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Abstract — As known, Phasor Measurement Units (PMUs) 
greatly enhance smart grid monitoring capabilities with 
advantageous impacts on power network management. 
Generally, PMUs accuracy is expressed in terms of Total Vector 
Error (TVE), which comprises the joint effect of both angle and 
magnitude errors, thus possibly concealing the algorithm ability 
to measure phase. Some recent research works emphasize the 
importance of measuring current or voltage phasor angle with 
high accuracy (in the order of a few mrad) at the distribution 
level. Since this issue is seldom considered in the literature, in this 
paper the phase measurement accuracy of three algorithms, 
namely the basic DFT, the windowed Taylor-Fourier Filter 
(WTFF) and the Interpolated Dynamic DFT (IpD2FT) estimator, 
is extensively analyzed by means of simulations performed in 
various conditions described in the Standards IEEE 
C37.118.1:2011 and EN 50160:2010. In addition, some 
meaningful considerations about the uncertainty contributions 
due to imperfect synchronization are reported. 

Keywords — Power systems, estimation, Discrete Fourier 
Transform (DFT), uncertainty. 

I.  INTRODUCTION 

The implementation of smart grids requires increasingly 
sophisticated and flexible instruments for fine-grained 
monitoring and control, both in steady-state and transient 
conditions (e.g. for voltage dip detection [1]). Till now, 
network state estimation and detection of anomalous events 
have generally relied on measurements of bus voltage 
magnitude, active/reactive power injections and 
active/reactive power flows in stationary or quasi-stationary 
conditions [2]. However, in the near future, significant voltage 
or current waveform changes will have to be tracked in real-
time. This task is expected to be accomplished by specific 
instruments such as the so-called Phasor Measurement Units 
(PMUs), i.e. instruments able to measure voltage and current 
phasors, the waveforms frequency and their rate of change of 
frequency (ROCOF), synchronized to the Coordinated 
Universal Time (UTC) [3]. Originally conceived for Wide 
Area Monitoring Systems (WAMS) at the transmission level, 
PMUs have become particularly interesting at the distribution 
level [4],[5], e.g. for protection and stability assessment [6], 
distribution system state estimation [7], fault 
detection/location [8], power quality evaluation [9] and 
management of fast time-varying loads [10]. Various 
algorithms for phasor estimation exist [11],[12]. Quite 
importantly, the features of PMUs for next-generation 

distribution systems are generally different from those at the 
transmission level [13]. Indeed, the phase offsets of 
waveforms in different points of the network are normally 
quite small, but, at the same time, they may vary considerably 
(both in terms of amplitude and speed), as a result of 
significant changes in generation or load profiles. In fact, not 
only the voltage magnitudes, but also the phasor angles 
depend on the levels of demand and distributed generation 
(e.g. based on wind farms) at a given time [14]. For this 
reason, the PMUs for distribution systems are expected to 
exhibit stricter accuracy requirements than those reported in 
the IEEE Standards C37.118.1:2011 and C37.118.1a:2014 for 
transmission networks [15],[16]. Such requirements are 
described in [17]. In particular, a PMU for distribution 
systems should not only track waveform phasors, frequency 
and ROCOF in real-time under dynamic conditions [18],[19], 
but it should be also able to measure phasor angles with 
uncertainty in the order a few mrad or less [1],[5], as it is 
confirmed by the specifications of some novel instruments 
currently under development [20].  

When different PMUs, or, simply, different phasor 
estimation algorithms are compared, the performance 
parameter that most frequently is used to express accuracy is 
the so-called Total Vector Error (TVE). This parameter 
includes, but also partially conceals, the effect of phase errors. 
As a consequence, the accuracy of phase measurements alone 
are seldom analyzed in the literature. Generally, phase errors 
result from three main contributions, i.e. unwanted phase 
shifts introduced by instrument transformers (which are in the 
order of a few crad) [21], offsets caused by the estimation 
algorithm itself and deviations due to the limited time 
synchronization accuracy [9],[22] or, sometimes, to the need 
to reconstruct the phasor values at times different from the 
reported ones [23]. The contribution of instrument 
transformers is not related to the PMU, so it is out the scope of 
this paper. The uncertainty contributions due to the 
synchrophasor estimation algorithm is probably the most 
interesting, as it depends also on the features of the signals to 
be monitored. This paper extends the preliminary results 
reported in [24] by comparing the results provided by three 
techniques, i.e. the typical windowed Discrete Fourier 
Transform (DFT) synchrophasor estimator [25], the 
Interpolated Dynamic DFT (IpD2FT) algorithm [26], and the 
Taylor-Fourier Filter (TFF), firstly introduced in [19] and 
further improved through windowing in [27].  
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It is worth emphasizing that the proposed comparison is not 
exhaustive. In fact, just general conclusions can be drawn 
from the presented analysis. Several variants of the considered 
algorithms exist to address possible drawbacks arising in 
different operating conditions.  

