
Quantization-based Hashing: A General Framework for
Scalable Image and Video Retrieval

Jingkuan Songa, Lianli Gaoa, Xiaofeng Zhub, Nicu Sebec

aUniversity of Electronic Science and Technology of China, China
bUniversity of North Carolina at Chapel Hill, USA

cUniversity of Trento, Italy

Abstract

Nowadays, due to the exponential growth of user generated images and videos, there

is an increasing interest in learning-based hashing methods. In computer vision, the

hash functions are learned in such a way that the hash codes can preserve essential

properties of the original space (or label information). Then the Hamming distance of

the hash codes can approximate the data similarity. On the other hand, vector quantiza-

tion methods quantize the data into different clusters based on the criteria of minimal

quantization error, and then perform the search using look-up tables. While hashing

methods using Hamming distance can achieve faster search speed, their accuracy is

often outperformed by quantization methods with the same code length, due to the low

quantization error and more flexible distance lookups. To improve the effectiveness

of the hashing methods, in this work, we propose Quantization-based Hashing (QBH),

a general framework which incorporates the advantages of quantization error reduc-

tion methods into conventional property preserving hashing methods. The learned

hash codes simultaneously preserve the properties in the original space and reduce the

quantization error, and thus can achieve better performance. Furthermore, the hash

functions and a quantizer can be jointly learned and iteratively updated in a unified

framework, which can be readily used to generate hash codes or quantize new data

1Jingkuan Song and Lianli Gao (lianli.gao@gmail.com, corresponding author) are with the Department
of Computer Science, University of Electronic Science and Technology of China, China, 611731. Xiaofeng
Zhu is with Guangxi Key Lab of Multi-source Information Mining and Security, Guangxi Normal University,
Guangxi, China, 541004. Nicu Sebe is with the Department of Information Engineering and Computer
Science, University of Trento, Trento, Italy, 38100

Preprint submitted to Journal of Pattern Recognition January 18, 2017

*Manuscript
Click here to view linked References

http://ees.elsevier.com/pr/viewRCResults.aspx?pdf=1&docID=28495&rev=1&fileID=1223718&msid={ADF002EE-6EBD-4976-9BDC-E621B8421BB5}

points. Importantly, QBH is a generic framework that can be integrated to different

property preserving hashing methods and quantization strategies, and we apply QBH

to both unsupervised and supervised hashing models as showcases in this paper. Ex-

perimental results on three large-scale unlabeled datasets (i.e., SIFT1M, GIST1M, and

SIFT1B), three labeled datastes (i.e., ESPGAME, IAPRTC and MIRFLICKR) and one

video dataset (UQ VIDEO) demonstrate the superior performance of our QBH over

existing unsupervised and supervised hashing methods.

Keywords: hashing, pseudo labels, multimedia retrieval.

1. Introduction

Nearest neighbor (NN) search in large data sets has wide applications [1] in com-

puter vision, information retrieval, pattern recognition, recommendation systems, etc.

However, exact NN search is often intractable because of the large scale of databases

and the curse of the high dimensionality. Instead, approximate nearest neighbor (ANN)5

search is more practical and can achieve orders of magnitude speed-ups compared to

exact NN search with near-optimal accuracy [1].

While several effective data structures, such as randomized k-d forest [2], FLANN [3],

and neighborhood graph search [4] were proposed, more recently, important research

efforts have been devoted to learning-based hashing methods [5, 6, 7, 8, 9, 1, 10, 11, 12,10

13, 14, 15, 16, 17, 18, 19, 20], due to their compact binary representation and efficient

Hamming distance. Such approaches map data points to compact binary codes through

a hash function, which can be generally expressed as:

y = h (x) ∈ {0, 1}L (1)

where x ∈ RM×1, h(.) is the hash function, y is a binary vector with code length L,

andM is the dimensionality of x. Hashing methods can be categorized as unsupervised15

and supervised. The unsupervised learning of the hash functions is usually based on

the criterion of preserving important properties of the training data points. Typical ap-

proaches preserve the consistency property (i.e., the similarity of binary codes should

be consistent with that of the original data points) [5, 21, 22, 10, 7], the similarity align-

ment property (i.e., the Hamming distance of the binary code should approximate the20

2

MAP vs. QE

Quantization Error

M
A

P

10
4

10
5

0.05

0.1

0.15

CKMeans
ITQ
QBH
SH
KMH

64 bits

32 bits

Figure 1: Mean Average Precision (MAP) vs. quantization error for different methods on SIFT1M dataset.

Euclidean distance of the original data points) [23], the order preserving property (i.e.,

the order of a reference data item computed from the original space and the Hamming

space should be aligned) [24], etc. A fundamental limitation of property-preserving

hashing methods is that different methods try to preserve varied properties according

to the applications, and thus the performance may degrade when a specifically designed25

hashing method is applied to another application. Supervised hashing is designed to

preserve some label-based similarity [11, 25, 26, 25]. The performance of supervised

hashing methods is usually significantly superior to unsupervised methods. However,

in practice the supervised information is scarce, especially for large scale datasets.

On the other hand, the quantization-based methods aim at minimizing the quanti-30

zation error, and have been shown to achieve superior accuracy [27, 9] over hashing

methods, with sacrifice of efficiency. These methods usually cannot be decomposed

into multiple subfunctions as in Eq. (1). Hashing methods use the Hamming distance

to retrieve the ANNs, and quantization methods adopt the lookup tables to approximate

the Euclidean distance. While hashing methods enjoy substantial speedups over quan-35

3

tization methods for ANN search due to the fact that the Hamming distance requires

only XOR and bit-count operation, quantization methods gain high accuracy due to the

low quantization error and flexible table lookups.

While hashing and quantization methods have their distinct strengths and weak-

nesses, it is worth exploiting their connections. If we take the data points with the40

same hash code as a cluster, we can calculate the quantization error of each hashing

method. In Fig.(1), we illustrate the mean average precision vs. quantization error

of different methods, i.e., CKMeans [9], ITQ [28], QBH, SH [5] and KMH [8] on

SIFT1M dataset [6]. We can observe that lower quantization error can almost guaran-

tee a good performance. This indicates that reducing the quantization error for con-45

ventional hashing methods might improve their performance. ITQ [28] is a pioneer in

combining quantization and hashing. It firstly uses PCA-based hashing to reduce the

dimension, after which, the subspace is rotated to reduce the quantization error. How-

ever, it restricts the quantization part to be hypercubic quantization [1], in which a data

point is approximated to its hash code directly. Some followers of ITQ have the same50

limitation [29, 10]. KMH [8] takes a step further by adopting a more general quanti-

zation strategy, in which a data point is approximated by a cluster center, and its hash

code is the index of its cluster center. However, KMH does not exploit the applying of

quantization models to a general property preserving hashing model.

Inspired by this, in this paper, we propose Quantization-based Hashing (QBH), a55

general framework which incorporates quantization error into the conventional prop-

erty preserving hashing models to improve the effectiveness of the hash codes. It is

worth highlighting the following contributions:

• As far as we know, we are the first to propose a general framework to incorpo-

rate the quantization-based methods into the conventional similarity-preserving60

hashing, in order to improve the effectiveness of hashing methods. In theory,

any quantization method can be adopted to reduce the quantization error of any

similarity-preserving hashing methods to improve their performance.

• This framework can be applied to both unsupervised and supervised hashing.

We experimentally obtained the best performance compared to state-of-the-art65

4

Table 1: A summary of representative hashing and quantization algorithms with respect to similarity preserv-

ing functions, quantization error reduction, hash function, supervision and similarity in the coding space. HD

= Hamming Distance, LT = Lookup Table

Approach Similarity Preserving Quantization ErrorHash Function Supervision Distance

Hashing

SH [5] soijd
h
ij - Linear Unsupervised HD

MLH [24] soijd
h
ij - Linear Supervised HD

SSH [6] soijs
h
ij - Linear Supervised HD

BRE [23] (doij − dhij)
2 - Kernel Unsupervised HD

SHK [30] (soij − shij)
2 - Linear Supervised HD

OPH [31] rank order - Linear Unsupervised HD

TLH [32] triplet loss - Linear + NN Unsupervised HD

KMH [8] (dqij − dhij)
2 (x− ci(x))

2 Linear Unsupervised HD

Quantization

ITQ [28] Wvar(X)WT Wx− sgn(Wx) Linear Unsupervised HD

K-means - x− ci(x) Linear Unsupervised LT

PQ [27] - x− ci(x) Nearest vector Unsupervised LT

supervised and unsupervised hashing methods on six popular datasets.

