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Appendix A: Data processing

After collecting the data, the series from different data
providers were harmonized and put into a common data for-
mat. This included converting all station coordinates into
latitude and longitude. In a few cases when only station
name and elevation were available but no coordinates, the
missing coordinates were extracted from Google Maps us-
ing the approximate location (with correct elevation) based
on the station name. Most data providers used station iden-
tifiers along with station names. We chose to have unique
identifiers for all stations based on the station name. Station
names were standardized by replacing blanks and apostro-
phes with underscores and by removing accents. If multiple
stations had the same name within one data source, i.e. by
data provider, the names were suffixed with the station iden-
tifier from the data provider. If multiple stations had the same
name across data providers, the names were suffixed with the
data provider identifier.

A1 Merging of records

The final database included several cases in which snow
measurements for the same location were stored as separate
records since they covered different periods and/or a slight
relocation of the same station site occurred. In some cases,
different records were available at very close locations where
snow data were collected at the same time or over partially
overlapping periods for different operative or research pur-
poses. In order to maximize the temporal continuity and ex-
tent of available HS and HN series, the records referring to
the same site or to very close locations were merged; one se-
ries was created from the multiple series by replacing miss-
ing values or missing periods. In particular, the merging was
performed only if the sites were closer than 3 km and their
vertical distance was less than 200 m. In the case of overlap-
ping periods, the data from the series with the fewest gaps
were retained. The merging was evaluated and performed on
HS series first. In the case that HN series for the same sites
were also available, the data were merged by following the
same criteria used for HS in order to preserve consistency be-
tween HS and HN measurements. The metadata of the most
recent series included in the merging were assigned to the
resulting record. About 60 merged series were obtained in
total, and the duplicate records for the same site were dis-
carded.

A2 Quality control

The series were quality checked in order to remove recording
errors. First, below zero HS or HN values were replaced with
missing values. Then a temporal consistency check was ap-
plied to HS to identify recording errors. Series were screened
for jumps larger than 50 cm (up and down on 2 consecu-
tive days, or vice versa). This criterion identified 680 val-

ues from the daily observations from all series, which were
checked manually, and recording errors were replaced with
missing values. Another issue with HS series is that missing
observations might falsely be recorded as 0 cm. To identify
suspicious series, mean winter (December to February) HS
and the fraction of 0 cm values were calculated per station.
Then, looking at a surrounding elevation band per station
(200 to 500 m, depending on the elevation and station avail-
ability), series were marked if the mean HS was less than
the 5th percentile or the fraction of 0 cm values was higher
than the 95th percentile of all stations in the elevation band.
Given the climatological nature of this pre-screening and the
stronger dependence on elevation, we did not consider hori-
zontal distance for this step. This resulted in 181 suspicious
series which were checked manually. For 32 stations, there
were periods when 0 cm was obviously a missing value, and
in these periods, the 0 cm values were replaced with miss-
ing values; the remaining 149 stations had no missing values
denoted as 0 cm. Finally, during all previous manual checks,
series that showed “dubious” behaviour were marked, which
were in total 48 series. Dubious behaviour was, for example,
an inconsistency between HN and HS, unlikely values, im-
probable temporal variability, multiple seasons with no snow,
or excessive gaps. From these 48 series, 29 were considered
usable, 11 had some periods removed, and 8 were completely
removed.

These procedures could identify some errors but definitely
not all. Because of the large number of series, it was not fea-
sible to manually quality check all of them, and fully auto-
matic checks are often not feasible. Instead, a spatial consis-
tency check was applied (see Appendix A.4), and the rest of
remaining errors could be considered noise given the large
amount of data.