In the rest of this paper, after introducing the general phasor 
model in Section II, the DFT-based phasor estimator is shortly 
recalled in Section III. The IpD2FT and windowed TFF 
(WFFT) estimators instead, which are based on a dynamic 
phasor model, are described in Section IV. A comparison 
about the computational complexity of the various algorithms 
is shortly reported in Section V. In all cases, the worst-case 
phasor angle measurement uncertainty is evaluated through 
extensive simulations in Section VI under the assumption that 
the input waveforms meet the requirements of Standards IEEE 
C37.118.1:2011 or EN 50160:2010. In fact, the latter 
document is specifically focused on power quality 
requirements at the distribution level and it “specifies the main 
characteristics of the voltage at a network user’s supply 
terminals in low, medium and high voltage AC electricity 
networks under normal operative conditions” [28]. Finally, in 
Section VII, the additional contributions due to sampling jitter, 
time synchronization uncertainty and imperfect phasor 
reconstruction at different times (which are common issues for 
all considered estimators) are analyzed and quantified.  

II. PHASOR MODEL DEFINITION 
Let x(t) be a general electrical waveform of frequency 

)1(0 ζ+= ff x , where f0 is the nominal value (i.e. 50 or 60 Hz) 
and ζ is a static fractional frequency deviation. If the PMU 
nominal sampling rate is fs=M•f0 (with M integer) the discrete-
time sequence in an observation interval centered at the UTC 
reference time tr (with Zr∈ ) can be expressed as [19] 

[ ] ( )[ ] ( ) ( )[ ]{ }
[ ] ( ) [ ]













=












=

=⋅++=

+

++++

n
M

j
r

n
M

j
r

nTtnTtfj
srar

enpenp

enTtAnx srpsrx

πζπ

φεπε
212

2

22          

 1

'ReRe

Re
  (1) 

where the operator Re{•} extracts the real part of its argument, 
A is the waveform amplitude, Ts=1/fs is the nominal sampling 
period, φ is the waveform initial phase and ( )⋅aε  and ( )⋅pε  are 
the intrinsic amplitude and phase fluctuations, respectively. 
Note that in (1), the expression 

[ ] ( )[ ] ( ) ( )[ ]

[ ][ ] [ ][ ]rrp

r

srpr

nj
a

nTttfj
srar

enA

enTtAnp

ϕε

φεζπ

ε

ε

+

++++

⋅+=

=⋅++=

1
2

        

 1
2

12 0

  (2) 

denotes the waveform phasor referred to frequency 
)1(0 ζ+= ff x  at a generic sampling time tr+n•Ts, where 

[ ] ( )sraa nTtn
r

+= εε  and [ ] ( )srpp nTtn
r

+= εε  are the 
amplitude and phase fluctuation sequences and 

( ) φζπϕ ++= rr tf 12 0  is the phase at the reference time. 

Conversely, the synchrophasor [ ]npr
' , as it is defined in the 

Standard [15], is referred to the nominal frequency f0. The 
latter quantity is typically measured by a PMU at time tr using 
a record of N samples. For the sake of simplicity we will 
assume in the following that Ts is constant and N is an odd 
number (however the case with N even can be addressed in a 
similar way). Thus, tr lies exactly in the center of the 
observation interval, i.e. n=-(N-1)/2,…,(N-1)/2 in (2). The 
effect of possible sampling jitter will be described in Section 
VII. It is worth noticing that a digitized waveform processed 
by a PMU includes various disturbances. Therefore, it is not 
expressed by (1), but rather by 

[ ] [ ] [ ] [ ]nnnxns
rr nhrr εε ++=          (3) 

where [ ]⋅rhε  includes all unwanted narrowband components 
(e.g. the first H harmonics along with other possible out-of-
band interferers), and [ ]⋅rnε  is additive wideband noise. 
Consider that phasor measurement uncertainty depends not 
only on various static or dynamic disturbances, but also on the 
chosen estimation algorithm. In particular, if phasors can be 
considered as static (i.e. approximately constant within each 
observation interval), the classic windowed DFT-based 
estimator is able to provide quite accurate results [25]. If 
instead phasors are regarded as dynamic (because they change 
significantly over time within the same observation interval), 
more sophisticated models including also the derivatives of 
phasors with respect to time are needed to achieve high 
accuracy [18], [19]. 

III. STATIC PHASOR ESTIMATOR  

If [ ]n
raε  and [ ]n

rpε  in (2) are negligible, the waveform 
phasor can be regarded as static and, accordingly, pr[n] can be 
modeled as a constant

rcp . In this case the windowed discrete-
time Fourier transform (DTFT) of (3) in the rth observation 
interval is given by  
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where  

( ) ( ) ( )νλνλλ ++−= WpWpX
rrr ccw

* ,          (5) 

