], and the Prospero model, tthe object of
the present work. Snow melting and the snow water equivalent can also be simulated by
three models, as described in [59]. Runoff production is performed by using the Embedded
Reservoir Model (ERM) or a combination of its reservoirs [35]. The discharge generated
at each hillslope is routed to the outlet using the Muskingum–Cunge method [35]. Travel
time analysis of a generic pollutant within the catchment can be done using the approach
proposed in [60,61]. Moreover, the GEOframe provides an integration of Richards 1D
with and without temperature, decoupled and coupled with the Energy budget and
integration of Richards Equation (2)D [62]. Model parameters can be calibrated using
two algorithms and several objective functions: Let Us CAlibrate (LUCA) [63] and Particle
Swarm Optimization (PSO) [64]. A graph-based structure, called NET3 [65], is employed
for the management of process simulations. NET3 is designed using a river network/graph
structure analogy, where each HRU is a node of the graph, and the channel links are
the connections between the nodes. In any NET3 node, a different modeling solution
can be implemented and nodes (HRUs or channels) can be connected or disconnected
at run-time, through scripting. GEOframe is open source and helps the reproducibility
and replicability of research [66]. Developers and users can easily collaborate, share
documentation, and archive examples and data within the GEOframe community. All the
links for the reproducibility of this work results are detailed in Appendix A. In this context,
the modularity of the GEOframe modelling system offers the possibility to have multiple
modelling solution for a better estimation of the ET fluxes.

2.3. The Prospero Model

The Prospero model (PS) was created e to be the core of a physically based, but
computationally efficient, ecohydrological model. It is currently mainly thought to estimate
ET, but it could be easily extended to the computation of photosynthesis or as the core
of a lysimeter model, able to compute the water and energy exchanges between soil and
atmosphere. The basic idea is that the ET is given by the sum of two different processes
(Figure 3): E from soils and T from the canopy, both from the fraction exposed to direct
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sunlight and from the one in shadow. E from soils is computed according to the FAO
Penman–Monteith model, while the T is computed according to a modified version of the
Schymanski and Or [33] model, which was upscaled in order to face the T at canopy level
and the mass conservation when there is water stress.

Figure 3. Conceptual scheme of the GEOframe-Prospero model.

The deployment of the T component within the Prospero model started from the
well-known energy balance equation:

Rs = Rll + E + H + G (2)

and
Rll = R↑l − R↓l (3)

where:

• Rs is the net shortwave radiation [W m−2]
• E is ET [W m−2]
• H is the thermal energy transport [W m−2]
• G is the ground heat flux [W m−2]
• R↑l is the upwelling longwave radiation [W m−2]
• R↓l is the downwelling longwave radiation [W m−2]

The Prospero ET model is based on the the SO approach [33], but it has been further
expanded to work at canopy level and to deal with plant´s water stress:

• Modifying the SO model to use the leaf area index to obtain the transpiring surface (Atr);
• Considering the stomata opening based on radiation stress [67];
• Adding a stress function, based on the soil moisture, in order to ensure the water

balance conservation [32].

To extend this equation to the canopy, we decided to adopt a two big leaf approach [68–71],
using the Sun/Shade model of [72], which allows for the computation of the fraction
of canopy in sunlight and in shade and also the radiation absorbed by multiple canopy
layers. In particular, Prospero adopts this two leaf, sun-shade approach, while soil is
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treated separately as a further layer. Moreover, air temperature, relative humidity, wind
and longwave radiation were considered constant inside the canopy, allowing to consider
it as a single big leaf that emits latent heat proportionally to the corresponding area and to
the shortwave radiation. The sun-shade approach can be considered valid for any type of
investigated canopy (from grasslands to forests).