A3 Gap filling

Most series contained gaps ranging from some days up to
whole seasons. In order to conduct climatological or trend
analyses, gaps in the series needed to be filled. For this, we
employed a spatial interpolation approach which is similar
to the one used for temperature and precipitation records
(see, e.g., Brunetti et al., 2006; Crespi et al., 2018; Golzio
et al., 2018). The approach is based on correlations between
the series, and because snow strongly depends on elevation,
we first performed a spatial analysis to identify which cor-
relations can be expected depending on horizontal and ver-
tical distances between stations. For this, pairwise correla-
tions (Pearson) between the daily HS series were performed
for December to April from 1981 to 2010 only if the series
had at least 70 % valid data and only if each pair had at least
50 % of data in common. As expected, correlations decreased
with both horizontal and vertical distance (Fig. A1), but cor-
relations remained high even for large distances; e.g. corre-
lations higher than 0.7 were found for vertical distances of
up to 500 m (with less than 100 km horizontal distance) or
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Figure A1. Summary of pairwise correlations between HS series for December to April, 1981 to 2010. The average (median, a) and 90th
percentile (b) are shown of all pairwise correlations in bins of 20 km horizontal distance by bins of 50 m vertical distance. The correlations
were only calculated if each series had at least 70 % valid data in the period and if each pair had at least 50 % of data in common.

horizontal distances of up to 200 km (with less than 250 m
vertical distance). It should be noted that correlations can be
high even if there are large differences in amounts or ratios
between the series as long as the differences and ratios are
constant across the range of values.

The chosen approach fills a gap based on finding neigh-
bouring series that are highly correlated to the one with gaps.
The gap-filling algorithm works as follows for each gap.

1. Find temporally surrounding non-missing values in the
gap series around the gap date (“window data”); see also
Fig. A2a.

1.1. Take 15 d before and after the gap. This results in
31 d of the year; e.g. for 16 January, this would be
1 to 31 January and for 1 January, this would be
16 December to 17 January.

1.2. Repeat step 1.1 for 10 years before and after the
gap. This results in 21 years; e.g. for 1996, this
would be 1986 to 2006.

1.3. This window data potentially contains 651 val-
ues (21 · 31) but likely has missing values. If there
are more than 150 non-missing values, continue to
step 2. If there are less than 150 non-missing values,
increase the day window by 5 d in both directions,
and repeat from 1.1. If the day window has reached
45 in one direction (i.e. a total of 91 d) and still there
are less than 150 non-missing dates, stop. Note that
only the day window is increased, the year window
from 1.2 stays constant at 10 years before and after.

2. Pre-select potential reference series (Fig. A2b) based on
the following criteria: vertical distance to gap series is
below 500 m, horizontal distance is below 200 km, and
the value at the date of the gap is not missing.

3. For each potential reference series, do the following.

3.1. Identify dates with values available for both gap
and reference series in the window identified in
step 1 (Fig. A2c). Continue only if more than 80 %
of the minimum 150 non-missing values (i.e. 120)
are available in common.

3.2. For the common dates, calculate mean of gap series
and mean of reference series, and calculate correla-
tion between gap series and reference series. If all
values of gap and reference series are zero, set the
correlation to the minimum threshold (see step 4)
plus 0.001 (in order to be able to fill also zero pe-
riods). If only one of the series has all zero values,
i.e. either gap or reference but not both, set the cor-
relation to zero.

3.3. Calculate ratio between mean of gap series divided
by mean of reference series. If the mean of the ref-
erence series (divisor) is zero, set the ratio to zero
(in order to be able to fill also zero periods).

4. Sort potential reference series by correlation with gap
series (from step 3.1). Remove all candidates with a cor-
relation below 0.7. This threshold was chosen as it is
used, for example, in the homogenization of snow depth
(Marcolini et al., 2017a).

5. Select the first five best correlated reference series or up
to five, depending on how many are available.

6. Calculate weights based on vertical distance. The
weights are based on exponential decay with a halving
distance of 250 m (“half-time” transformation of decay
constant). This implies that the weights are halved every
250 m.
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Figure A2. Visualization of some steps of the gap-filling algorithm. Panel (a) shows how the window data in the gap series around the gap
is determined (step 1); doy is day of the year. Panel (b) shows the selection of potential reference series by horizontal and vertical distance
(step 2). Panel (c) shows how common dates for gap and reference series are identified (step 3); the dates come from the window in (a).

7. Fill the gap value with a weighted (step 6) average
of the reference series values adjusted by the ratios
between gap and reference series (step 3.3): HSgap

t =

1
n

∑n
i=1wi ·HSrefi

t ·
HSgap

mean

HS
refi
mean

, where t is the date of the gap,

i is the index of the reference series, n is the number of
the reference series 1. . .5, and wi are the weights with∑
iwi = 1.