λ and ν=fx•N•Ts = (1+ζ)·N/M are the frequency variable and the 
fundamental frequency of (1), respectively, expressed in bins, 
* denotes the conjugate operator, and 
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is the DTFT of the chosen window function w[•]. The 
fundamental frequency in bins can be also rewritten as             
ν = C + δ, where C is the nominal integer number of observed 
cycles, and  
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Observe that if C⋅M is an even number, an additional sample is 
added to the data record in order to process an odd number of 
samples N. If the Signal-to-Noise Ratio (SNR) is large enough, 
then ( )λ

rnΕ  is negligible [11]. Moreover, if a sufficient 
number of waveform cycles is analyzed and if a suitable 
window is used, both the term ( )λ

rhΕ  due the narrowband 

disturbances and the contribution of the image component *
rcp  

at frequency νλ +  can be strongly reduced [25]. As a 
consequence, from (4) and (5) it follows that  

( ) ( ) ( )νλλλ −≅≅ WpXS
rcrwrw .  (8) 

If typical cosine-class window functions are used, the 
spectrum peak of (3) is located at bin νλ =  and the phasor 
can be easily estimated from the Cth DFT sample, which is 
very close to this peak, i.e.  
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r

w
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Observe that (9) totally neglects the influence of the image 
component and relies on the quantity δ, which is usually 
unknown. Nonetheless, if the window function exhibits a 
perfectly even symmetry with respect to the center of the 
observation interval, its transform is real-valued, so 

( ){ } 0=λWArg  for values of the normalized frequency λ 
inside the window spectrum main lobe. Thus  

        { } ( ){ }CXp
rr wc ArgArg ≅ ,        (10) 

which shows that the phasor angle can be easily estimated, 
once the nominal integer number of observed cycles C is 
known. It is worth emphasizing that phasor magnitude and 
frequency estimation accuracy can be greatly improved by 
estimating δ through the Interpolated DFT (IpDFT) algorithm 
[29],[30]. The behavior of this static phasor estimator under 
possible impaired conditions in low-voltage distribution 
networks is analyzed in [31]. Performance can be enhanced by 
means of suitable window functions [32], or by compensating 
the spectral interference produced by the spectral leakage 
associated to the image of the fundamental tone [33]. 
However, if we limit our attention to phasor angle estimation 
only, there is no difference between the IpDFT and the basic 
DFT, provided that the observation interval is centered around 
the reference time. In this case, the window transform does not 
introduce a phase shift. For this reason, just the classic basic 
DFT-based phasor estimator will be used in the following 
comparison. 

IV. DYNAMIC PHASOR ESTIMATORS  
As shortly explained in Section II, when a waveform phasor 

changes rapidly within the same observation interval, the static 
phasor model is no longer adequate for estimation purposes. 

In this situation, the waveform synchrophasor [ ]npr
'  can be 

better described by its Taylor’s series expansion around time tr 
truncated to the Kth order term. As a result, (1) can be 
rewritten as  
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where ( )( ) k
sr

k
rkr Ttp

K
p ⋅=

!,
1 , and ( )( )r

k
r tp  is the kth order 

derivative of (2) computed at time tr. In the following, two 
recently proposed dynamic phasor estimators are recalled, i.e. 
the IpD2FT algorithm [26] and the WTFF technique, as it is 
described in [27]. 

A. Interpolated Dynamic DFT (IpD2FT) estimator  
Assuming that in (3) both narrowband and wideband 

disturbances are negligible (i.e. [ ] [ ] 0≈⋅≈⋅ rnrh εε ), by 
replacing (11) into (4), the DTFT of the waveform acquired in 
the rth observation interval becomes   
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Observe, that W0(λ) coincides with W(λ). If the phasor 
Taylor’s series is truncated to the second order (i.e., K=2) and 
the chosen window exhibits an even symmetry with respect to 
its central sample, the values of (12) for λ=C+h, h=1,0,-1, can 
be rearranged into the following linear system, i.e. [26] 
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and matrices  
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consist just of real elements. If δ is known, the real and the 
imaginary parts of vector Pr are given by 
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If δ is unknown instead (which is the most common case), the 
values of Pr can be obtained iteratively as follows. At first, δ 
in (16) and (17) is assumed to be equal to 0. Then, (18) is 
computed and the value of δ is obtained from (7), once the 
fractional frequency deviation ζ is estimated from [26] 
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The new value of δ is then replaced into (18) and the same 
procedure is repeated till when the results of (19) do not 
change significantly. Indeed the convergence of the algorithm, 
which relies on a gradient-based approach (similarly to the 
classic Newton-Raphson method) is always guaranteed in the 
conditions specified in the Standards [15], [16], [28]. In fact, 
the frequency deviations are small enough to lie within the 
main lobe of the window spectrum and the chosen approach 
definitely converges to the wanted solution since no local 
minima exist. In particular, all simulations show that L = 2 or 
3 iterations are enough to achieve accurate results. Thus, the 
phasor angle at time tr is simply given by { }0,Arg rp . 

B. Windowed Taylor-Fourier Filter (WTFF) 
Let xr be the column vector including all the samples of (1) 

collected in the rth observation interval under the assumption 
that narrowband and wideband disturbances are negligible (i.e. 

