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Introduction

Bose-Einstein condensates (BECs) of ultra-cold atoms have been the object of a large
research effort, that started a century ago and is now a rich research topic with many
active research groups around the world. A deep knowledge of its underlying physics
has been acquired, for example on the thermodynamics of the gas, superfluidity, topo-
logical excitations and many-body physics. However, many topics are still open for
investigation, thanks to the flexibility and the high degree of control of these systems.
Shortly after the first realization of Bose-Einstein condensation, also the research on
multi-component BECs of alkali atoms begun thanks to the internal structure of the
electronic ground state. These internal states can be coherently coupled with an ex-
ternal electromagnetic field and can interact via mutual mean-field interaction, with
different behaviours depending on the values of the interaction constants between the
states. Multi-component systems of different internal states offer richer dynamics and
effects not present in a single-component, such as ground states with different magnetic
ordering, density as well as spin dynamics and internal Josephson effects. Of the nu-
merous multi-component systems available, two-component mixtures of ?*Na atoms in
the hyperfine states |[F' = 1, mp = £1) are of peculiar interest. In fact, the interaction
constants of the components are such that the ground state of the mixture has anti-
ferromagnetic ordering and the system is perfectly symmetric under the exchange of the
two species, differently from the largely studied mixtures of ’Rb atoms. In this peculiar
system, density- and spin-excitations have a very different energetic cost, with the latter
being much less energetic, such that they can become completely decoupled from the for-
mer. Moreover, spin-excitations, that are connected to excitations in the relative-phase
between the components, change drastically their nature when a coherent coupling is
added between the states. Since the coupling effectively locks the relative-phase in the
bulk, spin excitations become localized in the presence of the coupling. While extensive
theoretical predictions on the spin dynamics of this system has been already performed,
experimental confirmation was still lacking because of the high sensitivity to external
forces (due to the very low energy of the spin excitations) and the difficulty of realizing
a low-energy coupling between these states in the presence of environmental magnetic
noise.
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During the course of my Ph.D., I completed a novel experimental apparatus for
the realization of coherently-coupled mixtures of sodium BECs and performed with it
the first measurement of scientific relevance. The highly stable and low-noise magnetic
environment of this apparatus enables the experimental investigation of a previously
inaccessible regime, where the energy of the coupling becomes comparable to the energy
of spin excitations of the mixture. With this apparatus, I concluded two experimental
investigations: I produced non-dispersive spin-waves in a two-component BEC and in-
vestigated their dynamics, and I experimentally observed the quantum spin-torque effect
on an elongated bosonic Josephson junction.

The new experimental apparatus features a magnetic environment with strongly
improved stability. Magnetic noise is suppressed by five orders of magnitude using a
multi-layer magnetic shield made of a high-permeability metal alloy (u-metal), that en-
cases the science chamber. For this apparatus I developed a protocol, compatible with
the technical limitations of the magnetic shield, to produce BECs in a spin-insensitive
trapping potential. I then characterized the residual magnetic noise using spectroscopic
measurements between magnetic-sensitive internal states finding a residual noise com-
patible with the requirements for observing spin-dynamics effects.

The first experimental result discussed in this Thesis is the production of Magnetic
Solitons and the observation of their dynamics in a harmonic trap. Waves in general
spread during their propagation in a medium, however this tendency can be counter-
balanced by a self-focusing effect if the dispersion of the wave is non-linear, generating
non-dispersive and long-lived wave packets commonly named solitons. Solitons have been
found in many fields of physics, such as fluid dynamics, plasma physics, non-linear optics
and cold-atoms BECs, attracting interest because of their ability to transport informa-
tion and energy unaltered over long distances, as they are robust against the interaction
with inhomogeneities in the medium. Of these systems, cold-atoms can be widely ma-
nipulated to generate different kinds of solitons, both in single and in multi-component
systems. A new kind of them, named Magnetic Solitons [1], has been predicted in a
balanced mixture of BECs of #*Na in |F = 1, mp = 1), however experimental observa-
tion was still lacking. In this Thesis, I present the experimental observation of Magnetic
Solitons. I deterministically produced magnetic excitations via phase engineering of
the condensate using a spin-sensitive optical potential. I then developed a tomographic
imaging technique to semi-concurrently measure the densities of both components and
the discontinuities in their relative phase, allowing for the reconstruction of all the rele-
vant quantities of the spinor wavefunction. This allowed us to observe the dispersionless
behaviour of the excitations and confirm their solitonic nature. The long-lifetime of these
solitons allowed the observation of their dynamics as they perform multiple oscillation in
the sample, on a timescale of the order of the second. Moreover, I engineered collisions
between different kinds of Magnetic Solitons and observed their robustness to mutual
interaction.

The second experimental result presented in this thesis is the observation of the break-
ing of magnetic heterostructures in BECs due to the quantum torque effect, an effect also
found at the interface between magnetic materials. Spins in magnetic materials precess
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around the axis of the effective magnetic field, and their dynamics must take into ac-
count the external field as well as non-linear magnetization and the magnetic anisotropy
of the material. These effects are commonly described by the Landau-Lifshitz equation
and have been mainly studied for electronic spins in magnetic heterostructures, where
the strong inhomogeneity in the material at the interfaces enhances the exchange effects
between spins. For homogeneous materials, this description reduces to the Josephson
system, a closely related effect that is more known in cold-atoms systems. The Josephson
effect arises when a macroscopic number of interacting bosonic particles is distributed in
two quantum states, weakly coupled together, with the average energy of the particles
occupying each of the states depending on the occupation number itself. In these con-
ditions, the dynamics of the system depends on the difference in occupation numbers,
the relative phase between the states and the self-interaction to tunnelling ratio, giving
rise to macroscopic quantum effects such as oscillating AC and DC Josephson currents
and self-trapping. While these phenomena have been historically studied in junctions
between superconducting systems, they can be also realized with cold-atoms systems,
allowing the study of Josephson junctions with finite dimensions and in regimes that are
hard to reach for superconducting systems.

On this topic, during my Ph.D. I realized a set of protocols for the manipulation of
the internal state of an elongated internal bosonic Josephson junction realized with two-
component elongated BECs, allowing for the preparation of the initial states of interest.
Leveraging the density inhomogeneity of a trapped BEC, I then realized magnetic het-
erostructures thanks to the simultaneous presence of self-trapped and oscillating regions
in the sample. While the dynamics at short times is correctly described by the Joseph-
son effects, at the interface between the regions the particle nature of the gas creates a
strong exchange effect, named the quantum torque, that produces magnetic excitations
that spread trough the sample and break the local Josephson dynamics. I experimentally
studied how the process sets in and triggers the spread of these magnetic excitations,
while numerical simulations confirmed the dominant role played by the quantum torque
effect.

Thesis structure

e The first Chapter contains a review of theoretical concepts and existing litera-
ture. In particular I introduce the Gross-Pitaevskii equation for two-component
Bose-Einstein condensates, both in the presence and in the absence of coherent
coupling, and discuss existing experimental and theoretical results in the field.
Then, I discuss the connection between coherently-coupled two-components BECs
and spins in magnetic systems, together with the origin of the quantum torque
effect in atomic systems.

e In the second Chapter I describe the experimental apparatus considering the ex-
perimental constraints arising from the physical context we want to address. I
illustrate the performance assessment of a multi-layer magnetic shield, the proto-
col to produce an ultracold sample of atoms inside the said magnetic shield and
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the characterization of the magnetic field applied to the sample using spectroscopic
measurements.

e In the third Chapter I present the experimental observation of Magnetic Solitons.
I discuss the protocol to reconstruct semi-concurrently the relevant components of
the condensate’s order parameter. The experimental technique to generate deter-
ministically Magnetic Solitons is then described and characterized, together with
the technique used to identify the solitons. These techniques allow for the obser-
vation of Magnetic Solitons and their dynamics that is then described, discussing
also the behaviour of the solitons as they collide with each other.

e The fourth Chapter deals with the experimental investigation of the quantum
torque effect in magnetic heterostructures. I illustrate the protocols developed
to prepare the ultra-cold atoms sample in a given initial state, in a parameter
regime where the coherent coupling is comparable to the energy of the mean-
field interaction. I illustrate the peculiar parameters regime that is accessible
by the experimental apparatus and the non homogeneous Josephson dynamics
that originates in the sample. The magnetic hetero-structures produced using this
homogeneous dynamics are presented, and the observation of the breaking of the
structure due to quantum torque effect at the interface is reported.

e The last chapter is devoted to conclusions and outlook of this work.



Chapter

Theoretical background on
two-component BECs

Bose-Einstein condensation (BEC) has been predicted one century ago and realized for
the first time in weakly-interacting atomic gases 25 years ago, starting a rich research
effort to understand its fundamental physics. Today, many research topics are open in
this field, such as the case of two-component BECs that is the topic of this thesis.

In this Chapter, I will introduce the Gross-Pitaevskii description of BECs, both for
single and for two-component systems, introducing the theoretical description for the
remainder of the work.

1.1 Bose-Einstein condensates of weakly interacting gases

Bose-Einstein condensation can be briefly described as macroscopic occupation of the
ground state of a quantum system that happens when a large number of identical bosonic
particles is cooled at very low temperatures. This macroscopic occupation leads to the
appearance of a complex order parameter, also known as the wavefunction of the conden-
sate, that describes the long-range order between particles sharing the same quantum
state. At extremely low temperatures and large density, the condensate fraction domi-
nates over the remaining normal (thermal) component and the physics of the system is
well described by a classical complex field.

1.1.1 The Gross-Pitaevskii equation

In the case of atomic gases, the identical particles are single atoms of mass m, subject
to an external confining potential V,¢(r). At sufficiently low density n, the atoms can
be considered as weakly interacting via elastic 2-body collisions with s-wave scattering
length a. This condition of diluteness is expressed by the gas parameter na® < 1, and
is usually very well fulfilled by ultracold atomic gases, with densities of the order of 102°
atoms/m? and scattering lengths < 10 nm.
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The many-body Hamiltonian for identical particles is written in terms of the quantum
field operator ¥

. 2 NP | A . n
Hy = /dr (jv\lﬁv\lf> +/dr%xtWTW+2/drdr’ V(e - )O0  (1.1)
m

where £ is the reduced Planck constant and V(r — r’) is the two-body interaction po-
tential. The evolution equation of the field operator is then given in the Heisenber
representation as ih%\if = [\i/, I:IO].

Due to the macroscopic occupation of the condensate state, we can disregard the
quantum fluctuations of U and replace the field operator by a classical complex field
U = /ne™ ™, where n is the particle density and ¢ the phase of the condensate. This
field, loosely identified with the wavefunction of the condensate, represents a mean-field
description of the many-body system known as the Bogoliubov description and is a
very good approximation in the limit of large number of condensed particles and low
temperature. It satisfies the normalization condition [ d®r [¥(r)|> = N, where N is the
total particle number in the condensate. In order for the substitution to be correct,
however, the two-body interaction potential must be substitued by an effective “soft”
potential V, ;¢ with the same low-energy scattering length. The interaction term becomes
proportional to |¥(r)|*> through the coupling constant g = [drV.ss = 4nh?a/m. The
evolution equation for the classical field is known as Gross-Pitaevskii equation (GPE)
[2, Chap. 5]

L0 h?
zha\ll(r,t) = <—2mV2 + Veae(r,t) 4+ g|¥(r, t)|2> U(r,t). (1.2)
This equation is the main theoretical tool to describe the dynamics of BECs, and typi-
cally it is solved numerically.

Typical experiments with ultracold atoms BECs are performed applying a harmonic
trapping potential, via optical or magnetic forces, along the three spatial directions =,

Yy, z
1
Vit = om (wiz® + w§y2 + w?2?) (1.3)
where w; is the trapping frequency along the direction 7. A typical energy scale for the
system is given by the average trapping frequency wp, = (wxwywz)l/ 3 as well as a typical

length scale by the harmonic oscillator length an, = \/i/mwpe.

Thomas-Fermi limit

A useful limit of Eq. (1.2) is the ground state of the condensate found in the stationary
(time-independent) case. By setting the time derivative to 0 and substituting ¥(r,t) =
®(r)e~ /" we obtain a stationary equation to be solved self-consistently for the chemical
potential p and the ground-state wavefunction ®(r)

2
) = (~ o7+ Vi) + 900 ) 000 (1.4)

m



7 CHAPTER 1

For large values of the mean-field energy (Na/ap, > 1), the kinetic energy term in the
above equation can be neglected and the ground-state wavefunction of a trapped BEC
is determined only by the external potential

@ () = n(r) = LTt (1.5)

This condition is known as Thomas-Fermi limit. In the case of harmonic trapping, the
chemical potential depends on atom number and trapping parameters as

hne (- Na\?®
n=— (15%) (1.6)

and the density distribution of the condensate has a characteristic inverted-parabola
profile, with peak density ng = p/g, with spatial dimensions equal to the Thomas-Fermi
radii

2u

mw;

R =

(1.7)

The kinetic energy term becomes instead dominant when the density is inhomoge-
neous at small length scales. An additional characteristic length scale is the healing
length of the condensate

£= e, (18)

corresponding to the size of a density variation with kinetic energy (~ h%/2mé?) equal
to the interaction energy gn.

Dispersion relation

The dispersion relation of small-amplitude excitations on the ground state can be ob-
tained linearizing the GPE around equilibrium and, for a homogeneous system, one finds
the result [2]

h2k2>2 B2k

(hw)? = < +——gn (1.9)

where w and k are the frequency and wavevector of the plane-wave excitation, respec-
tively. In the &£ — 0 limit, the excitations have a linear dispersion with velocity

c=w/Kk=1+/gn/m (1.10)

usually referred as the sound velocity in the condensate.

2m

1DGPE

Typical ultracold-atoms experiments are performed with cigar-shaped elongated sam-
ples, due to the harmonic trap having two of the trapping frequencies much larger than
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the third one. Since one of the dimensions of the system is much larger than the oth-
ers the 3D GPE is often reduced to a single dimension (1IDGPE) by decomposition of
the condensate wavefunction in a transverse time-invariant component ¥, and in a 1D
complex function evolving under the 1IDGPE.

A common choice to reduce the dimension [2, Chap. 24] is to consider equal trapping
frequency w, along the transverse directions and transverse confinement much larger
than the chemical potential (Aiw; > p). The transverse component then corresponds
to the Gaussian ground state of the transverse harmonic confinement. Integrating out
the transverse directions, one gets the rescaled interaction constant § = 2hw | a for the
1DGPE.

In experiments, however, the chemical potential is often larger than the transverse
confinement and the condensate retains its 3D nature, while having an essentially one-
dimensional geometry. Along the radial directions, the wavefunction becomes dependent
on the linear density and the IDGPE may not be an accurate approximation. This effect
can be taken into account to describe excitations larger than the transverse size using a
non-polynomial Schrédinger equation [3].

Solitonic waves

In this Section I anticipate the topic of solitonic waves in BECs, that is object of the
experimental measurements of Chap. 3. The dispersion relation Eq. (1.9) is valid as
long as the excitations do not change the property of the ground state of the GPE. This
assumption, however, does not apply to large amplitude excitations, for which the non-
linearity of the GPE cannot be neglected. Considering the condensate as a propagating
non-linear medium opens the study of a variety of phenomena in wave propagation [4].

A widely-known phenomenon inherent to non-linear media is represented by non-
dispersing waves, known as solitons, where the natural dispersion of the wave is balanced
by the non-linearity of the medium. A solitonic solution of the propagation equation has
a constant or periodic shape and is localized in a finite region, while non-solitonic waves
are dispersive (as each frequency component propagates at a different velocity) and thus
spread over time everywhere in the medium. Moreover, a solitonic wave is robust against
other perturbations in the medium. These characteristics are more typical of particles
than of waves, hence the description of the propagation of solitons can often be given in
terms of propagation of particles with an effective mass dependent on the characteristics
of the medium.

Solitons are found in very different physical systems, such as water canals, non-linear
optics, plasma physics, superfluid He* and even gravitation waves [5, 6, 7, 8]. In all these
systems, the underlying propagation equation determines the existence and the shape
of its solitonic solutions. For example, solitons in non-linear optics are described by the
integrable Manakov equations, where single solitons analytical solutions not only exists,
but are sufficiently robust that two solitons can cross each-other and emerge unchanged
(and analytical two-solitons solutions exist).

In single-component ultracold atomic gases, solitons with positive effective mass ex-
ist as density-depletions for repulsive interaction [9, 10, 11] and as density-bumps for
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attractive interaction [12, 13]. Density-bumps solitons with repulsive interaction and
negative effective mass can be created by engineering the dispersion relations of the
BEC [14]. The solitonic solution can be calculated analytically from the 1IDGPE, as a
solution moving at a constant velocity v and imposing its localization via appropriate
boundary conditions. The resulting soliton has a size comparable to the healing length
of the condensate, a density depletion proportional to 1 —v?/c? and a finite phase jump
from one side to the other of the soliton. In the stationary case v = 0 the density is
zero at the center of the soliton and the phase jump is 7, while at finite velocity both
the depletion and the phase jump are reduced, giving the name dark- and grey-solitons
to this kind of solutions. Particular attention must be drawn to the dynamical stability
of this solution. While the soliton is stable in a purely one-dimensional system, as is
often the case for highly elongated samples, in higher dimensions the soliton is unstable
towards fluctuations of the density profile and decays into vortices or vortex rings. These
solitonic solutions can be connected to many fields in physics, since the 1IDGPE can be
recast in the form of the analytically-solvable Korteweg—de Vries equation, assuming
weak non-linearities [15].

1.2 BECs mixtures

The Gross-Pitaevskii description presented in the previous Section assumes that the
quantum system has a single lowest-energy state in which condensation happens. At
the same time, in mixtures of different species, simultaneous condensation may happen,
creating a quantum mixture. Generally, the components of the mixture interact via their
mean-field energy, and the ground-state and dynamics of the mixture can heavily depend
on the interaction constants of the components. In particular cases, additional effects
arise due to spin-changing collisions and coherent coupling between the systems.

The research on quantum mixtures utilized atoms of different atomic component
(or isotopes) to create a large variety of mixtures of degenerate gases with different
interactions and statistics. For example, mixtures of two bosonic components have been
realized using "Li-'33Cs [16], 4'K-87Rb [17] or 8"Rb-133Cs [18]. Mixtures of a bosonic
and a fermionic component, instead, have been realized with 4'K-5Li [19], 2Na-1K [20],
H0K-8"Rb [21], ®Li-»*Na [22] or SLi-Li [23, 24]. Mixtures of two fermionic components
have been realized with SLi-4°K [25, 26]. In all these systems, the populations of each
component of the mixture are fixed as no conversion between the components is possible
and the interaction between the components happens only through their mean-field.

Another possibility to realize quantum mixtures is to utilize the same atomic species
in different internal states. In this case, the components have the same statistics but pop-
ulation interconversion is possible, for example via spin-changing collisions or through co-
herent coupling. The spin degree of freedom allows for the realization of multi-component
order parameter, with characteristics typical of both superfluid and magnetic systems,
such as quantum phase coherence, long-range order and symmetry breaking. In alkali
and alkali-earth atoms, most mixtures of sub-states of the same hyperfine manifold are
long-lived and allow for the study of spinor gases with spin-1/2 [27, 28, 29, 30], spin-1
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[31, 32, 33, 34, 35] and spin-2 [36, 37]. These states can be coherently manipulated via
optical or radiofrequency fields, making them suitable subjects for experimental investi-
gation of spinor quantum fluids. A review of the large literature available on the subject
is [38].

The peculiar case of binary mixtures offers a large variety of systems with different
characteristics. In this Section, I will give an introduction to the main characteristics
of binary mixtures, for both homogeneous and trapped systems: the stability, miscibil-
ity, buoyancy of their ground-states, as well as modifications to collective modes and
excitation spectrum.

1.2.1 Two-component GPE

The Gross-Pitaevskii description developed for single-component BECs can be readily
extended to multi-component mixtures as a series of coupled GPEs, where the i-th
component has order parameter W;(r,t), mass m;, and is subject to an external potential
Viext- Each component is interacting with itself via mean-field with s-wave scattering
length a; and with the j-th component with a;;. The presence of a density-density
interaction between the components generates correlations between the densities n; and
ng of the two components. The static and dynamic properties of the mixture depend on
the (relative) values of the interaction constants deriving from these scattering lengths.

