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Abstract

Pairwise comparisons between criteria/alternatives are a well-established method-
ology for group decision making. Both in the literature and in real-world applica-
tions, it is common practice to average the opinions of various experts expressed
as pairwise comparisons to find a compromise solution. This paper dwells on
the inverse problem: given a decision maker who knows his own preferences and
the aggregate ones, we introduce and study some optimization problems to help
him infer, in the form of intervals, the preferences of the other decision makers.
Since the possibility of inferring the other participants preferences violates the
requirement of anonymity, this paper also reports the results of some numerical
simulation examining the relation between the number of participants in the de-
cision process and their anonymity. In addition to numerical simulations with
randomly generated data, we will also experiment with a dataset of preferences
collected in a real-world survey.

Keywords: Pairwise comparisons, group decision making, aggregation,
multi-criteria decision making
2010 MSC: 91A35, 91B06, 90B50

1. Introduction

Very often, real-world decision processes are nontrivial and involve a variety
of criteria and alternatives. In these situations, decision makers and analysts
can model and solve the problem by means of Multi-Criteria Decision Mak-
ing (MCDM) methods such as Multi-Attribute Value Theory (MAVT) (Keeney
and Raiffa, 1976) and the Analytic Hierarchy Process (AHP) (Saaty, 1977). In-
terestingly, one trait d’union among many methods is the pivotal role played
by pairwise comparisons between criteria/alternatives. In fact, making com-
parisons over pairs of criteria allows to decompose the problem into smaller
subproblems and thus makes the entire decision process cognitively simpler and
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more transparent. More precisely, the technique of pairwise comparisons has
been widely used in decision support systems (DSSs) to express the intensi-
ties of preferences of decision makers on a set of criteria/alternatives. When
expressed in their multiplicative form, pairwise comparisons can also be inter-
preted as rates of substitution between criteria (Choo et al., 1999).

To consider experts’ opinions on a subject matter it is recommended that
individual decision making be extended to group decision making (Kilgour and
Eden, 2010). In this latter case, stakeholders, committees or groups of experts
are involved in the decision making process and a plurality of opinions in the
form of pairwise comparisons should be accounted for. Among others, Dyer and
Forman (1992) pointed out that “the fundamental model of DSS—the lonely
decision maker striding down the hall at high noon to make a decision—is true
only in rare cases”.

At this point, it is a common approach to average the pairwise comparisons
provided by different decision makers to find a compromise solution. Such a
solution can be used to make the final decision, but also as a starting point
for future rounds of negotiations, as is for instance advocated by the Delphi
method (Dalkey and Helmer, 1963). Either way, it is possible to envision that
individual decision makers, knowing their preferences and the aggregated ones,
be strategically interested in inferring (if possible) the preferences of the other
participants to the group decision process and use this additional knowledge to
their own advantage. Was this possible, then the widely accepted anonymity
requirement would be, at least to some extent, violated.

The scope of this paper is to present and study some optimization prob-
lems whose optimal values yield upper and lower bounds for the judgments
which can have been expressed by the decision makers. Since these optimiza-
tion problems show the possibility of learning other decision makers’ opinions,
in its second part the paper presents the results of experiments—both numerical
and empirical—showing to what extent a greater number of decision makers can
“anonymize” the judgments of the participants in the group decision process.

The paper is organized as follows. Section 2 introduces the necessary formal-
ism regarding preferences expresses as pairwise comparisons and their aggrega-
tion. Section 3 illustrates some optimization problems whose solutions deter-
mine upper and lower bounds for the opinions which could have been expressed
by an arbitrary decision maker participating in the group decision. Section 4
formalizes some properties of the solutions to the above mentioned optimization
problems. Section 5 argues in favor of the anonymity requirement and reports
the results of some numerical and empirical tests. Section 6 changes slightly the
setting of the problem and analyzes the case when the group weight vector is
known, instead of the group pairwise comparison matrix. Section 7 shows how
the results of this paper can be extended to other types of representations of val-
ued preferences. Finally, the last section draws some conclusions and discusses
possible ramifications.
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2. Pairwise comparisons and group decision making

We consider a set of pairwise comparisons between the relative weights of
the elements of a non-empty finite set X = {x1, . . . , xn}. Elements x1, . . . , xn
can be, for example, the criteria used to judge alternatives in MCDM problems.
In this setting, the value of a given pairwise comparison aij > 0 is the subjective
estimation of the ratio between the weights of xi and xj . This interpretation
is in agreement with both MAVT with additive value function and the AHP.
A pairwise comparison matrix is a mathematical structure used to collect and
analyze the set of pairwise comparisons aij ∀i, j. More formally, a pairwise
comparison matrix (PCM) is a positive square matrix A = (aij)n×n such that
aii = 1∀i and aij = 1/aji ∀i, j. Hence,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 =


1 a12 · · · a1n
1
a12

1 · · · a2n
...