[ ] [ ] 0≈⋅≈⋅ rnrh εε ). In order to enable a fair comparison 
between the WTFF approach and the IpD2FT algorithm, in the 
following, the Taylor series of (11) is truncated to the second 
order. If the elements of vectors rP and *

rP in (14) are 
rearranged in a single vector 
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is referred to as the diagonal matrix built using the coefficients 
of the chosen window function, it is shown in [27] that the 
phasor in the rth observation interval, its first and second 
derivatives and the respective complex conjugate quantities 
can be estimated from  

         ( ) r
HHHH GGG xPr ΩΩΩΩ=

−1
2        (21) 

where H denotes the Hermitian operator and the N×6 matrix  
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consists of four independent sub-matrices G1, G2, G3 and G4, 
whose individual elements are given by  
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Observe that the coefficients in (23) are computed under the 
implicit assumption that the waveform frequency is equal to 
the nominal value f0. Similarly to the case of the IpD2FT 
algorithm, the angle of the estimated phasor at time tr is 
extracted from rP  by computing { }0,Arg rp . 

V. COMPUTATIONAL COMPLEXITY 
As known, the evaluation of one DFT sample requires N 

complex products and N-1 complex additions. Therefore, 
complexity is O(N), i.e. proportional to the number of 
collected samples. The complexity of the WTFF estimator is 
apparently larger, but the elements of matrix 

( ) ΩΩΩΩ
− HHHH GGG

1
2  in (21) can be computed once and 
for all. As a consequence, the WTFF algorithm just relies on 
one row-column product in (21). Thus, it has the same 
computational complexity as the DFT-based approach. The 
complexity of the IpD2FT algorithm is still linear with N, but 
it is larger than both DFT and WTFF estimators for various 
reasons, i.e. i) at least K+1 DFT samples of the transform of 
the acquired waveform have to be computed; ii) 2(K+1)2 
samples of the window spectrum have to be evaluated to build 
matrices (16) and (17); iii) such matrices have to be inverted; 
iv) the algorithm is repeated L times and, finally, v) at the end 
of each iteration a new value of δ has to be estimated using 
(19) and (7). Evidently, the computational cost of the last 
operations for obtaining δ is negligible compared with the rest 
of the algorithm. Therefore, assuming that the number of 
iterations L is fixed, the order of complexity of the IpD2FT 
estimator is approximately 
O((K+1)·N)+2L·[O((K+1)2·N)+O((K+1)3)], where the cubic 
rightmost term refers to the complexity of inverting a (K+1) X 
(K+1) matrix, using the Gauss–Jordan elimination technique. 
Even if the overall complexity of the IpD2FT looks quite 
larger than the other solutions, in practice the values of both K 
and L are small (e.g. K=2 and L=3). Thus, the overall 
processing time to return a single phasor estimate is still 
dominated by the number of samples N, and it is just slightly 
than using a basic DFT estimator. 

VI. SIMULATIONS RESULTS 
The accuracy of the phasor angle estimators described in 

Sections III and IV has been evaluated through extensive 

http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination


 

 
 

Monte Carlo simulations in various conditions based on the 
Standards C37.118.1:2011 and EN 50160:2010 [15],[28]. 
Moreover, in order to test the accuracy of the phasor angle 
estimators described in Sections III and IV in transient 
conditions closer to those of distribution networks, some 
additional simulations under the influence of decaying DC 
offsets are reported at the end of this Section. 

The choice of using two sets of testing conditions (and in 
some case their combination) is due to the fact that the 
Standard C37.118.1:2011 (along with its Amendment 
C37.118.1a:2014 [16]) deals with PMU performance 
regardless of how or where these instruments are used. On the 
contrary, the Standard EN 50160:2010 is specifically focused 
on the features of the voltage waveforms at the distribution 
level. In fact, as stated in the Introduction, active distribution 
networks are characterized by reduced line lengths, limited 
power flows and higher distortion levels than those of 
transmission networks [17].  

Such features suggest that the PMU accuracy requirements 
at the distribution level are expected to be higher than those 
specified in the Standard C37.118.1:2011, although no phase 
measurement uncertainty limits are explicitly reported in [15] 
and [16]. In addition, at the distribution level the PMUs could 
be used to monitor electromechanical transients, which 
generally lead to non-negligible deviations from the nominal 
frequency. As a result, synchrophasors angles could be poorly 
estimated if waveform frequency changes within the chosen 
observation intervals are too relevant to be accurately 
measured. 

All simulations rely on some common assumptions, which 
are shortly listed below. 
• The reference time at which every phasor is computed is 

located in the center of the considered observation interval. 
• The number of samples per nominal waveform cycle M is 

set equal to 129. However, results are almost independent 
of record size if the Nyquist theorem is satisfied. 

• All observation intervals consist of an odd number of 
samples and include approximately an integer number of 
waveform cycles, ranging from C=2 to C=6.  

• Various B-term Maximum Side-lobe level Decay (MSD) 
cosine windows (with B = 2, 3, 4) are used in all cases, as 
they proved to be effective in heterogeneous conditions 
[34]. 