• We successfully show it to work on a huge dataset SIFT1B (1 billion data points)

by utilizing the graph approximation and out-of-sample extension.

The remainder of this paper is organized as follows. Section 2 discusses the re-

lated work, followed by an overview of QBH in Section 3. The details of QBH for70

unsupervised hashing models are introduced in Section 4. QBH for supervised hashing

models is given in Section 5 and we further discuss the relationships of our QBH with

existing works in Section 6. Section 7 illustrates the experimental results and we draw

conclusions in section 8.

2. Related work75

In this section, we discuss the related work. A summary of representative hashing

and quantization algorithms with respect to similarity preserving functions, quantiza-

tion error preserving, hash function, supervision and similarity in the coding space is

shown in Table 1. In this table, the superscript ‘o’ indicates the original space, ‘h’

means the Hamming space, ‘q’ means the quantized code, ‘d’ is distance, ‘s’ is the80

5

similarity and ‘c’ means the cluster center. For example, doij means the distance be-

tween any pair of items (xi,xj), which can be calculated using Euclidean distance or

other distances; soij means the similarity between any pair of items (xi,xj), which is

often calculated by using doij ; d
q
ij means the distance between the quantized codes of

any pair of items (xi,xj).85

2.1. Hashing

As mentioned in Eq.1, learning-based hashing learns a hash function, y = h(x) ∈

{0, 1}L, mapping an input item x to a compact code y. Depending on the similarity

preserving criteria, we categorize the existing hashing methods into various groups:

1) Similarity-distance product minimization: requires that the distance in the coding90

space is smaller if the similarity in the original space is larger. Some popular meth-

ods include SH [5], MLH [24], LDA Hashing [33]. In SH, the similarity matrix is

constructed as soij = e−‖xi−xj‖22/2σ
2

, but in MLH and LDA Hashing methods, the

similarity matrix is built in a supervised way, i.e., soij is 1 if xi and xj belong to the

same semantic class, 0 (or -1) otherwise.95

2) Similarity-similarity product maximization: requires that the similarity in the coding

space is larger if the similarity in the original space is larger. Some representative works

include SSH [34], and GCC [26]. In SSH, the similarity soij in the input space is 1 if the

pair of items xi and xj belong to a same class or are nearby points, and 1 otherwise.

The similarity in the Hamming space is defined as soij = yTi yj . GCC utilizes the same100

way as SSH to define soij , and learns a hash function simultaneously using SVM.

3) Distance-distance difference minimization: requires that the difference between

the distances of a pair of data points in the original space and Hamming space is as

small as possible. BRE [23] belongs to this group. In BRE, the Euclidean distance

is used in both the input and coding spaces. The objective function is formulated as105

min
∑

(i,j)∈ε

(
1
2 ‖xi − xj‖

2
2 −

1
M ‖yi − yj‖

2
2

)
. Here ε is a set of points to be consid-

ered, and M is a scalar.

4) Similarity-similarity difference minimization: Similarly, this type of methods want

that the difference between the similarities of a pair of data points in the original space

and Hamming space is as small as possible. KSH [30], FastH [11] and [35] are some110

6

representative approaches in this group. KSH aims to minimize an objective function,

min
∑

(i,j)∈ε
(
soij − 1

M yTi yj
)2

, where soij = 1 if (i, j) is similar, and soij = 1 if dissim-

ilar. In [11] and [35], the authors use the same objective function as KSH to learn the

hash codes, but provide different solutions.

5) Ranking order preserving: aims to learn hash functions through aligning the orders115

computed from the original space and the ones in the coding space. In OPH [31],

given a query, the data points are first divided into M categories, using the distance

in the Hamming space and the original space. The objective function maximizes the

alignment between each pair of two categories in different spaces.

6) Triplet-based similarity preserving: formulates the hashing problem by maximizing120

the similarity order agreement defined over triplets of items, (x, x+, x−), where the

pair (x, x−) is less similar than the pair (x, x+). In [32], the triplet loss is defined as:

`triplet(y, y
+, y−) = max(1− ||y − y−||1 + ||y − y+||1, 0).

Some recent work also adopt deep learning to train the hashing functions [35, 36,

37, 38, 39], and have achieved great improvement in terms of accuracy. The criteria125

for learning good hash code is similar to traditional hashing methods, but the hash

functions are strengthened by the deep learning techniques. There are also some others

utilizing multiple tables [40, 41] to obtain higher recall.

After hashing code learning, the hash codes are learned for the training data. To

deal with the novel data point, the hashing functions have to be learned. Some meth-130

ods [26, 7, 42] learn the hash function during the learning of hash codes. While some

others [35, 11, 43, 5] propose out-of-sample extension. Some works also utilize dif-

ferent retrieval schemes, e.g., weighted hamming distance [44], asymmetric hamming

distance [45].

A fundamental limitation of property-preserving hashing methods is that differ-135

ent methods try to preserve varied properties according to the applications, and thus

the performance may degrade when a specifically designed hashing method is applied

to another application. Furthermore, despite of the extraordinary improvement of the

hashing methods, their accuracy is still greatly outperformed by the quantization meth-

ods with the same code length, due to the low quantization error and more flexible140

distance lookups.

7

2.2. Quantization Methods

In the quantization-based encoding methods, different constraints on the codeword

lead to different approaches, i.e. K-Means, Product Quantization (PQ) [27] and Carte-

sian K-Means (CKM) [9].145

2.2.1. K-Means

Given N P -dimensional points X = {x1, · · · ,xN} ⊂ RP , the K-means algo-

rithm partitions the database into K clusters, each of which associates one codeword

di ∈ RP . Let D = [d1, · · · ,dK] ⊂ RP be the corresponding codebook. Then the

codebook is learned by minimizing the within-cluster distortion, i.e.

min

N∑
i=1

‖xi −Dbi‖22

s. t. bi ∈ {0, 1}K

‖bi‖1 = 1 i ∈ {1, · · · , N}.

where bi is a 1-of-K encoding vector (K dimensions with one 1 and K − 1 0s.) to

indicate which codeword is used to quantize xi, and ‖ · ‖1 is the l1 norm.

The problem can be solved by iteratively alternating optimization with respect to

D and {bi}Ni=1.150

2.2.2. Product Quantization

One issue of K-Means is that the size of the codebook is quite limited due to the

storage and computational cost. To address this problem, PQ [27] splits each xi into

M disjoint subvectors. Assume the m-th subvector contains Sm dimensions and then∑M
m=1 Sm = P . Without loss of generality, Sm is set to S , P/M and P is assumed155

to be divisible by M . On the m-th subvector, K-means is performed to obtain K sub

codewords. By this method, it generatesKM clusters with onlyO(KP) storage, while

K-means requires O(KMP) storage with the same number of clusters. Meanwhile,

the computing complexity is reduced from O(KMP) to O(KP) to encode one data

point.160

8

Let Dm ∈ RS×K be the matrix of the m-th sub codebook and each column is a

S-dimensional sub codeword. PQ can be taken as optimizing the following problem

with respect to {Dm}Mm=1 and {bmi }
N,M
i=1,m=1.

min fpq,M,K =

N∑
i=1

∥∥∥∥∥∥∥∥∥xi −


D1b1
i

...

DMbMi


∥∥∥∥∥∥∥∥∥

2

2

s. t. bmi ∈ {0, 1}K

‖bmi ‖1 = 1 i ∈ {1, · · · , N},m ∈ {1, · · · ,M}

. (2)

where bmi is also the 1-of-K encoding vector on the m-th subvector and the index of 1

indicates which sub codeword is used to encode xi.