...
. . .

...
1
a1n

1
a2n

· · · 1

 .

We need further formalism to represent the pairwise comparisons of a set of
decision makers. To this purpose, given a finite non-empty set of m decision
makers {d1, . . . , dm}, we will use the notation

Ak =


a11k a12k . . . a1nk
a21k a22k . . . a2nk

...
...

. . .
...

an1k an2k . . . annk

 =


1 a12k · · · a1nk
1

a12k
1 · · · a2nk

...
...

. . .
...

1
a1nk

1
a2nk

· · · 1

 .

to denote the pairwise comparison matrix containing the judgments expressed
by the kth decision maker, i.e. dk. It has been shown (Aczél and Alsina, 1986;
Aczél and Saaty, 1983) that the weighted geometric mean is the most suitable
function to aggregate individual pairwise comparisons into single representative
values. Namely, if we consider the individual pairwise comparison matrices
A1, . . . ,Am provided by d1, . . . , dm, then the matrix containing their aggregate
judgments is A? = (a?ij)n×n, where

a?ij =

m∏
k=1

aλk

ijk (1)

with λk > 0 ∀k and λ1 + · · · + λm = 1. It is common to interpret the weights
λ1, . . . , λm as the degrees of importance of the decision makers. The particular
case λ1 = · · · = λm = 1/m indicates that all the decision makers have the same
importance. In this case, the previous formula can be simplified into

a?ij =

(
m∏
k=1

aijk

) 1
m

.
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The use of the aggregation of individual judgments (AIJ) described so far has
been especially advocated whenever the decision makers, albeit expressing sub-
jective and therefore possibly discordant opinions, form a homogeneous group
and share a common purpose (Forman and Peniwati, 1998; Ossadnik et al.,
2016). Among other applications, the AIJ technique has been successfully
employed to aggregate responses to questionnaires about technology adoption
(Nikou and Mezei, 2013), stakeholders’ preferences related to regional forest
planning (Ananda and Herath, 2008), and experts’ opinions on the best emer-
gency treatment in the case of chemical pollution accident (Shi et al., 2014).

At this point, bearing in mind that anonymity of decision makers’ judgments
has often been considered a desiderata in social choice theory and at times even
be proposed as an axiom (May, 1952), we can formulate an initial research
question.

RQ: Can a decision maker dk, with the knowledge of his own comparisons
Ak and the aggregate A?, infer the judgments given by another decision
maker dh?

A positive answer to the research question would pose serious limits to the
attainability of the requirements of anonymity in group decision making when
individual preferences are aggregated.

3. Optimization problems

In the rest of the paper, without loss of generality, we will assume that the
decision maker d1 wants to know what judgments were given by the decision
maker dm. Decision maker d1 could try to deduce upper and lower bounds for
the possible values of the entries of Am. Furthermore, as commonly done in
many practical applications, we will also assume that the pairwise comparisons
take values from the bounded positive interval [l, u]. From these premises, it
follows that a lower bound of aijm can be found by solving the optimization
problem

a−ijm = minimize
aij2,...,aijm

aijm

subject to l ≤ aijk ≤ u, k = 2, . . . ,m

aλ1
ij1a

λ2
ij2 · · · a

λm
ijm = a?ij .

(2)

The first set of constraints specifies that the values of the variables aijk’s must
lie in the interval [l, u]. The last constraint stipulates the coherence between
the individual judgments and their aggregate according to the geometric mean
method (1). Indeed, aij1, a?ij , a

?
ij and the λj ’s are parameters of the problem,

because they are both known to d1. Following the same line of reasoning we

4



can find the upper bound of aijm. That is,

a+ijm = maximize
aij2,...,aijm

aijm

subject to l ≤ aijk ≤ u, k = 2, . . . ,m

aλ1
ij1a

λ2
ij2 · · · a

λm
ijm = a?ij .

(3)

In the present form, the optimization problems (2) and (3) are nonconvex due to
the nonlinearity of the equality constraint2. Nevertheless, they can be linearized.
First, if we consider (2), we need to apply the transformation aijk 7→ ebijk ∀i, j
and thus change variables,

b−ijm = minimize
bij2,...,bijm

ebijm

subject to l ≤ ebijk ≤ u, k = 2, . . . ,m

eλ1bij1+···+λmbijm = a?ij .

Next, by applying the logarithmic function to the different parts of this last
optimization problem we recover

b−ijm = minimize
bij2,...,bijm

bijm

subject to ln l ≤ bijk ≤ lnu, k = 2, . . . ,m

λ1bij1 + · · ·+ λmbijm = ln a?ij .