For two-component mixtures three interaction constants are necessary: two intra-
component coupling constants g11 = 4mwh%ai1/m1 and gos = 4nh%ags/ms, one inter-
component coupling constant g12 = 2wh?a12/m, with 1/m, = 1/m1+1/ms. The coupled
GPEs are then:

.0 K2

Zha‘lfl = <—2m1V2 + Vieat + 9111 )? + 912!‘1’2|2> vy (1.11)
0 - 2 2

Zﬁa\h = _ngv + Va eat + g22| 2| + g12|¥1[* | Us (1.12)

The mixture stability is ensured for positive values of gi11 and goo. In the following we
will assume components of equal mass my; = my = m, as this is the case of mixtures of
different internal states of the same atomic species.

Miscibility condition

For an external uniform potential, the ground-state of the system is a uniform mixture
if the coupling constants satisfy the inequality:

912 < V911922 (1.13)

In this condition, the distributions of the components maximize their overlap. In the
opposite case, a phase-separated configuration is energetically favourable, where the two
components occupies different regions and minimize their overlap. This condition sets
the miscibility of the mixture, namely the tendency of the two components to occupy
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the same volume. The dynamic stability against local density fluctuations is ensured by
the more stringent condition

|lg12] < V/911922- (1.14)

When the latter condition is violated and g2 < 0, the system can realize self-bound
quantum droplets, that are stabilized by beyond-mean-field effects [39, 30, 40].

Buoyancy condition

In the presence of an external trapping potential, the miscibility condition does not
suffice to guarantee a uniform ground-state of the mixture, as the density distributions
n1 and ng of the components depend also on the intra-component coupling constants.
With condition Eq. (1.14) satisfied, in the Thomas-Fermi limit Eq. (1.5) can be recast
for the two-component system as

p1 — Vieat(r) — grina(r) — gizna(r) =0 (1.15)
p2 — Vaeat(r) — gaona(r) — gizni(r) =0, (1.16)

from which one can derive that the two distributions are in general different, except for
the special case g11 = g22 and Vi ezt = Vaere. The tendency of the mixture to have
unequal spatial distribution is referred with the name of buoyancy and can be present
also for miscible mixtures. In the case of buoyant mixtures, the system minimizes its
energy by localizing the component with smaller intra-component interaction constant
in the center of the trap, where the density is higher. The other component “floats” on
the first at the edge of the trap, where its density is lower.

Miscibility and buoyancy are well-defined concepts only when the atom number in
each component is fixed. In the presence of coherent coupling, as is the case of the next
Sections, these concepts will require revisiting.

Dispersion relation

The dispersion of collective oscillations of a two-component miscible mixture can be ob-
tained similarly as the single-component case. However, “in-phase” and “out-of-phase”
oscillations of the two components have different dispersion relations, depending on the
intra- and inter-component coupling constants. For g1; = go92, in-phase oscillations cor-
respond to total density (d) excitations while out-of-phase oscillations to spin excitations
(s). The two modes corresponds, respectively, to modulations of the sum n; + ng or the
difference nq — ny of the densities. While for unequal interaction constants the modes
are hybridized, the distinction is useful as they reduce to pure density (or spin) modes
in the limit g1 — g22. The dispersion relations for Bogoliubov excitations are [41]
272\ 2
(hwas)* = (ZZ) + Pk (1.17)

where the value of the sound velocity for the excitations in the k — 0 limit is

o guni+ gaong + V(g1in1 — gaan2)? + dninagd,
Cd78 - 2m °

(1.18)
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Figure 1.1: Schematic representation of a immiscible mixture with phase-separated com-
ponents (top left) and a miscible homogeneous mixture (top right) in a box potential.
In a harmonic trapping potential is added, a miscible mixture can be buoyant (bottom
left) or not buoyant (bottom right).

The + and — sign holds for density and spin excitations, respectively. Of particular
interest is the case of equal densities n1 = ny = n/2 and symmetric coupling constants
gi1 = g22 = ¢, as the above equation simplifies into

cs =V (9 — q12)n/2m (1.19)
Cq =/ (g + glg)n/2m. (1.20)

They express the sound welocity cq and spin-sound wvelocity cs in the condensate. It
should be noted that the values of the two sound velocities can be greatly different, due
to the different dependence on the coupling constants. Experimental observation of the
two sound velocities for mixtures of 2*Na in |1,+1) has been reported in [42].

Spin healing length

Similarly to Eq. (1.8), one can define the spin-healing length
h

V2mégn’

by imposing that the kinetic energy of a spin excitation to be equal to dgn. This is

the length required for the order parameter to return to its bulk value in the presence

of a spin excitation, and so sets the typical size of the excitation. It should be noted

how the spin-healing length can be greatly different from the healing length due to its
dependence on dg, and even diverges in the limit g1o — g¢.

& = (1.21)

In-trap oscillations

Collective oscillations in a harmonically trapped sample are studied within the hydrody-
namic formalism as fundamental trap modes. For binary mixtures, the same treatment
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must be applied separately for density and spin oscillations. In the case of equal densi-
ties and symmetric coupling constants discussed above, the total density modes of the
mixture are the same as the single-component case. The spin modes, instead, are soft-
ened by the inter-component interaction, as their frequency is lowered by /(g — g12)/g
and their sensitivity to external forces enhanced. For example, the spin dipole mode has
frequency

g — 912
wsp = wh, 1.22
g+gi2 ( )
that has been experimentally observed in the case of 23Na [43]. For immiscible or buoyant
mixtures, the inhomogeneity of the ground state prevents the existence of small harmonic
oscillations.

Solitonic waves

In two-component one-dimensional systems a richer variety of solitonic solutions exist
thanks to the existence of both density- and spin-modes, and by the possibility of chang-
ing the conditions of the system from polarized and unpolarized (respectively, unequal
or equal densities at large distance from the soliton). Interestingly, while the density
solitons are substantially unchanged, new kinds of solitons exist in the spin channel.

Solitonic solutions can be found analytically in the symmetric case of equal inter-
action constants (Manakov limit), where the two-component GPE become integrable
by the inverse scattering transform method [4, 15]. Many particular solutions exist in
this regime, i.e., the dark-bright soliton in a polarized system [44, 45], or the dark-dark
soliton in an unpolarized system [46]. In the case of unpolarized system, a rich variety
of solitonic solutions are present, such as Gardner and algebraic solitons, breathers and
“solibore” solutions [15].

In the case of a miscible mixture with equal intra-component interactions and weak
spin channel (0g < g), an analytical solution named magnetic soliton exists when the
densities are equal [1]. More discussions on magnetic solitons and their experimental
observation are reported in Chap. 3.

While the solitonic waves discussed before are one-dimensional objects and not, in
general, stable in higher dimensions, different solitonic solutions exist in higher dimen-
sions [47, 48]. In particular for elongated 3D condensates, a large family of vortical
structures are admitted in the transverse plane, resembling the vibrational modes of a
membrane, known as Chladni modes [49].

Furthermore, solitons exist also in multi-components systems, for example bright-
bright-dark solitons in three-components systems [50, 51].

Experimentally realized binary mixtures

The Gross-Pitaevskii description of a binary mixture just developed is valid for all values
of the interaction constants between the components. Since the values of the interac-
tion constants depends on the atomic species and internal states considered, different
experimental systems are necessary to realize mixtures with different characteristics.



1.2. BECS MIXTURES 14

These experimental systems, however, must take into account several additional prac-
tical factors. First, not all combinations of atomic species and internal states form a
stable mixture, due to atom losses caused by inelastic collisions. Second, for a given
mixture, the coupling constants are fixed by the nature of the components, with the no-
table exception of mixtures with accessible Feshbach resonances. Third, not all mixtures
can be simultaneously trapped, especially when the confining potential is created via a
magnetic trap. Due to these limitations only a handful of binary mixtures have been
experimentally realized. In the following I present some examples of binary mixtures
that are relevant for this thesis.

Binary mixtures of 3’Rb have been firstly realized in the states |1, —1)-|2,1)[27, 52]
due to the possibility of simultaneous magnetic trapping. In particular, these states have
the same Zeeman energy sensitivity at a field of 3.2 G [53], consequently they experience
an identical trapping potential to an excellent approximation. The s-wave scattering
lengths a, . ;. of these states are [54]

a_1,-1= 100.4@0 a41,41 = 95.44(7)610 a41,-1= 98.006(16)&0. (1.23)

Therefore, the mixture they form is immiscible and phase-separates.

A mixture of 8"Rb offering tunable interactions via a Feshbach resonance is |1, 1)-
|2, —1). Tuning the inter-component interaction, this mixture can be miscible or im-
miscible [55]. Even in the miscible condition, however, the intra-component interactions
between the components are different and the mixture is subject to buoyancy.

The last example is the case of 23Na. Mixtures of these atom in the two different
hyperfine states (F' = 1 and F' = 2) have been found to decay rapidly [56] (with the
exception of the states |1,41)-|2,+2)) via hyperfine-relaxation collisions, while all mix-
tures of states in the F' = 1 manifold are stable. In particular, the states |1,41) have
scattering lengths [57]

a41,41 =0-1,-1 = 54.54(20)&0 41,1 = 50.78(4())(10. (1.24)

consequently they form a miscible mixture. Moreover, this mixture is not subject to
buoyancy since the intra-component interaction constants are exactly equal. Since the
intra- and inter-component coupling constants are similar (dg ~ 0.07g), the mixture
is near the threshold between miscibility and immiscibility. In this condition the spin
excitations are less energetic than the corresponding density ones, as their energy is
proportional to g < ¢, and vanishes at the miscible-immiscible transition, when dg — 0.
A direct effect of this condition is the strongly increased static polarizability of collective
spin modes [43]. The energetic difference between the two modes is also evident in the
characteristic velocity and size of the excitations. Due to their different dependence on
the coupling constants, in fact, the spin-sound velocity is &~ 5 times smaller than the
sound velocity and the spin-healing length is also correspondingly ~ 5 times larger than
the healing-length. The state |1, 0) instead is immiscible with any of the mp = +1 states
[31].
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1.2.2 Coherently-coupled mixtures

The coupled GPEs introduced in the previous Section describe quantum mixtures where
no interconversion process between the component takes place, conserving the number
of particles in each component. For mixtures of the same atomic species in different
internal states, however, the components can be coherently coupled via radiofrequency
or optical fields. Therefore, only the total atom number of the system is conserved, as
the coupling allows for conversion from one component to the other.

This coherent interconversion process can be inserted in Egs. (1.11-1.12) giving [2,
Chap. 21]:

hg;(t) einft\Ifg (125)

.0 h?
Zha\lfl = <—2mV2 + VVl,emt + gll’\I/1|2 + 912|\112|2) \Ijl -

2 *
z’hg‘h = <_hv2 + Vareat + g22| Wa|* + 912|‘I’1|2> Vs — il (t)efm’“ft‘l’l (1.26)
t 2m 2

where, in the rotating wave approximation, w,; and 2 are, respectively, the frequency
and the Rabi frequency of the coupling field. The energy difference between the compo-
nents has been absorbed into the definition of V,,;. The phase of the coupling is assumed
such that €2 is real and positive. The frequency of the coupling is set near the resonant
condition w, = wp+ 0 where J is the detuning from the resonance and wy the transition
frequency between the components (Va ezt — Vi et = hwp). In the case of equal trapping
potentials, the transition frequency is simply given by the energy difference between the
internal states, for example the hyperfine splitting between Zeeman levels, and by the
mean-field energy shift due to the chemical potential. Under this conditions one can
experimentally observe the time evolution of the order parameter W(t) ~ e~ W(0) [52].

Under a stationary coherent coupling, Eqs. (1.25-1.26) can be recast in the frame
rotating with the coupling field, transforming ¥, — Wie “rit/2 and Wy — Woelwrst/2,
In this frame the GPEs become time-independent and equivalent to Eq. (1.11-1.12) with
additional terms —@\PLQ. These terms introduce the energy cost:

hQ

Erf = 5 dr (\I’T\I’Q + \I»';\I/l) = —hQ/dI‘ |‘112H\I/1| CcOs (qbg - gf)l) (127)

dependent on the phase difference between the order parameters ¢o — ¢1.

Miscibility condition

The coherent coupling introduces modifications to the ground state and elementary
excitations of the system, as the two phases ¢1 2, before independent, are now correlated
by the additional energy cost. A detailed discussion of the properties of the system for a
homogeneous potential is given in [58] and in the following I will report only their main
results. When the external potential felt by the components is the same, the transfer of
particles between the components lead to equal chemical potentials p = p1 = po. The
configuration of minimum energy has cos(¢a — ¢1) = 1, hence the phases of the order
parameters are locked together.
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In the case of symmetric coupling constants g11 = g2o = g, the ground state satisfies
the condition:

(g —g12 + > (n1—n2) =0 (1.28)

hQ
2 A/ 112
admitting the solutions

ny —ng =0 (1.29)

R\’
ny —ng = :I:n\/l — <(g_912)n> . (1.30)

These two solutions correspond to an unpolarized and polarized ground state, with the
first having lower energy if g1o < g + A2/n. This condition is analogous to the misci-
bility condition Eq. (1.13), with the unpolarized and polarized solution corresponding,
respectively, to a miscible and immiscible mixture. The coupling term favours the (un-
polarized) miscible condition. In the polarized ground state the particle interconversion
is suppressed by non-linear interaction due to the self-trapping of the Josephson effect.

In the case of a miscible mixture, as in 2Na |1, 41), the new ground state has equal
densities n1 = n9 and equal phases ¢o = ¢1 everywhere and for any coupling strength,
independent of the shape of the external potential. When the coupling constants differ,
instead, the ground state is always polarized in a uniform system.

For an immiscible mixture, the ground state is not trivial as the phase separation
(due to immiscibility) and mixing (due to coherent coupling) compete. For experimental
investigation of the ground state of a trapped sample in the case of 8’Rb in |1, —1)-
2, +1), see [59]. Mixtures of 8"Rb in |1,1)-|]2, —1) offers tunable interaction constant
g12 via Feshbach resonances [60], allowing for the study of Josephson effects at various
values of the mean-field interaction.

Dispersion relations

The excitation spectrum of the coherently coupled system differs from the uncoupled
case. For symmetric interaction constants and in the unpolarized ground state, the
density excitations, corresponding to excitations in the global phase ¢1 4+ ¢2 are un-
changed, while an energy gap appear in the low-momentum dispersion relation of the
spin excitations [58]. The gap,

hwy = /W (g — g12)n + Y, (1.31)

corresponds to the Josephson plasma frequency. The appearance of the gap can be
interpreted as the predominance of the internal dynamics over the kinetic energy term
for long-wavelength spin excitations. A complete Bogoliubov analysis of the coherently-
coupled mixture can be found in [61].
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1.3 Landau-Lifshitz model in two-component BECs

The evolution of a two-level atom in an (classical) oscillating electric field is well de-
scribed, in the Rotating Wave Approximation, by the Bloch equations. The state of the
atom can be represented by a three-dimensional unit vector (the Bloch vector), such
that the z-component of the vector is equal to the difference in occupation probability of
the two states. The internal dynamics of the atoms is then described by the precession
of the Bloch vector around a coupling vector. In this description, the coupling vector
depends only on the Rabi frequency and detuning of the external coupling field.

The above equation also governs the motion of a magnetic moment in a magnetic
field. In real magnetic materials, however, many magnetic momenta are present and
they influence each other. Similarly, when many atoms evolve coherently together, they
will collectively experience state-dependent energy shifts due to their mutual mean-field
interaction, and their internal dynamics can be described by the Josephson equations.
Furthermore, if the atoms are not fixed in space, the orbital degrees of freedom of the
spin must be considered in addition to the internal dynamics. With suitable approxima-
tions, the dynamics of the atoms can be described by a non-dissipative Landau-Lifshitz
equation (LLE), the equation governing the magnetization in magnetic materials [62,
63].

In this Section, I introduce the Josephson equation and its dynamical regimes, and
discuss how the coupled GPEs Eqs.(1.25-1.26) can be reduced to the Landau-Lifshitz
equation. This reduction is the foundation of the experimental work of Chap. 4.

1.3.1 Josephson equation

The Josephson equations [64] describe the tunnelling dynamics between two macroscopically-
occupied quantum states. Originally developed for thin junctions between superconduc-
tors, commonly known as superconducting Josephson junctions (SJJ), the Josephson
equation has been discussed for quantum and for semi-classical systems [65, 66]. The
field of SJJs has seen great developments in the last years and is now mature, especially
towards the realization of quantum computing devices. The Josephson model, however,
can be realized with cold gases of bosons (bosonic Josephson junctions, BJJ), allow-
ing for the exploration of dynamical regimes that are not accessible in the SJJ, such
as macroscopic quantum self-trapping and m-oscillations. In the following, I recall the
dynamical regimes of the Josephson model as they are useful to describe the calibrations
performed in Section 4.1.

The Josephson equations for a Bose gas can be expressed in terms of the spin-density
s = (Sz,Sy,52). The spin-density describes an ensemble of atoms in the same internal
state, hence for a Bose gas its modulus equals the total atomic density n, and s, = n;—nao
is the magnetization of the system. The equation of motion of a spin in a magnetic field
is

§=H(s) x s, (1.32)

and the physical characteristics of the system are contained in the definition of the
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magnetic field H(s). For a single two-level atom, the coupling vector H = (2,0, —0)
depends only on the Rabi frequency €2 and the detuning § of the external driving field.

Let us consider a homogeneous atomic sample with all atoms in the state 1. The
mean-field energy shift of each atom, due to the intra-component interaction, is then
equal to g11ny. In this sample, if one atom is flitted to the state 2, it will interact
with the system through the inter-component interaction constant, and experience an
energy shift of gjani. Consequently, if the intra- and inter-component coupling energy
are different, the energy of each state will depend on the atomic densities n; and nag,
introducing in the system a detuning term proportional to the (relative) population of
the states. Due to the nonlinear detuning, the dynamics of the system is now described
by the Josephson model. The non-linear detuning depends on the difference between
inter- and intra-component coupling constants and is proportional, in the symmetric
case of g11 = ga2 = g, to (g — g12)/h = dg/h [2, Chap. 21]. The coupling vector then
becomes

H(S) = (9707 —6 — %82)7 (133)

and the spin Hamiltonian

LY ho 09 o
H = —5 S + 5 52 + 2 5= (1.34)

The Josephson equations are commonly written in terms of two conjugate variables:
the fractional population imbalance Z and the relative phase ¢. The system can be
recast to these variables by the simple transformation:

7 %‘ (1.35)
¢ = tan"'(s,/sz), (1.36)

or, equivalently,
s=n(V1—2Z%2cosp,\/1— Z?sin¢, 7). (1.37)

The dynamics then depends on two dimensionless parameters

1)

AE = — 1.38
- (1.38)

dgls|
A= . 1.39
o) (1.39)

In the new variables, the Hamiltonian reduces to the Josephson Hamiltonian
A

H= EZQ— V1 —Z2cosp + AEZ, (1.40)

where the time is expressed in units of the Rabi period 1/9Q. In terms of the new
variables, the dynamical equations (Josephson equations) read

Z(t) = —/1— Z(t)2sin(¢(t)) (1.41)

h(t) = 7Z(t) Cos
Bt) = A+ AZ(1) + —= V20 (6(1)). (1.42)
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The same equations describe the motion of a nonrigid pendulum with tilt angle ¢,
angular momentum Z and length proportional to v/1 — Z2 [67]. The two dimensionless
parameters AE and A, determine the characteristics of the system and its dynamical
regimes.

1.3.2 Josephson dynamical regimes
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Figure 1.2: Phase portraits of the Josephson equation for different values of A. Each
line is a trajectory for different initial conditions, while different dynamical regimes are
identified by a different background color.

(a) For A < 1, the dynamics is Rabi-like, with oscillations with (¢) = 0 (plasma-
oscillations, blue) and (¢) = 7w (m-oscillations, green). All the orbits have (Z) = 0. Two
fixed points Z = 0, ¢ = 0,7 exist (star and triangle, respectively). For A < 1, the
system evolves with Rabi dynamics (blue and green dashed lines).