The SO [33] approach overcomes some limitations of the Penman-Monteith equation,
such as a wrong representation of transpiring area and of the leaf thermal capacity and
its feedback on energy balance. In fact, an incorrect representation of the transpiring
area of a leaf could impact on the whole energy balance. Therefore, the energy budget
in Equation (2) can be rewritten in function of the area able to exchange fluxes and of the
equilibrium leaf temperature, as:

Rs = asH · Atr · Rll(Tl) + asE · Atr · El(Tl) + asH · Atr · Hl(Tl) (4)

where:

• asH is the side of the surface exchanging sensible heat (1 for soil, 2 for leaves) [-],
• asE is the side of the surface exchanging latent heat (1 for amphistomatous leaves) [-],
• Atr is the area exchanging fluxes (radiation, sensible and latent heat) [m2 m−2],
• Tl is the equilibrium leaf temperature [K].

where the longwave in computed as

Rll = asH · Atr · εlσ(T4
l − T4

a ) (5)

the T is computed as

El = cE(asE, Atr) · [∆e(Tl − Ta) + Pws − Pw] (6)

the sensible heat is computed as

Hl = cH(asH , Atr) · [(Tl − Ta)] (7)

Atr is the transpiring surface for unit of ground surface [-], asE are the sides of surface
exchanging latent heat, equal to 1 for hypostomatous, 2 for amphistomatous [-]; asH are
the sides of surface exchanging sensible heat and longwave radiation, equal to 1 for
soil, 2 for leaves [-]; Pws and Pw are the saturation water vapour pressure and the water
vapour pressure.

Eventually, the leaf temperature (for each layer treated) Tl is computed as

Tl =
Rs + asH · Atr · εlσ4T4

a + cH(asH , Atr) · Ta + cE(asE, Atr, gs) · (∆eTa + Pw − Pws)

cH(asH , Atr) + cE(asE, Atr, gs)∆e + asH · AtrεlσT3
a

(8)

where gs is the stomatal conductance [m s−1]. The authors decided to include a modified
version of the stomatal conductance proposed in Schymanski and Or [33], based on [73],
according to which

gs = gs,max · f (RPAR) · f (Ta) · f (VPD) · f (θ) (9)

where f (RPAR) is the stress factor due to the fraction of absorbed photosynthetically-active
radiation, f (Ta) is the stress factor due to the air temperature, f (VPD) is the stress factor
due to the vapour pressure deficit and f (θ) is the stress factor due the soil water content.

A detailed description of the stress function in the Appendix C. Further information
on the complete deployment of Prospero model can be found at Bottazzi [74].

2.4. Classical ET Model Descriptions

In addition to the Prospero model, two classical ET models were implemented as
components in GEOframe and compared to the results provided by Prospero for each of
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the previously described sites. These models were selected, among many others belonging
to the same classes, since they were widely used in previous studies and returned very
acceptable and accurate results [75,76]. In addition, they require a small number of meteoro-
logical variables as input parameters, which are easily available from local weather stations.
In particular, these models belong to different categories: the Priestley–Taylor (PT) model
is a radiation-based method, where the principal weather parameter affecting ET is the
radiation, while the FAO Penman–Monteith (FAO) model is a combination-type approach,
where ET is affected by the combination of temperature, radiation and atmospheric drivers,
including air humidity and wind speed. A brief description of the methods can be found
below. Priestley–Taylor (PT) model can be expressed as

ETPT =
1
λ

αPT

[
∆

∆ + γ
(Rn − Gsoil)

]
(10)

where αPT represents the advection correction coefficient set at the value of 1.26 and is
dimensionless, λ represents the latent heat of vaporization (MJ kg−1), it has been set at 2.45,
as it varies only slightly over normal temperature ranges. Rn represents the net radiation
(MJ m−2d−1), Gsoil represents the soil heat-flux density at the soil surface (MJ m−2 d−1), ∆
is the slope of the saturation vapor pressure–temperature curve (kPa ◦C−1) expressed as

∆ =

4098
[

0.610exp
(

17.27Tmean

Tmean + 237.3

)]
(

237.3 + Tmean

)2 (11)

Tmean is the average daily temperature (◦C). The variable γ represents the psychromet-
ric constant (kPa ◦C−1).