The filled value was rounded to the nearest integer value in
centimetres. Since the method requires finding suitable ref-
erence stations, it was only performed for the period 1961
to 2020 because the station density was too low before. The
gap filling was applied to all gaps in all series considering all
available data; afterwards, thresholds were applied to select
usable series (see end of this section).

The chosen limits of 200 km horizontal distance and 500 m
vertical distance might seem very high in the Alpine con-
text with the complex topography. Since we were interested
in larger-scale snow patterns and not local snow peculiari-
ties, such large distances are justified. Moreover, the correla-
tion threshold should exert control on selecting only stations
that share the same snow cover evolution, and high correla-
tions were found up to these horizontal and vertical limits
(Fig. A1). On the other hand, a nearby station might also be
a worse predictor than a more distant one, if, for example, it
differs in its local climate.

Since this gap-filling approach has not yet been used for
snow depth, we performed a cross-validation analysis to
identify the gap-filling errors. For this, we used data from
November to May from the period 1981 to 2010. For each
station and each year, 1 month at a time was held out but
only if at least 10 d were available. Thus, for each month,
a maximum potential of ∼ 900 values were cross-validated;
however, the effective number was lower because of missing
values and because not all gaps could be filled if no suitable
reference stations were available. In order to test the effect of
shorter period gaps, we also applied the cross-validation to

subsets (to reduce computation time): (1) 100 random sam-
ples of 1 d and (2) 20 random samples of 5 consecutive days.
Then, the held-out values were filled using the above ap-
proach, and metrics were calculated based on the filled and
held-out values. Metrics include the bias, the MAE (mean
absolute error), the MAE for non-zero held-out values only,
and a modified version of relative MAE. The relative MAE
is based on the MAE for non-zero values only, and this non-
zero MAE is divided by the average of the held-out non-zero
values. This is then not a “true” relative error which would
divide each error by the true value, i.e. 1

n

∑n
i=1|

yi−xi
xi
|, but

our modification is 1
n

∑n
i=1
|yi−xi |
|x|

, where x is the average of
all xi . This was done to remove the large influence of errors
close to zero which are not that relevant in this case. The met-
rics were only calculated if more than 50 values were avail-
able per month and station (out of potentially ∼ 900 for the
month-long gaps and 100 for the 1 and 5 d gaps) in order to
provide robust estimates.

The cross-validation showed that the gap filling has ex-
tremely little bias (Table A1), with the overall average daily
bias for the month-long gaps being −0.04 cm. Average daily
MAE for filling whole months was 1.6 cm (averaged over
stations located at 0–1000 m), 7.7 cm (1000–2000 m), and
22.0 cm (2000–3000 m). MAE was lower for 1 and 5 d long
gaps compared to month-long gaps, but almost no differences
were observed comparing 1 or 5 d, e.g. for the 1000–2000 m
band. MAE for 1 d gaps was 6.2 cm and for 5 d gaps 6.4 cm
compared to 7.7 cm for 1 month gaps. The relative MAE of
month-long gaps decreased with elevation from 39.4 % (0–
1000 m) to 32.7 % (1000–2000 m) to 22.8 % (2000–3000 m).
Additionally, there was also a seasonal dependence of MAE,
while the bias remained largely constant across the season
(Fig. A3). MAE below 2000 m peaked in February, while
above 2000 m, MAE increased throughout the season. Rel-
ative MAE decreased with higher snow depths both tempo-
rally and with elevation; that is, relative MAE was lowest in
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Figure A3. Cross-validation metrics for the gap-filling approach: (a) bias, (b) mean absolute error (MAE), (c) mean absolute error for non-
zero values (MAE no zero), and (d) non-zero MAE divided by the true non-zero mean (relative MAE no zero). Panels show the 1000 m
elevation bands indicated in the title. The boxplots represent statistical quantities. The box indicates the first and third quartile, the bold line
inside the box is the median, the vertical lines outside the box extend up to the most extreme point but at most 1.5 times the interquartile
range (IQR; height of the box), and, finally, points below and above 1.5 · IQR of the first and third quartile are shown as separate points.

February and at high elevations. It is to be expected that er-
rors at the end of the season are related to the ablation scheme
(i.e. local climatic and topographic characteristics that influ-
ence ablation) of the different stations; however, at this stage,
we did not check this issue further.