(b) For 1 < A < 2, two self-trapped regions appear at finite Z and ¢ = 7. The self-
trapped orbits (red) have (Z) # 0 and (¢) = w. Plasma and m-oscillations persist
outside of the self-trapped region. Three fixed points exist: Z = 0, ¢ = 0 (star) and
Z =+/1—1/A% ¢ = (dot).

(c) For A > 2, running-phase self-trapped orbits appear (orange), having (Z) # 0 and
monotonously increasing ¢.

The Josephson equation has different dynamical regimes depending on the values of
the adimensional parameters. For simplicity, I will discuss the dynamical regimes as-
suming AFE = 0, as the presence of the detuning does not qualitatively affect the phase
portrait of the system. For A < 1, the non-linear effects can be neglected and one recov-
ers the Rabi two-level system, where all the orbits have period 27/ (Fig. 1.2(a), dashed
lines) and two fixed points (Z = 0, ¢ = 0, ) exist, corresponding to the low- and high-
energy eigenstates. Increasing A, the non-linear effects modify the orbits (Fig. 1.2(a),
solid lines), both in shape and in period. All the orbits, however, retain the peculiar
characteristics of the Rabi dynamics: they have mean magnetization (Z) = 0 and mean
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phase (¢) = 0, 7. Orbits near the (Z =0, ¢ =0) and (Z =0, ¢ = 7) point are known,
respectively, as plasma-oscillations and m-oscillations. Their frequency depends on the
non-linear interaction parameter as

wp=WI+A | wr=0QV1-A. (1.43)

At A =1, a new dynamical regime appears at ¢ = m, called of macroscopic quantum
self-trapping (Fig. 1.2(b)). In this regime the magnetization never changes sign and
oscillates around a finite value, while the phase also oscillates close to . Two addi-
tional equilibrium points (Z = £4/1 — 1/A2, ¢ = ) exist inside the self-trapped region.
Plasma and m-oscillations are still present, however m-oscillations are not close to the
point (Z = 0, ¢ = 7), that is now an unstable point, as they encircle the self-trapped
region. Between the two dynamical regions lies a separatrix where the period of the
orbits diverges. It should be noted that the condition of existence of the self-trapped
region is equivalent to the condition for which the polarized solution of Eq. (1.28) has
lower energy than the unpolarized one.

Further increasing the non-linear parameter, the phase portrait changes again for
A > 2. At this value the self-trapped regions reach the magnetizations Z = +1 and 7-
oscillations disappear. A a new kind of self-trapped orbits (running-phase) are present,
where the magnetization still oscillates around a finite value, but the phase is continu-
ously running rather than oscillating.

1.3.3 Landau-Lifshitz equation

The evolution of the magnetization M in a broad range of ferromagnetic materials can
be described as a damped precessional motion around an effective magnetic field, a
phenomenon governed by the Landau-Lifshitz equation (LLE) [62, 63]. With the LLE
one can describe, for example, the formation of magnetic domains separated by magnetic
domain walls and the development of magnetic collective excitations (magnons). Today,
frontier research on magnetic materials is investigating the manipulation of spins and
spin-carrying currents, a field known as spintronics [68], in a similar fashion as electric
charges are manipulated in electronic devices.

The key element of the LLE is the effective magnetic field H, that contains the phys-
ical characteristics of the ferromagnetic material. This effective field must be calculated
considering externally applied fields, the anisotropy of the material, the magnetization
state and exchange terms due to the quantum nature of the spins. For a given effective
field, the dynamics of M is purely precessional, and its modulus remains constant and
equal to the saturation magnetization of the ferromagnet, however the effective field can
be a non-trivial function of the magnetization. In an extended system, the magnetiza-
tion is a continuous function of space, allowing for the creation and propagation of spin
patterns and spin waves.

For most real materials, however, the precession is damped by a viscous term (Gilbert
damping) and M aligns with the effective field, therefore stopping the dynamics. This
damping is often an unwanted effect that limits the coherence of spintronic devices, and
special materials (such as Permalloy) are required to reduce the damping term.
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Figure 1.3: Trajectories (blue line) on the Bloch sphere for an initial magnetization
M (blue arrow) precessing around an effective field H (black arrow) under the LLE for
different parameters. Undamped (a) and damped (b) motion with constant H = (1,0, 0)
along the z-axis. In the undamped case the motion is periodic, while in the latter the
damping term leads to alignment of the magnetization vector to the effective field. (c)
Damped motion with H = (0.5,0, M), dependent on the direction of M.

In the following, I will outline how a two-component BEC mixture system can model
an undamped LLE under suitable approximations. This parallelism is at the basis of
the experimental investigation on magnetic heterostructures reported in Chap. 4.

1.3.4 From GPE to LLE

The reduction of the two-component Gross-Pitaevskii description to the LLE is based
on the separation between the density and the spin dynamics of the gas. Fixing the
total density of the gas, the four real numbers constituting the two (complex) order
parameters are reduced to the three components of M. In the following a two-component
one-dimensional system will be considered for simplicity. The same procedure can be
applied in a 3D geometry at the expense of more complex vector expressions.

Density and spin dynamics

The two-component wavefunction of the condensate is analogous to a spin—% and can be
simply rewritten as the spinor

U= (¢r,92)"

where 1; = /7i;€'% is the order parameters of the i-th components. The linear density
f; (with dimension [m~!]) and the phase ¢; describe each component along the only
dimension of the system (x). From now on, ¥ indicates a (position-dependent) spinor
wavefunction. To separate the density and spin dynamics, we introduce the total linear
density 7o = [¢1]? + [¢2]?, and the linear combinations ¢4 s = ¢ £ ¢2 of the phases.
The density matrix Uf @ ¥ = {F9j}ij=1,2 of the spinor wavefunction can then be
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decomposed for convenience in a scalar and a spin part
1
Ueow= i(ﬁﬂ—i-a-s)

where o is the vector of Pauli matrices and s is the (linear) spin density. For construction,
the modulus of the spin density equals the total density. Each component of the spin
density is given by

So = \IITUQ\II.
As done in the single-component hydrodynamical formalism, we introduce a scalar cur-
rent for the total density

= —i%Tr(\I'T@;\I/ — U9, vl (1.44)
and from the total number conservation, we derive the continuity equation for n:
i+ 0pj; = 0. (1.45)
One can express the total density current through the velocity
v=2 = N (0,004 Z0,0.), (1.46)
n - 2m n

where we explicitly separated the total and difference phase contributions, respectively
induced by density and magnetization excitations. The spin density evolution is also
determined by an analogous expression for the spin current js, where each component is
Jsa = i%@xsa. The spin current can be rewritten as

h
Jjs=uvs+ M(‘)xs X s (1.47)

where the first term is the spin density transported by the bulk motion (advection) of
the condensate and the second one is the quantum torque term. The quantum torque
term is analogous to the exchange term of magnetic materials, as it originates from the
kinetic energy cost of twisting the spin of the condensate. It is a term of pure quantum
nature as it vanishes in the limit 2 — 0.

Differently from the total density, the spin is not conserved due to the action of the
effective magnetic field H and its continuity equation contains explicitly the precession
term

S+ 0.js = H(s) x s, (1.48)
where H(s), defined as function of the one-dimensional quantities, is
H(s) = (©,0,—0 — ks.). (1.49)

We express the nonlinear detuning via the nonlinear coupling strength

k= (9 — g12)/h. (1.50)
The non-linear coupling strength x has dimensions [ms~!], so that xs, has the dimension
of a frequency. It should be noted how the adimensional parameter A now becomes

L

T= 0 (1.51)
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Constant-density approximation

So far, Eq. (1.45) and Eq. (1.48) are equivalent to a pair of coupled 1IDGPE, rewritten in
terms of the density and spin channels. This formalism however can be simplified in the
case of mixtures near the miscible-immiscible phase transition (g12 ~ §). I recall that,
in this condition, the spin excitations have much lower energy than the corresponding
density ones and they can be excited essentially without affecting the total density of the
system [1, 69, 70]. We can therefore consider the total density of the sample as fixed and
set Eq. (1.44) to zero, while the modulus of s is now a (position dependent) constant.
The dynamics of the system is then described only by Eq. (1.48) and by the definition
of js that now contains only the quantum torque term. Eq. (1.48) then becomes

) h
S+ Oz <2mﬁ8xs X s> =H(s) x s. (1.52)

This equation is equivalent to the LLE in the absence of the damping term, so a
two-component Bose gas can mimic a dissipationless magnetic material. It should be
noted how the quantum-torque effect depends on the gradient of s and becomes more
important in the presence of sharp spin inhomogeneities. The relevant length scale
on which the spin inhomogeneities become important is the spin-healing length of the
condensate. In bulk ferromagnetic materials it is often difficult to engineer sharp material
inhomogeneities, however magnetic interfaces can be created by placing side-by-side a
ferromagnetic and a non-ferromagnetic material [71]. At the interface, the effective field
is discontinuous, thus the spin can accumulate a very steep gradient.

In perspective, the Gilbert damping term can be inserted also in Bose gases intro-
ducing a thermal component. The mutual interaction between the condensate and the
thermal component should lead to alignment of the two spins [72].

Reduction of an elongated sample to 1D system

In the previous one-dimensional analogy with the LLE we implicitly assumed that the
3D coupled GPEs (1.25 - 1.26) are reduced to one dimension as in Section 1.1.1. This
reduction, however, assumes that the radial density distribution of each component is
constant, which is true only in the limit Aw, > pui, p2, i.e. when the radial density
distribution is equal to the ground state of the radial harmonic oscillator and the radial
size of the sample is smaller than the healing length. This is a challenging condition to
realize in experimental systems, due to the very tight radial confinement required.
However, Eq. (1.52) is valid as long as the system is one-dimensional for spin exci-
tations, which is a less strict requirement since spin excitations have size of the order
of & > . When the radial size of the system R, satisfies £ < R, < &, the system is
effectively one-dimensional for spin excitations, while remaining three dimensional for
density ones. In this condition one cannot, in general, assume a fixed radial density pro-
file for both components to calculate the interaction constants. However in Eq. (1.52) the
only contribution of the radial density distribution is in the value of the non-linear cou-
pling strength x, that depends on the total density distribution. In the constant-density
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approximation, we can then assume a fixed radial distribution of the total density and
calculate the non-linear coupling strength.

In Section 1.1.1, the rescaled coupling constants are derived rewriting the order
parameter in cylindrical coordinates as ¥(r) = ¥(z)¥,(p). We assume |¢(2)]* = @
is constant, as the z-dependence of the linear density can be considered separately,
applying the local-density approximation along the z axis. Along the radial directions,
the transverse density profile is an inverted parabola (Thomas-Fermi limit) and

9 p2 1/2
P P

Its Thomas-Fermi radius R, = 2,/m—fu(aﬁ)1/4, where a = a11 = asge, depends on the
total linear density n. The rescaled interaction constants then are

_ 4mh%ay A drh3a;; 4 4, 1

iy = [0, ftpdpag = T o = 3@ ey (50

and k can be calculated from Eq. (1.50). From the above equation, however, one can
also express the non-linear coupling strength in terms of the 3D coupling constants g;;
and the 3D density on the x axis of the sample (at p = 0) n3”, obtaining

_ 2 3D
= —(g— . 1.55
i = (9 — gr2)n (1.5)
This result is a consequence of the dependence on R, of the 1D coupling costant (=~ 1/ Rz)
and of the linear density (n = 7/ 2R/2)n3D ). In this formulation it is evident how the
non-linear coupling strength has a Thomas-Fermi profile for an elongated sample with
harmonic trapping along the axis.

1.3.5 Josephson model with cold gases

The discussion so far has been focussed on the realization of the Josephson model by
coherently coupling different hyperfine states. The principal advantage of bosonic over
superconducting Josephson systems is the ability to produce large population imbalances
with ease and, when the coherent coupling between the states is provided by radiofre-
quency fields, by the large amount of control that is possible on the coupling field. In
the two-mode approximation it was first experimentally realized [60] using mixtures of
8TRb in |1,1)-]2, —1), thanks to the tunable inter-species interaction constant, where all
the Josephson dynamical regimes have been observed. Using the same mixture but in an
elongated system, the mixture miscibility can be controlled with the coherent coupling
strength. Both the ground state at the crossover and the dynamics following a quench
between the miscible and immiscible regimes have been studied [59, 73].

The Josephson model can be also realized in cold gases by spatially separated con-
densates, i.e. a single Josephson junction has been realized in a double-well trap [74, 75,
76], in addition realization of 1D array of junctions [77] and elongated systems [78, 79,
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80] have also been reported. In this system, the condensates are spatially separated in
the two wells and, by bringing the wells close one to the other, their wavefunctions are
slightly overlapped. The overlap is sufficiently small that the wavefunctions of the con-
densates are not modified, and a linear tunnelling between the wells is established. The
dimensionless parameters can then by computed from the overlaps of the wavefunctions
[81], assuming that these are independent of Z(t). By tuning the barrier height between
the wells different dynamical regimes can be accessed, in particular it is possible to en-
gineer very high values of A by increasing the barrier. Moreover, systems with negative
values of A can be realized if the interaction between the atoms is attractive [76]. On the
other side, for low barrier heights (low A), the two-mode approximation starts to break
down in these systems, hence not all the parameters regimes can be easily explored. An
experimental analogous to the (dissipative) LLE with spatially separated condensates
has been recently reported in [79, 82].
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Chapter

Experimental apparatus and magnetic
shield characterization

Motivation for new experimental apparatus

As described in Chap. 1, it is possible to realize a multi-component coherently-coupled
quantum mixture using atoms in different hyperfine states. The time-independent cou-
pled GPEs description of Eq.s 1.25-1.26 has been derived assuming constant values of
the coupling field strength 2 and detuning §. This assumption, however, is always an
approximation for experimental systems, where both these parameters can be influenced
by uncontrollable factors. The experimental realization of coherently coupled mixtures
of the states |1,41) of 2>Na and the investigation of spin dynamics, in particular, pose
some stringent requirements to the experimental apparatus, particularly to the stability
of the magnetic field and its homogeneity across the sample.

In 2Na atoms, as in all alkali atoms, the splitting in hyperfine states originates from
the coupling between the total nuclear angular momentum and the total electron angular
momentum. I recall, for notation purposes, that the quantum numbers of interest to de-
scribe the hyperfine levels at low magnetic fields are the total atomic angular momentum
(F) and its projection along the quantization axis (mp, the magnetic quantum number).
The ground state 325, /2 of 23Na is then split in two manifolds (F = 1,2). Each manifold
is composed of energy-degenerate substates with different m g, whose degeneracy is lifted
in the presence of an external magnetic field B, due to Zeeman effect. The energy of
each states can be calculated from the well known Breit-Rabi formula [83] and, in the
limit of small B,, the energy shift of the state |F, mp) is linear in the magnetic field as

AE|F,mF> = uBgFmFBz ~ grmp X h0.711 MHZ/G X Bz, (2.1)
where pup is the Bohr magneton, gr the Landé g-factor and h the Planck constant. For

the states |1, £1) this energy difference is of the order of 1.4 MHz/G. To apply a coherent
coupling with a known detuning, then, the frequency of the coupling field must closely
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match the energetic difference due to the Zeeman effect, with this condition being more
strict for lower €2, since the relevant parameter is the ratio 6/€2.

The investigations we aim to perform with this experimental apparatus are in the
Josephson regimes, therefore the strength of the coherent coupling must be comparable
with the Josephson energy of the sample (g — g12)n (Section 1.3). For a typical BEC of
23Na, the condensate has density of about 102°atoms/m?, leading to a mean-field energy
of (g — g12)n ~ h100Hz. Given the sensitivity of the energy of states to the magnetic
field, the values of the latter should fluctuate much less than 100 nG.

Structure of the Chapter

As part of my PhD work I developed a new experimental apparatus to realize coherently-
coupled BECs of sodium in a very low noise magnetic environment. This new apparatus
stems from the previous works of our laboratory of designing a multi-layer magnetic
shield [84] and realizing a BEC of ?*Na in a hybrid trap [85].

In this Chapter I present the characterization of the realized magnetic shield, as well
as the design, realization and characterization of a new experimental apparatus that
allows to produce a coherently-coupled Bose-condensed sample in a uniform magnetic
field with fluctuations less than 10 uG. In the first Section, I characterize the passive
magnetic shield prior to installation. In the second Section, I review the design choices
and give a technical description of the apparatus in its current status. In the third
Section, I report the measurements of the resulting properties of the magnetic field.

2.1 Magnetic shield characterization

Magnetic noise in a laboratory environment is usually on the order of a few mG in
a wide spectrum of frequencies from DC to hundreds of kHz. This noise is usually
not problematic for BEC experiments using magnetic traps, since it does not interfere
with radiofrequency-induced evaporative cooling. In our laboratory, for example, we
observed magnetic field fluctuations of several mG, mainly from electric line noise and
moving magnetized objects. When higher magnetic field stability is required, a magnetic
field stabilization system must be realized.

Magnetic field stabilization has been used in a variety of experiments with cold atoms,
such as cold-atom lasers [86], cold-atom experiments in microgravity [87, 88], atom in-
terferometry [89] and atomic magnetometers [90]. Outside the cold-atom community,
elimination of stray magnetic fields is desired, for example, in electron microscopy [91],
nuclear magnetic resonance [92] and precision magnetometry [93]. These experiments
adopted either active cancellation or passive shielding to suppress environmental mag-
netic noise.

Active stabilization of the magnetic field consists in placing a magnetometer inside
the region where the field stability is required, and enclosing the region with electromag-
nets. The current in the electromagnets is then controlled by a negative-feedback loop to
stabilize the reading of the magnetometer. Commercial solutions [94] report a reduction
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of external noise by a factor of 100, but the performance of these systems diminishes
with distance from the magnetic sensor. Since the vacuum apparatus of an ultra-cold
atoms experiment makes it impossible to place the magnetic sensor at the position of
the sample, carefully constructed apparatuses using multiple sensors are necessary [95]
to reach good performances. Moreover, canceling also magnetic field gradients requires
multiple sensors and complicated electronic controls [96].

Passive magnetic shielding, instead, does not require any active stabilization mech-
anism. The external magnetic noise is suppressed by enclosing the region of interest by
high-magnetic-permeability or high-conductivity materials [97]. The former are based
on field-shunting effects and are effective on low-frequency (DC-100 Hz) fields, while the
latter uses Eddy currents to cancel high-frequency fields (1kHz and above). Passive
shielding has the advantage of canceling fields inside large volumes without any sen-
sor or control electronics required, and for this reason “Zero-Gauss chambers” made of
very-high-magnetic permeability materials are often used, reaching attenuation factors
of =~ 100 for a single layer, fully closed chamber. This shields however can not have
arbitrarily large size because the magnetic field inside the shielding material grows with
the enclosed volume and can become too high for the material to sustain.

Apparatuses for ultra-cold atom experiment are usually too large to be enclosed fully
in a magnetic shield, however it is possible to surround only the sample, leaving openings
in the shield for optical access. While openings degrade the performances of the shield, it
is still possible to reach high shielding factors using multiple-layer shields [87]. As a final
remark, hybrid systems where active magnetic field cancellation and passive shielding
are used in combination have been recently reported [98].

2.1.1 Review of magnetic shielding principle

To suppress the magnetic field fluctuations in our laboratory and reach a magnetic
field stability of the order of a pG, a multi-layer magnetic shield was designed [84] and
numerically simulated using COMSOL [99].

Passive magnetic shielding relies on the flux-shunting effect of high-magnetic perme-
ability materials. From the Maxwell equations, in a linear and isotropic material, the
magnetic field H and the flux density B are related by

—

B(Fu t) = Mruoﬁ(f; t)

where u, and pg are the relative and vacuum magnetic permeability. In the absence of
currents, the tangential component of H and the normal component of B are continuous
across discontinuities of u,., hence the magnetic field lines can change direction abruptly
at the interface between different materials. Very high-magnetic-permeability alloys have
tr = 10° and at their interface with materials of low s, such as air, they distort the
magnetic field lines significantly. On the air side, the lines are nearly perpendicular to
the interface, while they are nearly tangential inside the material to satisfy the continuity
of the normal component of B. Thanks to this effect it is possible to create a nearly field-
free region by enclosing it with a layer of high-magnetic-permeability material (shield),
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Figure 2.1: Magnetic field lines around a cylindrical magnetic shield, for an external
transverse (a) and axial (b) field. The magnetic shield distorts the field lines concentrat-
ing them inside the high-permeability material and leading to a lower field in the region
inside the shield. Adapted from [97]

since the magnetic field lines will be deviated inside the material and can not penetrate
in the enclosed region (see Fig. 2.1).