The FAO-Penman–Monteith (FAO) equation can be written in the form

ETPM =
1
λ

[
∆

∆ + γ
(Rn − Gsoil)

]
+

[
γ

∆ + γ
EA

]
(12)

and EA represents the drying power of the air, which is expressed as

EA = 2.6(1 + 0.54u)(es − ea) (13)

where u represents the wind speed (ms−1), es represents the saturation vapor pressure
(kPa), function of the maximum and minimum temperature and the parameter ea repre-
sents the vapor pressure (kPa) derived from the maximum and minimum relative humidity.

2.5. Calibration and Validation

Two different applications of the chosen three models (PS, FAO and PT) are proposed.
In the first, the model parameters were set to te literature values and their results were
directly compared against ET fluxes derived by EC observations, both at hourly and at
daily time-steps. Four indices of goodness-of-fit (GOF) were computed to measure the
agreement between the simulated and measured data: Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), coefficient of determination R2 and the index of agreement
(D). Further details about the GOFs are reported in Appendix B. This first application was
primarily made since the authors want to demonstrate the goodness of the models when
their parameters cannot be calibrated against measured data.

In the second application, the model parameters were first calibrated, at hourly time-
steps, against a subset of measured data, using LUCA calibration within GEOframe and
than validated against a different subset of measured data. Eventually, the performances
of the models after calibration were also assessed at daily time-steps, keeping the same
calibrated values. This second application is also interesting, since it shows the integration
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of the three models within the GEOframe framework, which allows for effortless parameter
calibrations, when data are available.

The parameters to be calibrated for the PS model are the vapour pressure deficit
(VPD0); the lower and higher temperature (respectively, Tl , Th); the temperature at maxi-
mum conductance (T0); the water content at wilting point (θWP) and the water content at
field capacity (θFC), which allow for the calculatation of the stress coefficient used when
moderate or intense water stress is imposed with the aim of switching from potential to
actual ET; the slope (αRAD) and shape (θRAD) parameters of the stress function f (RPAR).
In particular, VPD0 is defined as the difference between the vapor pressure at the satura-
tion condition and the actual water vapor pressure of the air. The parameters Tl , Th, T0,
respectively, refer to the lower and upper temperature of the range for which a positive
stomatal conductance is predicted and the temperature at the maximum stomatal con-
ductance. θWP and θFC represent the soil moisture corresponding, respectively, to the the
minimum amount of water into the ground required to prevent plants withering and to
the amount held in the soil after excess water has drained away. The parameters αRAD and
θRAD allow to quantify the total solar radiation stress. θWP and θFC are also calibrated in
the Penman–Monteith approach, while, for the PT model, αPT is the selected calibration
variable. The latter is a coefficient used to take the effect of the drying power of the air
on ET into account. All the above-mentioned parameters are crucial to the ET assessment
and they impact this process in different ways. With reference to VPD0, when it increases,
the atmospheric demand for water and, consequently, the ET fluxes increase too. The lower,
higher and optimal temperatures help to define the air temperature stress function, as well
as (αRAD) and (θRAD) do for the solar radiation stress function. Both these stress functions
regulate the response of the stoma based on external forcings with associated effects on ET
losses. The parameters θWP and θFC impact on the water stress coefficient, which describes
the effect of water stress on the crop: higher values of the stress coefficient determine no
soil-water-limiting conditions and higher ET fluxes. Finally, αPT allows to consider the re-
duction in ET, as the soil water content decreases. Further details about the calibration and
validation periods, the calibrated parameters for each investigated site and the proposed
model are shown in Table 2.

Table 2. Calibration period, validation period and calibrated parameters for each Site and model. Note that VPD0, Tl ,
T0, Th, θWP, θFC, αRAD, θRAD, αPT , respectively, stand for vapour pressure deficit, lower, optimal and higher temperature,
the water content at wilting point, the water content at field capacity, the slope and the shape parameters of the total solar
radiation stress function and the PT coefficient.