(4)

This last optimization model is a linear optimization problem and therefore it
can be solved straightforwardly by linear programming. Then, it is sufficient to
solve it and recover the optimal value of (2) by applying the inverse transfor-

mation a−ijk = eb
−
ijk . Similarly, we can obtain the optimal value of (3) by solving

b+ijm = maximize
bij2,...,bijm

bijm

subject to ln l ≤ bijk ≤ lnu, k = 2, . . . ,m

λ1bij1 + · · ·+ λmbijm = ln a?ij .

(5)

and applying the inverse transformation a+ijk = eb
+
ijk .

The so obtained information can then be collected in a matrix whose entries
are intervals according to the next definition.

Definition 1 (Induced matrix). We say that Ām = (āijm)n×n is induced (by
A1 and A?) if āiim = [1, 1] ∀i and āijm = [a−ijm, a

+
ijm] ∀i 6= j.

The induced matrix Ām has a clear interpretation: when d1 knows A1 and
A?, the entries of Ām are the ranges containing the values of the pairwise

2More formally, optimization problems (2) and (3) are instances of signomial programming
which, in turn, is a generalization of geometric programming (Boyd et al., 2007).
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comparisons which could have been expressed by dm. Moreover, if we know that
a discrete scale S ⊂ [l, u] was used, then we can further restrict the intervals
and obtain a matrix Ãm = [ã−ijm, ã

+
ijm]n×n where

ã−ijm = min{x ∈ S|x ≥ a−ijm} (6)

ã+ijm = max{x ∈ S|x ≤ a+ijm} (7)

3.1. Illustrative example

Let us consider the four PCMs already used by ?.

A1 =


1 4 6 7

1/4 1 3 4
1/6 1/3 1 2
1/7 1/4 1/2 1

 A2 =


1 5 7 9

1/5 1 4 6
1/7 1/4 1 2
1/9 1/6 1/2 1



A3 =


1 3 5 8

1/3 1 4 5
1/5 1/4 1 2
1/8 1/5 1/2 1

 A4 =


1 4 5 6

1/4 1 3 3
1/5 1/3 1 2
1/6 1/3 1/2 1


? assumed that the entries are expressed on the scale [1/9, 9], that is l = 1/9
and u = 9, and that the decision makers are equally important, e.g. λ1 = λ2 =
λ3 = λ4 = 1/4, so that their aggregation through (1) produces the following
pairwise comparison matrix

A? ≈


1 3.93598 5.69243 7.41559

0.254066 1 3.4641 4.35588
0.175672 0.288675 1 2
0.134851 0.229575 0.5 1

 .

Next, by solving the optimization problems (2) and (3) ∀i 6= j and collecting
the results we obtain the following induced matrix (Def. 1).

Ā4 = ([a−ij4, a
+
ij4])4×4 ≈


[1, 1] [0.7407, 9] [2.1605, 9] [5.333, 9]

[1/9, 1.35] [1, 1] [0.5926, 9] [10/9, 9]
[1/9, 0.4629] [1/9, 1.6875] [1, 1] [1/9, 9]
[1/9, 0.1875] [1/9, 0.9] [1/9, 9] [1, 1]


(8)

It can be remarked that Ā4 contains d1’s interval estimations of the preferences
given by d4 under the circumstance that d1 knows only his own preferences
A1 and the group ones A?. To give a concrete numerical instance, the value
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a−124 ≈ 0.7407 is the optimal solution of the optimization problem

a−124 = minimize
a122,a123,a124

a124

subject to 1/9 ≤ a122 ≤ 9,

1/9 ≤ a123 ≤ 9,

1/9 ≤ a124 ≤ 9,

(4a122a123a124)
1
4 = 3.93598 .

Additionally, if we consider the discrete scale {1/9, 1/8, . . . , 1/2, 1, 2, . . . , 8, 9},
we can use formulas (6) and (7) to further restrict the intervals and recover

Ã4 =


[1, 1] [1, 9] [3, 9] [6, 9]

[1/9, 1] [1, 1] [1, 9] [2, 9]
[1/9, 1/3] [1/9, 1] [1, 1] [1/9, 9]
[1/9, 1/6] [1/9, 1/2] [1/9, 9] [1, 1]


from which, d1 infers that a144 ∈ {6, 7, 8, 9}. Namely, d1, knows that d4 must
have judged the weight of x1 between 6 and 9 times greater than the one of x4.

4. Some theoretical results

The structure of the induced matrix (8) suggests a connection with interval
pairwise comparison matrices, which have been widely studied in the literature
(Li et al., 2016) and used to solve real-world decision problems.

Definition 2 (Interval pairwise comparison matrix (Salo and Hämäläinen,
1995)). An interval pairwise comparison matrix is a square matrix Ā = ([a−ij , a

+
ij ])n×n

with entries being positive intervals and a−ji = 1/a+ij for all i, j.