Since the materials with very high magnetic permeability are all ferromagnetic, two
other important characteristics of the material must be taken into account: saturation
and residual magnetization. For a ferromagnetic material a more realistic description of
the flux density is given by

—

B = popr(H) (ﬁ+uof\7f)

where the relative magnetic permeability is now dependent on the modulus of the mag-
netic field H and the residual magnetization M is the magnetic field that remains in
the material when the external field is zero. Generally, u, has a constant value for low
magnetic fields, well below the saturation field. When the saturation is reached, roughly
speaking when all the magnetic domains are already aligned with the magnetic field, the
value of u, decreases approaching 1 and the shielding effect is reduced. The magneti-
zation, instead, causes hysteresis in the response curve of the material and depends on
the history of the applied magnetic field. The remnant field caused by magnetization
effectively introduces an unwanted field that can fluctuate due to changes in the external
magnetic field or temperature. Considered this, for the purpose of magnetic shielding,
the saturation threshold should be as high as possible to have the maximum attenuation
at any magnetic field and the magnetization should be as low as possible to reduce the
remnant field inside the shield. Special metal alloys have been developed specifically for
these characteristics.

The optimal geometry for a magnetic shield is spherical or an infinitely long cylinder,
since any discontinuity in the material can lead to magnetic field leakages. However,
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fabricating these shapes is impractical since the material usually is in the form of sheets,
and also the shield must be built so that it is possible to assemble it. Hence the most
practical shape in our case is a long cylinder, to be assembled around the existing vacuum
apparatus. The attenuation of a field directed perpendicularly to the axis of a (thin and
long) cylindrical magnetic shield are approximated by the formula [97]

prl
A= 5R (2.2)
where t is the thickness of the cylinder and R its radius. A similar formula, where the
length of the cylinder is used instead of the radius, holds for fields directed along the
axis of the cylinder. The shielding performances can be increased using several layers of
magnetic shielding, so that the environmental field is more and more attenuated as the
layers are traversed. However, the total attenuation factor Ay is not the product of the
different attenuation factors A;, as each layers is modifying the shielding performances
of the nearby layers. A modified formulas must instead be used [97]

R2

n—1 R2
AmzAnHAi[l— : }
i=1 i+1

where the index ¢ relates to the i-th layer of the magnetic shield. A similar formula with
weights (1 — #il) holds for axial fields.

These formulas are a useful starting point to grasp the order of magnitude of the
performance of a magnetic shield, but do not capture the effect of the finite length of
the cylinder and of apertures. To capture this, the magnetic shield has been simulated
using the finite elements method (FEM) in COMSOL, to find the optimal geometry for
our application and given our geometric constraints. The detailed description of this
work can be found in [84] and here only the final results are presented.

Two different materials were chosen for the realization of the magnetic shield, in
order to maximize the shielding performances while allowing to apply magnetic fields
to the sample safely. The most common material for magnetic shielding is py-metal, an
alloy with p, = 4.7-10° and saturation at 0.75T [100]. This material permits to reach
high shielding efficiencies and has been used for the three outer layers of the shield.
However, numerical simulations showed that the magnetic field in the innermost layer
would have reached values close to the saturation of y-metal during the MOT phase. To
operate the shield in safe conditions, the innermost layer was fabricated out of Supra-50,
a different alloy with lower p, (2-10%) but higher saturation (1.5T [100]). In this way,
most of the applied fields are contained in the innermost layer and do not affect the
outer layers. It must be noted that the magnetic permeability quoted by manufacturers
are obtained for materials in ideal annealing and magnetization conditions, while for
real-use scenarios the presence of magnetic hysteresis can lower the permeability even
by an order of magnitude [97].

In its final realization the magnetic shield consists of four layers of shielding material.
Each layer is composed of two half-cylinders cut perpendicularly to their axis, with the
outer diameter of the top half equal to the inner diameter of the bottom one, so that the
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Figure 2.2: The finished four-layer magnetic shield. (a) The four upper pieces disassem-
bled, (b) the four lower pieces assembled and (c) technical drawing of the shield with
dimensions in mm.

two pieces can overlap. This overlap between the pieces is necessary to avoid magnetic
field leakages. The innermost layer has an internal diameter of 102 mm, height of 221 mm
and thickness of 2.5 mm. The outer layers are increased in diameter and in height by
34mm, have a thickness of 2mm and are made of p-metal. In each layer there are ten
apertures with a diameter of 30 mm to allow optical access. Eight apertures are on the
side of the layer, aligned on the central horizontal plane and two apertures are centered
on the opposite faces of the cylinder. These apertures are large enough to accommodate
standard 25 mm optics and their mountings. Two additional apertures with diameter of
10 mm are placed on the faces of the cylinder to allow for cable access.

The pieces of the shield are held in place by non-magnetic Nylon spacers. A technical
drawing and photos of the realized magnetic shield are in Fig. 2.1.1.

2.1.2 Attenuation measurement

Before assembling of the magnetic shield on the experimental apparatus, we tested its
performance with a direct measurement. This test was performed applying an external
uniform magnetic field By, in which the shield was placed, and measuring the magnetic
field B penetrating inside the shield with a magnetometer.

To generate controllable and rather uniform fields, a solenoid made of 0.8 mm copper
wire was wound around a hollow, non-magnetic cardboard support. The solenoid has
a rectangular cross section of 59cm x 39cm and is 1.5m long. It is made of 138
windings of wire, at a mean distance of 10 mm, producing at its center a field of 1.18 G/A.



33 CHAPTER 2

The inhomogeneity of the field inside the solenoid is below 6% in the central region
of its volume and this region is large enough to completely enclose the shield. We
placed the solenoid away from ferromagnetic materials during the measurement, to avoid
distortions of the field. We apply a DC current of 0.5 A and, reversing its polarity, we
perform differential measurements in order to subtract the contribution of environmental
magnetic fields.

Measurements of magnetic field were performed using a 3-axis magnetic field sen-
sor (Mag-13MCL100) from Bartington Instruments [101]. This sensor has a measuring
range of 1 G and is sufficiently low-noise (<60nG/v/Hz) that the uncertainty in our
measurement is limited by the readout of the sensor’s output voltage. Each of the three
components of the magnetic field measured by the sensor have independent outputs, that
were measured using multi-meters. From the independent measurements of the three
axis we compute the modulus of the magnetic field as it is the quantity of interest. We
sampled |B| at different position inside the shield along the = and z axis.
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Figure 2.3: Field attenuation by each shield layer in the z axis and in the z axis.
The experimental data (points) and the numerical simulation (line) show a resonable
agreement. The innermost layer is at the top, the outermost at the bottom.

For each layer of the shield, we measured |B| for an external field along the axis of
the shield (z axis) and perpendicular to it (z axis) (Fig. 2.1.2) by placing the shield
in the appropriate directions. However, the attenuation of fields along the z axis is of
greater interest, since these will sum linearly to the bias field applied in the experiment,
while radial fields will sum in quadrature to the vertical bias. We then compute the
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attenuation factor A,eqs = % to make a comparison with the analytical formula

Eq. (2.2) (Atheo) and the results of numerical simulations (A,umericar). For large shields
with small apertures, a reasonable agreement with the analytical formula is expected,
however the history of the material can degrade the magnetic permeability even by an
order of magnitude [97]. We measured the attenuation of an external field directed
along x for each layer of the shield separately and calculated the attenuation factor
for a conservative value of p, of 1/10 of the manufacturer’s value. From the results of
Table 2.1.2 one can clearly see the large effect that the openings and the permeability
degradation have on the performances of the shield. However, the numerical simulations
are closer to the actual performance and we can a posteriori justify the choice made
in [84] of using a much lower pu, than the value quoted by the manufacturer. This
characterization confirms that running FEM simulations of this kind of apparatuses is a
necessity during the design phase.
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Figure 2.4: Attenuation factor of the assembled magnetic shield for an external field By
directed along the z axis. The experimental measurements (points) and the numerical
simulations (line) are in good agreement. The gray shades represent the four layers of
the shield. Note that the attenuation right outside of the shield is larger than 1 because
the external field is concentrated by the shield itself.

Finally, we characterize the complete shield assembly for a field directed along both
axes. The results are reported in Fig. 2.4. We found a good agreement between the
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Layer ‘ Ammeas ‘ Atheo ‘ Anumerical

1 33 431 13
2 85 630 87
3 141 514 153
4 215 433 316

Table 2.1: Measured versus calculated radial attenuation factors of the separate shield
layers. The layers are numbered from the innermost to the outermost.

measured attenuation factor and the numerical simulations of [84], with an attenuation
of the external field by five orders of magnitude. While the precise determination of
the complete attenuation factor is impossible because of the limited sensitivity of our
magnetometer, we can infer from the agreement between the single-layer performances
and simulations that the expected performance will be reached by the complete assembly.
During this calibration, a small residual magnetization of the innermost layer (<0.5 mG
at the center) was found. This magnetization was probably caused during transport or
manipulation.

2.2 Experimental apparatus

At the beginning of my work the magnetic shield described in the previous Section was
not installed in our laboratory, and BEC samples were produced using a preliminary
experimental apparatus [85]. The apparatus however was not compatible with the mag-
netic shield, hence part of it was dismantled, redesigned and then realized. In this
Section I describe the current status of the apparatus with the magnetic shield installed.

2.2.1 Experimental requirements

During the design process of the new apparatus I considered some key requirements,
derived from the protocol developed in our laboratory to produce the BEC sample in a
Hybrid Trap [85].

First, optical access with 589 nm laser beams to the sample, along three orthogonal
directions, is necessary during the Magneto-Optical Trap (MOT) and the GrayMolasses
phases. Additional optical access for Optical-Dipole Traps (ODT) at 1064 nm is required
along two horizontal directions. For all beams, a diameter of 1” must be assumed. Opti-
cal access along the vertical direction must allow imaging of the sample with resolution
of the order of a pm, in order to observe the features of interest, that have a size of the
order of the spin-healing length.

Second, the production of the ultra-cold sample requires magnetic gradients of order
20 G/cm in the MOT and Hybrid Trap phases [102]. Further high-field conditions are
expected for magnetic levitation of the sample. The magnetic shield and the MOT coils
installed in the apparatus must be such that the shielding material is not permanently
magnetized by the application of this field. Application of compensation fields (< 1 G)
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and gradients (< 1Gem™!) is also required. Moreover, a very stable magnetic field of
the order of 100 mG is required to set the quantization axis and lift the degeneracy of
the Zeeman sub-levels of the atoms. The stability of the field must permit coherent
couplings with Rabi frequencies of the order of a Hz. This stability concerns both
external magnetic noise and the stability of the bias field applied to the sample. This
field must be stable both in the long timescale, namely the several hours that are usually
required to perform an experimental run, and in the short timescale of the dynamics of
the sample.

Third, realizing stable mixtures of atoms in different Zeeman sub-levels require a
state-independent potential. This can be realized using Optical-Dipole Traps operated
at detunings much greater than the fine splitting of *Na atoms.

Fourth, a system to manipulate the internal state of the sample is required. Using
radiofrequency or microwave fields, the transitions between Zeeman sublevels can be
used to realize the coherent coupling between states, or imaging procedures of the sam-
ple. This system must have sufficient power and flexibility to realize sufficent coupling
strengths and short field pulses.

2.2.2 Sources of magnetic noise

During the construction of the experimental apparatus, great care was taken to reduce
environmental magnetic field noise as much as possible. Common sources of magnetic
noise are magnetized objects and electric equipment.

Magnetized objects produce very low frequency magnetic noise because of temper-
ature fluctuations or position changes. Local fluctuations of Earth’s magnetic field are
also present at very low frequencies. To reduce nearby magnetized objects, the whole
experimental setup is built from non-magnetic materials (mainly austenitic A4 Type-316
steel and aluminium), at least on the optical table of the vacuum apparatus. The main
sources of external magnetic fields on our apparatus are the vacuum pumps (NEXTorr
D500-5 and D200-5), that contain strong permanent magnets for the ionic pump stage,
however they have been equipped with u-metal shielding to suppress such a field outside
it. We do not expect such fields to be a problem since they are non-moving with respect
to the apparatus.

Electronics equipments in the laboratory produce disturbances from tens of Hertz
(main frequency) to hundreds of kHz (e.g. switching power supplies). We chose to
minimize noise from switching power supplies by placing them in a nearby room. To
reject line noise at 50 Hz, the experimental sequence is phase-locked to the line, using a
Schmitt-trigger circuit to produce a TTL signal with fixed phase from the line and then
synchronizing the control electronics to this signal.

2.2.3 Vacuum chamber

The existing vacuum apparatus in our laboratory was not modified (see [85]) and con-
sists of two chambers composed of stainless steel tubes. The first chamber (HV') acts
as atomic source and during operation contains hot thermal atoms, while the second
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Figure 2.5: (left) Rendering of the vacuum apparatus. Laser beams for the HV chamber
are shown as yellow rods. (right) Technical drawing of the octagonal quartz cell. The
Cartesian axes represents the reference frame used thorough this thesis.

chamber (UHV') is used to prepare and experiment with the ultracold-atom sample.
The HV chamber hosts an heated oven to evaporate 23Na atoms from liquid sodium
and a combined non-evaporable getter and ion-pump (NEXTTorr D200-5) to keep the
pressure inside the chamber below 2 - 10719 mbar during operation. Glass windows with
anti-reflection coating for 589 nm allow optical access and a gate-valve isolates the cham-
ber from the environment. A differential pumping channels connects this chamber to
the UHV chamber.

The UHV chamber is composed of a two gate-valves (one between the HV chamber
and one to open to the environment), a combined vacuum pump (NEXTTorr D500-5)
and an octagonal quartz cell (science chamber), at the center of which the cold-atom
sample is prepared. A 65 mm long glass tube connects the cell to the rest of the chamber.
Ample optical access to the sample in the cell is permitted by two 50.8 mm windows along
the vertical directions and by seven 22.9 mm windows on the horizontal plane. All the
surfaces of the windows are treated with a Random-Anti-Reflection coating, a nano-
textured treatment that reduces reflections below 0.3% for all wavelengths between 1064
and 532 nm.

2.2.4 Support structure

A support structure is required around the science chamber to hold magnetic coils,
antennas and imaging lenses. All together, this elements fulfil some key requirements.
First, the apparatus is fully contained in the magnetic shield. Second, a completely
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non-magnetic structure is used inside the shield to reduce the magnetic hysteresis of
the apparatus. Finally, the apparatus permits the assembly and disassembly of the
shield with minimal disruptions and is enough future-proof to minimize the need for
modifications.

Figure 2.6: (left) CAD design of the apparatus. 3D-printed structure (red), magnetic
coils (blue) and the science chamber (light gray, partially hidden) are cointaned in the
innermost layer of the magnetic shield (dark gray). (right) The apparatus before assem-
bly of the upper half of the magnetic shield. The 3D-printed structure is visible (black
plastic). The vertical cables are routed through the shield. The MOT coils (orange) are
visible, as well as other compensation coils.

Great care has been taken in designing the support structure. This structure holds
firmly all the magnetic coils and antennas, allows full optical access to the glass cell,
allows routing of the cables, is non-magnetic and can be assembled around the existing
vacuum chamber without opening it. The resulting design of the support is rather com-
plex and additive manufacturing using FDM (Fused Deposit Modeling) 3D-printing has
been used to realize the object. In FDM 3D-printing, a thermoplastic material is heated
and extruded by a small nozzle in form of fused filament of 0.2-1 mm diameter. The noz-
zle is mounted on a computer-controlled moving head to deposit the filament in layers,
and the shape of each layer is changed to realize the 3D object. This technology allows
fast and low-cost prototyping, great freedom of design, and the use of non-magnetic
materials.

The weakest point of FDM 3D-printing is the available materials, that may be un-
suited for realizing an apparatus that requires solidity and long-term stability. The most
common material is PLA (PolyLActide), a non-toxic and low-melting-point thermoplas-
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tic with great characteristics for 3D-printing. However, once printed it is a brittle mate-
rial and highly hygroscopic, characteristics that make it unreliable for long-lasting com-
ponents. The second most common material is ABS (Acrylonitrile Butadiene Styrene),
that produces strong and reliable prints, at the cost of higher extruding temperatures
(and toxic fumes). However, the high extrusion temperature and the subsequent high
thermal contraction of the material make it difficult to realize large (10 cm) pieces be-
cause of the “warping” of the plastic induced by internal stresses. A material of recent
availability is PET-G (PolyEthylene Terephthalate with Glycol addiction), that offers
superior mechanical properties than PLA and does not suffer from deformations as ABS,
while also being easy to print. We chose this material to realize the internal support
structure.

The support structure (Fig. 2.6) is made of four pieces: a pedestal that is glued to
the bottom internal layer of the shield, two identical pieces (top and bottom) that hold
antennas and magnetic coils and a central spacer to separate the latter. The structure has
an octagonal symmetry as the science chamber. Stable alignment between the pieces
is guaranteed by interlocking structures printed in the parts. Another weak point of
FDM 3D-printing is the weak tensile strength of the object along the growth direction
(delamination). We circumvented this problem by inserting 8 long Nylon threaded rods,
glued to the pedestal and running across the structure. Nuts screwed on these rods
compress all the pieces of the structure together, providing the tensile strength along the
weakest axis. The support structure was realized in-house using a Makerbot Replicator
3D-printer. After realization, the dimensions of the piece are very close to the CAD
design, with the maximum shrinking of the material found to be less than 1%.

Since this support structure is rigidly mounted to the bottom half of the magnetic
shield, careful assembly was required to avoid damages to the science chamber. The
bottom half of the shield is held on 1”7 stainless-steel poles using adjustable mounts and
has been aligned to center the apparatus around the science chamber. The upper half of
the shield is assembled from above and “closed” on the finished apparatus. To lower/lift
the upper half causing minimal disruption to the setup no components are attached to
it.

2.2.5 Magnetic coils

To apply controllable magnetic fields on the sample, pairs of magnetic coils are placed
inside the innermost layer of the magnetic shield. Each coil is composed of several turns
of copper wire and designed to maximize field uniformity and to minimize interaction
with the shield.

For a couple of thin circular loops of wire, the magnetic field produced by a circulating
current I along their axis is B, = %% and its curvature at the center is zero
when the radius of the loops R is equal to their distance (Helmholtz configuration). For
coils of finite size, not all the loops can be in the Helmholtz configuration at the same

time, and the magnetic field produced by a loop can be analytically expressed [103] in



2.2. EXPERIMENTAL APPARATUS 40

cylindrical coordinates (p, z) as

Bp _ 20%’2[() [(R2 +,02 4 2’2)E(1€2) o OéZK(k2)]
Bz — QOéc;lB [(R2 _ P2 _ ZQ)E(k2) +042K(k’2)]

where R is the radius of the loop, ¥ and K are the complete elliptic integrals of first
and second kind, and the constants are defined as

o® = R*+ p* + 22 — 2Rp
82 =R2+ p®+ 2%+ 2Rp
K =1-a/p
C = pol/m

To design the magnetic coils, we evaluated this equation and optimized the distance
between the coils for minimal curvature of the field using numerical optimization. How-
ever, the presence of the shield modifies the magnetic field produced by the coils. To
minimize this effect, we placed the most critical coils as close as possible to the science
chamber, far from the magnetic shield walls.