Site ID Flux Data Range Calibration Period Validation Period Calibrated Parameters

AU-Dry 2008–2014 1st January 2012–31st
December 2014

1st January 2008–31st
December 2011 PS: VPD0, Tl , T0, Th, θWP, θFC , αRAD , θRAD

US-Cop 2001–2007 1st January 2006–31st
December 2007

1st January 2001–31st
December 2005

US-Var 2000–2014 18th February 2007–31st
December 2014

4th July 2002–26th
December 2006

FAO: θWP, θFC

IT-Tor 2008–2014 1st January 2011–31st
December 2014

1st January 2008– 31st
December 2010 PT: αPT

GL-Zah 2000–2014 18th December 2000–31st
December 2004

1st January 2005– 31st
December 2004

3. Results and Discussion

In this Section, the results of the comparison among the performances of three models
before and after the calibration procedures are shown and discussed. The calibrated and
uncalibrated parameters, and the range of calibration, for each model are listed in Table 3.
It is worth noticing that all the calibrated values differ from the literature ones, stressing
the importance of using site-specific parameters, when it is possible to perform calibration
versus observed data. What is also evident is that some calibrated values, e.g., the PT α,
are coinciding with the lower value of the calibration range meaning that the calibration
should always be supervised, since the range were chosen to be physically based [32,77–79].
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In fact, the choice to widen the ranges of calibration would have, probably, led to even
better GOFs, but parameters with little meaning, from the process physics perspective.

Table 3. Uncalibrated and calibrated values and range of the parameters of the three considered models, for each site.

AU-Dry US-Cop US-Var IT-Tor GL-Zah

Param Cal. Param Cal. Param Cal. Param Cal. Param Cal. Range

Penman-Monteith FAO

θWP 0.12 0.060 0.12 0.083 0.12 0.057 0.12 0.055 0.12 0.119 0.04–0.15
θFC 0.27 0.180 0.27 0.239 0.27 0.160 0.27 0.181 0.27 0.27 0.16–0.40

Priestley-Taylor

αPT 1.26 0.70 1.26 0.70 1.26 0.70 1.26 0.96 1.26 0.70 0.7–1.8

Prospero

θWP 0.12 0.04 0.12 0.122 0.12 0.040 0.12 0.055 0.12 0.051 0.04–0.15
θFC 0.27 0.316 0.27 0.238 0.27 0.399 0.27 0.203 0.27 0.166 0.16–0.40

VPD0 5.0 5.61 5.0 3.07 5.0 5.0 5.0 5.0 5.0 6.90 2.0–8.0
αRAD 0.005 0.007 0.005 0.006 0.005 0.005 0.005 0.003 0.005 0.005 0.003–0.007
θRAD 0.85 0.847 0.85 0.770 0.85 0.850 0.85 0.854 0.85 0.890 0.7–0.9

Tl 0.0 4.2 0.0 −2.4 0.0 0.0 0.0 -2.93 0.0 −4.3 −5.0–5.0
T0 25.0 18.8 25.0 19.6 25.0 25.0 25.0 13.81 25.0 12.3 12.0–25.0
Th 50.0 31.9 50.0 40.7 50.0 50.0 50.0 33.11 50.0 41.9 25.0–50.0

This is further confirmed in Table 4 that reports the results, in terms of the four GOFs,
for both cases (the calibrated case identifies with a “(C)”).

It is immediately clear that the overall performances of both PS model and FAO are
really good, with an RMSE and a MAE less than 0.2 mm h−1, a R2 and a D generally
above the 0.5, at hourly time-steps. At the same time-step, Priestley–Taylor model shows
worse performances, especially in terms of RMSE and MAE, which are often two or three
times greater than the other two models. Similar considerations apply to the models’
performances computed at daily time-steps. Indeed, the daily RMSE and MAE for PT
model exceed, respectively, the values of 2 and 1.4 mm in most cases, while the errors
corresponding to PS and FAO approaches, in a few cases, show values higher than 1 mm.