2.2.3. Cartesian K-Means

CKM [9] optimally rotates the original space and formulates the problem as

min fck,M,K =

N∑
i=1

∥∥∥∥∥∥∥∥∥xi −R


D1b1

i

...

DMbMi


∥∥∥∥∥∥∥∥∥

2

2

s. t. RTR = I

bmi ∈ {0, 1}K

‖bmi ‖1 = 1 i ∈ {1, · · · , N},m ∈ {1, · · · ,M}

. (3)

The rotation matrix R is optimally learned by minimizing the distortion.

If R is constrained to be the identity matrix I, it will be reduced to Eqn. 2. Thus,165

we can assert that under the optimal solutions, we have f∗ck,M,K ≤ f∗pq,M,K , where

the asterisk superscript indicates the objective function with the optimal parameters.

The quantization error can be further reduced by adopting an elaborate design of en-

coding scheme, e.g., Optimized Cartesian K-means [46], Tree Quantization [47] and

Composite Quantization [48, 49, 49].170

While quantization methods gain high accuracy due to the low quantization er-

ror and flexible table lookups, their ANN search speed is outperformed by hashing

9

Unsupervised Hashing

Hamming
Space

Images and
Videos

Hash Functions

010101

Offline Process Online Process

010101

010101

010101

110011

110011110011

110011

001101

001101

010101

010101

010101

001101

001101

Result List

Query

Supervised Hashing

Quantization

Error Reduction

Labels

Quantizat ion-based
Hashing

1

2

()

()

()l

h x

h x

h x








Figure 2: Quantization-based hashing (QBH) for image and video retrieval

methods due to the fact that the Hamming distance requires only XOR and bit-count

operation. Therefore, it is necessary to design an algorithm that can take the benefits of

both, i.e., lower quantization error and fast search speed. Motivated by this, we propose175

quantization-based hashing.

3. Quantization-based Hashing

In this work, we propose a general framework of image and video retrieval (de-

picted in Fig. 2). This framework consists of two phases. In the first phase which is

offline, we use the proposed QBH algorithm to learn the hash codes of the training180

data. To deal with novel images/videos, we utilize out-of-sample-extension to obtain

the hash functions. Using the derived hash functions, each test data point can be repre-

sented by the generated hash codes in the Hamming space. In the second phase which

is online, the query image/video is also represented by hash codes generated from the

hash functions. Retrieval can be efficiently achieved where only efficient XOR opera-185

tion on the hash codes is performed to compute the similarity between two data points.

The key research issue is how to train the hash functions which affect both ac-

curacy and efficiency. We propose quantization-based hashing, a general framework

which can be integrated to both supervised and unsupervised hashing models. The

motivation for QBH is that, by taking each bucket with the same hash codes as a clus-

ter, hashing methods can be considered as a kind of quantization method. Inspired

10

by Fig.(1) and ITQ, by reducing the quantization error, the performance of the hash

codes can potentially be improved. In this way, the determination of the binary code

of a data point should not only be affected by the similarity-preserving constraint, but

also by the quantization error. By putting the similarity preserving error Esimp and

the quantization error Equan together, we arrive at the following objective function for

quantization-based hashing:

E = Esimp + Equan, . (4)

We first introduce our QBH and show how QBH is applied to unsupervised hashing

models in Section 4. Then we introduce how to integrate QBH to supervised models

in Section 5. In Table 2 we introduce the notations which will be used in the rest of the

paper.

Table 2: Notations2

Notation Description

N , M the number of data points and dimensions

X the M ×N matrix for the dataset

Y the L×N matrix for the hash codes of X

xi, yi a data point and its binary hash code

C the M ×K matrix for cluster centers

A the affinity matrix

L, K length of hash code and number of clusters

ε the number of nearest neighbors

α the regularization parameters

190

4. QBH for Unsupervised Hashing Models

In this section, we introduce our unsupervised QBH. We first propose a simple

solution in Section 4.1 which will be further improved in Section 4.2.

2Generally, we use the uppercase unbolded symbol as a constant, the lowercase unbolded as the index,

the uppercase bold as the matrix and the lowercase bold as the vector.

11

4.1. A Basic QBH

Suppose there are two data points xi and xj . Their hash codes are yi and yj , re-195

spectively. For property preserving hashing methods, some important properties of the

data in the original space should be preserved (as shown in Table 1), e.g, the similarity-

distance product minimization property [5, 24], the similarity-similarity product max-

imization property [34, 26], the order property [31] and the triangle order property

[24]. Based on these properties to be preserved, different objective functions are given.200

Without loss of generality, we first use the similarity-distance product minimization

property in this work as a showcase, and then we integrate our QBH to other property

preserving hashing in Section 5.

To exploit the similarity property, we first construct an affinity matrix A ∈ RN×N ,

with each entry aij representing the similarity between the data points xi and xj , which

is usually defined as follows:

aij =

 e−‖xi−xj‖22/2σ
2

, if xi ∈ NK(xj) or xj ∈ NK(xi)

0, otherwise.
(5)

where 1 ≤ (i, j) ≤ n,NK(·) is theK-nearest-neighbor set, and σ is a parameter. Then

the similarity preserving error can be presented as:205

Esimp =
∑
ij

aij‖yi − yj‖H , s.t.Y
TY = I, yi ∈ {0, 1}L. (6)

where yi is the hash code for the data point xi, and L is the hash code length. The Y

for property preserving hashing can be obtained by minimizing (6).

By taking each bucket with the same hash codes as a cluster, hashing methods can

be considered as a kind of quantization method. Suppose that all the data point with

hash code yi form the cluster with the index ki. Then this cluster center cki can be210

represented as:

cki =
1

size (
∏

(ki))

∑
xi∈

∏
(ki)

xi (7)

where
∏

(ki) indicates the set of data points in cluster ki. The connection between yi

12

and ki is:

yi = b (ki)

ki = r (yi) .
(8)

where r(.) converts a binary code yi into an integer ki and b(.) converts an integer ki

to a binary code yi. Then the quantization error of xi is:

Equan = ‖xi − cki‖
2
2 . (9)

We want to generate hash codes to preserve the property in (6) and also use the

supervision information in (9). However, these requirements may be conflicting for

some data points. For example, a hash code yi for a data point xi might result in a

minimal property preserving error in (6) but a larger quantization error in (9), and vice215

versa. In this way, the determination of the binary code of a data point should not only

be affected by the property-preserving constraint, but also by the quantization error. By

putting them together, we arrive at the following objective function for QBH:

min
C,Y

∑
ij

aij‖yi − yj‖H + α
∑
i

∥∥xi − cr(yi)

∥∥2

2

s.t. yi ∈ {0, 1}L.
(10)

where C ∈ RM×K are the learned cluster centers, M is the dimensionality of the data

point, K = 2L is the number of cluster centers, cr(yi) is the r(yi)-th column of C, and220

α is a parameter to balance the two components.

4.1.1. Solution

The solution is illustrated in Algorithm (1). We first initialize C with K random

selected data points, and then update Y and C iteratively until convergence.

Given C, the update of each yi not only depends on the quantization error (i.e.,

the distance of xi to each cluster centers), but also on the property preserving error

(i.e., the weighted distance of yi to the other yj). The determination of yi is a balance

between these two errors, and it can be solved as:

y∗i = arg min
yi

∑
j

aij‖yi − yj‖H + α
∥∥xi − cr(yi)

∥∥2

2
. (11)

13

Algorithm 1 Solution for the basic quantization-based hashing
Input: Initialized C, α;

Output: Y, C;

1: repeat

2: Fix C, update Y according to Eqn.(11);

3: Fix Y, update C according to classical K-means, each ck is the mean of the xi

with the same yi;

4: until convergence or max iteration is reached.

5: return Y, C;

On the other hand, the update of C given Y is the same as in the classical K-means,225

and each c is the mean of the xi with the same yi, as in (7).