Proposition 1. If l = 1/u, then the induced matrix Ām = ([a−ijm, a
+
ijm])n×n is

an interval pairwise comparison matrix.

Proof. We know that the entries of Ā are positive intervals, so it remains to
prove that a−ijm = 1/a+jim holds for all i, j. This is true, by definition, for i = j.
For the case i 6= j, we can consider

b+jim = maximize
bji2,...,bjim

bjim

subject to ln l ≤ bjik ≤ lnu, k = 2, . . . ,m

λ1bji1 + · · ·+ λmbjim = ln a?ji .

(9)

and show that its optimum is the same of (4) but with opposite sign. This would
correspond, after proper transformation, to a−ijm = 1/a+jim. We can consider
(5) and apply the minus sign to both sides of the equality constraint and by
reckoning that, since l = 1/u, we have ln l = − lnu, in the inequality constraint
we can replace bijm with −bijm. In addition, we know that reciprocity of the

7



individual pairwise comparisons implies a?ji = 1/a?ij . Finally, since we know that
max f = −min(−f), we can reach an equivalent formulation of the previous
optimization problem

b+jim = −minimize
bji2,...,bjim

− bjim

subject to ln l ≤ −bjik ≤ lnu, k = 2, . . . ,m

− λ1bji1 − · · · − λmbjim = ln a?ij .

Now it is sufficient to use reciprocity and operate the substitution −bjim 7→ bijm
to obtain b+jim = −b−ijm and thus a+jim = 1/a−ijm.

Remark 1. If l = 1/u and the discrete scale is symmetric in a multiplicative
sense, i.e. S = {1/s, 1/(s − 1), . . . , 1, . . . , (s − 1), s}, then also the matrix Ãm

obtained by applying (6) and (7) to the induced matrix Ām is an interval PCM.

Since the entries on the diagonal of Ām are, by definition, [1, 1], Proposition
1 and Remark 1 imply that, under extremely weak assumptions, it is sufficient
to solve n(n− 1) linear programs to determine the induced matrix Ām and its
restriction Ãm in the case of a discrete scale. Furthermore, we can determine
some conditions under which the matrix Ām = ([a−ijm, a

+
ijm])n×n collapses into

a real valued PCM, thus leaving no uncertainty on the preferences of the other
decision makers. This happens when there are only two decision makers (m = 2)
or when the preferences of the decision makers are polarized and equal for every
pair of alternatives (i, j).

Proposition 2. If m = 2 or a?ij ∈ {l, u}, then a−ijm = a+ijm and therefore

āijm = [a−ijm, a
+
ijm] collapses into a singleton.

Proof. If m = 2 it is possible to determine the exact value of aijm. Hence,
a−ijm = a+ijm. For the second condition, we consider an arbitrary pair (i, j), if
a?ij = u then because aijk ≤ u for all k and the idempotency of the geometric

mean, we know that aij1 = · · · = aijm = u. Hence, a−ijm = a+ijm = u. A similar
line of reasoning holds if a?ij = l.

It is possible to formalize further limits to the possibility of inferring other
decision makers judgments.

Proposition 3. For m ≥ 3, if λ2 + · · ·+λm−1 ≥ λm, then at least one between
a−ijk = l and a+ijk = u holds.

Proof. First of all, we can split the general case into two subcases: a?ij ∈ {l, u}
and a?ij /∈ {l, u}. If a?ij ∈ {l, u} then either a−ijm = a+ijm = l or a−ijm = a+ijm =

u. Conversely, if = a?ij /∈ {l, u}, we can consider aλ1
ij1 · · · a

λm
ijm = a?ij . With

a?ij/a
λ1
ij1 = α we can write aλ2

ij2 · · · a
λm
ijm = α. For simplicity, we can use the

logarithmic function to linearize it and so, by setting bijk = ln aijk, β = lnα,
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l′ = ln l and u′ = lnu, it boils down to analyze the solutions of{
λ2bij2 + · · ·+ λmbijm = β
l′ ≤ bijk ≤ u′ ∀k = 2, . . . ,m

Now we shall consider two cases:
β ≥ (u′+ l′)/2): In this case, since λ2 + · · ·+λm−1 ≥ λm, when bij2, . . . , bi j m−1
tend to l′, bijm grows and reaches u′ before bij2, . . . , bi j m−1 can attain the value
l′. Thus, b+ijm = u′ and a+ijm = u. The initial condition β ≥ (u′ + l′)/2 can be
sketched

l′ u′
l′+u′

2 β

β ≤ (u′+ l′)/2): In this case, since λ2 + · · ·+λm−1 ≥ λm, when bij2, . . . , bi j m−1
tend to u′, bijm decreases and reaches l′ before bij2, . . . , bi j m−1 can attain the
value u′. Thus, b−ijm = l′ and a−ijm = l.