• In every simulation run, the phases of fundamental tone, 
harmonics and modulating signals (if present) at the 
reference time are chosen at random in [0,2π). In 
particular, 100 waveforms with random phase values are 
used for each value of the fractional frequency deviation ζ.  

• three iterations of the IpD2FT algorithm are considered 
since a greater number of iterations does not improve 
results significantly.  
The absolute values of the maximum phase errors 

associated with the DFT, IpD2FT and WTFF estimation 
algorithms are shown in Tables I, II and III, respectively. All 
data are expressed in mrad and refer orderly to the conditions 
summarized below, i.e.: 

a) Pure sine-wave affected by a fractional static off-nominal 
frequency deviation ζ changing linearly in the range          
[-0.1,0.1], in compliance with the worst-case requirements 
of the Standard IEEE C37.118.1:2011 (case a).  

b) Sine-wave with static frequency deviation ζ changing 
linearly in the range [-0.1,0.1] and affected by a 40-dB 
Signal-to-Noise Ratio (SNR) due to zero-mean additive 
wideband Gaussian noise (AWGN) (case b); 500 noisy 
realizations for every waveform phase are used in this 
case.  

c) Waveform with a fundamental tone static frequency 
deviation ζ in the range [-0.1,0.1] and perturbed by a 2nd-
order harmonic (case c) of amplitude equal to 10% of the 
fundamental, as recommended for M-Class compliance in 
[15].  

d) Waveform with a fundamental tone static frequency 
deviation ζ in the range [-0.1,0.1] and perturbed by a 3rd-
order harmonic (case d) of amplitude equal to 10% of the 
fundamental, as recommended for M-Class compliance in 
[15]. 

e) Waveform with a fundamental tone static frequency 
deviation ζ in the range [-0.1,0.1] and perturbed by all 
harmonics till the 25th; each harmonic amplitude is compliant 
with the worst-case specified in the Standard EN 50160:2010 
[28] (case e). 

f) Waveform with a fundamental tone static frequency 
deviation ζ in the range [-0.1,0.1] and affected by 
sinusoidal amplitude modulation (AM) with amplitude 
10% of the fundamental and frequency equal to 0.1∙f0, 
according with the worst case reported in [15] (case f); 

g) Waveform with a fundamental tone static frequency 
deviation ζ in the range [-0.1,0.1] and affected by joint 
sinusoidal amplitude and phase modulations (AM+PM) 
with amplitude equal to 10% of the fundamental and 0.1 
rad for AM and PM, respectively, and frequency equal to 
0.1∙f0, according with the worst case conditions reported in 
the [15] (case g). 

h) Case h results from the superposition of the disturbances 
described in case e and case g. 

i) In case i a sine-wave at nominal frequency is perturbed by 
an out-of-band sinusoidal interferer with magnitude equal 
to 10% of the fundamental, phase chosen randomly in     
[0, 2π) and frequency equal to 10 Hz, 25 Hz, 75 Hz or 100 
Hz, assuming a reporting rate (RR) equal to 50 fps [15]. 

j) In case j the fundamental frequency is assumed to be 
nominal, but the collected waveform is affected by an 
amplitude step of magnitude equal to ±10% of the nominal 
value. 

k) Finally, in case k the fundamental frequency is assumed to 
be nominal, but the collected waveform is affected by a 
phase step of ±10° (i.e. ±π/18), according with the worst-
case conditions reported in [15]. 

The results reported in Tables I, II and III show that:  
• in the case of static off-nominal frequency deviations only 

(i.e. case a), the IpD2FT method is slightly better than the 
WTFF approach and both techniques outperform the DFT-
based estimator. 



 

 
 

TABLE I – MAXIMUM ABSOLUTE VALUES OF THE PHASE ESTIMATION ERRORS (EXPRESSED IN mrad) OBTAINED WITH THE CLASSIC DFT-BASED PHASOR ESTIMATION 
ALGORITHM IN DIFFERENT TESTING CONDITIONS. 2-, 3- OR 4-TERM MSD WINDOWS OVER OBSERVATION INTERVALS WITH A DURATION BETWEEN ABOUT 2 AND 6 
WAVEFORM CYCLES.  
 

 
 

TABLE II – MAXIMUM ABSOLUTE VALUES OF THE PHASE ESTIMATION ERRORS (IN mrad) OBTAINED WITH THE IPD2FT PHASOR ESTIMATION ALGORITHM FOR K=2 IN 
DIFFERENT TESTING CONDITIONS. 2-, 3- OR 4-TERM MSD WINDOWS OVER OBSERVATION INTERVALS WITH A DURATION BETWEEN ABOUT 2 AND 6 WAVEFORM 
CYCLES. 
 

 
 

TABLE III –  MAXIMUM ABSOLUTE VALUES OF THE PHASE ESTIMATION ERRORS (EXPRESSED IN mrad) OBTAINED WITH THE WTFF PHASOR ESTIMATION 
ALGORITHM  FOR K=2 IN DIFFERENT TESTING CONDITIONS. 2-, 3- OR 4-TERM MSD WINDOWS  OVER OBSERVATION INTERVALS WITH A DURATION BETWEEN ABOUT 2 AND 
6 WAVEFORM CYCLES. 
 