Looking at each sites’ results in detail, the best GOFs are obtained for the Italian
site Torgnon. For this station, all three models perform equally better, with a slight
improvement after the parameter calibration. These results are confirmed if we have a look
at Figures 4 and 5, where the annual cumulated, for non-calibrated models, and the time
variation of ET, both calibrated and not, are shown, respectively. For this case, for the PS
and PT models, the annual cumulated ET is comparable with the measured ET, while it is
clear that a mean underestimation of around 200 mm occurs each year for the FAO model.
Figure 5 confirms these results, both for the non-calibrated and calibrated cases. These
results, including the strong FAO underestimation, can be explained by looking at Table 5,
where the values of soil moisture (minimum, mean, maximum and 25th, 50th and 75th
percentiles), for each investigated site, are reported. It is clear that the IT-Tor, together with
GL-ZaH, presents the highest soil moisture values, which, in this case, do not represent a
limiting factor for the ET fluxes.
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Figure 4. Annual cumulated volumes of ET, modelled (PS, FAO and PT) and measured and annual
cumulated precipitation, for each investigated site.
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Figure 5. Time variation of the measured (red line) and simulated ET, both using uncalibrated
parameter (black line) and calibrated parameters (blu line).
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Table 4. Hourly values of GOFs obtained for each site and for the uncalibrated and calibrated (C) cases.

Index RMSE [mm h−1] MAE [mm h−1] R2 [-] D [-]

Model PS FAO PT PS FAO PT PS FAO PT PS FAO PT

AU-Dry 0.15 0.17 0.22 0.08 0.10 0.12 0.6 0.4 0.8 0.7 0.6 0.8
AU-Dry (C) 0.12 0.15 0.11 0.07 0.09 0.06 0.8 0.6 0.8 0.9 0.7 0.9

US-Cop 0.07 0.06 0.20 0.03 0.03 0.10 0.3 0.2 0.6 0.5 0.5 0.4
US-Cop (C) 0.08 0.07 0.11 0.03 0.03 0.06 0.3 0.4 0.6 0.5 0.6 0.6

US-Var 0.08 0.10 0.25 0.04 0.05 0.15 0.8 0.7 0.5 0.9 0.7 0.6
US-Var (C) 0.08 0.08 0.15 0.04 0.04 0.09 0.8 0.8 0.5 0.9 0.9 0.7

IT-Tor 0.07 0.07 0.07 0.03 0.03 0.04 0.87 0.89 0.93 0.92 0.89 0.95
IT-Tor (C) 0.06 0.06 0.05 0.03 0.03 0.03 0.91 0.92 0.93 0.95 0.92 0.96

GL-ZaH 0.03 0.06 0.11 0.02 0.04 0.07 0.48 0.72 0.69 0.67 0.69 0.49
GL-ZaH (C) 0.03 0.06 0.05 0.02 0.04 0.03 0.52 0.70 0.67 0.71 0.66 0.69

Table 5. Statistical description of the soil moisture data collected in each sites.

Soil Moisture AU-Dry US-Cop US-Var IT-Tor GL-ZaH

Min 0.03 0.03 0.00 0.11 0.32
Mean 0.07 0.10 0.12 0.26 0.38
Max 0.31 0.17 0.51 0.69 0.52
25% 0.04 0.07 0.04 0.22 0.35
50% 0.04 0.11 0.09 0.26 0.36
75% 0.08 0.13 0.21 0.30 0.40