Moreover, we compared our proposed gap-filling ap-
proach to results from gap-filling snow depth series using
simulations of the Crocus snow model for the French Alps.
The Crocus simulations with meteorological forcing were
performed independently of this study, but we found it useful
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Table A1. Cross-validation (CV) metrics for the gap-filling approach: bias (the difference between gap-filled and observed values), the mean
absolute error (MAE), mean absolute error only for non-zero observed values (MAE no zero), and MAE no zero divided by the average of
all true non-zero values (Rel. MAE no zero).

Elevation band (m) CV period Bias (cm) MAE (cm) MAE no zero (cm) Rel. MAE no zero

(0,1000] 1 d −0.0 1.3 3.1 30.1 %
5 d −0.0 1.4 3.3 34.0 %
1 month −0.0 1.6 3.9 39.4 %

(1000,2000] 1 d −0.1 6.2 7.9 26.1 %
5 d −0.1 6.4 8.2 28.5 %
1 month −0.1 7.7 9.7 32.7 %

(2000,3000] 1 d −0.6 18.2 18.6 18.9 %
5 d −0.8 18.3 18.7 19.2 %
1 month −0.4 22.0 22.5 22.8 %

to compare the two approaches – albeit only exploratively.
The observed snow depths with gaps were assimilated into
the Crocus modelling scheme using SAFRAN reanalysis
data as forcing (López-Moreno et al., 2020). The two gap-
filling approaches were compared only for existing gaps in
the French Alps. This was intended as a preliminary com-
panion evaluation, and no cross-validation was performed.
Thus, there was no ground truth to evaluate the two gap-
filling approaches with formal metrics, and we only per-
formed a visual assessment (figures for comparison available
in Matiu et al., 2020). Time series of both gap-filling proce-
dures looked remarkably similar even for reconstructions of
complete missing seasons; the different snowfall events were
visible in both, and snow depths averaged over multiple days
were comparable. Differences emerged in the snow settling
behaviour and for the spring snow melting periods. More in-
formation on this exercise is available from the authors on
request.

For Switzerland, a comparison of gap-filling methods for
HS was performed which aimed at reconstructing complete
missing seasons and which included regression-based meth-
ods and snow models (Aschauer et al., 2020). While our pro-
posed method was not explicitly used in that comparison, it
can be assumed to be similar to the regression-based and
distance-weighted methods used there. The errors reported
in their study (root mean squared error less than 20 cm) are
in the same order of magnitude as those found in our cross-
validation.

Altogether, the above-mentioned points (the cross-
validation results, the comparison to Crocus, and the prelim-
inary findings of the Swiss study) convinced us that the gap-
filling procedure is also suitable for reconstructing whole
seasons and not only some intermediate gaps, considering
the fact that we only used it to derive monthly means (see
below) and did not use the daily values directly. Further re-
search would be required to check the suitability of the daily
reconstructions, in our opinion, also considering the temporal
distance to the last existing observations. For the final analy-

sis, all gap-filled data within the recording period was used,
and we also allowed the period to be extended by up to 5
years before the start or after the end of the recordings –
but only if the total number of gap-filled observations was
less than the number of observations without gap filling. The
main reason for this extension was to have series covering
the complete period until 2019 because some series stopped
just a few years earlier. As a sensitivity analysis, we repeated
most of the statistical analysis also for the original data with-
out gap filling and provide results in the Supplement; the esti-
mated modes of variability matched (Fig. S12 in the Supple-
ment), the magnitude and variability in monthly trends were
similar, although significantly fewer stations were available
(Fig. S10 in the Supplement), and finally the time series of
500 m average HS also showed similar behaviour (Fig. S11
in the Supplement). The gap filling was able to significantly
increase the temporal availability, but its aim was not to fill
all gaps. Gaps were not filled, for example, if no suitable ref-
erence station was found or if not enough common data were
available.

A4 Aggregation and spatial consistency

The daily snow depth (HS) values were aggregated to mean
monthly HS if at least 90 % of the daily values were available
in the respective months after the gap filling (monthly time
series plots available at Matiu et al., 2020).