 
 
1Conditions compliant with the requirements of the Standard IEEE C.37.118.1:2011. 
2Conditions compliant with the requirements of the Standard EN 50160:2010. 
 
 
• However, the maximum phase errors associated with any 

algorithms can be made negligible by increasing the 
observation interval length. Such results are basically the 
same as those obtained by changing linearly ζ at a rate of 1 
Hz/s, as described in the case of ramp testing in [15] and 
[16], since this rate of change of frequency produces very 
small frequency changes when considering short 
observation intervals. 

• In the presence of noise (i.e. case b) the DFT-based 
estimator provides the best accuracy, while the dynamic 

estimators exhibit similar performances. Also, the standard 
deviations of the estimation is reduced by using longer 
observation intervals. 

• The classic DFT-based approach is generally less sensitive 
to harmonics than the IpD2FT estimator, which in turn 
performs better than the WTFF algorithm (cases c, d and 
e). The higher sensitivity of the dynamic approaches to 
harmonics is mainly due to the use of phasor derivatives.  
Again, in all cases considered the maximum phase errors 
can be reduced by increasing the observation interval 



 

 
 

length. 

Under the effect of amplitude and/or phase modulation (i.e. 
cases f and g), both the WTFF technique and the IpD2FT 
algorithm outperform the classic DFT-based estimator, as 
expected, since they take advantage of the dynamic phasor 
model. However, unlike the previous cases, the accuracy 
of all techniques degrades when C grows. This is quite 
intuitive because phasor changes are smoothed by longer 
intervals. 

• The considerations above suggest that, in the presence of 
both steady-state harmonic distortion and modulations 
(case h), for a given type of window, the best accuracy is 
achieved as a tradeoff between opposite trends. This is not 
clearly visible from Tables I-III, since, with the chosen 
values of C, the effect of harmonics prevails over 
modulations. As a consequence, the maximum phase errors 
for a given number of window terms B, apparently 
decrease monotonically. However, further simulations 
confirm that, the phase error values exhibit a growing trend 
as soon as, by increasing C, the effect of modulations 
prevails over harmonic distortion.  

• When a large out-of-band interferer is close to the 
fundamental tone (case i) the phase errors associated with 
all estimators become quite large. However, the DFT 
estimator is much less sensitive to the out-of-band 
interferers than the IpD2FT algorithm. In turn, this is less 
sensitive than the WTFF estimator. Also, accuracy 
improves as the observation interval length increases since 
the frequency distance between the fundamental 
component and the interfering tone increases. 

• The last two rows of all Tables report the maximum phase 
errors associated with the three estimators in transient 
conditions, i.e. under the effect of amplitude steps (case j) 
or phase steps (case k), respectively. The DFT estimator is 
less sensitive to transients than the IpD2FT algorithm. This, 
however, performs clearly better than the WTFF. As 
expected, the maximum error due to a phase step is much 
larger than the maximum error related to a magnitude step, 
as the former impacts directly on the phase of the 
waveform. Observe that in all the considered cases the 
errors tend to decrease, even if slowly, as the observation 
interval length grows.  
When the IpD2FT algorithm is considered, the number of 

terms of the Taylor’s series deserves a special attention. 
Indeed, if K increases (e.g. K=3), the observation interval 
length has to increase as well to avoid significant spectral 
interferences due to other spectral components such as 
harmonics or the image tone. As a result, the IpD2FT 
algorithm responsiveness degrades, but accuracy tends to 
slightly improve by using K=3 rather than K=2. However, by 
increasing K the algorithm becomes more sensitive to 
wideband noise (i.e. in case b). Ultimately, K=2 provides a 
good tradeoff between overall accuracy and responsiveness. 

In Fig. 1 the maximum absolute values of the phase 
estimation errors associated with the DFT-based technique (a), 
the IpD2FT algorithm (b), and the WTFF estimator (c), 
respectively, are compared in the testing conditions related to 
case e. The error curves are plotted as a function of ζ for 

(a) 

(b) 

Fig. 1 – Maximum absolute values of the phase estimation errors 
associated with the classic DFT-based technique (a), the IpD2FT algorithm 
(b), and the WTFF estimator (c), as a function of the static off-nominal 
frequency deviation ζ and under the effect of a worst-case total harmonic 
distortion compliant with the Standard EN 50160:2010.  
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C=B+2 cycles when a B-term MSD window is used (with B = 
2, 3 or 4). The plots confirm that the DFT-based solution is 

slightly more robust to harmonics than the others. However, 
the WTFF estimator can be significantly affected by  
harmonics when ζ is negative.  

Fig. 2 shows the maximum absolute values of the phase 
estimation errors associated with the DFT-based technique (a), 
the IpD2FT algorithm (b), and the WTFF estimator (c), under 
the testing conditions related to the case g. The adopted 
windows and the observation interval lengths are the same as 
those used in Fig. 1. However, in this case the IpD2FT 
algorithm and the WTFF estimator clearly outperform the 
classic DFT-based approach.  