The station with the worst indices is the AU-Dry, where the RMSE values are higher
than in all the other stations for all the models. This could be for two reasons. First of
all, the site has a temperature regime which strongly differs from the others. Indeed,
the temperature is lower when no rain occurs, while it reaches its maximum value during
the wettest months. In the other sites, temperature and precipitation are in opposite-phase
(Figure 2). This may have affected the models’ perfomances. The other reason is to be
found in the particularly low values of soil moisture, as reported in Table 5. It can be seen
that, most of the time, the soil moisture is lower than the wilting point (Table 5); this has
a strong impact on the stress function linked to the water content in the soil. In fact, it
can be seen in Figure 4 that, on an annual scale, in the uncalibrated case, the quantities
of ET are strongly underestimated. As an exception to this case, generally Prospero has
better performances, due to the closure of the energy balance through the equilibrium
temperature (Formula (8)), a correct representation of the transpiring surface given by the
Sun/Shade canopy model, which can discriminate between the illuminated and shaded
breathable surface. This separation allows us to write three different energy balances in
Prospero, one for the sunlit surface, one for the shaded one and one for the soil. Moreover,
the stress functions, and especially the one based on the soil water content, enhance the
performance of Prospero, allowing the conservation of the water mass. This can be seen
in the cases of US-Var, IT-Tor and GL-Zah, where the soil moisture values of the site are,
on average, quite high (Table 5). In fact, in these cases, Prospero obtains excellent results,
even not calibrated, both at hourly and at annual scale, as can be seen in Table 4 and
Figure 4. Annual volumes, simulated by the PS model, are always comparable, with small
(100 mm/year, generally less than 25%) to really negligible differences for all the stations.
From a climatic perspective, it can be said that the PS model shows higher performances in
the sites with wetter climatic regimes. Indeed, the sites IT-Tor and GL-Zah, which present
the lowest errors, are featured by an Extremely Humid regime according to the moisture
index (Table 1). Therefore, the prediction accuracy decreases, moving from very wet to
arid sites. Looking at both the Figures 4 and 5, for the three stations, US-Cop, Us-Var
and GL-Zah, despite the comparable GOFs, PT shows a great overestimation, both in the
non-calibrated and calibrated cases. The opposite behaviour is shown for station US-Cop
and Us-Var for the FAO model that shows a systematic underestimation of the annual
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volumes, which slightly improves for the calibrated case. For the GL-Zah station, the FAO
model overestimates the annual volumes of around 200 mm each year.

The model which is most impacted by the calibration procedure is PT. Indeed, at hourly
time-steps, the errors decrease to more than one half of the initial value. An emblematic
case is the site GL-Zah where the RMSE moves from 0.11 mm h−1 to 0.05 mm h−1 while the
MAE decreases from 0.07 mm h−1 to 0.03 mm h−1 with a reduction close to 60%. On the
other hand, the values of α calibrated, for PT, return the same value in all sites and for all
climates, i.e., the minimum of the calibration interval.

At the daily time scale (Table 6), the improvement due to the calibration process
of PT appears substantial, even if less evident, with the exception of the site US-Cop,
where the RMSE decreases by more than 100% and MAE of about 60%. The effect of the
calibration process is lower for the other models where, in terms of RMSE, a reduction
of, at most, 20% is reached, while in terms of MAE, an improvement no higher than 10%
can be observed. Since the prediction accuracy of the PT model is so heavily impacted
by the calibration process, in the context of data scarcity, where no or very few flux
measurements are available, it results the least recommended for the prediction of the ET.
So, in general, when measured values of ET are missing, the used model can be employed
as originally proposed in literature, namely without site-specific coefficients with the
consequent reduction of the predictive accuracy [75]. When further in-situ measurements
are not available such as the net radiation or the soil heat flux, they can be derived using
empirical formulations [32] which only require readily available temperature time series
as input data. Moreover, for the calculation of Rn, there are several model components
available in the GEOframe system [57]. Eventually, a wide literature available becomes
available to derive soil hydraulic parameters from basic soil textural properties [80].

Table 6. Daily values of GOFs obtained for each site and for the uncalibrated and calibrated (C) cases.