A pair of circular coils produce the MOT and levitation magnetic field. They are
realized with 6 turns of square copper tubing (3x3 mm in size), firmly attached to the
support structure. The copper tubing is wrapped in fiberglass for insulation, shaped and
glued with epoxy resin for stability. Cooling water is circulated in the tube to dissipate
the heat due to the high MOT and magnetic-trap current (up to 50 A). No heating of
the coils is observed even during continuous operation. The tube exits the shield from
two small-diameter holes in the top and bottom, to be connected to the hydraulic and
electric apparatus. These coils are designed to produce a magnetic gradient along z of
0.433Gcem™ ' AL,

Another pair of coils (BCompZ_fine) generates the high-stability vertical field. Since
this field is the most critical for field inhomogeneities, the coils are placed very close to
the glass cell, precisely in the Helmholtz configuration, and tightly glued to the support
structure. Numerical simulations of the effect of the shield show that these coils are not
strongly affected because they are sufficiently far away from the magnetic shield. The
field generated by these coils was measured (Fig. 2.7a) with the shield assembled and
found it to be within 2% of the expected value in the center. A similar geometry is
used to realized two pairs of coils (BCompZ_coarse) for bias field and gradient along the
Z-axis.

Compensation of fields and gradients along the z- and y-axis is performed with two
pairs of square coils that are wound outside the support structure. We evaluated the
field of the square coils by appropriate numerical integration. These coils are much larger
and closer to the shield than the previous and we found their field to be significantly
distorted (Fig. 2.7b), however they are meant to generate very weak compensation fields
and their homogeneity is not critical. All of the compensation coils are realized using
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Figure 2.7: (a) Field produced by the coils with a current of 1 A for the highly-stable
magnetic field. The field was measured with the shield mounted (blue points) and is
in agreement with Eq. 2.2.5 (red line) in the absence of the shield. (b) Field produced
by the compensation coils along the z-axis with a current of 1 A. In the absence of the
magnetic shield (purple points) the field agrees with the calculations based on the coils
geometry (red line). The presence of the shield (blue points) strongly affects the field
distribution. (c) y — z section of the apparatus.

solid copper enameled wire, being non-magnetic and providing insulation at the same
time.

2.2.6 Antennas and microwave system

To drive transitions between different Zeeman states of the sample, we require a system
to generate microwave fields at 1.7 GHz. As general requirements, the system must
be capable of fast (< 1pus) switching on and off of the microwave fields, possibility
of generating at least two different frequencies with high relative frequency stability
and controllable phase jumps between the two and, lastly, sufficient power to drive two-
photon Raman transitions in the atoms. The realized microwave system is schematically
described in Fig. 2.8.

To generate two tones with known relative frequency and phase, a direct digital
synthesis device (DDS) is used to produce two ~ 100 MHz signals (f; and fo) that are
then up-converted in the microwave range by the high-frequency mixer. The DDS is
based on the Analog Devices AD9958 chip, and offers two output channels with 0.1 Hz
frequency resolution and 27 - 27 rad phase resolution. Running on the same clock,
the two channels are phase coherent. This DDS allows for changes in the frequency,
amplitude and phase of each channel with 100 ns time resolution and maximum update
rate of 30 kHz, allowing to perform fast manipulations of the internal states. The two
outputs are combined together and a controllable attenuator (Minicircuits ZMAS-3)
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name direction | |B| (G) %—? (G/em) | N [ M | d (mm) | 7 (mm)
MOT z 1.34 0.433 3| 2 30 36
BcompZ_coarse z 1.05 0.373 2| 2 32 33
BcompZ_fine z 2.606 0.898 313 32 32
BgradZ z 0.50 0.186 211 32 32
BcompX T 1.08 0.19 2|2 47 86
BcompY Y 1.08 0.19 2| 2 47 86
BgradX x 1.08 0.19 2| 2 47 86
BeradY y 1.08 0.19 2|2 47 86

Table 2.2: Coils mounted in the experimental apparatus. The values for |B| are com-
puted at the atoms position for the Helmoltz configurations driving the coils with a
current I = 1 A. Given ¢ the axial direction of each coil, %—? is the gradient along i,
computed at the atoms position for a current of I = 1 A in the coils. Values in boldface

were measured, while the others have been calculated from the coils geometry.

allows smooth ramping of the signal amplitude using an analog voltage control. The
two-tone signal is then up-converted by mixing it with a carrier.

To generate fast and time-accurate switching of the fields a 1.670 GHz carrier is pro-
duced using a microwave synthesizer (Marconi Instruments 2024) that can be switched
on/off in 20 ns, with negligible jitter, using a TTL signal. This carrier acts as local oscil-
lator in a high-frequency mixer (Minicircuits ZEM-43004) that converts the two-tones
signal from the DDS to the desired 1.77 GHz. For better frequency stability, a 10 MHz
external reference is fed to the DDS and to the microwave synthesizer.

The mixer for up-conversion produces a higher sideband around 1.771 GHz, a lower
sideband around 1.571 GHz and the carrier leak. Since only the higher sideband will
be resonant with the atomic transition, we suppress the other components to reduce
the amount of power lost by non-linearities in the final amplification stage. A lumped-
elements bandpass filter (Minicircuits VHF-1760+ high-pass filter and VLF-1500+ low-
pass filter) suppress the carrier and the lower sideband. We find that after filtering the
higher sideband has amplitude 20 dB higher than the other two components, however a
pre-amplification of the signal is necessary before the following stage. We monitor the
signal at this stage with a coupler.

Finally, the signal is amplified using a high-power amplifier (Minicircuits ZHL-100W-
2724) to reach the necessary power to drive two-photon transitions. At the output
of the amplier, a multi-stub tuner (Maury Microwave Triple-stub 1819A) is placed to
impedance-match the antenna. Since substantial power losses (2dBm™!) are introduced
by the RG-174 connection cable to the antenna, we kept the cable lenght at minimum
by mounting the amplifier as close as possible to the apparatus.

The antennas installed in the apparatus radiate the field to the sample, and are fed
by RG-174 coaxial cable that runs through the apertures in the magnetic shield. We
realized antennas of several geometries and installed them in different positions inside
the apparatus (Fig. 2.9).
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Figure 2.8: Schematic representation of the microwave circuit. From left to right, the two
~ 100 MHz tones generated by the AD9958 board are combined, attenuated and finally
up-converted to 1.7 GHz using a mixer. A band-pass filter removes the unnecessary
frequency components, and two amplifiers raise the power before the the signal reaches
the antenna near the sample.

Figure 2.9: Antennas installed in the experimental apparatus. 1: “dipole-ant”, 2: “hook-
vert”, 3: “hook-side”, 4: “GSM-ant”, 5: “MHz-loop”, 6: “kHz-loop” (in the back). The
arrows indicate the feed point for the antennas.
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A first kind of antennas we realized are “hook antennas”, where a piece of solid
copper wire (=~ 1mm thick) is soldered at the end of a coaxial cable and bent in a
semicircular shape. The antenna can be matched at the desired frequency by trimming
the length of the copper wire. We placed two of these antennas (“hook-side” and “hook-
vert”) with different position to have a different polarization of the field on the sample.
The antennas were matched before installation at 1.77 GHz, away from the apparatus,
by observing the reflected power using a directional coupler. However, further matching
of the antennas is possible after installation using the stub-tuners at the output of the
amplifier. After completion of the apparatus, we optimized the antennas emission with
the stub-tuners, using another antenna to pickup the emitted field. After optimization
we reached Rabi frequencies up to 10.3kHz on the |1, —1) — |2,0) transition.

A commonly used geometry is the resonant dipole antenna, where two thin conduc-
tors of length A/4 (where A is the wavelength at the frequency of interest) are placed
end-to-end and fed at their center. The impedance of dipole antennas can be tuned by
changing the angle between the conductors: when the angle is 180° the impedance is
732, and decreases as the angle is reduced. We realized a dipole antenna (“dipole-ant”)
by separating the inner conductor and the shielding of a RG-174 coaxial cable, cutting
them to length (= 4.5 cm) and adjusting their angle. We matched the antenna with the
method described before, reaching similar performance than the hook antennas. After
matching with the stub-tuners, this antenna has an emission bandwidth around 2 MHz.

Since the frequency band of 1.8 GHz is used for GSM cellular communication (DCS/GSM-
1800), dipole antennas emitting at this frequency are commercially available. These de-
vices have been properly engineered for optimal (far-field) transmission, 50 2 impedance
and are available at low cost, hence we modified one of such antenna (part number
1052630002 from Molex, LLC) for RG-174 connection. Tests before installation of the
magnetic shield showed that this antenna, compared to the home-built dipole antenna,
reached 50% higher Rabi frequency if placed in the same position. In the realization
of the apparatus with the magnetic shield, however, its large size made it impossible
to install the antenna close to the sample. We found very poor performances of this
antenna (“GSM-ant”) in the final apparatus, probably because of the bigger distance
from the sample and the presence of conductive material near the antenna.

Finally, in our apparatus we anticipated the need of driving other RF transitions.
We installed an antenna (“RF-loop”) for emission at 500 kHz: a 8-turn wire loop with
diameter 32mm and wire thickness 0.3 mm. Another antenna “MHz-loop”) is aimed at
20 MHz emission: a single loop with diameter 61 mm made of 1.25 mm thick, solid-copper
wire.

2.2.7 Optical traps

To achieve coherently-coupled spinor BECs, a spin-independent trapping potential is
required to avoid separation of atoms in different Zeeman sub-states. Off-resonant light
allows to apply potentials independently of its spin state, differently from magnetic
trapping that is inherently sensitive to the sample spin state. In general the optical
potential created by a laser beam is sensitive to the particular spin state of the sample,
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depending on the polarization of the beam and the direction of the magnetic field that
sets the quantization axis. In the particular case of linearly polarized beams orthogonal
to the magnetic field however, the potential is spin-independent [104], hence all our
beams use this configuration.

We realized differently shaped optical-dipole traps using 1064 nm laser beams. We
use a continuous-wave fiber laser (Azur Light Systems ALS-1064-50-I1-SF) to produce
up to 40 W of infrared laser light, that is then distributed to three different beam path.
An AOM (Gooch & Housego 3110-197) along each path is used as fast optical switch,
the zeroth order of the beam being blocked and the first order launched in a large-
mode-area photonic crystal fiber (NKT Photonics LMA-PM-10) to be delivered to the
sample. The RF amplitude driving each AOM is controlled by a PID controller (SRS
SIM960) to stabilize the power out of the fiber and each AOM is driven at a different
frequency to avoid standing-wave effects when multiple traps are used contemporane-
ously. Each fiber output is placed close to the sample, the output power is sampled with
a beam-sampler (BS, Thorlabs BSF10-C) and a photodiode (Thorlabs DET36A2) for
the stabilization circuit. Each trapping beam has different optics to reach the sample,
of which a schematic representation is given in Fig. 2.2.7.

The main trapping beam (Cigar) is used to capture thermal atoms after the Gray
Molasses stage and to evaporate the cloud until condensation. The light from the optical
fiber is collimated by a f = 60mm lens, then is transmitted though a Polarization
Beam Splitter (Thorlabs PBS253) before being bounced by two pointing mirrors. A
f = 200mm lens focuses the beam on the sample to a waist of 18 pm. On the sample,
the Cigar beam propagates along the x axis, approximately 1 mm below the center of
the MOT magnetic field quadrupole and is polarized linearly along y. The tight focus
and the high power of 7W are necessary to achieve high trapping depth and capture the
thermal atoms. The power is then gradually reduced during evaporative cooling.

A second beam (Xazis) crosses the Cigar beam orthogonally and is used to increase
the trapping frequency along the z-axis. A f = 50mm lens collimates the light from
the optical fiber, then a PBS is used to clean the beam polarization. The beam passes
through two f = 100 mm cylindrical lenses (Thorlabs LJ1567L1-B ) forming a 1:1 tele-
scope. By changing the distance between these lenses, one of which mounted on a
micrometric stage, the astigmatism of the beam is changed to adjust the horizontal ra-
dius of the beam at the position of the sample. Its vertical waist of 72m is placed at
the position of the sample, while the horizontal radius can be increased up to several
millimeters. A maximum power of 5 W is used and the beam is linearly polarized along
z.

A third beam (Ellipt) is superimposed to the Cigar beam. The output of an optical
fiber is collimated, the polarization cleaned by a PBS then the beam enlarged by a 1:3
telescope. The astigmatism of the beam can be adjusted with a cylindrical telescope like
the Xaxis beam. A piezoelectric element tilts one of the mirrors along the beam path to
finely align the beam along the vertical direction and ensure optimal superposition with
the Cigar. A PBS then combines the Ellipt and Cigar beam before the last f = 200 mm
focusing lens. On the sample, this beam has vertical waist of 30 um, horizontal radius
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Figure 2.10: Optical elements of the optical dipole traps. Each beam is launched from
an optical fiber, collimated with a suitable lens. A Polarizing Beam Splitter (PBS) is
placed after the fiber when additional polarization stability is desired. Beam samplers
(BS), photodiodes and PID controllers stabilize the power of each beam. Adjustable
cylindrical telescopes allow to change the astigmatism of the Ellipt and Xaxis beam.
Finally, a focusing lens and two pointing mirrors allow to place each beam on the sample.
All focal lengths are in millimeters.
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up to 2mm and is polarized along z.

2.2.8 SRS current source

To generate an highly-stable magnetic field, we drive the BCompZ_fine coils using a
laser driver (SRS LDC501) as low-noise current source. The laser driver can supply up
to 500 mA of current with a rms current noise of 1.5 pA, maintaining a very low long-term
drift of less than 5 ppm [105]. An analog modulation input allow for external control of
the output current, that we use to generate in-shot ramps of magnetic field. The analog
input is controlled by a floating DAC board to avoid the insertion of electronic noise due
to ground-loops. The current from the laser driver is controlled by a battery-powered
switching circuit to allow for fast turn on and off of the magnetic field using a TTL
signal.

2.2.9 Imaging systems

Two imaging systems allow to observe the ultracold atom sample, one along the z axis
and one along the x axis.

The principal imaging system is along the z axis as most of the observations of the
sample are expected to happen along this direction. A circularly-polarized probe beam
illuminates the atoms from above, resonant to the |F = 2) — |F’ = 3) transition. The
light is then collected by two objective lenses, an achromat with f = 75 mm (Thorlabs
AC254-075-A) and a spherical one with f = 300 mm (Thorlabs LA1484-A). These lenses
are positioned 3mm apart in a doublet configuration with an effective focal length of
60.8 mm and have numerical aperture 0.2. This doublet is mounted such that the atoms
are on its imaging plane. Along this direction also the vertical MOT and GrayMolasses
beams access the sample, hence a mirror, a f = 60 mm lens and a quarter-wave plate are
mounted on a movable contraption. The optics are placed in the imaging path during the
MOT phase and then removed to allow for the imaging light to reach the camera. The
image is formed on the camera using a f = 400 mm 2” spherical lens (Thorlabs LB1862-
A). A quarter-wave plate is placed before this lens to convert the probe light to linear
polarization, and the light is then transmitted through a PBS. The PBS is necessary
to superimpose the phase-imprint beam described in Section 3.3 on the imaging path.
Finally, a fast CMOS camera (Hamamatsu Orca Flash 4.0) is placed in the imaging
plane of the system. Overall, this imaging system has a (calculated) resolution of 1.8 pm
and a magnification of 6.5.

In the second imaging system, a probe beam is sent along the x axis and onto the
sample. To image the atoms, a f = 50mm lens, with the atoms on the focal plane,
is mounted inside the shield. A second identical lens is used to complete the imaging
system. Along this direction also the high-power 1064 nm optical-dipole trap beam
propagate, hence the imaging light is bounced off a dichroic mirror to separate it from
the infrared beam, and an additional interferential filter removes the remaining infrared
light. The dichroic mirror is mounted on a movable rail, to send the imaging light in
two alternative paths. On the first path, the imaging light is sent directly onto a CCD
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Figure 2.11: The imaging system along the z axis.

camera (Stingray F-201B), to realize an imaging system with magnification of 1. In the
second path, an additional single f = 300 mm lens relays the image to a second camera.
In this case the atomic image is demagnified by a factor 3 and is used to image the
sample size in the MOT.

2.2.10 Laser light source

To prepare and image the ultracold atoms sample we utilize laser light near the D2 line
(3281/2 — 32P3/2) and near the D1 line (3281/2 — 32P1/2). Two independent systems
produce laser light at 589 nm, each system being frequency-locked on the desired spectro-
scopic line using saturated-absorption spectroscopy. Each system allow the production
and control of individual laser beams that are then distributed to the experimental ap-
paratus using optical fibers. The optical setup used to produce, stabilize and control the
laser light is described in [85].

The first laser system generates light on the |F' = 2) — |F’ = 3) closed transition of
the D2 line, that is our main transition for laser cooling and imaging (cooling transition).
This system produces laser light for the Zeeman slower, 2DMOT, 3DMOT, DarkSpot
repumper, push beam and imaging beams that are described in the next Section. From
this transition, however, atom can populate the F' = 1 manifold of the ground states
via off-resonant excitation of F’ = 2, hence they are repumped to F' = 2 using the
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|FF=1) — |F' =2) transition of the D2 line (repumper transition). We generate the
repumper light by phase-modulation (for Zeeman slower and 2DMOT stages) or by
frequency-shift (for the DarkSpot repumper) of the cooling light.

The second laser system generates light on the |F = 2) — |F’ = 2) transition of the
D1 line. We use this light for the GrayMolasses laser cooling stage, also described in the
next Section, as this technique can not be used on the D2 line in **Na.

2.3 Production of the condensed sample

To produce the condensed sample we use the magnetic-shield compatible procedure
described in [85], optimized to the new experimental apparatus.

2.3.1 Atomic source

In the HV chamber, a stream of hot atoms is evaporated in the oven and slowed by a
12 cm long Zeeman-Slower (ZS). The ZS is formed with four permanent magnets and
a 1”7 laser beam propagating against the direction of effusion of the evaporated atoms
and linearly polarized orthogonal to the magnetic field. The laser beam has intensity
160 mW /cm? and has three spectral components: 50% of the light power is red-detuned
330 MHz from the cooling transition to slow the atoms, 25% of the power is resonant
with the repumper transition, while 25% is not resonant.

The slowed atoms enter the capture region of a 2-dimensional Magneto-Optical Trap
(2DMOT) [106, 107]. The 2DMOT magnetic gradient is generated by the same per-
manent magnets of the ZS, while two orthogonal, circularly-polarized beams provide
the optical cooling and trapping. The beams have intensity 10 mW /cm? and have the
same spectral composition as the ZS beam, apart from the cooling frequency that is
red-detuned 13 MHz from the cooling transition. Each beam is retroreflected after pass-
ing through the chamber to provide the counter-propagating light necessary for MOT
trapping. The 2DMOT confines the atoms along the z and z axis.

Along the y axis, a laser beam resonant to the cooling transition pushes the atoms
in the 2DMOT trough the differential pumping channel and into the science chamber.

2.3.2 MOT

In the science chamber, a three-dimensional Dark-Spot MOT (DSMOT) captures the
atoms coming from the HV chamber. In a Dark-Spot MOT, high atoms density is
achieved by trapping most of the atoms in a dark state, and bringing only the atoms
leaving the trapping region to the bright state [108].

Six beams propagating along three orthogonal directions provide the optical cooling
and trapping. Each beam has an intensity of 2.3mW/cm? on the atoms, it is red-
detuned 18 MHz from the cooling transition and it is circularly polarized. The MOT
magnetic field gradient (7.5Gcm™! along z) is generated by the MOT coils driven in
anti-Helmholtz configuration. The atoms in the F' = 1 manifold are repumped to F' = 2
by an hollow-core beam of repumper light. The hollow-core beam is produced from a
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gaussian beam using an Axicon and a circular obstacle. The obstacle is imaged on the
atoms with a f = 150 mm spherical lens. In the DSMOT, up to 5 x 10° atoms are
trapped with temperature ~ 300 uK in a 13 s loading time.

2.3.3 Gray Molasses

Gray Molasses (GM) is a sub-Doppler cooling technique similar to the optical molasses,
with the key difference that coherent-population-trapping is used to trap the atoms of
lowest velocity in a dark state. Once in the dark state, the atoms do not interact with
the cooling light anymore, allowing for higher densities of the atomic cloud using lower
intensity of the cooling light [109]. GM cooling of sodium was demonstrated in [110]
using the |F' = 2) — |F’ = 2) D1 transition and we utilize the same procedure with slight
modifications.