For m ≥ 3, λ1 = · · · = λm = 1/m implies λ1 + · · · + λm−1 ≥ λm. Conse-
quently, the case of equally important decision makers is a special case of the
previous proposition.

5. Experimental results

Very often, group DSS call for rounds of negotiations and confrontations,
where intermediate results are shown to the decision makers. Let us for in-
stance consider the Delphi method, often used together with questionnaires in
the form of pairwise comparisons (Khorramshahgol and Moustakis, 1988; Vi-
dal et al., 2011). In its traditional form, the Delphi method is structured as a
series of panel discussions led by a discussion leader and based on anonymous
questionnaires filled by the experts/panelists. In each round of discussion the
panelists discuss—the discussion is guided by showing them the aggregate of
their opinions—and in the next round they can revise their judgments. The
process iterates until a sufficient level of consensus, or a maximum number of
iterations, has been reached. Showing intermediate results is not an exclusive
characteristic of Delphi and it is shared by many other methods; Islei and Lock-
ett (1991) argued that the practice of group decision making has shown that a
group DSS should allow for frequent feedback and consequent preference devel-
opment.

In this context anonymity plays a central role. According to Rauch (1979),
anonymity serves (i) to avoid the influence of personal reputation on the accep-
tance of ones opinions, (ii) to make it possible to take extreme views and to
protect the panelists and (iii) to help attain objectivity and emotive neutral-
ity. Similarly, Dalkey et al. (1969) considered anonymity “a way of reducing
the effect of dominant individuals”, and in MCDM methods, anonymity allows
participants to be more frank with their opinions (Bose et al., 1997). Given its
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importance, and the results obtained in the previous section, we may be con-
cerned that, in cases with a small number of decision makers, the requirement
of anonymity be compromised. This, in turn, could jeopardize the fairness of
the decision process.

5.1. Numerical results

To investigate the extent of the violation of anonymity, this subsection
presents the results of a numerical study. We randomly generated 1000 sets
of m PCMs for an increasing number of decision makers m ∈ {3, . . . , 10} and
entries from the scale {1/9, . . . , 9}. Fixing an m, for each one of the 1000 sets of
PCMs we used the optimization problems (2)–(3) to find the induced pairwise
comparison matrix Ām. At this point, we measured how indeterminate each
one of the so generated 1000 induced PCMs was. A measure of indeterminacy
is a quantification of the amplitude of the interval-valued entries of positive
interval-valued matrices and therefore can be used as a proxy measure of the
degree of anonymity of preferences. To this aim, and to recover an index of
global indeterminacy, we used the formula

I(Ā) =
∏
i<j

(
a+ij

a−ij

) 2
n(n−1)

which was already used by Li et al. (2016) to measure the indeterminacy level of
interval PCMs. Indeed, the greater the indeterminacy, the more anonymous the
judgments are. Let us note that, if we consider a discrete scale {1/s, . . . , 1, . . . s},
we have I(Ā) ∈ [1, s2]. In particular I(Ā) = 1 indicates that all the intervals
in the matrix collapsed into real values, whereas I(Ā) = s2 indicates that all
the non-diagonal entries are as wide as possible, i.e. [1/s, s]. For the very
well-known case of the {1/9, . . . , 9} scale, I(Ā) ∈ [1, 81].

Figure 1 reports box plots synthesizing the distributions of indeterminacy
levels. To study the effects of using a different scale the same figure also reports
the results of the experiments when entries are sampled from scales {1/s, . . . , s}
with s = 3, 5, 7.

It appears that, although there is always the possibility of disclosing opinions,
already with more than seven decision makers the probability and the extent
of this event is drastically reduced. By comparing Figures 1a–1d, we note that,
using reduced scales has only a slight effect on the degree of anonymity of
individual pairwise comparisons.

5.2. Empirical results

It is reasonable to question the results obtained from randomly generated
PCMs, since it often happens that, in group decision making, preferences are
far from being random and could, instead, contain patterns and regularities.
For example, randomly generated matrices do not account for the case of two
criteria such that one dominates the other so much that the large majority of
the decision makers prefer the former over the latter. This section presents an
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(a) Indeterminacy analysis for random
PCMs with scale {1/9, . . . , 9}.
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(b) Indeterminacy analysis for random
PCMs with scale {1/7, . . . , 7}.
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(c) Indeterminacy analysis for random
PCMs with scale {1/5, . . . , 5}.
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(d) Indeterminacy analysis for random
PCMs with scale {1/3, . . . , 3}.

Figure 1: Indeterminacy analysis of induced matrices from randomly generated PCMs on
different scales.
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(a) Indeterminacy analysis for random
PCMs with scale {1/9, . . . , 1, . . . , 9}.
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(b) Indeterminacy analysis for empirical
PCMs with scale {1/9, . . . , 1, . . . , 9}.