Based on the monthly series, a consistency check was per-
formed (Crespi et al., 2018) which identified dubious val-
ues and/or series (but can also identify series with strong lo-
cal influences on snow depth). Each monthly HS series of
the tested station was reconstructed from up to five refer-
ence stations by a spatial interpolation approach. The refer-
ence series were selected if the monthly record was avail-
able and if at least 10 monthly records were in common with
the tested station. If more than five neighbours were avail-
able, the ones with the highest weights were selected with
weights being derived from the horizontal distance and eleva-
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Figure A4. Metrics for spatial consistency: (a) bias, (b) mean absolute error (MAE), and (c) R2 (squared correlation). Metrics were derived
from statistical simulations of the monthly series from December to February using spatial neighbours. Black points indicate stations which
were further analysed with manual checks.

tion difference, which is similar to the gap-filling procedure
described above. Each reference station value was rescaled
by the ratio between tested and reference mean HS for the
month under reconstruction. Finally, the monthly simulation
of the tested series was defined as the median of up to five
rescaled neighbouring values. The comparison between sim-
ulated and observed monthly HS series for each station was
evaluated by computing bias, MAE, andR2 (squared correla-
tion) from December to February in order to avoid unreliable
low error values due to zeros in HS records outside of winter.

The mean bias over all stations was −0.3 cm (min, max:
−8.0, 10.9 cm), average MAE was 4.8 cm (0.1, 61.3 cm), and
average R2 was 0.83 (0.0, 0.98). However, there was a strong
elevational dependency, and station metrics deteriorated with
elevation (Fig. A4). A semi-automatic approach was consid-
ered to look for suspicious series. The following criteria were
used to screen stations: bias outside the 95 % confidence in-
terval per elevation band (250 m bands up to 1500 m, then
1500 to 2000 m, and 2000 to 3000 m), MAE above a man-
ually defined threshold line (see Fig. A4b), R2 below 0.5,
or simulation not successful because of too many gaps. This
yielded 225 stations which were checked manually by look-
ing at monthly simulated and observed series and daily se-
ries. Only 14 stations were found suspicious and 18 partly
suspicious; all of these 32 series were removed from the sta-
tistical analyses. More detailed results and time series com-
paring simulated with observed snow depths are available as
auxiliary material (Matiu et al., 2020).
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Appendix B: Additional figures and tables

Figure B1. Silhouette values of the stations which show the consistency of clustering. The silhouette is a measure of how similar the station
is to its own cluster compared to the other clusters (see Sect. 2.4). High values indicate a good match, while low and negative values indicate
a poor match.

Figure B2. Same as Fig. 8 but using standardized anomalies.
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Figure B3. Ratio between the trend over the full period (1971 to 2019) and interannual variability (SD of the residuals). (a) The values for
monthly mean HS (snow depth), (b) for seasonal indices of HS, and (c) for seasonal indices of SCD (snow cover duration). The boxplots
represent statistical quantities. The box indicates the first and third quartile, the bold line inside the box is the median, the vertical lines
outside the box extend up to the most extreme point but at most 1.5 times the interquartile range (IQR; width of the box), and, finally, points
below and above 1.5 · IQR of the first and third quartile are shown as separate points. The height of the box is proportional to the number of
observations in each group.
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Table B2. Fraction of models with significantly positive or negative changes in the error variance by time. The remaining percentage (not
shown) corresponds to the total of non-significant negative and positive changes. Empty cells indicate no stations with significant negative or
positive trends (sig− and sig+). Changes were considered significant if the GLS model with a time coefficient for the error variance showed
significantly improved goodness of fit compared to the OLS model with constant error variance (p< 0.05).

Region Nov Dec Jan Feb Mar Apr May

sig− sig+ sig− sig+ sig− sig+ sig− sig+ sig− sig+ sig− sig+ sig− sig+

NW 86.4 % 24.4 % 5.1 % 30.8 % 3.1 % 76.5 % 11.8 %
NE 47.1 % 2.9 % 16.7 % 47.1 % 2.9 % 4.0 % 8.0 % 28.6 % 4.8 % 78.9 % 80.0 %
N&hA 53.8 % 4.3 % 28.9 % 0.4 % 5.5 % 0.4 % 22.4 % 72.8 % 75.3 % 4.7 %
S&hA 43.9 % 4.9 % 26.7 % 8.0 % 8.0 % 9.1 % 6.4 % 14.0 % 6.5 % 41.1 % 1.1 % 76.6 % 1.6 %
SE 72.4 % 0.4 % 22.6 % 2.2 % 40.5 % 2.4 % 18.4 % 2.9 % 29.1 % 2.7 % 55.2 % 6.3 % 100.0 %

Table B3. Overview of shareable data. The column “daily” indicates if the original daily data can be shared and “monthly” if the derived
monthly data can be shared.