After the MOT stage, the magnetic field is suddenly switched off. Right after, the
GM light is turned on with intensity 150 mW /cm? and blue detuning 40 MHz for 0.5 ms.
This light pulse cools the atoms in the DSMOT to = 25 K, with nearly unity capture
efficency. The detuning is then suddenly increased to 100 MHz and the light intensity
slowly ramped to 0 in 5ms with a piecewise-linear ramp. This intensity ramp reduces
the temperature of the atoms to ~ 13 uK.

2.3.4 Evaporative cooling

We produce a BEC in |1, —1) using the protocol described in [102].

After the GM stage, a magnetic quadrupole field of %—f = 13 G/cm generated by the
MOT coils is turned on, and, at the same time, the Cigar trapping beam is turned with
potential depth of 440 uK. Depending on the experimental procedure, also the Xaxis
trapping beam is turned on. The magnetic quadrupole is then adiabatically compressed
to %—f = 22G/cm in 500ms. The thermal cloud trapped by the magnetic quadrupole
begins to accumulate in the optical trap, and up to 30 - 10° atoms are collected after a
loading time of 4s. The magnetic quadrupole field is then ramped to %—Jj =7.7G L cm,
below the value to compensate for gravity, to release the atoms that are have not been
collected by the optical trap.

The sample is now held by a combination of optical and magnetic potentials (Hybrid
Trap). A first evaporation cooling stage is performed by lowering the potential depth
of the Cigar beam to 52 uK in 2s. We then transfer the atoms to a purely optical trap
applying a vertical high-stability bias field and then adiabatically removing the magnetic
quadrupole. By switching off all other magnetic fields, only the high stability bias field
remains.

Finally, the power of the optical trap is ramped down for the final evaporative se-
quence. This final evaporation stage can vary, depending on the desired sample to
produce. In a typical experiment, the Cigar power is lowered with a 1s-long expo-
nential ramp to a final trap depth of 3.5 uK, producing a BEC of ~ 2 - 10° atom
and negligible thermal component. The final trapping frequencies in this condition are
Wg, Wy, w, = (500,500, 10]Hz.
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2.4 Measurement of magnetic field stability

The high sensitivity of the sample to magnetic fields, that is the motivation for in-
stallation of the magnetic shield itself, can actually be used as a tool for the precision
measurement of the shielding performance, using the sample itself as a magnetometer.
Atomic magnetometers have been studied for more than a century now, both in hot
vapors and in cold samples. These magnetometers are usually based on magneto-optical
effects (for a review see [111]) and can reach accuracy of the order 100 pG/v/Hz. In our
case, however, the quantity of interest is the magnetic field stability after the creation of
the Bose-condensed sample, hence we performed the measurement using the BEC itself.
To determine the magnetic field at the sample location we used spectroscopic measure-
ments, determining the resonant frequency of transitions between Zeeman sub-levels.

In a condensed sample, however, effects such as atom-atom collisions and mean-
field frequency shifts are much more prevalent than in low density thermal clouds. For
example, substantial atom loss happens in less than 1 ms for our sample in |1, —1), if one
of the state of |2, mp) is also populated (with the exception of the state |2, —2)) because
of two-body spin-relaxation collisions [56]. However, these effects can be made small by
suitable choice of the Zeeman states used for the measurement.

2.4.1 Spectroscopic measurement of magnetic field

Transitions between two Zeeman sublevels interacting with monochromatic near-resonant
radiation can be described as a two-level system, with populations evolving under the

(2l2-B|1)
2

Bloch equations. We define the Rabi frequency 2 = induced by the magnetic

field B of the radiation, where (i is the magnetic dipole operator, and the detuning
0 = w,y — wp between the transition frequency wp and the frequency of the radiation
wyr. In the case of magnetic dipole transitions between sub-levels of the electronic ground
state the spontaneous emission rate is negligible and the evolution is always coherent.

This two-level system treatment allows to measure the modulus of magnetic field at
the position of the sample with high precision, by determining the transition frequency
wp between Zeeman sub-levels, as long as they have different mp. From the Bloch
equation, the population transfer from the initial state |1) to |2) in time ¢ is given by
the simple formula

02 in2 (Wt> ’ (2.3)

P2yt 2

where the excitation probability p22 can be simply measured from the populations (Nj 2)
of the states. For consistency, we will express the population transfer via the fractional
population imbalance Z = (N2 — N1)/(N1 + Na) = 2p22 — 1. Equation 2.3 gives the
usual sinc-shaped spectroscopy curve when a pulse of length 7/Q (w-pulse) is applied
for different detunings (Fig. 2.12). One can then determine the resonant frequency of
the transition applying a m-pulse of microwave coupling with known Rabi frequency (2
at different value of w, ¢, measure Z, and finally fit Eq. (2.3) with wy as free parameter.
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Figure 2.12: (left) Transitions between Zeeman states of the ground state of 23Na. The
vertical direction represents the energy of the level in a finite magnetic field. Each
double-arrow represents a single-photon transition, with its squared Clebsch—Gordan
coefficient indicated on the arrow. (right) Schematic representation of the “side-of-
fringe” technique. The solid line is the spectroscopic curve for the resonant frequency
wp. At detuning A; the population in the states is equal (red dot). If the resonant
frequency changes to wy(, the spectroscopic curve becomes the dashed line and the the
measured population changes (blue dot).

To perform magnetometry measurements, however, a single-shot measurement of
wo is preferable. We use a “side of fringe” technique to achieve, in a limited range
of magnetic fields, a linear relationship between the magnetic field and the measured
Z. In the neighbourhood of the two Z = 0 crossings, corresponding to a detuning of
01 = 0.79871), the sinc-like spectroscopy curve is linear. To determine the resonant
frequency from the measured Z it is then sufficent to Taylor-expand Eq. (2.3) around d;
to get p22 &~ phy(d — 01) + p22(01) where ph, is the first derivative in § given by

) 26pao 02t <\/92+52t> o <\/§22+62t>
]

P22 = 73 +02 (02 +62)3/2 S 2

This measurement requires only the accurate measurement of the Rabi frequency to
calculate a conversion between Z and wy.

This procedure to measure fluctuations in the resonant frequency is schematized in
Fig. 2.12. The blue solid curve is Z as function of § after a m-pulse, with (initial) resonant
frequency wg. After determining wgy and €2, the frequency of the oscillator is set to have a
detuning +6; (red point). The frequency of the oscillator is now fixed and the procedure
of detuned 7-pulses repeated. If the value of the resonant frequency changes to wyf, (blue
dashed line), the measured Z changes accordingly (blue point) and we can estimate the
new resonant frequency using the linear approximation (black dashed line). In this way
a simple linear relation between the measured populations and the detuning can be used
to measure the magnetic field stability.
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Two-photon coupling for magnetometry

The magnetometry method described above requires that the system is well approxi-
mated by the two-level system description. However, we are interested in characterizing
the magnetic shield in the presence of a bias field of &~ 100mG, hence we are in the
low-magnetic-field limit where the quadratic Zeeman effect is negligible. In this limit,
radio-frequency transitions between two states in the same manifold cannot be excited
separately because their energy differences are all equal and all the levels will partic-
ipate to the dynamics. The possibility of using a three-level system is ruled out by
the interaction constants between |1,+1) and |1, 0), that are such that the system will
phase-separate, reducing the coherence time if all these states are populated. This rea-
sons makes unfavorable the use of radio-frequency transitions in the F' = 1 manifold.

Figure 2.13: Zeeman levels used in the two-photon coherent coupling. The single-photon
transitions are driven with Rabi frequencies €4 and detuning Ag o £ 6/2. An effective
two-photon coupling is realized with Rabi frequency 2 and detuning 6.

To overcome this problem we used two-photon coupling (Fig. 2.13), to excite the
transition |1, —1) — |1,41) without populating |1,0). To realize the two-photon transi-
tion, two microwave fields (with frequencies w,, w_) drive the single-photon transitions
|1,£1) — |2,0) off-resonance, with detuning Ay £ §/2. The microwave frequencies are
such that Ai(wy—w_+0) equals the difference in energy between the levels En_1y—Ej 41
The single-photon transitions have Rabi frequencies €24 and €)_, respectively. In the limit
0 K 24 <K Ag the system is well described by the two-level picture. The transition
|1,—1) — |1,+1), is coupled with effective Rabi frequency

Q.0
0 =
2A270

and detuning §.

Using a two-photon transition has some key advantages for this measurement. First,
the atom loss from the virtual state can be made arbitrary small by increasing Ao .
Second, the inter- and intra-component interaction constants of the states |1,+1) are



2.4. MEASUREMENT OF MAGNETIC FIELD STABILITY 54

similar so no phase-separation occurs and the density-dependent frequency shift is re-
duced. The third advantage comes from the limited frequency stability of our microwave
chain (Section 2.2.6). Since it is not possible to distinguish changes in the resonant fre-
quency of the transition from changes in frequency of the driving field, the latter should
be negligible to measure accurately the former. For transitions between the two hyper-
fine manifolds (that could be singularly addressed even without the two-photon coupling
scheme) the expected frequency fluctuations in our microwave system are of the order
1kHz, strongly limiting the precision of the measurement. However, due to the con-
struction of the microwave system, these frequency changes are common-mode when
a two-photon coupling is used. Since the two-photon transition is at twice the linear
Zeeman splitting (~ 140kHz for our working bias field) changes in the reference fre-
quency translate to shifts in the mHz range, and are not limiting the precision of the
measurement.

2.4.2 Long term magnetic field stability

We performed several long experimental runs to characterize the different noise sources
of the apparatus. In each of these runs, we measured accurately the Rabi frequency of the
two-photon coupling and performed identical experimental cycles to measure fluctuations
in resonant frequency, using the procedure explained in the previous Sections.

However different in details, these experimental sequences consists of preparing the
sample in |1, —1), apply the two-photon coupling to |1,1) for a given time and measure
the population in the two states. The populations are measured applying a Stern-Gerlach
procedure, in which the sample is released from the trap and a vertical magnetic gradient
of 8 G/cm is applied for 15ms to spatially separate the sample in its mp components.
After a short repumper light pulse to bring the atoms to the F' = 2 manifold, the sample
is imaged using absorption imaging. The populations Ny of the states |1,+1) are then
measured integrating their optical density.

Environmental noise

To measure the magnetic noise in the environment we performed the spectroscopic mea-
surement described in the previous Section without the magnetic shield installed. We
conducted several tests trying to isolate the main sources of magnetic noise. During
these tests, however, we required rather strong two-photon couplings (of the order of
1kHz) to overcome the fluctuations in the magnetic field, hence we could not use very
high detunings from the virtual state (Ago = 10kHz). Despite our system not being
exactly two-level, the population in the intermediate state is always below 10% and for
these preliminary results can be neglected.

The atomic population measured in one of these experimental runs is reported in
Fig. 2.14a. In this run, a 1ms long two photon microwave pulse with Rabi frequency
~ 250 Hz transfers nearly half of the population to |1,+1). The transfer is quite stable
over a 40 minutes period, suggesting a shot-to-shot fluctuation of the order 0.7 mG. After
40 minutes however, the transfered population changes abruptly, indicating a sudden
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Figure 2.14: (a) Transferred population after 1 ms of Rabi coupling between the |1, —1)
and |1,+1), without the shield installed. Fluctuations in the populations are caused by
change in the background magnetic field. A sudden jump in the field happens around
40 minutes. (b) Shift in the resonance frequency, without the shield installed, caused by
a car parked close to the laboratory. We measure the resonant frequency by scanning
the frequency difference between the microwave fields and measuring the population
transferred to |1,+1). The starting peak (blue) is shifted when the car is placed (red)
by 2.6 kHz, corresponding to a change in the background field of ~ 1.8 mG. When the
car is removed, the resonant frequency returns to the previous value (cyan). Continuous
lines are gaussian fits to the data.

change in the magnetic field. We found several causes for uncontrollable shifts in the
magnetic field: the operation of a high-current magnetic trap in a nearby laboratory for
example was producing repeatable field shifts of the order of a few mG. A somewhat
curios example of uncontrolled field jump is reported in Fig. 2.14b, where we found 2 mG
shift in the background magnetic field depending on the presence of cars in the parking
spot right outside the laboratory. In this case, we were able to identify the problem by
placing and removing the same car and observing the background field jumping between
two different values in a reproducible way.

We characterized the magnetic noise created by the electric equipment at the fre-
quency of 50 Hz by repeating spectroscopic measurements at different phases with respect
to the AC current of the electric line and found a shift of the order of 2mG. However,
since our experiment is phase-locked to the electric line, this noise is not present in the
long-term measurements presented so far.

From this characterization we were able to place an upper bound on fast magnetic
noise and understood that our main source of magnetic noise are uncontrolled field shifts
and the electric line. The amplitude of this noise lies, as expected, in the mG range and
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the magnetic shield can attenuate it sufficiently to reach the target stability.

Long-term stability with the magnetic shield

After installation of the magnetic shield, we performed a similar characterization of the
magnetic field stability.

For this measurements, we set a bias field of 264 mG and each single-photon tran-
sitions has Rabi frequency 4.5kHz and is blue-detuned by Ao = 60kHz. For these
parameters the population in the virtual state is negligible and the system is effectively
a two-level system with Rabi frequency /27 = 162.1 + 0.1 Hz, that is independently
measured by performing a Rabi flop for up to 12ms (Fig. 2.15a). We release the sample
from the trap, apply the microwave coupling for a time t = 7/Q = 3.08 ms, separate
the populations with the Stern-Gerlach procedure and measure the populations. The
atoms number in the BEC has been set to 0.8 x 10° atoms. The time to perform an
experimental cycle is 16s.

This experimental sequence is repeated continuously, alternating between red and
blue detuning of the resonance (A = £A;). This procedure allows to remove systematic
errors like change in Rabi frequency or in the imaging procedure. The resulting varia-
tion of polarization of the sample during a 4-hour long experimental run is reported in
Fig. 2.15b. The populations of the red and blue detuned extraction are initially set equal
by scanning the frequency of the microwave coupling, and then the experiment is left
running steadily. It is evident that a continuous slow drift in the magnetic field brings
the polarizations of the two extractions to slowly diverge. The shift in the resonant
frequency has been also confirmed by two spectroscopic measurements at the start and
at the end of this experimental run, that have been found different by 20 nG.

For each experimental repetition, the magnetic field value is calculated using the
technique described in the previous Section. In Fig. 2.16a, the magnetic field change
over a 4-hour run is reported. The two series of red- and blue-detuned extractions are
considered separately as independent measures, since they are taken in separate exper-
imental cycles, hence for every series we measure the field every 32s. We observe a
substantial agreement of the two series on the measured magnetic field, meaning that
fluctuations in the Rabi frequency are negligible. A systematic difference in the cal-
culated field remains, caused either by a wrong calibration or by the presence of some
additional effects that have not been taken into account (presumably mean-field effects
or AC Stark shift). When the mean values of each series are removed, however, the two
series overlap and we can extract the field fluctuations separately. These fluctuations
are well below 101G over an hour, with a slow drift over longer timescales.

To further examine the characteristic of the fluctuations, the Allan deviation of the
two series is shown in Fig. 2.16b. We observe that the magnetic field fluctuation has
mainly a white noise and a drift component. The white noise has o =~ 3G and an Allan
deviation proportional to 7'/2, so is dominant at integration times up to 15 minutes.
This noise is the variation of the field from one experimental cycle to another and can
plausibly be caused by current noise in the magnetic coils, fast magnetic noise from the
environment, or random remnant magnetization in the apparatus. The drift component
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Figure 2.15: (a) Calibration of the Rabi frequency performing a Rabi flop on an expanded
BEC. Points are the observed Z as function of the lenght of the microwave pulse. The
dashed line is the fitted sinusoidal function to extract the Rabi frequency. (b) Observed
fluctuations of the population after a detuned m-pulse. The two data series are initial
red detuned (red color) and blue detuned (blue color) from the resonant frequency by
61. The experiment is run continuously and the transferred population drifts from the

initial value following the magnetic field change.

has a very long timescale and it is connected to the long-term stability of our apparatus.
For this data-set it appears as divergent with longer integration times (a linear drift has
an Allan deviation proportional to 7). However, we have not observed a monotonous
drift of the field from day to day operation, hence this drift is more probably a very
low-frequency noise caused by slow effects like temperature fluctuations, that appears
as a drift for this measurement run. Between the two regimes, we observe a minimum
magnetic noise of 1.21G for integration times of 15 minutes. In the future, the slow
drift could be corrected with a feedback loop implemented in the software control of the
experiment, possibly extending the minimum noise up to indefinitely long time intervals.

2.4.3 Field inhomogeneities

In the discussion reported so far, the spatial extent of the sample has been neglected. In
an extended sample, however, the magnetic field and the strength of the coupling can be
inhomogeneous in space. These inhomogeneities can prevent the realization of extended
samples with uniform properties, hence we characterized both quantities along the weak

axis of the Cigar optical trap (z-axis).
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Figure 2.16: (a) Magnetic field calculated from the observed atomic polarization. The
two series corresponds to red- (red line) and blue-detuned (blue line) m-pulses. The
field is expressed as fluctuation respect to the average value of 260.571 mG. (b) Allan
deviation of the field fluctuation. The two series qualitatively agree and the magnetic
noise is below 2 pG for integration time of 15 minutes. White noise and linear drift limits
are shown as black dashed lines with slopes -1/2 and 1, respectively.

Magnetic field inhomogeneity

The effect of an inhomogeneous modulus of the magnetic field is to make the resonant
condition wg — wy dependent on space. To increase the magnitude of magnetic field
inhomogeneities, we set a higher magnetic field of 1.3 G by driving the maximum current
(500mA) in the coils. We measured the field homogeneity by measuring the resonant
frequency of the two-photon transition in a very dilute thermal cloud, to suppress mean-
field shifts of the resonant frequency. The cloud is held in the Cigar optical trap, hence
it extends over the x axis. Starting from a polarized sample in |1, —1), we apply a -
pulse to |1,+1) and immediately after image the populations in the two states, resolving
the spatial direction z (the imaging protocol is presented in Section 3.2). For each
position, we obtain the populations N7 2 by integration of the optical density, thus we
are able to measure the resonant frequency at each position with the usual spectroscopic



99 CHAPTER 2

(a) (b)
4r . L 3K IS
5 * 63 f K ; .
S i + 1 = t
o ? * + z }
2 + + § 621 o 1
Toof + + : { ¢ ;
. Hhit ; H
-2r 1 ] 1 ] 1 1 1 +
—-200 0 200 —-200 0 200
x (pm) x (pm)

Figure 2.17: (a) Change in the magnetic field for different positions in the optical trap.
The magnetic field is measured with spectroscopy of the two-photon transition on a
very dilute thermal cloud. (b) Rabi frequency of the two-photon coupling at different
positions in the optical trap. The Rabi frequency is measured driving Rabi oscillations
on a very dilute thermal cloud. The center of the optical trap is at z = 0. Errors
corresponds to 68% confidence intervals from the fitting routine.

procedure. From the resonant frequency, we then obtain the magnetic field at each
position (see Fig. 2.17a). The measured field inhomogeneity is below 4 pG on the typical
dimensions of our sample. This measurement sets an upper bound on the magnetic field
inhomogeneities, due to possible residual mean-field frequency shifts.

Coupling inhomogeneities

An inhomogeneous amplitude of the microwave field driving the two-photon coupling
translates to different Rabi frequencie €2 at different positions. Starting from a polarized
sample, we drive resonant Rabi oscillations in a very dilute thermal cloud for different
evolution time up to 200ms. With the same protocol previously described we measure
the populations at different positions x as a function of time. We then extract the
frequency of the Rabi oscillations fitting a sinusoid and observe a position dependent
change of the Rabi frequency Fig. 2.17b of the order of 2%.