Figure 2: Indeterminacy analysis of induced matrices from different types of judgments.

empirical analysis of some real-world PCMs. Particularly, it refers to the PCMs
collected by Nikou and Mezei (2013) to study the factors determining the adop-
tion of mobile services. In their survey, Nikou and Mezei collected 66 PCMs
comparing five criteria (Communication, Entertainment, Information, Web 2.0,
Transaction) on a scale {1/9, . . . , 9}. To study the effect of an increasing num-
ber of decision makers on real-world preferences we sampled 1000 subsets of
cardinality m from the set of 66 PCMs collected by Nikou and Mezei, and it-
erate the process for m = 3, . . . , 10. Thereafter, the analysis proceeds similarly
to the one presented in the previous section.

Figure 2 compares the results obtained from empirical data with randomly
generated ones making it visible that, at least when compared to these empirical
data, randomly generated matrices tend to underestimate the extent of the
violation of the anonymity principle.

Since Figures 1 and 2 only offered snapshots, more details are reported in
Table 1. In particular, Table 1 reports the frequencies with which the induced
matrix was fully undetermined, thus granting full anonymity to the decision
maker. In light of these results it seems that, using reduced scales slightly
favors anonymity. However, this phenomenon does not seem significant. More
important is the difference between the last two rows, which signals that, most
likely, the numerical results on random matrices are underestimating the loss of
anonymity in real-world contexts.

6. Induced matrix from the group weight vector

The last stage of decision making with pairwise comparisons if very often
the elicitation of a weight vector. In the case of group decision making, this
adds one more stage to the entire process: the elicitation of the weight vector
w? = (w?1 , . . . , w

?
n) from A?. A common procedure is to use the geometric mean
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Number of decision makers (m)

Data Scale 3 4 5 6 7 8 9 10

random 3 0 .021 .293 .669 .904 .962 .991 .998
random 5 0 .006 .202 .634 .859 .961 .988 .998
random 7 0 .007 .182 .579 .835 .956 .990 .994
random 9 0 .006 .173 .556 .850 .943 .985 .996
empirical 9 0 0 .024 .108 .241 .401 .514 .673

Table 1: Percentage of fully undetermined induced matrices. Values greater than 0.9 are
highlighted in boldface.

method, so that

w?i =

 n∏
j=1

a?ij

 1
n

i = 1, . . . , n . (10)

and the entire aggregation be summarized as follows

A1, . . . ,Am

(1) // A?
(10) // w? (11)

It is possible to envision that, to facilitate the discussion, during the decision
making activity individual decision makers could be informed about w? instead
of A?. Since weight vector w? is a synthesis of the preferences contained in
A?, it is reasonable to suppose that the knowledge of w? yields less information
on the opinions of the different decision makers than the knowledge of A?. To
investigate this possibility it is necessary to devise optimization problems which
can estimate upper bounds for the pairwise comparisons expressed by dm as
functions of the entries of A1 and the components of w?.

a−ijm = minimize aijm

subject to l ≤ aijk ≤ u, i, j = 1, . . . , n, k = 2, . . . ,m

aijk = 1/ajik i, j = 1, . . . , n, k = 2, . . . ,m

n∏
j=1

(
m∏
k=1

aλk

ijk

) 1
n

= w?i i = 1, . . . , n

(12)

a+ijm = maximize aijm

subject to l ≤ aijk ≤ u, i, j = 1, . . . , n, k = 2, . . . ,m

aijk = 1/ajik i, j = 1, . . . , n, k = 2, . . . ,m

n∏
j=1

(
m∏
k=1

aλk

ijk

) 1
n

= w?i i = 1, . . . , n

(13)
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In each of the previous two optimization problems, the first two sets of con-
straints ensure that pairwise comparisons expressed by d2, . . . , dm be reciprocal
and within the interval [l, u]. The last set of constraints stipulates the coher-
ence of the judgments with the group weight vector. Using the logarithmic
transformation, they can be reformulated as linear programs and easily solved,

b−ijm = minimize bijm

subject to ln l ≤ bijk ≤ lnu, i, j = 1, . . . , n, k = 2, . . . ,m

bijk = −bjik, i, j = 1, . . . , n, k = 2, . . . ,m

1

n

n∑
j=1

(
m∑
k=1

λkbijk

)
= lnw?i i = 1, . . . , n.

(14)

b+ijm = maximize bijm

subject to ln l ≤ bijk ≤ lnu, i, j = 1, . . . , n, k = 2, . . . ,m

bijk = −bjik, i, j = 1, . . . , n, k = 2, . . . ,m

1

n

n∑
j=1

(
m∑
k=1

λkbijk

)
= lnw?i i = 1, . . . , n.

(15)

We can formulate a proposition similar to Proposition 1.