Fig. 3(a)-(b) provides an example of the transient behavior 
of all the analyzed estimators under the testing conditions 
related to the cases j and k, respectively. In Fig. 3(a)-(b) the 
maximum phase error envelopes associated with the three 
estimators are plotted as a function of time expressed in 
nominal waveform cycles, when the observation interval is 
about C=4 cycles long and a 2-term MSD window is used. 
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Fig. 2 – Maximum absolute values of the phase estimation errors 
associated with the DFT-based technique (a), the IpD2FT algorithm (b), 
and the WTFF estimator (c), under the joint effect of: static off-nominal 
frequency deviations ζ≠0, amplitude modulation (AM) and phase 
modulation (PM). The modulating signals are two sine-waves of 
amplitude equal to 10% of the fundamental and 0.1 rad for AM and PM, 
respectively, and frequencies equal to 0.1∙f0.  

(a) 

(b) 

Fig. 3 – Phase errors envelopes as a function of time (expressed in 
nominal waveform cycles) when either a 10% magnitude step (a) or a 10° 
phase step occurs (b). Different line styles refer to the DFT-based 
technique, the IpD2FT algorithm and the WTFF estimator, when a 2-term 
MSD window is used over a four-cycle observation interval. The small 
diamonds highlight when the step occurs. 
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The curves confirm that when a amplitude step occurs the 
maximum error introduced by the DFT-based estimator is 
generally smaller than the maximum error associated with the 
IpD2FT algorithm or by the WTFF technique. Conversely, in 
the presence of phase steps, errors are much larger and quite 
similar. Quite interestingly, the duration of transients is almost 
the same for all estimators in both case j and case k. 
Additional simulation results, not reported for the sake of 
brevity, show that the error peaks during transients are almost 
proportional to the step size, both in magnitude or in phase.  
Since the effect of transients is particularly interesting in the 
case of distribution networks, some additional results under 
the influence of decaying DC offsets (not included in the 
Standards considered) are reported in Fig. 4. The three curves 
displayed with different line styles represent the maximum 
phase errors associated with the three considered estimators, 
when the observation interval is C=5 cycles long and a 3-term 
MSD window is used. In all cases, exponentially decreasing 
DC offsets with initial amplitude equal to 70% of the 
fundamental and time constant τ in the range between 0.1 and 
10 s are added to a sinusoidal voltage waveform of frequency 
f0 [33]. Each point of the curves is the maximum phase error  
resulting from 200 initial phase values chosen at random in 
[0,2π). The decaying DC offset always start at the beginning 
of the observation intervals. The reported results show that the 
DFT approach is the least sensitive to the influence of such 
disturbances. Accuracy is about one order of magnitude worse 
for the IpD2FT algorithm and at least two orders of magnitude 
worse with the WTFF estimator. By changing the observation 
interval length or the type of window, similar patterns are 
obtained. Observe that the phase errors associated with the 
DFT and IpD2FT estimators exhibit a monotonically 
decreasing trend. This is due to the fact that when τ grows, the 
spectral content of the decaying DC offsets is increasingly 
concentrated around zero, i.e. faraway from the spectral 
samples used by the algorithms. On the contrary, the 

sensitivity of the WTFF estimator to decaying DC offsets is 
not only larger, but it is also almost independent of the values 
of τ. This is due to the fact that the WTFF estimator relies on 
the weighted least square fitting in the time domain of a 
dynamic (i.e. oscillating) phasor model, which does not 
include any decaying DC offset. Therefore, such terms cannot 
be tracked with good accuracy regardless of the value of τ. 

VII. JITTER AND TIME ALIGNMENT UNCERTAINTY 
The analysis performed in the previous Sections was 

focused on the effect of phasor estimation algorithms only. 
However, as stated in the Introduction, additional uncertainty 
contributions arise from: i) sampling jitter, ii) limited 
synchronization accuracy, and iii) the need to estimate the 
phase of a waveform at times different from the center of the 
considered observation interval. The sampling jitter depends 
on the fact that even if the sampling clock is disciplined by a 
GPS receiver or by some other synchronization technique (e.g. 
the IEEE 1588 Precision Time Protocol [35]), the input 
waveform within the rth observation interval is actually 
sampled at times which slightly differ from tr+nTs. If we 
denote with 

sTδ  the random time fluctuations of the sampling 
period Ts, the equivalent effect of this term on phasor 
estimation algorithms is to inject an additional phase 
modulation term in the signal model. This means that [ ]n

rpε  
in (2) should be rather replaced by 

[ ] [ ] [ ]∑ =
+=

n

i Tpp inn
srr 0

2 δπεε ' . In addition, because of the 

limited synchronization accuracy, even if the delays due to the 
acquisition stage are properly estimated and compensated, the 
phase in the center of the considered observation interval is 
affected by some uncertainty. In particular, if tj models the 
synchronization uncertainty, then the corresponding phase 
uncertainty at reference time tr can be approximated by a first-
order Taylor series expansion as follows: 
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In practice, the values of tj usually range from some hundreds 
of ns to a few μs. For instance, if the worst-case 
synchronization uncertainty is 1 μs, the absolute value of the 
maximum phase error 

maxjϕ∆  returned by (24) is about 0.4 
mrad, i.e. smaller than (or at most comparable to) the 
algorithm-related phasor estimation errors in most of the 
conditions considered. 