Index RMSE [mm] MAE [mm] R2[-] D [-]

Model PS FAO PT PS FAO PT PS FAO PT PS FAO PT

AU-Dry 1.9 2.2 2.3 1.4 1.8 1.8 0.51 0.36 0.74 0.65 0.51 0.73
AU-Dry (C) 2.1 2.3 2.1 1.4 1.7 1.4 0.40 0.34 0.28 0.62 0.54 0.58

US-Cop 0.85 0.82 2.19 0.49 0.58 1.4 0.18 -0.02 0.50 0.40 0.34 0.39
US-Cop (C) 0.93 0.82 0.99 0.57 0.59 0.63 0.09 0.17 0.35 0.36 0.47 0.56

US-Var 0.98 1.28 2.57 0.63 0.80 1.83 0.73 0.60 0.22 0.85 0.65 0.47
US-Var (C) 1.22 1.26 1.57 0.78 0.80 1.15 0.55 0.52 0.19 0.74 0.68 0.54

IT-Tor 0.86 1.07 0.79 0.57 0.71 0.52 0.86 0.88 0.92 0.91 0.84 0.95
IT-Tor (C) 1.51 1.59 1.52 0.86 0.97 0.86 0.60 0.62 0.62 0.76 0.70 0.76

GL-ZaH 0.41 0.78 1.30 0.29 0.53 0.82 0.49 0.76 0.74 0.66 0.68 0.54
GL-ZaH (C) 0.45 0.73 0.59 0.27 0.44 0.3 0.39 0.53 0.53 0.63 0.63 0.68

4. Conclusions

ET is one of the main components of the water cycle and it plays a key part in water
resources’ assessment. In light of this, an accurate prediction of this variable is essential,
making the need for more and more accurate models an increasingly discussed issue.
Within this framework, a new ET model, named Prospero (PS), has been introduced in the
component-based hydrological modelling framework, GEOframe. Prospero extends the
recently developed S0 model [33] at the canopy level, which overcomes some limitations of
the PM model with respect to the representation of the leaf transpiring surfaces. The perfor-
mances of this model have been compared with those of two of the most commonly used
approaches in the scientific literature, which are Priestley–Taylor and Penman–Monteith
FAO methods. The comparison has been performed in terms of RMSE, MAE, R2 and D,
using a high-quality dataset of selected EC towers at hourly and daily temporal resolutions.
The selected stations are AU-Dry, US-Cop, US-Var, IT-Tor, GL-ZaH which are located in
different climates but have the same vegetation cover, represented by grassland. Addi-
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tionally, the three method parameters were calibrated to the local conditions using LUCA
calibration within GEOframe, in an attempt to reduce the prediction errors.

PS proved to be a robust model since it gave very good results for all the investigate
sites, under different climatic conditions. In fact, the results show that, overall, PS returns
higher performances than PT and PM, especially in the case of non-calibrated parameters.
It follows that, in a context of data scarcity, where, due to the lack of measurements, a cali-
bration procedure cannot be performed, the use of PS is recommended for ET assessment.
Indeed, at hourly time steps, the RMSE and MAE reach, at most, 0.15 mm and 0.08 mm,
respectively, while they approach the values of 0.17 mm and 0.10 for FAO and 0.22 mm and
0.12 mm for PT. In case of calibration, PS is always the most accurate model, but the gap
with the other methods is narrowed. This implies that the PS model, besides having more
parameters, is the least affected by the calibration procedure, while, for PT, the calibration
process has the greatest impact. Besides this, Prospero returns temperature, the sensible
heat fluxes, and the vapor pressure difference between the evaporating surface and the air,
which, for the sake of topic and brevity, were not shown in the present work.

Future research directions of the present work are threefold. From one side, the PS
model can be compared to meteorological data-based approaches for the prediction of
actual ET, such as the Antecedent precipitation index model or the Advection aridity
model [37,76], which are more effective at reproducing the ET fluxes than the potential
ET models proposed in the present study. On the other side, since the PS model returns
an ET overestimation during the energy-limited periods (particularly evident in GL-Zah
site), a threshold mechanism could be applied in order to improve the overall prediction.
The approach couples a potential ET model and an actual one (in this case PS) according
to a threshold value of net radiation [75]. It would also be interesting to test the model
in sites with different land uses, such as forest, cropland and wetland. This would allow
for the exploration of all aspects, and an exploration of the behavior of PS approach and,
consequently, its prediction accuracy.
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Appendix A. Code Availability

For the present work, version v.1.0 is the version of the codes of the GEOframe-
Prospero package that we used, available at the following link: https://github.com/
geoframecomponents/ETP, accessed on 27 April 2021.