Proposition 4. If l = 1/u, then the induced matrix Ām = ([a−ijm, a
+
ijm])n×n

(from A1 and w?) by solving the optimization problems (12) and (13) is an
interval pairwise comparison matrix.

Proof. Similarly to the proof of 1 we intend to show that b+jik = −b−ijk. Hence
we start considering

b+jim = maximize bjim

subject to ln l ≤ bjik ≤ lnu, i, j = 1, . . . , n, k = 2, . . . ,m

bjik = −bijk, i, j = 1, . . . , n, k = 2, . . . ,m

1

n

n∑
i=1

(
m∑
k=1

λkbjik

)
= lnw?j j = 1, . . . , n.

Bearing in mind that max f = −min(−f) and ln l = − lnu we can modify the
objective function and the first set of constraint. Furthermore, also the other
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sets of constraints can be modified by inverting the indices. It results in

b+jim = −minimize − bjim
subject to ln l ≤ bijk ≤ lnu, i, j = 1, . . . , n, k = 2, . . . ,m

bijk = −bjik, i, j = 1, . . . , n, k = 2, . . . ,m

1

n

n∑
j=1

(
m∑
k=1

λkbijk

)
= lnw?i i = 1, . . . , n.

Now by substituting −bjim 7→ bijm in the objective function we obtain the
optimization problem (14), leading to the conclusion that a+jik = 1/a−ijk

Using these linear optimization problems we can run simulations, similar to
the previous ones, to estimate the degree of indeterminacy of the matrix Ām

induced by Am and w? instead of from Am and A?.
For sake of brevity results of these simulations are not reported here, since

they simply indicate that, except for the special case of three decision makers
and three alternatives (n,m = 3), the induced matrix is almost always fully
undetermined and thus the anonymity of the decision maker is preserved.

7. Other representations of preferences

Pairwise comparison matrices are not the only framework for expressing real-
valued preference. It is safe to say that, the other foremost representation of
preferences is represented by reciprocal preference relations. Unlike a PCM, a
reciprocal preference relation R = (rij)n×n allows the decision maker to express
his preferences in the unit interval ]0, 1[ (sometimes [0, 1]), with indifference
represented by the value 0.5 and reciprocity rij + rji = 0.5. In the literature,
reciprocal preference relations have often been called fuzzy preference relations
(Herrera-Viedma et al., 2004; Kacprzyk, 1986; Tanino, 1984).

Reciprocal preference relations are related to pairwise comparison matri-
ces by means of the isomorphism rij = g(aij) =

aij
1+aij

and its inverse aij =

g−1(rij) =
rij
rij

(Xu and Da, 2003). In addition, when the structure of a PCM

is mapped into a reciprocal relation by means of the isomorphism g, we obtain
that, in ]0, 1[, the so called three-Π-uninorm (Grabisch et al., 2009),

r?ij =

(
m∏
k=1

rijk

) 1
m

(
m∏
k=1

rijk

) 1
m

+

(
m∏
k=1

(1− rijk)

) 1
m

is the equivalent of the geometric mean.
Clearly, any equality constraint in the form of this equation makes an op-

timization problem nonconvex. However, it is possible to use the isomorphism
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g−1 to map a reciprocal preference relation into a pairwise comparison matrix
and then, similarly to the optimization problems (2) and (3), linearize the opti-
mization problems to find upper and lower bounds also for the case of reciprocal
preference relations too. Therefore, although the previous sections referred to
pairwise comparison matrices, the results should not be interpreted in a re-
strictive sense as they can be straightforwardly generalized to other preference
structures, as long as there exists an isomorphism between them. One further
example is the additive representation of preferences which was indirectly ob-
tained by linearizing, by means of the logarithmic function, the optimization
problems. In fact an additive preference relation is a preference relation where
entries are expressed as real numbers and reciprocity is expressed as bij+bji = 0.

8. Discussion and conclusions

According to recent literature, there is still a lack of studies on the optimal
number of judges in group decision making (Saaty and Özdemir, 2014). Al-
though the answer to this question is certainly context-dependent, this study
hopes to have shed some light on this issue by discussing and raising awareness
on the possibility of indirectly violating the requirement of anonymity. Specif-
ically, it occurs that, although pairwise comparisons are given in anonymous
form, a decision maker can partially discover the preferences of another one.

To this scope we devised some optimization problems which can restrict
the range of possible values given by decision makers and analyzed how, by
increasing the number of decision makers one can also increase their degree of
anonymity. Although each case is different and a final word cannot be said,
empirical experiments with real-world pairwise comparison matrices revealed
that already with more than eight decision makers the degree of anonymity of
the decision makers’ preferences is quite high. Hence, from the perspective of
anonymity, the more decision makers the better. However, we cannot claim this
in general. In fact, in some contexts, it was hypothesized that a too large number
of decision makers does not provide sufficient individual incentives to accurately
ponder the decision problem (Mukhopadhaya, 2003). Future research could use
additional empirical data to verify the robustness of the results obtained in this
paper.