A further uncertainty contribution affecting phasor angle 
measurements arises from the need to reconstruct the phasor 
data at times different from the reported ones. In fact, the 
PMU reporting rate depends on various factors, such as the 
performance class of the instrument (i.e. P-class or M-class 
[15]), the specific features of the PMU employed and the 
chosen instrument settings. When multiple streams of data are 
collected by a Phasor Data Concentrator (PDC) at different 
rates, all measurements need to be aligned in time. In such 
cases, the phasor angle ϕr’ at a generic time tr

’= tr  + Δt  results 

Fig. 4 - Maximum phase errors as a function of the time constant of an 
additive decaying DC offset of initial amplitude equal to 70% of the 
nominal waveform amplitude. Different line styles refer to the DFT-based 
technique, the IpD2FT algorithm and the WTFF estimator, respectively, 
when a 3-term MSD window is used over a five-cycle-long observation 
interval. 
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approximately from [23] 
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0πϕϕ ,      (25) 

where ϕr, fr and ROCOFr are the phase, the frequency and the 
ROCOF values at time tr. In practice, both fr and ROCOFr are 
affected by some uncertainty that propagates to the phase 
estimate. If we denote with FEr and RFEr the frequency and 
ROCOF measurement errors in the rth observation interval, it 
results immediately from (25) that the phase error due to time 
alignment is:  
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r 2
2

2
πϕ .    (26) 

In [23] it is noticed that the maximum FE and RFE  values in 
the steady-state conditions reported in the Standard IEEE 
C37.118.1:2011 are too strict for P-class instruments and too 
loose for M-class PMUs. In fact, new and more sensible limits 
have been recently published in an Amendment to the same 
Standard [16]. In steady-state conditions (namely in the 
presence of off-nominal frequency deviations, harmonics 
and/or out-of-band interferers) the new FE and RFE upper 
bounds for P-class PMUs are 0.005 Hz and 0.4 Hz/s, 
respectively. In the case of M-class instruments instead, the 
scenario is more complex as the maximum FE values are 
0.0025 Hz, 0.005 Hz, or 0.01 Hz depending on the considered 
testing condition, while the RFE limit is specified only in the 
off-nominal case (0.1 Hz/s). In dynamic conditions 
(particularly, when significant amplitude or phase modulations 
occur), depending on the PMU  reporting rate, the FE and RFE 
limits lie in the following intervals: [0.03,0.06] Hz and 
[0.6,2.3] Hz/s, respectively, for a P-class PMU and [0.12,0.30] 
Hz and [2.3,14] Hz/s for an M-class PMU. By replacing in 
(26) the maximum values reported above and noticing that the 
time misalignment Δt could be up to 70 ms for a P-class 
PMU, or up to 300 ms for an M-class PMU [23], it follows 
immediately that the worst-case phase errors 

maxaϕ∆  are: 

• up to about 8 mrad in steady-state conditions and up to 
about 62 mrad in dynamic conditions when considering P-
Class PMUs; 

• up to about 47 mrad in steady-state conditions and between 
about 350 mrad (fast reporting rates) to about 876 mrad 
(slow reporting rates) under the effect of modulations for 
M-Class PMUs. 

Thus, the time alignment uncertainty may quickly become the 
main contributor to the overall phase error. 

VIII. CONCLUSION 
In this paper the phase measurement accuracy of three 

different phasor estimators (i.e. the classic DFT-based 
algorithm, the Interpolated Dynamic DFT algorithm (IpD2FT) 
and the Windowed Taylor-Fourier Filter (WTFF)) are 
compared in various conditions reported in the Standards 
IEEE C37.118.1:2011, IEEE C37.118.1a:2014 and EN 
50160:2010. Using a common set of window functions and 

observation intervals, it turns out that the classic DFT-based 
estimator is less sensitive to harmonics, out-of-band 
interferers, amplitude or phase steps. The IpD2FT and WTFF 
estimators instead are particularly accurate in the presence of 
waveform amplitude and/or phase fluctuations. While the 
WTFF technique is globally slightly better in dynamic 
conditions, the IpD2FT algorithm exhibits a lower sensitivity 
to steady-state disturbances, step-like changes and decaying 
DC offsets. Apparently, no estimator is able to provide the 
best results in all situations. In addition, the accuracy of all the 
considered methods can be strongly affected by quick 
frequency or phase variations, as it may happen during 
transients. Finally, it is worth emphasizing that even though 
sampling and synchronization jitter have usually a minor 
impact on the overall phase error, possible time misalignments 
between the results returned by different PMUs (e.g. due to 
frequency and ROCOF limited measurement accuracy) could 
lead to intolerably large phase errors.  
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