Code Country Data provider Daily Monthly

AT_HZB Austria HZB No Yes
CH_METEOSWISS Switzerland MeteoSwiss No Yes
CH_SLF Switzerland SLF No Yes
DE_DWD Germany DWD Yes Yes
FR_METEOFRANCE France Météo-France Yes Yes
IT_BZ Italy Bolzano Yes Yes
IT_FVG Italy Friuli Venezia Giulia Yes Yes
IT_LOMBARDIA Italy Lombardia Yes Yes
IT_PIEMONTE Italy Piemonte No No
IT_SMI Italy SMI No No
IT_TN Italy Trentino Yes Yes
IT_TN_TUM Italy Trentino (TUM) No No
IT_VDA_AIBM Italy Valle D’Aosta (AIBM) No No
IT_VDA_CF Italy Valle D’Aosta (CF) Yes Yes
IT_VENETO Italy Veneto No Yes
SI_ARSO Slovenia ARSO No Yes
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Appendix C: Seasonal snow indices

Figure C1. Long-term (1971 to 2019) linear trends in seasonal snow depth (HS) indices. Trends are shown separately by index (columns)
and region (rows). The season is indicated in the columns with the first letter of the included months (e.g. DFJ is December, January, and
February). Each point is one station. The points indicate the trend and the lines the associated 95 % confidence interval.
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Figure C2. Long-term (1971 to 2019) linear trends in seasonal snow cover duration (SCD) indices. Trends are shown separately by index
(columns) and region (rows). The season is indicated in the columns with the first letter of the included months (e.g. NDFJ is November,
December, January, and February). Each point is one station. The points indicate the trend and the lines the associated 95 % confidence
interval.
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Figure C3. Time series of mean seasonal snow depth (HS) indices averaged by 500 m elevation bands. The rows indicate elevation band and
the columns the index. The season is indicated in the columns with the first letter of the included months (e.g. DFJ is December, January, and
February). The small numbers at the top of each panel denote the number of stations included in the average. Lines are only shown if more
than five stations were available.

Figure C4. Same as Fig. C3 but for standardized anomalies.
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Figure C5. Time series of mean seasonal snow cover duration (SCD) indices averaged by 500 m elevation bands. The rows indicate elevation
band and the columns the index. The season is indicated in the columns with the first letter of the included months (e.g. NDFJ is November,
December, January, and February). The small numbers at the top of each panel denote the number of stations included in the average. Lines
are only shown if more than five stations were available.
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Figure C6. Same as Fig. C5 but for standardized anomalies.
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Table C1. Overview of long-term (1971 to 2019) trends in mean seasonal snow depth indices. Summaries are shown by index, region, and
1000 m elevation bands (0 to 1000, 1000 to 2000, and 2000 to 3000 m). Cell values are the number of stations (#), the mean trend (mean, in cm
per decade), and percentages of significant negative (sig−) and positive (sig+) trends; the remaining percentage (not shown) corresponds
to the total of non-significant negative and positive trends. Empty cells denote no station available (for # and mean) and no stations with
significant negative or positive trends (sig− and sig+). Trends were considered significant if p< 0.05. See also Fig. C1. A version of the
table with 500 m bands instead of 1000 m is available in the Supplement (Table S6).

Index Region Elevation: (0,1000] m Elevation: (1000,2000] m Elevation: (2000,3000] m