One limitation of this method is that when N is large, a relative long code length

(e.g., L = 32 or 64) may be required to gain a satisfactory performance. In this case, at

least (2L−1 + 1) cluster centers are required. Then, Eqn.(10) will be intractable either

because of the huge memory cost for storing the cluster centers, or due to the high time230

cost for computing each y∗i .

4.2. A Generalized QBH

In the previous section, we proposed a basic method to integrate the advantages of

quantization-based methods into hashing methods, yet the solution is both time- and

memory-consuming. In this section, we generalize the basic method by modifying the235

construction of cluster centers in (10) and propose a solution that is fast and memory

efficient.

Instead of restricting taking each column of C as the mean of data points in each

bucket as in (7), we put no constraint on C and we take different combinations of C’s

columns as cluster centers. Then we have the following objective function:

min
C,Y

∑
ij

2aij‖yi − yj‖H + α
∑
i

‖xi −Cyi‖22

s.t. yi ∈ {−1, 1}L.
(12)

In this way, only L cluster centers are needed to generate 2L binary codes. Without

loss of generality, we assume the bits belong to {−1, 1}, i.e., yi ∈ HL ≡ {−1, 1}L.

14

Then 2‖yi,yj‖H = L− yTi yj . The objective function is equivalent to:

min
C,Y∈{−1,1}L×N

α ‖X−CY‖2F −
∑
ij

aijy
T
i yj . (13)

This problem is still intractable, though the size of C is largely reduced from M ×

2L to M × L, because the discrete optimization is not submodular [9]. Given C and a

small value of L, one can generate all possible yi to find the optimal solution, but this240

would be impractical for large values of L.

One observation is that if C has orthogonal columns, the optimization becomes

tractable. In this case,

‖X− CY‖2F
=
(
‖X‖2F + ‖CY‖2F − 2tr

(
XTCY

))
=
(
‖X‖2F + tr

(
YTCTCY

)
− 2tr

(
XTCY

))
.

(14)

Denote V = CTC ∈ RL×L,E = XTC ∈ RN×L, and then it becomes:

‖X−CY‖2F = ‖X‖2F + L
∑
i

vii − 2
∑
i

yi
Tei. (15)

For fixed X and C, optimizing Y in (13) is equivalent to:

min
Y∈{−1,1}L×N

−
∑
i

yi
T

αei +
∑
j

aijyj

. (16)

The sign of each yi should be consistent with the sign of αei +
∑
j

aijyj in order to

get the minimal value.

Since C has orthogonal columns, it can therefore be expressed in terms of rotation

and scaling; i.e., C ≡ RD, where R ∈ RM×L has orthogonal columns (RTR = IL),

and D ∈ RL×L is diagonal and positive definite. We further introduce an offset,

denoted µ ∈ RM×1, to align X. 1 is a vector with all 1s. Taken together with (13), we

have the objective function:

min
R,D,Y,µ

α ‖X− µ1−RDY‖2F −
∑
ij

aijy
T
i yj .

s.t.

 yi ∈ {−1, 1}L

RTR = IL

(17)

15

Compared with the objective function (10), the key difference lies in that each data245

point xi is encoded by Cyi in (17) instead of by cr(yi) in (10). That is to say, different

combinations of C’s columns, rather than each column of C, are selected to form a

cluster center, to quantize each xi.

4.2.1. Solution

We utilize coordinate descent to optimize (17). We firstly initialize µ = mean(X)250

and Y with spectral hashing, and then optimize R, D, Y and µ iteratively until con-

vergence.

Update R: The objective function corresponds to the classic orthogonal procruste

problem, in which one tries to find a rotation to align one point set with another. In

particular, by adding (M−L) rows of zeros to the bottom of D, DY becomesM×N .

Then R is square and orthogonal and can be estimated with SVD. In our case, the

two point sets are given by the Xµ and the target binary code Y. For a fixed Y,

(17) is minimized as follows: first compute the SVD of the M ×M matrix DYXT
µ .

[U,S,V] = SV D(Xµ(DY)T , 0) and then

R∗ = UVT . (18)

where Xµ = X− µ1T .

Update D: Given X, R, Y, µ, the objective (17) is equivalent to:

min
RTR=IL,Y∈{−1,1}L×N

∥∥RTXµ −DY
∥∥2

F

⇒ min
RTR=IL,Y∈{−1,1}L×N

∑
li

(bli − dlyi)
2
.

(19)

where B = RTXµ ∈ RL×N and bli is the l-th row i-th column entry of B. Since D

is diagonal and positive definite, dlyi = dllyli. Then we have:

d∗ll = 1
N

∑
i

bliyli = 1
N bly

T
l . (20)

Update Y: Since C is fixed, optimizing Y in (13) can be reformulated as the

objective function (16). Then the optimal yi should be determined by the sign of αei+∑
j

aijyj :

y∗i = sgn(αei + aiY
T). (21)

16

Algorithm 2 Solution for the generalized quantization-based hashing
Input: Initialized µ, Y;

Output: Y, R, D, µ;

1: repeat

2: Update R according to Eqn.(18);

3: Update D according to Eqn.(20);

4: Update Y according to Eqn.(21);

5: Update µ according to Eqn.(22);

6: until convergence or max iteration is reached.

7: return Y, R, D, µ;

where ai is the i-th row of A.

Update µ: Given R, B, and D, the optimal µ is given by the column average of255

X−RDY:

µ∗ ← mean
column

(X−RDY) . (22)

The solution is illustrated in Algorithm (2).

Although conceptually simple, the main bottleneck in the above formulation is

computation. The cost of building the underlying graph in (17) and (21) is O(LN2),

which is intractable for largeN . The time complexity for Eqn.(18), Eqn.(20), Eqn.(21)260

and Eqn.(22) are O(L2M + NML + 2 × M3), O(NL), O(N2L + NML) and

O(ML2 +NML). Usually, the M and L are relatively small, from tens to hundreds,

i.e., L � N and M � N . Therefore, the most time-consuming step is Eqn.(21),

which has the time complexity of O(N2L). To avoid the computational bottleneck, in

this work, we propose to use anchor points to approximate the dataset. The basic idea265

is to directly replace theN×N affinity graph with aN×Z anchor graph, as described

next.

4.2.2. Graph approximation and out-of-sample extension

An anchor graph uses a small set of Z points called anchors to approximate the data

neighborhood structure [50]. Similarities of all N database points are measured with270

respect to these Z anchors. First, K-means clustering is performed on N data points to

17

obtain Z (Z � N) cluster centers U = uz, z = 1, ..., Z that act as anchor points.

Then, instead of building a N × N affinity matrix as in (5), we only calculate the

anchor graph A representing the similarities between the data points X and the anchors

U. In this way, the update of Y can be more efficient using:

yi = sgn(αei + aiY
T
anchor). (23)

where ai is the i-th row of the anchor graph A, and Yanchor are the hash codes for the

anchor points.

Out-of-sample refers to learning an hash function that is able to encode new data

points. From Algorithm 2, we can obtain R, D, µ, Y and also the hash codes Yanchor

for the anchor points. For a new data point xi, its hash code yi can be obtained as:

yi = sgn(αxiRD + aiY
T). (24)

By using anchor points, it can be replaced by:

yi = sgn(αxiRD + aiY
T
anchor). (25)

where wi and ai are the i-th row of affinity graph A and anchor graph A, respectively.275

A small number of the anchor points can achieve satisfactory performance, as pointed

out in [50]. Thus, the encoding of new data points and the update of Y in the training

process are very efficient due to the use of anchor points.

5. QBH for Supervised Hashing Models

In this section, we show that QBH can also be integrated into supervised hashing280

models. We firstly introduce supervised QBH, and then we further show that our QBH

can be used for supervised hashing models when no label information is given.