Another issue emerging from this analysis is the discrepancy, presented in
Figure 2, between the results obtained with random matrices and those obtained
with empirical matrices. Such discrepancy shows that not all the facets of
pairwise comparison matrices can be fruitfully analyzed by means of randomly
generated matrices. This suggests increasing the use of empirical preferences in
the study of preference relations, as done by Bozóki et al. (2013).

Finally, we can sketch a possible connection between group decision making
with pairwise comparisons and game theory, whose full development would go
beyond the scope of this paper, but might inspire extensions of this research.
The basic idea is to assume that a decision maker attaches a value to both (i)
influencing the final outcome of the decision process and (ii) maintaining his
judgments anonymous. In other words, the utility function of a decision maker
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may depend on both factors. If we exclude the case with two decision makers
(m = 2), and we focus on larger groups, we can see that the degree to which
a decision maker loses anonymity depends on his pairwise comparisons as well
as to the pairwise comparisons of the other decision makers. Hence, in some
situations, he might not be willing to express his real preferences in order to
retain some of his anonymity. This, in turn, depends on his expectations on the
other players stated preferences, and therefore it appears to be a game theoretic
problem.
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Bozóki, S., Dezső, L., Poesz, A., Temesi, J., 2013. Analysis of pairwise compar-
ison matrices: an empirical research. Annals of Operations Research 211 (1),
511–528.

Choo, E. U., Schoner, B., Wedley, W. C., 1999. Interpretation of criteria weights
in multicriteria decision making. Computers & Industrial Engineering 37 (3),
527–541.

Dalkey, N., Helmer, O., 1963. An experimental application of the Delphi method
to the use of experts. Management Science 9 (3), 458–467.

Dalkey, N. C., Brown, B. B., Cochran, S., 1969. The Delphi Method: An Ex-
perimental Study of Group Opinion. Vol. 3. Rand Corporation Santa Monica,
CA.

Dyer, R. F., Forman, E. H., 1992. Group decision support with the analytic
hierarchy process. Decision Support Systems 8 (2), 99–124.

17



Forman, E., Peniwati, K., 1998. Aggregating individual judgments and prior-
ities with the analytic hierarchy process. European Journal of Operational
Research 108 (1), 165–169.

Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E., 2009. Aggregation Functions.
Vol. 127 of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge.

Herrera-Viedma, E., Herrera, F., Chiclana, F., Luque, M., 2004. Some issues
on consistency of fuzzy preference relations. European Journal of Operational
Research 154 (1), 98–109.

Islei, G., Lockett, G., 1991. Group decision making: suppositions and practice.
Socio-Economic Planning Sciences 25 (1), 67–81.

Kacprzyk, J., 1986. Group decision making with a fuzzy linguistic majority.
Fuzzy Sets and Systems 18, 105–118.

Keeney, R. L., Raiffa, H., 1976. Decisions with Multiple Objectives: Preferences
and Value Tradeoffs. Wiley, New York.

Khorramshahgol, R., Moustakis, V. S., 1988. Delphic hierarchy process (DHP):
A methodology for priority setting derived from the delphi method and ana-
lytical hierarchy process. European Journal of Operational Research 37 (3),
347–354.

Kilgour, D. M., Eden, C., 2010. Handbook of Group Decision and Negotiation.
Vol. 4 of Advances in Group Decision and Negotiation. Springer Science &
Business Media.

Li, K. W., Wang, Z.-J., Tong, X., 2016. Acceptability analysis and priority
weight elicitation for interval multiplicative comparison matrices. European
Journal of Operational Research 250 (2), 628–638.

May, K. O., 1952. A set of independent necessary and sufficient conditions for
simple majority decision. Econometrica 20 (4), 680–684.

Mukhopadhaya, K., 2003. Jury size and the free rider problem. Journal of Law,
Economics, and Organization 19 (1), 24–44.

Nikou, S., Mezei, J., 2013. Evaluation of mobile services and substantial adop-
tion factors with analytic hierarchy process (AHP). Telecommunications Pol-
icy 37 (10), 915–929.

Ossadnik, W., Schinke, S., Kaspar, R. H., 2016. Group aggregation techniques
for analytic hierarchy process and analytic network process: A comparative
analysis. Group Decision and Negotiation 25 (2), 421–457.

Rauch, W., 1979. The decision Delphi. Technological Forecasting and Social
Change 15 (3), 159–169.

18



Saaty, T. L., 1977. A scaling method for priorities in hierarchical structures.
Journal of Mathematical Psychology 15 (3), 234–281.
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