2.4.4 Coherence time

As a final characterization measurement, we are interested in the coherence time of
our sample. The full description of the decoherence mechanisms requires separate ad-
dressing of the different homogeneous and inhomogeneous dephasing terms, and a full
characterization is outside the scope of this work. However, since we will be interested
in the coherence time in the presence of a stationary coupling, we measure its order-of-
magnitude by driving Rabi oscillations on a thermal cloud.
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Figure 2.18: Measurement of the coherence time with Rabi oscillations of thermal cloud
initially with Z = —1. In (a), we measure the magnetization integrating over the full
cloud, in (b) the integration is limited to a 20 pm-wide region in the center of the cloud.
Points and errorbars are mean and standard deviation over 5 experimental repetitions.
Gray line is an exponentially decaying sinusoid fitted to the data. The decay times
extracted from the fits are 37075, ms for (a) and 15007559° ms for (b).
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Starting from a very dilute thermal cloud in |1, —1), we turn on the coupling on
resonance with Rabi frequency of 61 Hz, starting a Rabi oscillation. With the protocol
described in the previous Sections, we then measure the populations at different po-
sitions. In Fig. 2.18a we show the magnetization integrating on the full extension of
the cloud. On this magnetization, we fit an exponentially decaying sinusoid, and ex-
tract a damping time of 370fé30 ms. This value, however, is affected by the spatially
inhomogeneous Rabi coupling, hence we restrict the integrating region to a 20 pm-wide
region in the center of the cloud (Fig. 2.18b). In this case, the fitted damping time
18 1500:11(1)80 ms. With this characterization we confirm that the coherence time of the

sample is sufficiently high to observe spin-dynamics for as long as hundreds of ms, as
required in the designing phase of the experimental apparatus.
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Chapter

Observation of Magnetic Solitons

Solitonic waves are a widespread phenomenon in many fields of physics. An overlook on
solitonic waves in single- and two-component BECs has been given in Chap. 1, while in
this Chapter I will focus on a particular kind of solitonic waves in two-component BECs,
the Magnetic Soliton (MS). MSs exist in two-component BECs with repulsive intra- and
inter-component interaction constants, if the former are equal and only slightly larger
than the latter. This is the case of mixture of |1,41) of 2*Na. MSs are localized spin
excitations on a homogeneous and non-polarized background. The condition of similar
interaction constants causes the total density of the system to remain constant, and an
explicit analytical solution can be obtained for the spin excitations.

In this Chapter I will present the experimental production and observation of MSs
in 2*Na condensates. During my PhD I developed a protocol to deterministically pro-
duce MSs using phase-engineering of the condensate, together with a multiple-imaging
procedure to reconstruct all the relevant quantities of the MS. With this protocol I inves-
tigated the dispersion-less in-trap dynamics of MSs. Moreover, I studied the robustness
of MSs by producing multiple MSs that then collide with each other.

In the first Section I will introduce the theoretical background on MSs developed in
[1] and present some numerical simulations of their dynamics. In the second Section,
I present the procedure used to measure the density and relative-phase profile of the
sample. In the third Section, I present the production of MSs using a phase-engineering
technique, its characterization and the observation and identification of MSs in the
sample. In the fourth and fifth Sections are reported further experimental investigations
of the in-trap dynamics and evolution of the MSs. In the last Section, collisions between
solitons of same- and opposite-magnetization are studied.

3.1 Theoretical background on Magnetic solitons

The analytical expression of a MS can be obtained starting from two coupled 1DGPEs
for a two-component BECs in a uniform potential [1]. The reduction of the GPE to
1DGPE follows Section 1.1.1. The result can then be extended to a trapped gas using
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the local-density approximation. I recall that in the case of mixtures of |1,41) of ?*Na,
since g11 = g2 = g and g — g12 = dg < g (see Section 1.2.1), the energy of spin
excitations is much smaller than the energy of density excitations, the former can be
excited leaving the latter in the ground state.

It is then convenient to separate the (total) density dynamics from the spin dynamics.

By defining the total density n = ni + nz and the magnetization Z = cos(f) = =12
the pseudo-spin order parameter can be rewritten as
(U1, Uy) = v/n(cos(h/2)e', sin(h/2)e'?). (3.1)

Moreover, one can introduce the total phase ¢, = ¢1 + ¢2 and the relative phase ¢, =
¢1 — ¢2. The characteristic length and velocity of the spin modes are the previously
introduced spin-healing length &5 and the spin-sound velocity c¢s. Since solitonic solutions
are moving at a constant velocity V, it is convenient to express them in term of the
moving spatial variable ( = (z — Vt)/&. By rewriting the GPEs in the new variables
and imposing equal densities at infinity, one can obtain the analytical result for the
densities and phases profiles in the presence of a MS moving at dimensionless velocity
U=V/cs as

n V1-U?2
nl,zzf 1+
2 cosh((x/l - U2)
cot ¢, = — sinh ((\/1 - U2> /U
tan ¢y = —/1 — U2 tanh (g\/1 — U2) U

From these equations, one observe that the MSs have a dimension of the order
of & and propagate at a velocity less than the spin-sound velocity (|[U| < 1). Their
magnetization at the centre has value Zy = /1 — U2, it is maximum for stationary
solitons and vanishes as they approach the spin-sound velocity. Their width, instead,
increases with velocity and the total magnetization is constant and equal to w&;. Across
the soliton, the relative phase ¢, exhibits a finite jump of 7 and this value does not
depend on the soliton velocity. A finite jump is present also in the total phase, however
its value depends on U. Fig. 3.1 illustrates the density and phase profiles of MSs for
different values of U.

Taking the difference in grand-canonical energies of the gas in the presence and in
the absence of the soliton, we obtain the energy of a MS

e = nhesV/ 1 — U2, (3.3)

showing how this energy decreases for higher velocities of the soliton. The dispersion-less
dynamics of solitons resembles the one of particles, however a peculiar consequence of
Eq. (3.3) is that MSs behave as particles with negative effective mass. Since solitons
of negative effective mass are not stable against snake fluctuations in higher dimensions
[112, 47], it is crucial to their observation that the sample is effectively one-dimensional.
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Figure 3.1: Density (a) and phase (b) profiles for a MS with U = 0 (solid lines), U = 0.5
(dashed) and U = 0.8 (dotted). As the velocity is increased, the density profiles of the
soliton gets smaller but wider, and the phase jumps are spread on a correspondingly
wider region. The jump in relative phase is always 7w, while the jump in total phase is
smaller for higher velocities.

The behaviour of MSs in a trapped gas can be understood considering the local
density approximation along the z-axis, i.e. the analytical solution just found in an
inhomogeneous total density profile n(z) such as a Thomas-Fermi density profile n(z) =
no(1 —22/R2). During the motion of the soliton its energy is conserved, hence it follows
from Eq. (3.3) that a reduction of density n is tied to a decrement of velocity U. Then,
a MS moving towards the low-density edges of the sample gradually slows until it stops,
reverse its motion and accelerates towards the centre of the sample again, starting an
oscillatory motion in the trap. For a soliton starting at the centre of the trapped sample
with velocity Uy, the amplitude L and period T' of the motion are given by

L/R, = \/1 — (-2 (3.4)

_ 1 — (z/Ry)? .
T/Ta = \/7/ R.\/[1 — (#/R,)? —1+U02d‘ (3:5)

3.1.1 Simulations

We simulated the in-trap dynamics of MS and collisions between MSs by numerical inte-
gration of the 1D coupled GPEs for the parameters of our experiment. The simulations
have been performed using a high-performance simulation package [113].

In-trap dynamics

We simulated a condensate of 1-10% atoms, equally distributed in the two components,
in a harmonic trap with axial trapping frequency 9.5 Hz and radial trapping frequency
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530Hz. After obtaining the ground state of the system via imaginary-time evolution,
the analytic phase and density profile of a MS is imprinted on the components, for
different initial velocities U, and real-time evolution performed. The MS is imprinted at
the centre and, in time, move towards the edge of the condensate with approximatively
constant velocity. As it moves towards the lower-density edge, the MS slows down due
to energy conservation, until it stops and reverse its motion. Together with the MS,
sound waves are excited with the imprint procedure. One can observe how the sound
waves, travelling at cg, are faster than the MS, but reach the edge of the condensate and
disperse. The MS, instead, oscillates in the trap unaltered.
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Figure 3.2: Magnetization of a MS oscillating in a harmonic trap. A MS is imprinted
at the centre with initial velocity U = 0.8 (a) and U = 0.98 (b). The soliton of higher
velocity travels further toward the edge of the condensate before stopping and returning
towards the centre of the trap. Sound waves are produced together with the soliton,
travel to the edge of the condensate and then disperse.

Collisions

Solitons can be robust to excitations of their shape and recover the solitonic profile by
releasing the excitation energy, however this robustness is not guaranteed for significant
changes in the shape of the soliton. In particular, the interaction between solitons, both
being sharp and energetic features, makes their behaviour non-trivial. For example,
bright solitons in optical media acquire a time and phase shift during a collision, but
recover their shape fully [5]. Magnetic solitons in spin-1 Bose gas, instead, can have
elastic and inelastic collisions [114] and are also expected to annihilate under certain
conditions [115]. Moreover, most of the studies on solitons have been performed in the
field of non-linear optics where there is no limitation in the amplitude of the electromag-
netic field. This is in stark contrast with our system, where the maximum amplitude of
the spin excitation can not exceed the density of the sample, without producing density
excitations.
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To study the robustness of the soliton, we simulated collisions between MSs of dif-
ferent magnetization and velocity. Since the MS is an analytical solution only for a
homogeneous background, when it interacts with other excitations is not guaranteed
that the soliton will survive the collision.

We simulated a condensate of 1-10° atoms, equally distributed in the two components,
in a 100 pm wide box. The 1D interaction constants are calculated with radial trapping
frequency of 500 Hz and the atom number is such that the chemical potential 4 = 2.9 kHz,
£, =1.05pm and ¢, = 1.3mms~! are close to the experimental values.
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Figure 3.3: Magnetization during collisions of solitons with equal (a-c) and opposite
(d-f) magnetization. The solitons are launched 30 pm apart with opposite velocities and
collide. Low-magnetization solitons do not interact (a, d), while high-magnetization
solitons interact briefly (b, e). (c, f) Collision of solitons of different velocities. Note
that different horizontal scales are used in each column.

First, we study collision between solitons of equal magnetization in
Fig. 3.3a-c. When fast, low-magnetization solitons collide in Fig. 3.3a, they cross each
other without interaction. In fact, fast solitons are close to linear spin waves as the
effect of nonlinearities becomes vanishingly small. Slow, high-magnetization solitons in
Fig. 3.3b show a different behaviour instead, as they appear not to merge during the
collision but to bounce one against the other. This can be intuitively explained by the
fact that these two solitons cannot be superimposed without creating a density exci-
tation in the system, as their total peak magnetization would exceed 1. Hence, as the
solitons get closer, the energy cost of the density excitation pushes them apart, until they
reverse their motion. It is remarkable that, even in the instant of minimum distance,
the magnetization between the solitons is lower than their peaks, hence the solitons
never completely merge. This “identification” of the solitons with the peak value of the
magnetization can be misleading, however, as it is evident in the case of collisions with
different velocities in Fig. 3.3c. While no complete overlap between the solitons happens,
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during the collision the solitons “exchange” velocity. This fact, necessary to conserve
the momentum of each component, de facto exchanges the identity of the solitons, that
appear to have crossed each other if only their exit trajectory is considered.

Secondly, we study collision of solitons of opposite magnetization. Similarly, fast and
low-magnetization solitons in Fig. 3.3d appear to cross each-other without interaction.
When slow, high-magnetization solitons collide in Fig. 3.3e, instead, the large excitation
in the densities causes an interaction, as can be observed by the shifted trajectory be-
fore and after the collision. Their interaction resembles an attractive potential and the
solitons emerge from the collision with an advanced position. This interaction happens
also when solitons of different velocities collide (Fig. 3.3f). In every case, the solitons
are not annihilated by the collision, even if during the collision the magnetization is null
everywhere.

These simulations show that solitons are robust against collisions with other solitons,
both of equal and opposite magnetization.

3.2 Full state reconstruction

In order to reconstruct fully the magnetization profile and relative-phase jump of the
MS we take multiple semi-concurrent in-situ absorption images of the BEC, effectively
observing all three relevant components of the pseudospin wavefunction (neglecting an
irrelevant global phase). The densities of both components of the mixture are imaged us-
ing Partial Transfer Absorption Imaging (PTAI) [116] while information on the relative-
phase is acquired using an interferometric technique that we developed.

3.2.1 Magnetization imaging and MS identification

In PTAI a small fraction of the atoms of the sample are transferred to an auxiliary
state that is then used for readout [117]. By using imaging light that is resonant with
the auxiliary state but not with the original sample, it’s possible to take quasi-non-
destructive in-situ imaging of the sample. Using PTAI we are able to control the OD
of the sample allowing also the imaging of very dense samples [118], by transferring a
limited amount of atoms to the auxiliary state. Moreover, when the extracted fraction
is much less than 1, the sample is not significantly disturbed by the imaging and the
procedure can be used for taking subsequent images of the same sample.

We use PTAI to image in-situ the atoms in |1,+1) by transferring ~ 10% of them
to |2,0) using a resonant 11ps microwave pulse of Rabi frequency 4.79(4) kHz. The
transferred atoms are then imaged along the z axis by a 5us imaging pulse on the F' =
2 — F’ = 3 transition. The atoms in |1, —1) are similarly imaged by transferring ~ 13%
of them to |2,0) using a resonant 7 ps microwave pulse of Rabi frequency 8.60(1) kHz.
From these two images, and a probe and background images, we measure the optical
densities of each state.

The in-situ imaging of the BEC is realized along the z-axis (see Section 2.2.9), using a
CMOS camera capable of acquiring a 64x1024 pixel image every 1.5 ms, with an exposure
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time of 1 ms and a readout and transfer time of &~ 0.5 ms. This camera is connected to a
data-acquisition computer over USB 3.0 connection, where the images are collected for
analysis. Since we are interested in acquiring both optical densities with the shortest
delay possible, the imaging light is pulsed at the end of one exposure of the camera and
then at the beginning of the next exposure, allowing us to minimize the time between the
two captures (=~ 600ns). For a MS moving at half the spin-sound velocity in a typical
sample (2mm/s), the displacement of the soliton during this time is below our imaging
resolution, and we can consider the two images as effectively concurrent.

3.2.2 Relative phase imaging

The phase profile of a MS complements the information extracted from the magnetization
thanks to the characteristic 7 jump of the relative phase across the soliton. Imaging of the
relative phase of two-component condensate was achieved in 8"Rb [52] and successively
used, for example, to observe the phase profile of a vortex [119]. This technique uses
a coherent coupling 7/2-pulse to interconvert the two components depending on their
relative phase. Representing the two-level system as a spin-1/2 on the Bloch sphere, this
process is equivalent to rotating the spin such that one of the equatorial components is
aligned with the quantization axis.

In our case, however, we aim for simultaneous readout of the populations and of
the relative phase. The previous technique completely modifies the populations of the
system and, moreover, requires a successive transfer to the imaging state. To obtain
the readout of the relative phase and simultaneous transfer to the imaging state, we
developed a technique for relative-phase-selective transfer from the /' = 1 manifold to
the F' = 2 manifold via microwave radiation. The F' = 2 manifold then becomes the
readout state when the atoms are imaged, 3.2ms after the second PTAI image. Our
technique can be equivalently modelled as an interferometer or as a projection on the
dark and bright states of a coupled three level system.

Interferometer description

In the interferometer description, the relative-phase imaging procedure can be explained
as follows. We start with a sample in |1, —1) and then we coherently transfer it to an
equally populated mixture (using either a /2 pulse or an Adiabatic Rapid Passage, this
does not change the validity of the discussion). This puts each atom in a superposition
of |1,£1) and corresponds to the first beam splitter of the interferometer. Since we are
interested only in localized jumps in the relative phase ¢(x) between the two components,
we do not require any knowledge of the global (homogeneous) phase that the two states
accumulate with respect to the external microwave oscillator, being this uniform on the
whole sample. One can consider, without loss of generality, that all the phases are acting
on one of the two states while the other acts as a local oscillator. The following evolution
of the system, for example the relative-phase jump of a MS, changes the relative phase
in a space-dependent way that carries the information of interest.



3.2. FULL STATE RECONSTRUCTION 70

Figure 3.4: Schematic representation of the interferometric measurement technique.
From left to right: the mixture of |1,41) is created with fixed relative-phase using
Adiabatic Rapid Passage. All the phases that are accumulated by the states are repre-
sented by the spatial-dependent phase ¢(z) and the global and spatially uniform phase
éro. A two-tone resonant microwave pulse then projects the two states on the |2,0),
where they interfere. The population in this state can then be readout with absorption
imaging.

We set the unknown global phase such that the |1,+1) state carries all the rela-
tive phase, then the state of the BEC before the readout can be written as |1,—1) +
expi?(@) |1,+1). To perform the readout of the interferometer, we use a two-tone mi-
crowave pulse resonant with the |1, —1) — |2,0) and the |1, +1) — |2,0) transitions with
complex Rabi frequencies {2 and Q4. The Rabi frequencies have equal modulus || and
differ by their phase: Q_ = e~?20Q), . The phase of the local oscillator ¢, is externally
set by changing the phase of one of the two microwave fields. When a short pulse is
applied (t < 27/Q) we can consider the two transitions in the limit of low transfer [83,
Chap. 7] so that each transition gives an independent contribution to the probability
amplitude of |2,0):

O_t

Ot
1, +1) — T* 12,0).
Then, the probability amplitude of |2,0) after the interferometer pulse is

Coo = @(1 + ¢ilorote)y,

and the probability of transferring to the readout state is

o QP2
Py = [Co0|” = S [1 +cos (¢(z) + ¢r0)],

allowing to extract information about the relative phase by absorption imaging.
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Coherent-population trapping description

An equivalent description of the procedure is based on coherent population trapping
(CPT) in a three-level system [120, Chap. 13]. This phenomenon has many applications
in atomic physics and arises when two quantum states are coupled through a third state.
A superposition of these two states (a dark state) becomes uncoupled to the third, hence
it is “trapped”. We consider the state basis (|1, —1),]2,0), |1, +1))” where the two states
|1,+1) are coupled through the state |2,0). In the presence of two driving fields near
resonant to the first (second) transition and with Rabi frequencies €1 ( £22) and detuning
A1 (Ag), the Hamiltonian of the system in the Rotating Wave Approximation is

2A; Q0
H=Z| & 0 o). (3.6)
0 Qo 24,

In the resonant case A; = Ay = 0 the eigenvalues of the system can be readily
calculated from the characteristic equation, yielding

1
z zQ—Z(Q%jLQ%) =0,
that has a solution zy = 0 and two solutions z4+ = :l:%\/ 02+ Q3 = :l:% coming from the
quadratic expression inside the parentheses. The corresponding eigenvectors are

1
o = 5(~5.0,) (3.7)

1
V20
While the eigenvectors ®. correspond to a Rabi oscillation where all three states par-
ticipate, ®¢ is a superposition only of |1, —1),|1,+1) that is uncoupled from |2,0). In
this framework, our readout procedure reduces to the projection of the state of the BEC
onto the basis (|®_),|Po),|P+)). The projection weights on this basis depends, at each
point in space, on the relative phases between the states |1,41) and on the phases of
the complex Rabi frequencies €2 2, hence the basis can be rotated at will by changing
the relative phase of the microwave driving fields. After the projection, the population

in the readout state |2,0) can be imaged, allowing the extraction of information about
the relative phase.

b, = (3, £9Q, Q). (3.8)

3.2.3 Interferometer calibration

Practically, several parameters have to be adjusted to obtain an interferometric image
with good contrast, and several hardware constraints of our system have to be consid-
ered. Considering the microwave setup described in Section 2.2.6, we generate a two-tone
signal setting the frequencies of both DDS channels to resonate with the |1,4+1) — |2,0)
transitions and then apply a pulse of precise timing using the fast pulse-modulation of
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the generator. We observed that significant spectral degradation of the two-tone signal
occurs driving the high-power amplifier at its maximum power, with several sidebands
produced due to the closeness in frequencies of the two tones. Due to the lack of quadratic
Zeeman shift at our working field, these sidebands drive unwanted transitions between
Zeeman states. While this is not a problem for the two-photon coherent coupling (the
unwanted microwave frequencies are as detuned as the main ones but less powerful), it
suddenly becomes problematic when the detuning is zero. We observed an immediate
atom loss and uncontrolled population of many Zeeman states when we tested the inter-
ferometer at the maximum amplifier power. This problem was solved by reducing the
amplitude of the two-tone signal before amplification to 1/10 of its original value.