As mentioned in Table 1, there are also several similarities to be preserved in differ-

ent hashing methods. For simplicity, we use distance-similarity product minimization

as an example again. Compared with unsupervised distance-similarity product mini-285

mization hashing methods, the difference of supervised methods lies in the construction

of the similarity matrix sij . Similar to MLH and LDA, when the similarity matrix is

18

built in a supervised way, i.e., soij is 1 if xi and xj belong to the same semantic class

and 0 (or 1) otherwise, the hashing model is supervised. In this way, we can formu-

lated supervised QBH the same way as (12). Next we introduce how to use QBH for290

supervised hashing models while no label information is given.

Existing works have demonstrated that supervised hashing methods gain superior

performance over unsupervised ways. However, the supervised information is not al-

ways available, especially for some large scale datasets. To take advantage of the super-

vised hashing models, our proposed QBH uses the cluster centers of the training data295

to generate pseudo labels, based on which the hash codes can be generated in a super-

vised way. Without loss of generality, we utilize LDA with trace ratio criterion (similar

to LDAH [33]) as a showcase for hash functions learning and demonstrate how it is

incorporated into our framework. Note that some other criterion like label-similarity

preserving [6, 30] can also be applied to our framework.300

The loss function for LDA trace ratio based hashing method is:

` (Y) =
tr (Sb)

tr (Sw)
, s.t.Y ∈ {0, 1}N×L. (26)

where Sw represents within-class scatter matrix, and Sb is the between-class scatter

matrix. They are defined as:

Sw =
C∑
k=1

∑
xi∈Ωk

(yi − ck) (yi − ck)
T

Sb =
C∑
k=1

nk (ck − y) (ck − y)
T
.

(27)

where yi is the corresponding hash code for a date point xi, Ωk indicates the data

points in the k-th class and ck is the mean of hash codes in the k-th class. y is the

mean of all hash codes Y. We also define the total scatter matrix St as:

St = Sb + Sw =

N∑
i=1

(yi − y) (yi − y)
T
. (28)

Suppose the data have been centralized, i.e., x = 0. We denote the pseudo labels

as F , and we define a cluster centroid matrix C to include the centroid vector of the

hash codes in each class as C = [c1, ..., cK]. We use a linear hash function, i.e.,

yi = sgn
(
WTxi

)
. This objective function is intractable and we follow [30, 5] to

19

apply the spectral relaxation trick to drop the sign functions. Then y = 0. Thus Sb, Sw

and St can be rewritten as:

Sw =
(
WTX−CFT

) (
WTX−CFT

)T
Sb = CFTFCT

St = WTXXTW.

(29)

Then the objective function becomes:

`
(
W,WTW = I

)
=

tr(CFTFCT)
tr((WTX−CFT)(WTX−CFT)T)

. (30)

Because St = Sw + Sb, optimizing (26) is equivalent to optimize tr(Sb)
tr(St)

. The

problem is that we do not know the class labels F . Then, the final objective function

for LDA trace ratio hashing with pseudo labels becomes:

`(W,F,C) =
tr(CFTFCT)
tr(WTXXTW)

.

s.t.


F ∈ {0, 1}N×K

‖fi‖1 = 1

WTW = I

(31)

where ‖·‖1 is the l1 norm. The second constraint ‖fi‖1 = 1 requires that each xi

belongs to a single class.

5.1. Solution

There are three unknown variables in (31), namely W, C and F. Using the class

indicator matrix F, we can represent each cluster centroid ck as:305

ck =
1

size (
∏

(k))

∑
yi∈

∏
(k)

yi. (32)

where
∏

(k) indicates the set of data points in class k. Then, C can be reformulated in

a matrix form:

C = WTXF
(
FTF

)−1
. (33)

20

Then, (31) becomes:

`(W,F) =
tr
(
WTXF(FTF)

−1
FTXTW

)
tr(WTXXTW)

.

s.t.


F ∈ {0, 1}N×K

‖fi‖1 = 1

WTW = I

(34)

We utilize coordinate descent to optimize (34). We firstly fix F and update W, and

then fix update W by fixing F. They are updated iteratively until convergence. The

solution is illustrated in Algorithm (3).

Update W: Given F, obviously solving problem (34) is to minimize the trace ratio

LDA w.r.t. W:

`
(
W,WTW = I

)
=
tr
(
WTXF

(
FTF

)−1
FTXTW

)
tr (WTXXTW)

. (35)

which can be directly solved with the generalized eigenvalue decomposition (GEVD)

method:310

XF
(
FTF

)−1
FTXTwl = λlXXTwl. (36)

where λl is the l-th largest eigenvalue of the GEVD with the corresponding eigenvector

wl, and wl constitutes the l-th column vector of the matrix W.

When W is fixed, tr(WTXXTW) is irrelevant to F. Thus, we need to maximize

the following problem w.r.t F:

` (F) = tr
(
WTXF

(
FTF

)−1
FTXTW

)
.

s.t.

 F ∈ {0, 1}N×K

‖fi‖1 = 1

(37)

This is still difficult to solve due to the intractable constraint. Because Tr(WTXXTW)

is a constant now (W is fixed), maximizing between-class distance in problem (37) is

equivalent to minimizing within-class distance. Problem (37) is equivalent to the fol-

lowing problem:

` (F) =
∥∥WTX−CFT

∥∥2

F
, s.t.

 F ∈ {0, 1}N×K

‖fi‖1 = 1
(38)

21

Problem (38) can be easily solved by alternating optimization, i.e., iteratively optimiz-

ing C when F is fixed and optimizing F when C is fixed.

Update C: Each cluster center ck is the mean of all data points in the class k. C can315

be updated using (32).

Update F: Since each data point belongs to one class, xi is assigned to its closest

cluster center ck. Therefore, fi is a column vector with its k-th element being 1 and

others being 0.

After we get W, the hash codes for xi can be generated by sgn(WTxi).

Algorithm 3 Solution for the LDA trace ratio hashing with pseudo labels
Input: Initialized F;

Output: F, W;

1: repeat

2: Fix F, update W according to Eqn.(36);

3: repeat

4: Fix W and F, update C according to classical K-means, each ck is the mean

of the yi within the same class;

5: Fix W and C, update F;

6: until convergence or max iteration is reached.

7: until convergence or max iteration is reached.

8: return F, W;

320

6. Relations to related work

QBH is a general framework to combine similarity preserving and quantization er-

ror reduction. There are close relationships between QBH and ITQ [28] and KMH [8].

It is beneficial to investigate these relationships.

325

ITQ vs. QBH.

ITQ consists of two steps, i.e., similarity preserving step and quantization error reduc-

ing step. To generate L-bit hash codes, a covariance preserving method (i.e., PCA) is

22

firstly applied on the zero-centered data X′ to reduce the dimensionality from M to

L, after which, the subspace representation is rotated by a L× L rotation matrix R to

reduce the quantization error. The composition of PCA can be expressed as WTX′

and R can be obtained by minimizing:

`ITQ (Y,R) =
∥∥RTWTX′ −Y′

∥∥2

F
, s.t. RTR = IL×L .

One clear difference is that QBH combines the similarity preserving error and the

quantization error into a general framework, rather than using a two step procedure as

in ITQ. In this way, these two errors can be updated iteratively until convergence. An-

other important fact is that any property preserving error can be integrated into QBH

in theory, while ITQ has the limitation that an explicit embedding function has to be330

learned in the first step in order to be processed by the second step. Also, ITQ restricts

the quantization part to be hypercubic quantization [1], in which a data point is approx-

imated to its hash code directly. Our QBH can incorporate more general quantization

methods, in which a data point is approximated by a cluster center, and its hash code is

either its cluster center or the index of its cluster center.335

KMH vs. QBH.

KMH is intrinsically a quantization method. Unlike conventional quantization methods

which generate cluster centers and perform the approximate search using lookup tables,

KMH utilizes the Hamming distance of the cluster indices to approximate the lookup

tables. The objective function for KMH is represented as:

min
C,ki

∑
ij

(dqij − dhij)
2

+ α
∑
i

‖xi − cki‖
2
2. (39)

where ki is the cluster index of xi, d
q
ij =

∥∥cki − ckj
∥∥2

2
is the distance of the clus-

ter centers of xi and xj , and dhij is the Hamming distance of the index (ki and kj) of

cluster centers of xi and xj . It is clear that the first term is distance-distance differ-

ence minimization property, and the second term is quantization error. By replacing

our similarity-distance product minimization property with this distance-distance dif-340

ference minimization property, we can arrive at a new objective function for modified

QBH. K-means hashing is a special case of our modified QBH.