# mean sig− sig+ # mean sig− sig+ # mean sig− sig+

meanHS_DJF NW 78 −0.38 26.9 %
NE 25 −0.26 8.0 % 1 1.36
N&hA 87 −1.64 14.9 % 154 −2.09 7.8 % 4 −4.28
S&hA 19 −3.57 42.1 % 74 −3.56 17.6 % 17 −0.07 5.9 %
SE 222 −0.95 22.1 % 10 −2.94 50.0 %

meanHS_MAM NW 62 −0.12 9.7 %
NE 18 −0.45 11.1 %
N&hA 61 −1.56 47.5 % 122 −3.74 42.6 % 3 −4.45
S&hA 16 −1.34 43.8 % 52 −5.38 69.2 % 16 −6.73 31.2 %
SE 209 −0.24 7.2 % 0.5 % 9 −1.82 33.3 %

meanHS_NDJFMAM NW 65 −0.23 41.5 %
NE 21 −0.31 9.5 %
N&hA 76 −1.44 32.9 % 133 −2.77 27.1 % 3 −4.96
S&hA 16 −2.15 56.2 % 55 −4.38 50.9 % 17 −2.91 23.5 %
SE 211 −0.60 27.0 % 9 −2.13 55.6 %

maxHS_NDJFMAM NW 65 −1.15 16.9 %
NE 21 −0.82 4.8 %
N&hA 76 −3.99 19.7 % 133 −5.19 20.3 % 3 −8.11
S&hA 16 −8.87 75.0 % 55 −10.33 56.4 % 17 −9.37 41.2 %
SE 211 −2.78 27.0 % 9 −6.59 55.6 %

Table C2. Overview of long-term (1971 to 2019) trends in mean seasonal snow cover duration indices. Summaries are shown by index,
region, and 1000 m elevation bands (0 to 1000, 1000 to 2000, and 2000 to 3000 m). Cell values are the number of stations (#), the mean trend
(mean, in d per decade), and percentages of significant negative (sig−) and positive (sig+) trends; the remaining percentage (not shown)
corresponds to the total of non-significant negative and positive trends. Empty cells denote no station available (for # and mean) and no
stations with significant negative or positive trends (sig− and sig+). Trends were considered significant if p< 0.05. See also Fig. C2. A
version of the table with 500 m bands instead of 1000 m is available in the Supplement (Table S7).

Index Region Elevation: (0,1000] m Elevation: (1000,2000] m Elevation: (2000,3000] m

# mean sig− sig+ # mean sig− sig+ # mean sig− sig+

SCD_NDJF NW 79 −2.47 30.4 %
NE 25 −1.92 16.0 % 1 4.96 100.0 %
N&hA 85 −3.33 38.8 % 144 −2.14 36.1 % 3 0.09
S&hA 16 −3.79 6.2 % 63 −2.08 28.6 % 17 −0.20 5.9 %
SE 216 −3.67 28.2 % 9 −5.26 66.7 %

SCD_MAM NW 62 −0.82 22.6 %
NE 18 −2.05 66.7 %
N&hA 61 −2.56 59.0 % 122 −3.03 66.4 %
S&hA 16 −3.06 75.0 % 52 −4.16 78.8 % 16 −0.60 18.8 % 6.2 %
SE 208 −0.99 20.7 % 9 −3.58 66.7 %

SCD_NDJFMAM NW 65 −3.33 40.0 %
NE 21 −3.86 33.3 %
N&hA 76 −5.58 57.9 % 133 −5.28 73.7 % 3 0.09
S&hA 16 −6.66 50.0 % 55 −6.67 80.0 % 17 −1.01 17.6 %
SE 211 −4.70 34.6 % 9 −8.84 88.9 %
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Code and data availability. All computations were performed with
R statistical software version 4.0.2 (RCoreTeam, 2008). Colours
for the figures were taken from scientific colour scales (Crameri,
2019) and colorBrewer. The code is available from a repository
(https://doi.org/10.5281/zenodo.4064128, Matiu et al., 2020) which
includes scripts for the following tasks: reading the different data
sources, performing all data preprocessing, quality checking, gap
filling, and statistical analyses.

Most data providers agreed to share their data; see Table B3 for
the availability of daily and monthly values. For the full dataset,
please contact the main authors (Michael Matiu or Alice Crespi);
the usage is generally free for research purposes, although explicit
consent is required from some data providers which want to keep
track of the usage of the data. The shareable data are available from
an open repository (https://doi.org/10.5281/zenodo.4064128, Matiu
et al., 2020).

Supplement. The supplement related to this article is available on-
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Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G., Ratto, S. M.,
Munari, M., Micheletti, S., Bonati, V., Lussana, C., Ronchi, C.,
Panettieri, E., Marigo, G., and Vertačnik, G.: The climate of daily
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