Appendix B. Indices of Goodness of Fit

• Root-Mean-Square Error
The Root-Mean-Square Error (RMSE) is given by

RMSE =

√√√√ 1
N

N

∑
i=1

(Mi − Si)2 (A1)

where M and S represent the measured and simulated time-series, respectively, and N
is the number of components in the series.

• Mean Absolute Error

MAE =

(
1
n

) N

∑
i=1
|Mi − Si| (A2)

where M and S represent the measured and simulated time-series, respectively, and N
is the number of components in the series.

• Coefficient of determination

R2 =
∑N

i=1(Si −Mi)
2

∑N
i=1(Mi −Mi)2

(A3)

where M and S represent the measured and simulated time-series, respectively, N is
the number of components in the series and Mi is the mean of measured values.

• Index of agreement

D = 1− ∑N
i=1(Mi − Si)

2

∑N
i=1(|Si −Mi|+ |Mi −Mi|)2

(A4)

Appendix C. Prospero Stress Functions

We used the model proposed by [73], but instead of using the stress factor given
by the leaf water potential, we used the one based on the soil moisture proposed by
FAO approach [81]

gs = gs,max · f (RPAR) · f (Ta) · f (VPD) · f (θ) (A5)

where f (θ) is the normalised stress factor depending on available soil water.

f (θ) =
TAW − Dr

TAW − RAW
=

TAW − Dr

(1− p)TAW
(A6)

RAW = p · TAW (A7)

TAW = 1000(θFC − θWP) · Zr (A8)

Dr = 1000(θFC − θ) · Zr (A9)

where:

https://it.climate-data.org/
https://github.com/geoframecomponents/ETP
https://github.com/geoframecomponents/ETP
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– f (θ) is a dimensionless T reduction factor dependent on available soil water [0–1];
– Dr root zone depletion [mm];
– TAW total available soil water in the root zone [mm];
– p fraction of TAW that a crop can extract from the root zone without suffering

water stress [-];
– θFC the water content at field capacity [m3m−3];
– θWP the water content at wilting point [m3m−3];
– θ the measured water content [m3m−3];
– Zr the rooting depth [m].

Air temperature stress The air temperature stress factor can be computed as:

f (T) = b(Ta − Tl)(Th − Ta)
c (A10)

where b and c are defined as:
c =

Th − T0

T0 − Tl
(A11)

b =
1

(T0 − Tl)(Th − T0)c (A12)

where:

– T0 is the temperature at maximum conductance [◦C];
– Tl and Th the lower and upper temperature of the range for which a positive

stomatal conductance is predicted [◦C].

If Tl ≤ Tair ≤ Th, f(T) = 0. We assigned the values for Tl , T0 and Th equal to 0 ◦C,
25 ◦C and 50 ◦C. These parameters can be set a priori or calibrated.

Total solar radiation stress The solar radiation stress can be computed as:

f (RSW) =

[
1

2θRAD

(
αRAD RSW + 1−

√
(αRAD RSW + 1)2 − 4θRADαRAD RSW

)]−1

(A13)

where:

– αRAD and θRAD are the slope and shape parameters of the stress function f (RSW)
and are set equal to 0.005 and 0.85 [-].

RSW is the total solar radiation expressed in µmol m−2 s−1. If we want to express
it in W m−2 we must include a conversion factor equal to ≈1/4.6.

Vapour pressure deficit stress The vapor deficit stress factor can be estimated as:

f (VPD) = 1.1 exp[−0.63 ·VPD] (A14)
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