23

One key difference is that KMH only considers how to speed up the quantization

methods with hashing techniques, but ignores how to improve the general similarity-

preserving hashing methods by reducing the quantization error using quantization meth-345

ods. While our QBH is a general framework, which incorporates different quantization

error reduction strategies into the conventional different similarity preserving hashing

models to the improve the performance of hash codes.

7. Experiments

We evaluate our algorithm on the task of high-dimensional approximate nearest350

neighbor (ANN) search. Firstly, we study the influence of the parameters in our algo-

rithm. Then, we compare our results with state-of-the-art algorithms on three standard

datasets.

7.1. Settings

Experiments are conducted on seven widely-used high-dimensional datasets. Three355

of them are unlabeled datasets to evaluate the unsupervised hashing methods: SIFT1M [6],

GIST1M [6], and SIFT1B [6]. Each dataset is composed of disjoint training set, query

set, and base set (on which the search is performed). SIFT1M provides 105 train-

ing points, 104 query points and 106 database points with each point being a 128-

dimensional SIFT descriptor. GIST1M provides 5 × 105 training points, 103 query360

points and 106 database points with each point being a 960-dimensional GIST fea-

ture. SIFT1B is composed of 108 training points, 104 query points and as large as

109 database points. Following [9], we use the first 106 training points on the SIFT1B

dataset. The whole training set is used on SIFT1M and GIST1M.

The other datasets we use are image datasets with labels: ESPGAME, IAPRTC12365

and MIRFLICKR. ESPGAME [51] contains 20000 images, IAPRTC12 has 20000 im-

ages and MIRFLICKR [11] is a collection of 25000 images. We used the default splits

for these three datasets. We use 15 different visual descriptors for these three datasets.

These include one Gist descriptor, six global color histograms, and eight local bag-of-

visual-words features. We concatenate them into a single feature and apply PCA to370

reduce the dimensionality to 2000.

24

We further utilize a video dataset: UQ VIDEO [7] is a video dataset crawled from

YouTube for the task of near-duplicate video detection. After filtering out the videos

whose sizes are greater than 10M, the dataset contains 169952 videos in total. 3305525

keyframes are further extracted from these videos. We use the provided features (LBP375

and HSV) and the default split for training and testing.

ANN search is conducted to evaluate our proposed approaches, and three indicators

are reported.

• Recall vs. K: the proportion over all the queries where the true nearest neighbor

falls within the top ranked K vectors by the approximate distance.380

• Mean Average Precision (MAP): For a single query, Average Precision (AP) is

the average of the precision value obtained for the set of top-k results, and this

value is then averaged over all the queries. The larger the MAP, the better the

performance is.

• We further use precision-recall curve to evaluate the performance on UQ VIDEO385

dataset.

We compare our QBH with other state-of-the-art hashing algorithms, such as spec-

tral hashing (SH) [5], iterative quantization (ITQ) hashing [28] and K-means Hashing

(KMH) [8]. Some other hashing methods (e.g, minimal loss hashing (MLH) [24], PCA

hashing (PCAH) [6]) are not compared here because they are outperformed by these390

compared methods. We also compare with two supervised hashing methods, namely

KSH [30] and FastH [11]. Note that our QBH can be modified to a supervised version

QBH S by modifying the affinity matrix A in (5) to incorporate the supervised infor-

mation, as in [30]. Unsupervised QBH with model (12) and (31) have similar results.

We only report QBH with model (12).395

7.2. Parameters

There are several parameters, e.g., α, the size of the training datasets N and the

number of iteration iter, affecting the performance of our algorithm. In this subsection,

we study the performance variation with different parameters. Due to the space limit,

25

MAP vs. α

α

M
A

P

10
−2

10
0

10
2

0.04

0.1

0.2
QBH_32
QBH_64

(a) Performance variance with dif-

ferent α

MAP vs. N

N

M
A

P

10
2

10
3

10
4

10
5

0.05

0.1

0.15

QBH_32
QBH_64

(b) Performance variance with dif-

ferent N

Loss function vs. iter

iter

L
o

ss
 F

u
n

ct
io

n

0 20 40 60 80 100
2

3

4

5

6

7

8

9

10x 10
5

QBH_32
QBH_64

(c) Number of iterations

Figure 3: Parameters study with code length 32 and 64 on SIFT1M

we only report the results on the SIFT1M dataset. The default settings for SIFT1M are:400

α = 10, Z = 3000, iter = 100 and N = 105.

We tune α from 10−3, 10−2, 10−1, 100, 101, 102, 103, and the results are shown in

Fig. 3(a). When α is relatively small, e.g., α = 10−3, the worst performance was

achieved. That is to say, if the property preserving term is dominant, the MAP is unsat-

isfactory. With the increase of α, the performance is slightly improved until reaching405

peak at α = 101. Further raising α will result in a slight drop of the performance,

which means that balancing the quantization and property preserving error is better

than using only one of them.

The size of training dataset N affects the training speed and model accuracy. We

tune N = 103, 5 × 103, 104, 5 × 104, 105, and illustrate the performance changes in410

Fig. 3(b). There is an increasing trend with the rising of N . When N reaches 104,

further increasing the training number will not improve the MAP significantly.

The loss function in each iteration is shown in Fig. 3(c). The loss function drops

dramatically in the first 20 iterations, and then keeps stable after 30 iterations. This

indicates the efficiency of our solution.415

7.3. Results on unlabeled datasets

Fig. 4 shows the comparisons of different unsupervised hashing methods on the

three unlabeled datasets. We have tested L=32 and L=64. We used the codes provided

26

Recall vs. K

K

R
e

c
a

ll

0 2000 4000 6000 8000 10000
40

60

80

100

CKMeans_32

ITQ_32

QBH_32

SH_32

KMH_32

(a) SIFT1M 32

Recall vs. K

K

R
e

c
a

ll

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

CKMeans_32

ITQ_32

QBH_32

SH_32

KMH_32

(b) GIST1M 32

Recall vs. K

K

R
e

c
a

ll

0 2000 4000 6000 8000 10000
0

10

20

30

40

50
CKMeans_32

ITQ_32

QBH_32

SH_32

KMH_32

(c) SIFT1B 32

Recall vs. K

K

R
e

c
a

ll

0 2000 4000 6000 8000 10000
40

60

80

100

CKMeans_64

ITQ_64

QBH_64

SH_64

KMH_64

(d) SIFT1M 64

Recall vs. K

K

R
e

c
a

ll

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

CKMeans_64

ITQ_64

QBH_64

SH_64

KMH_64

(e) GIST1M 64

Recall vs. K

K

R
e

c
a

ll

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

CKMeans_64

ITQ_64

QBH_64

SH_64

KMH_64

(f) SIFT1B 64

Figure 4: The comparison of different unsupervised hashing methods with code length 32 and 64. SH [5],

ITQ [28] and KMH [8], CKMeans [9].

by the authors to compare different algorithms. For KMH, the bit number of each420

subspace is 8 for L=32, and is 16 for L = 64. For the other algorithms, the default

settings are used. From these figures, we have the following observations:

• Our method consistently outperforms the other hashing methods in all datasets.

In SIFT1M and SIFT1B datasets, the improvement of QBH over the counterparts

is more significant, compared with that in GIST1M. Also, the improvements gap425

between QBH and other hashing methods is larger in the case of L = 32, than

that of L = 64. On the other hand, CKMeans achieves the best performance in

terms of recall compared with all the other hashing methods, and the improve-

ments over state-of-the-art hashing methods is 5% to 20%.

