Diffraction line profiles from polydisperse crystalline systems. Corrigenda

Paolo Scardi

Acta Cryst. (2021). A77, 232

Copyright © International Union of Crystallography
Author(s) of this article may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see https://journals.iucr.org/services/authorrights.html

FOUNDATIONS ADVANCES

Keywords: line profile analysis; LPA; whole powder pattern modelling; WPPM; crystalline domain size; corrigenda

Diffraction line profiles from polydisperse crystalline systems. Corrigenda

Paolo Scardi*

Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento, Italy. *Correspondence e-mail: Paolo.Scardi@unitn.it

Equation (16) and some entries in Table 1 in the article by Scardi \& Leoni [(2001), Acta Cryst. A57, 604-613] are corrected.

The variable σ in equation (16) of Scardi \& Leoni (2001) is missing a superscript to indicate that this term should be squared. The correct expression is

$$
\begin{equation*}
M_{l, n}=\exp \left[n \mu+\left(n^{2} / 2\right) \sigma^{2}\right] . \tag{16}
\end{equation*}
$$

As mentioned previously in Leonardi et al. (2012), there are also some errors in the common volume function (CVF) of the octahedron in Table 1 of Scardi \& Leoni (2001). The same errors are found in Stokes \& Wilson (1942). The coefficients for the case $A \leq B+C$ should read

$$
\begin{aligned}
H_{0} & =1 \\
H_{1} & =-3(A+B+C) / 8^{1 / 2} \\
H_{2} & =-3\left[A^{2}+(B-C)^{2}-2 A(B+C)\right] / 4 \\
H_{3} & =\left(A^{3}+B^{3}+C^{3}-3 A B C\right) / 2^{1 / 2} \\
K^{c}(h k l) & =(A+B+C) / 2^{1 / 2} .
\end{aligned}
$$

References

Leonardi, A., Leoni, M., Siboni, S. \& Scardi, P. (2012). J. Appl. Cryst. 45, 1162-1172.
Scardi, P. \& Leoni, M. (2001). Acta Cryst. A57, 604-613.
Stokes, A. R. \& Wilson, A. J. C. (1942). Proc. Cambridge Philos. Soc. 38, 313-322.