• With the increase of code length, the performance of different hashing methods430

is improved accordingly. More specifically, the recall improvements of KMH

(20%-28%) and ITQ (20%-25%) are generally more significant than SH (10%-

15%) on SIFT1M and SIFT1B dataset, while the improvements on GIST1M are

27

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5
Recall vs. K

K

R
e

ca
ll

ITQ_32
QBH_32
SH_32
KMH_32
KSH_32
FastH_32
QBH

S
_32

(a) ESPGAME 32

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Recall vs. K

K

R
e

ca
ll

ITQ_32
QBH_32
SH_32
KMH_32
KSH_32
FastH_32
QBH

S
_32

(b) IAPRTC 32

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

Recall vs. K

K

R
e

ca
ll

ITQ_32
QBH_32
SH_32
KMH_32
KSH_32
FastH_32
QBH

S
_32

(c) MIRFLICKR 32

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5
Recall vs. K

K

R
e

ca
ll

ITQ_64
QBH_64
SH_64
KMH_64
KSH_64
FastH_64
QBH

S
_64

(d) ESPGAME 64

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Recall vs. K

K

R
e

ca
ll

ITQ_64
QBH_64
SH_64
KMH_64
KSH_64
FastH_64
QBH

S
_64

(e) IAPRTC 64

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Recall vs. K

K

R
e

ca
ll

ITQ_64
QBH_64
SH_64
KMH_64
KSH_64
FastH_64
QBH

S
_64

(f) MIRFLICKR 64

Figure 5: The comparison of different unsupervised and supervised hashing methods with code length 32

and 64. SH [5], ITQ [28] and KMH [8], KSH [30] and FastH [11].

more consistent.

• SH performs surprisingly well on SIFT1M and SIFT1B datasets, but it is inferior435

on GIST1M. KMH is competitive in most settings, especially when the code

length is 64 bits.

7.4. Results of supervised hashing methods on image datasets

Fig. 5 shows the comparisons of both unsupervised and supervised hashing meth-

ods on the three labeled datasets. Similarly, we tested L=32 and L=64 and we used440

the codes provided by the authors. For KMH, the bit number of each subspace is 8 for

L=32, and is 16 for L = 64. For FastH, we chose ‘graphCut’ for binary code infer-

ring and ‘boost tree’ for hash function learning. For the other algorithms, the default

settings are used. From these figures, we have the following observations:

• The supervised hashing methods outperform their unsupervised counterparts sig-445

nificantly. More specifically, the gap between the best supervised and unsu-

28

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Recall vs. Precision

Precision

R
ec

al
l

ITQ_64
QBH_64
KMH_64
SH_64

Figure 6: Results on UQ VIDEO dataset

pervised hashing methods is 25%, 21% and 14% respectively, for ESPGAME,

IAPRTC and MIRFLICKR datasets, with L = 64. This indicates that exploiting

the content information only cannot preserve the label-based similarity.

• For all the unsupervised methods, similar performance is achieved. Our QBH450

performs the best in general, but it was outperformed by KMH in ESPGAME

dataset. For all the supervised methods, our QBHS show consistently superior

performance over FastH and KSH.

• With the increase of code length, the supervised hashing methods gain great

improvement. On the other hand, unsupervised methods are not very sensitive to455

the code length.

7.5. Results of unsupervised hashing methods on video dataset

To further test the accuracy and scalability of QBH, we test QBH on a video dataset

and compare it with existing unsupervised hashing methods. More specifically, we use

the same 24 queries and groundtruth as in [7] to search the dataset. The results are460

shown in Fig. 6. From this figure, we can observe that our QBH performs the best in

general, but its recall is outperformed by KMH when the precision is smaller than 0.1

and greater than 0.8. For the other methods, ITQ shows inferior performance of recall

when the precision is less than 0.4 and greater than 0.7.

29

7.6. Efficiency of the hash code learning and search465

All the experiments were conducted on a computer with Intel Xeon(R) CPU E5-

2620 @2.00 GHz 2 processors, 32 GB RAM and the 64-bit Windows 7 operating sys-

tem. For the default parameters settings on SIFT1M dataset (32-bits), the training time

for QBH is 1050s, while for SH, KMH and ITQ, is 315s, 2450s and 425s respectively,

with the help of Matlab parallel computing.

Table 3: Time cost (seconds) for 1000-NN search using QBH and SH with code length 32 and 64 on different

sizes of SIFT1B dataset

Size QBH 32 SH 32 [5] QBH 64 SH 64 [5]

100M 0.031 0.030 0.050 0.049

200M 0.034 0.033 0.055 0.055

300M 0.039 0.037 0.067 0.066

400M 0.042 0.040 0.076 0.075

500M 0.046 0.044 0.088 0.087

600M 0.050 0.048 0.095 0.094

700M 0.056 0.055 0.103 0.101

800M 0.062 0.060 0.116 0.114

800M 0.067 0.065 0.129 0.127

1B 0.079 0.077 0.143 0.141

470

Table 3 shows the time costs for the search of the hash codes. When the length

of hash codes is fixed, different hashing methods require similar time cost to perform

1000-NN search. Therefore, we only report the time cost for QBH and SH. More

specifically, we run 1000-NN search using QBH- and SH-generated hash codes of

different portions, i.e., 10% - 100%, of SIFT1B dataset. We use the code provided475

by MIH [52]. From Table 3, it can be observed that the NN search can be efficiently

performed using the hashing code. The search on 1 billion 64-bit hash codes requires

only 0.14 second. Another observation is that with the increase of the dataset size and

code length, longer time is required to perform NN search.

30

8. Conclusion and Future Work480

In this work, we propose a Quantization-based Hashing (QBH), a general frame-

work which brings the advantages of quantization-based methods into conventional

similarity-preserving hashing methods. It is shown that QBH preserves the similarity

property and has less quantization error. The framework can be applied to both un-

supervised and supervised hashing. Experiments on seven real-life image and video485

datasets demonstrate that QBH obtains superior results over existing hashing methods

in terms of accuracy while keeps the computational time at the same level.

In the future, some other properties (e.g, the global similarity property [5, 21], the

order property [31], the triangle order property [24]) in the original space can be incor-

porated into the QBH framework and experimentally evaluated to see the performance490

improvement. Also, it is interesting to evaluate if the traditional property preserving

term can benefit the quantization methods.

References

[1] J. Wang, T. Zhang, J. Song, N. Sebe, H. T. Shen, A survey on learning to hash,

CoRR abs/1606.00185.495

[2] C. Silpa-Anan, R. Hartley, Optimised kd-trees for fast image descriptor matching,

in: CVPR, 2008, pp. 1–8.

[3] M. Muja, D. G. Lowe, Fast approximate nearest neighbors with automatic algo-

rithm configuration, in: VISAPP, 2009, pp. 331–340.

[4] J. Wang, N. Wang, Y. Jia, J. Li, G. Zeng, H. Zha, X. Hua, Trinary-projection trees500

for approximate nearest neighbor search, IEEE Trans. Pattern Anal. Mach. Intell.

36 (2) (2014) 388–403.

[5] Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: NIPS, 2008, pp. 1753–

1760.

[6] J. Wang, S. Kumar, S. Chang, Semi-supervised hashing for large-scale search,505

IEEE Trans. Pattern Anal. Mach. Intell. 34 (12) (2012) 2393–2406.

31

[7] J. Song, Y. Yang, Z. Huang, H. T. Shen, J. Luo, Effective multiple feature hash-

ing for large-scale near-duplicate video retrieval, IEEE Trans. Multimedia 15 (8)

(2013) 1997–2008.

[8] K. He, F. Wen, J. Sun, K-means hashing: An affinity-preserving quantization510

method for learning binary compact codes, in: CVPR, 2013, pp. 2938–2945.

[9] M. Norouzi, D. J. Fleet, Cartesian k-means, in: CVPR, 2013, pp. 3017–3024.

[10] G. Irie, Z. Li, X. Wu, S. Chang, Locally linear hashing for extracting non-linear

manifolds, in: CVPR, 2014, pp. 2123–2130.

[11] G. Lin, C. Shen, Q. Shi, A. van den Hengel, D. Suter, Fast supervised hashing515

with decision trees for high-dimensional data, in: CVPR, 2014, pp. 1971–1978.

[12] Y. Hu, Z. Jin, H. Ren, D. Cai, X. He, Iterative multi-view hashing for cross media

indexing, in: ACM Multimedia, 2014, pp. 527–536.

[13] J. Lu, V. E. Liong, X. Zhou, J. Zhou, Learning compact binary face descriptor for

face recognition, IEEE Trans. Pattern Anal. Mach. Intell. 37 (10) (2015) 2041–520

2056.

[14] Y. Zhang, H. Lu, L. Zhang, X. Ruan, S. Sakai, Video anomaly detection based on

locality sensitive hashing filters, Pattern Recognition 59 (2016) 302–311.

[15] H. Zhao, Z. Wang, P. Liu, The ordinal relation preserving binary codes, Pattern

Recognition 48 (10) (2015) 3169–3179.525

[16] R. He, Y. Cai, T. Tan, L. S. Davis, Learning predictable binary codes for face

indexing, Pattern Recognition 48 (10) (2015) 3160–3168.

[17] J. Lu, V. E. Liong, J. Zhou, Simultaneous local binary feature learning and en-

coding for face recognition, in: ICCV, 2015, pp. 3721–3729.

[18] J. Song, Y. Yang, X. Li, Z. Huang, Y. Yang, Robust hashing with local models for530

approximate similarity search, IEEE T. Cybernetics 44 (7) (2014) 1225–1236.

32

[19] J. Song, Y. Yang, Y. Yang, Z. Huang, H. T. Shen, Inter-media hashing for large-

scale retrieval from heterogeneous data sources, in: SIGMOD, 2013, pp. 785–

796.

[20] X. Zhu, Z. Huang, H. T. Shen, X. Zhao, Linear cross-modal hashing for efficient535

multimedia search, in: ACM Multimedia, 2013, pp. 143–152.

[21] J. Shao, F. Wu, C. Ouyang, X. Zhang, Sparse spectral hashing, Pattern Recogni-

tion Letters 33 (3) (2012) 271–277.

[22] X. Liu, J. He, C. Deng, B. Lang, Collaborative hashing, in: CVPR, 2014, pp.

2147–2154.540

[23] B. Kulis, T. Darrell, Learning to hash with binary reconstructive embeddings, in:

NIPS, 2009, pp. 1042–1050.

[24] M. Norouzi, D. J. Fleet, Minimal loss hashing for compact binary codes, in:

ICML, 2011.

[25] F. Shen, C. Shen, W. Liu, H. T. Shen, Supervised discrete hashing, in: CVPR,545

2015, pp. 37–45.

[26] T. Ge, K. He, J. Sun, Graph cuts for supervised binary coding, in: ECCV, 2014,

pp. 250–264.

[27] H. Jégou, M. Douze, C. Schmid, Product quantization for nearest neighbor search,

IEEE Trans. Pattern Anal. Mach. Intell. 33 (1) (2011) 117–128.550

[28] Y. Gong, S. Lazebnik, A. Gordo, F. Perronnin, Iterative quantization: A pro-

crustean approach to learning binary codes for large-scale image retrieval, IEEE

Trans. Pattern Anal. Mach. Intell. 35 (12) (2013) 2916–2929.

[29] B. Xu, J. Bu, Y. Lin, C. Chen, X. He, D. Cai, Harmonious hashing, in: IJCAI,

2013, pp. 1820–1826.555

[30] W. Liu, J. Wang, R. Ji, Y. Jiang, S. Chang, Supervised hashing with kernels, in:

CVPR, 2012, pp. 2074–2081.

33

[31] J. Wang, J. Wang, N. Yu, S. Li, Order preserving hashing for approximate nearest

neighbor search, in: ACM Multimedia, 2013, pp. 133–142.

[32] M. Norouzi, D. J. Fleet, R. Salakhutdinov, Hamming distance metric learning, in:560

NIPS, 2012, pp. 1070–1078.

[33] C. Strecha, A. M. Bronstein, M. M. Bronstein, P. Fua, Ldahash: Improved match-

ing with smaller descriptors, IEEE Trans. Pattern Anal. Mach. Intell. 34 (1) (2012)

66–78.

[34] P. Jain, B. Kulis, K. Grauman, Fast image search for learned metrics, in: CVPR,565

2008, pp. 1–8.

[35] R. Xia, Y. Pan, H. Lai, C. Liu, S. Yan, Supervised hashing for image retrieval via

image representation learning, in: AAAI, 2014, pp. 2156–2162.

[36] V. E. Liong, J. Lu, G. Wang, P. Moulin, J. Zhou, Deep hashing for compact binary

codes learning, in: CVPR, 2015, pp. 2475–2483.570

[37] H. Lai, Y. Pan, Y. Liu, S. Yan, Simultaneous feature learning and hash coding

with deep neural networks, in: CVPR, 2015, pp. 3270–3278.

[38] M. Á. Carreira-Perpiñán, R. Raziperchikolaei, Hashing with binary autoencoders,

in: CVPR, 2015, pp. 557–566.

[39] L. Gao, J. Song, F. Zou, D. Zhang, J. Shao, Scalable multimedia retrieval by deep575

learning hashing with relative similarity learning, in: ACM Multimedia, 2015,

pp. 903–906.

[40] X. Liu, L. Huang, C. Deng, J. Lu, B. Lang, Multi-view complementary hash

tables for nearest neighbor search, in: ICCV, 2015, pp. 1107–1115.

[41] X. Liu, C. Deng, B. Lang, D. Tao, X. Li, Query-adaptive reciprocal hash tables for580

nearest neighbor search, IEEE Transactions on Image Processing 25 (2) (2016)

907–919.

34

[42] F. Zou, Y. Chen, J. Song, K. Zhou, Y. Yang, N. Sebe, Compact image fingerprint

via multiple kernel hashing, IEEE Trans. Multimedia 17 (7) (2015) 1006–1018.

[43] D. Zhang, J. Wang, D. Cai, J. Lu, Self-taught hashing for fast similarity search,585

in: SIGIR, 2010, pp. 18–25.

[44] L. Duan, J. Lin, Z. Wang, T. Huang, W. Gao, Weighted component hashing of bi-

nary aggregated descriptors for fast visual search, IEEE Trans. Multimedia 17 (6)

(2015) 828–842.

[45] Y. Lv, W. W. Y. Ng, Z. Zeng, D. S. Yeung, P. P. K. Chan, Asymmetric cyclical590

hashing for large scale image retrieval, IEEE Trans. Multimedia 17 (8) (2015)

1225–1235.

[46] J. Wang, J. Wang, J. Song, X. Xu, H. T. Shen, S. Li, Optimized cartesian k-means,

IEEE Trans. Knowl. Data Eng. 27 (1) (2015) 180–192.

[47] A. Babenko, V. S. Lempitsky, Tree quantization for large-scale similarity search595

and classification, in: CVPR, 2015, pp. 4240–4248.

[48] X. Wang, T. Zhang, G. Qi, J. Tang, J. Wang, Supervised quantization for similarity

search, in: CVPR, 2016, pp. 2018–2026.

[49] T. Zhang, G. Qi, J. Tang, J. Wang, Sparse composite quantization, in: CVPR,

2015, pp. 4548–4556.600

[50] W. Liu, J. Wang, S. Kumar, S. Chang, Hashing with graphs, in: ICML, 2011, pp.

1–8.

[51] M. Guillaumin, T. Mensink, J. J. Verbeek, C. Schmid, Tagprop: Discriminative

metric learning in nearest neighbor models for image auto-annotation, in: ICCV,

2009, pp. 309–316.605

[52] M. Norouzi, A. Punjani, D. J. Fleet, Fast exact search in hamming space with

multi-index hashing, IEEE Trans. Pattern Anal. Mach. Intell. 36 (6) (2014) 1107–

1119.

35