A second key aspect to be considered is that an effective two-photon Rabi coupling
works also for unequal single-photon Rabi frequencies, and is possible to recover full-
contrast Rabi oscillations between the states by slightly detuning §. This reasoning does
not apply in the interferometric measurement since an equal transfer from the states
|1,£1) is required to achieve maximum contrast. It is then convenient to calibrate the
interferometer frequencies and amplitude separately from the values used for the two-
photon coupling.
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Figure 3.5: (a) Evolution of the three-level system with a two-tone microwave pulse of
length t starting from the state |2,0). Dashed lines are the time propagation of Eq.
(3.6) fitted to the experimental points. (b) Evolution of the three-level system with a
two-tone microwave pulse of length ¢ starting from the state % (11,-1) —|1,+1)).

We measure each single-photon Rabi frequency €1 (€2) and transition frequency
fi (f2) by driving separately the transitions |1,4+1) — |2,0) and measuring their Rabi
oscillations. Since the state |2,0) suffers from very strong atom losses at a high density
[56], that in our case induces decoherence in less than ~ 1ms, we performed the fol-
lowing measurements on a BEC that has been released from the optical trap. Starting
the microwave pulse 2 ms after the release, we observe clean dynamics for the timescale
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of interest. After applying the microwave pulses, a vertical magnetic gradient is turned
ON for 15ms to spatially separate the states (Stern-Gerlach) and the population in each
state is counted. Since we are driving the amplifier at low power, the Rabi frequencies
are the same if only one, or both tones, are present at the same time (while we ob-
served, at full power, that the power in each tone depends on the presence of the other).
By performing spectroscopies and Rabi flops, we set the frequencies and amplitudes of
the DDS channels such that both transitions are (separately) on resonance with Rabi
frequency of 0.76(1) kHz.

To check the validity of this calibration, we applied the two-tone pulse to different
initial states ¥y and confronted the dynamics with the time evolution of a three-level
system with Hamiltonian Eq. (3.6). Starting from W = (0, 1,0) (the excited state fully
populated), the time evolution is a Rabi flop between an equal population of the two
ground states and the full population of the excited state (see Fig. 3.5a). We fit the exper-
imentally observed evolution letting €21, 2, A and A, as fitting parameters and obtain
results consistent with the calibration above. When the initial state is ¥ = ( &—%, 0, %),
no population is transferred to the excited state when the two-tone microwave pulse is
applied. In our experiment, we produce the mixture in the latter state using ARP, since
the same microwave oscillator is used for the interferometric readout.

3.3 Production of MSs by phase-imprinting

Solitons in BECs can be generated by phase-imprinting a localized defect [10, 11, 45,
121, 122], or by creating inhomogeneous magnetization structures via phase-winding
[123]. These solitons can also spontaneously form as a result of counter-flow instability
of the superfluids [124, 125]. To deterministically create MSs, we imprinted a localized
jump in the relative phase between the components of a two-component BEC. From
the polarized BEC in |1,—1), produced using the protocol explained in Section 2.3,
we create MSs with a two-step procedure. Typical starting conditions are a BEC of
2 x 10% atoms, with negligible thermal component, held in a trapping potential with
axial frequency 8.7(12) Hz and radial frequency 585(2) Hz, realized using the Cigar and
the Xaxis beam. The Thomas-Fermi radii of the condensate are R, = 3.7pm and
R, = 250 pm, respectively along the radial and axial direction.

First, the polarized BEC must be transferred to a homogeneous non-polarized (Z =
0) state. We achieve this with an adiabatic rapid passage (ARP) sequence, by turning
on the two-photon coherent coupling with an effective Rabi frequency of 268(2) Hz at
an initial detuning of ~ 4kHz. The detuning is then ramped to zero by changing the
magnetic field with a half-gaussian ramp of 60 ms. At the final value of the field, the
Larmor frequency is 182.3 kHz. At this magnetic field, spin-changing collisions populate
the state |1,0), destabilizing the mixture. We prevent this introducing an artificial
quadratic Zeeman shift using a dressing microwave field of Rabi frequency 2.27(5) kHz,
blue-detuned from the |1,0) — |2,0) transition by 20kHz. After the ARP sequence,
the states are equally populated, the magnetization uniform and we do not observe any
magnetization dynamics.



3.3. PRODUCTION OF MSS BY PHASE-IMPRINTING 74

Secondly, a sharp magnetization excitation must be created without exciting the
total density of the sample. We create this magnetization excitation by engineering the
relative phase between the component with a vectorial optical dipole potential. In the
following I will discuss the principle and calibration of this technique.

3.3.1 Vectorial optical dipole potential

In alkali atoms with two fine-structure transitions 2.5, /2 = ’p /2 ’p, /2 (D-line doublet)
a monochromatic light with frequency w between the two transitions applies an optical
potential sensitive to the magnetic quantum number mp [104]. The potential

7T (2 + ngmp n 1-— ngmF
2w3 Ao Ay p ’

Ugip = (3.9)
is composed of the independent contributions of the two transitions. The first (second)
term in the above equation represent the contribution of the Dy (D;) transition, that
depends on the detuning Ag (A ) of the laser from the transition itself, the sponta-
neous decay rate I', the (average) resonant frequency wy, the Landé factor gr and the
laser polarization P (P = %1 for circular and P = 0 for linear polarization). From this
equation it is clear that we can apply different potentials to the |1,+1) states thanks to
their opposite mp. Since the phase of the order parameter evolves as e “#t/h with E
the energy of the component, if the potential is different at different points it causes the
accumulation of a phase difference. This phase imprinting (PI) procedure can imprint an
arbitrary phase on the condensate applying a spatially inhomogeneous optical potential.

To produce a MS, the imprinted (relative) phase profile must be a sharp jump of .
However, also the densities of both components should be changed according to Eq. (3.2),
as was recently reported in [126]. We chose, instead, to imprint a total jump in relative
phase of 27, corresponding to two opposite phase jumps of £7 in the components and
no change in total phase. This phase profile corresponds to two overlapped MSs with
opposite magnetization and velocity, and their total magnetization is zero everywhere.
In this way the total magnetization of the sample is conserved and a single phase-imprint
produces a couple of opposite MSs. By setting the wavelength of a circularly polarized
light such as Ay = 2A; the potential is purely vectorial, it has equal magnitude but
opposite sign for the states |1,+ — 1). For the D-line of 23Na, this condition is satisfied
at wavelength of 589.557 nm.

Furthermore, we require the phase imprinting to be much shorter than the time of the
spin dynamics of the sample, to avoid evolution of the condensate in an inhomogeneous
spin potential. We estimate that the duration of the PI should be much smaller than
h/ndg ~ 2ms.

Laser and optical system

We realized an ECDL laser at 1179.114 nm that is then amplified by a slave laser to
produce 200 mW of light power. The infrared light is then frequency doubled using a
PPLN waveguide chip (HC Photonics [127]) producing ~ 12mW of 598 nm light. The
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light is deflected by a single-pass 80 MHz AOM acting as a fast optical switch, before
being coupled in a polarization-maintaining optical fibre (Schéfter Kirchhoff PMC-630-
4-2) to be transferred to the sample. At the output of the fibre we obtain 7mW of usable
power. In order to increase the light intensity and shorten the pulse time, the beam on
the sample is elliptical, with a 4:1 ratio between the waists. We achieve this using a
4:1 telescope with cylindrical lenses of focal length —50mm (Thorlabs LK1662L1-A)
and 200 mm (Thorlabs LJ1653L1-A). The collimated beam is then superimposed to our
vertical imaging path using a PBS and relayed with a demagnification of 6 on the atoms
by the imaging lenses (see Section 2.2.9). The beam waists on the atoms are ~ 170 pm
and = 660 pm, with the larger waist along to the long axis of the BEC. This beam is then
masked by a movable knife edge placed on the imaging plane of the imaging system, to
obtain a sharp step-like intensity pattern on the sample, so that half of the BEC is not
illuminated and the other half is approximatively uniformly illuminated. The sharpness
of the transition from brightness to dark is equal to the imaging resolution on this axis,
that is estimated by geometrical optics simulations to be ~ 1.8 pm.

3.3.2 Calibration of the phase imprint pulse

The amount of accumulated relative phase when the optical potential is applied depends
both on the light intensity and on the pulse duration. We characterize the amount of
imprinted phase by light pulses of various durations using our interferometric technique,
as a routine calibration of our experiment. We create a mixture with uniform relative
phase, apply the PI and at the shortest delay possible (2ms) we take an interferometric
picture. After this short time the evolution of relative phase is negligible, and we can
measure the phase profile from which the evolution of the system starts.

By controllably applying a phase-shift on one of the arms of the interferometer (vary-
ing the phase of the microwave local oscillator ¢r), we observe the output of the in-
terferometer to oscillate sinusoidally with a contrast of &~ 90%. We sample the total
output of the interferometer in a region of 10x8 px illuminated (not illuminated) by the
phase-imprint light (see Fig. 3.6a), and fit a sinusoid to extract the global phase in
Fig. 3.6b. The difference A¢ between the two extracted phases is then a direct measure
of the amount of relative phase that the PI has imprinted, and is linearly proportional
to the pulse duration. The pulse duration necessary to imprint a jump of 27 is then
extracted with a linear fit (Fig. 3.6¢). In our system, for the beam waists of ~ 170 pm
and ~ 660 pm and total power of 5.2mW, the time for a phase imprint of 27 is 89.1 ps,
of the same order of the value expected from Eq. (3.9).

Short-time MS dynamics

Using the reconstruction method described in the previous Sections, we fully characterize
the MSs that are produced in the sample by the phase imprint technique.

We phase imprint a 27 step in the relative phase and after a variable evolution time,
we take an image of the density for each state and an interferometric readout of the
relative phase. Examples of these images are shown in Fig. 3.7. We observe that after
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Figure 3.6: (a) Image from the interferometer right after the phase imprint pulse.
Shaded areas show the regions used to extract the relative phase. (b) Scan of the phase
of the local oscillator to measure the jump in relative phase between the dark (red)
and illuminated (blue) halves of the BEC. (c) Measured phase jump as function of the
duration of the light pulse. Multiples of 27 have been added to the observed phase jump
to make the data continuous. Error bars are smaller than points size.

phase imprint, two MSs are created, each one being a density bump in one component and
a density dip in the other. The solitons can be more easily observed in the magnetization
of the condensate, while the total density is only minimally excited. The produced MSs
have opposite sign and travel in opposite directions. In correspondence of the MS, the
interferometer readout shows a sharp jump, indicating that the excitation is connected
to a change in relative phase.

MS identification

In order to study the dynamics of the MSs, we required a method to identify their
position from the acquired optical densities (Fig. 3.8a). The ODs are integrated along
the y-axis to get a one-dimensional profile nyj(x) of the density of each component
along the axis . In the densities, MSs appear as sharp and narrow peaks or dips,
see Fig. 3.8b. From these profiles we calculate the 1D magnetization of our sample
Z(x) = % In this way the inhomogeneous total density profile of the BEC
is eliminated and the signal-to-noise ratio increased. However, we often observe the
presence of long-wavelength magnetization excitations in the BEC, that are produced
by unknown sources, presumably due to the low energy necessary for their excitation. We
found convenient to apply a digital high-pass filter on the calculated 1D magnetization
profile before prosecuting with the MSs identification, in order to remove excitations of

wavelength >125pm. The resulting magnetization profile is flat, with MSs appearing as
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Figure 3.7: MSs at different time t after their creation. Each set of images has been
acquired in a single experimental run. From top to bottom, each set is composed of the
atomic densities in |1, —1) and |1, +1), where MSs are visible as density bumps and dips.
From these image we compute the magnetization Z of the sample. Then, the readout of
the interferometer, showing changes in the relative phase corresponding to the position
of MSs. The total density n of the sample, shows no excitation in correspondence of the
MSs.
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Figure 3.8: (a) OD of the states mp = —1 (top) and mp = +1 (bottom) obtained using
PTAL (b) integrated 1D density profiles for the two states. (c) filtered magnetization
profile used for MSs identification, with the positions of the solitons indicated by dots.
The horizontal dashed lines are the threshold used for MS identification.

small localized excitations (see Fig. 3.8¢c). The identification of the position of the MSs
is performed with a peak-finding algorithm (available as scipy.signal.find peaks in
[128]). All the local maxima in the magnetization are found by comparison with the
neighbouring points. Of these maxima, we select the ones that are higher (lower) from
the mean value of the magnetization by a given threshold . The value of this threshold is
empirically chosen to identify as many solitons as possible with the minimum amount of
false positives. Once that the position of the solitons in the sample has been determined,
we can study their dynamics.

A note has to be made on the fact that the magnetization that we reconstruct from
these images does not correspond to the true magnetization of the soliton due to the
limited resolution of the imaging system. In fact, the size of a soliton(of the order of
& ~ 0.8um) is larger than our imaging resolution of 1.8 pm, and we expect the real
magnetization to be higher than the observed one.

Relative-phase jump measurement

To study the relative-phase profile of the MSs, we produce a couple of MSs and we
leave the solitons evolve for 30 ms, such that they are spatially separated, then perform
the full tomographic imaging. From the magnetization of the sample, we identify in
each shot the position of the solitons and observe the OD of the readout state of the
interferometer (see Fig. 3.9a). At the position of the MSs, the OD changes abruptly,
with variable contrast from shot to shot. We impute this to random changes of the global
phase, as it changes the visibility of the relative phase jump (confront with Fig. 3.6b at
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¢ro = 90°). Moreover, we observe that even in the absence of the phase-imprint pulse,
non-uniform excitations of the relative phase develops after some tens of milliseconds.
These excitations have much longer wavelength than the size of the solitons and are
expected not to influence the dynamics of the solitons that is much more energetic. In
the presence of these excitations, the jump of relative phase can be measured only locally
in the regions nearby the soliton and not globally in the bulk of the condensate.
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Figure 3.9: (a) Example OD in the readout state |2,0), with the MSs positions deter-
mined from the magnetization of the sample (dashed lines). (b) Integrated OD along
the y axis, showing the sharp jump in relative phase at the position of the solitons.
To measure the phase jump across the solitons, we compare the average counts in the
shaded regions. (c) Average counts in the left versus right regions, for each MS. Each
point is an experimental repetition. While the global phase changes from shot to shot,
the counts in the two regions are anti-correlated, showing that a jump of 7 in the relative
phase is happening across the soliton.

To measure the jump in relative phase, we restricted our analysis to two regions of
the z-axis of 10pum, at a distance of £10pm from the centre of each soliton. In the
lower panel of Fig. 3.9a, the regions used to probe the relative phase are highlighted as
red and blue overlays for, respectively, the negative and positive magnetization solitons.
Probing the relative phase on a small region rejects much of the noise coming from
long-wavelength excitations.

Finally, we circumvent the random changes in global phase looking at the correlation
of the interferometer readings on the two sides of the soliton. Assuming that the inter-
ferometer readings on one side of the soliton is & cos (¢), a jump of relative phase equal
to m means that the readings on the other sides will be ~ cos(¢ + 7) = — cos(¢). Thus, a
perfect anti-correlation between the two sides allows to infer that the relative phase jump
across the soliton is indeed 7. In order to increase the contrast of the anti-correlation we



3.4. IN TRAP DYNAMICS 80

scan the phase ¢ro. In Fig. 3.9b, the counts in each region on the opposite sides of the
soliton are plotted one versus the other. The counts are strongly anti-correlated (ideal
anti-correlation is represented by the dashed line), compatibly with experimental noise,
showing that the jump of relative phase is indeed 7 across the soliton.

3.4 In trap dynamics

In a trapped gas, the MSs are expected to oscillate in the sample following Eqgs. 3.4 -
3.5). Here, we created couples of MSs by phase-imprint and, after different evolution
times, we imaged them with the full tomographic imaging. Since the production of the
soliton is deterministic, we therefore study the full dynamics of the soliton in the trap.
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Figure 3.10: Position of the MSs after a time t after the phase-imprint pulse. Points
and errorbars are, respectively, mean and standard deviation of at least 4 experimental
realizations in time bins of 25 ms. Single experimental realizations are represented with
lighter points. The two plots are different data runs taken on different days with 2.2
millions (top) and 1.1 millions (bottom) atoms in the sample. We extract the amplitude
and period of the oscillation fitting Eq. (3.10) to the single points (dashed lines).

We observe a residual sloshing of the BEC x position of + 30 pm, that changes the
position at which we imprint along the cloud. We measure the position of the cloud using
shadowgraph imaging [129], i.e. taking an off-resonant image of the BEC, ~ 5ms before
the phase-imprint pulse. The shots where the centre of the cloud and the phase-imprint
position are displaced by more than 10 pm have been discarded in post-processing. We
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checked that the phase-imprint light does not move along Z. In the following, the position
of the soliton is expressed with respect to the centre-of-mass of the BEC.

The dynamics of the solitons has been observed for an evolution time ¢ as long as
1s after their creation, before their height decays below the detection threshold. In
Fig. 3.10 the dynamics of two pairs of solitons is represented, where each red (blue)
point corresponds to the position z(t) of the negative (positive) magnetization soliton
identified with the full-tomographic imaging. The dynamics of MSs in the trap is not
a harmonic oscillation, with this effect more evident for solitons with velocity =~ cs,
however, the solitons we where able to produce never reached such high velocities. In
the experiment, instead, we observe that the amplitude of the MS oscillation is slowly
increasing in time. This effect is probably caused by particle loss in the soliton due
to the finite temperature of the sample, lowering its magnetization and increasing the
amplitude of the oscillation. We have not investigated this effect further, due to the
lack of theoretical works to support the claim, and we empirically fit the motion of the
solitons using a sinusoid with exponentially increasing amplitude

y(t) = Let/ sin (27t /T + ). (3.10)

Since the spin-sound velocity ¢s in the sample can be obtained from independent
measurements of atom number and trapping frequencies, we can directly compare the
dynamics of the solitons with the theoretical prediction. Varying the total atom num-
ber and the focusing of the phase-imprint blade we launched MSs with different initial
velocities in samples of different densities. For each dataset, we measure the oscillation
amplitude L and period T'. In Fig. 3.11a we compare the observed period of the oscil-
lation with Eq. (3.5). The observed oscillation period is in agreement, compatibly with
experimental noise, with the theoretical prediction of =~ 4.57,. The large uncertainty
in determining the period, however, does not permit to observe an increase of oscilla-
tion period for high initial velocities. This uncertainty is due to the limited number
of oscillations that the solitons perform and the scattering in the position of the soli-
tons. In Fig. 3.11b, the oscillation amplitude is plotted against initial velocity showing
substantial agreement with the theoretical prediction.

3.5 Evolution and decay of the MS

3.5.1 MS width

The characteristic feature of solitonic waves is their propagation without dispersion, so
that they retain a constant shape after any propagation time. In the specific case of MSs,
the peak magnetization (Zj) and the width of the soliton are dependent on the soliton
velocity, and so will vary during the oscillatory motion as the velocity is changing.

To further confirm that the observed excitations have solitonic nature, we measure
the width of the soliton for different evolution times from the in-situ magnetization of
the sample. Due to the low signal-to-noise ratio of the magnetization, we average the
magnetization profile from many experimental realizations with the following procedure.
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Figure 3.11: (a) Measured MS period (dots) and prediction (line) from Eq. 3.5. (b)
Measured MS turning point (dots) and prediction from Eq. 3.4 (line). Theoretical
predictions have no free parameters. Errorbars are 68% confidence intervals from the
fitting routine.

After identifying the solitons, the magnetization of a 40 pixels-wide region, centred on the
soliton, is extracted. The realizations are binned for similar values of ¢t and averaged. In
Fig. 3.12(a,c) we show the average magnetization profile (points) of solitons of positive
(blue) and negative (red) magnetization. On this profile a Gaussian curve is fitted
(black solid line) to extract the width and amplitude of the solitons. The expected
magnetization profile calculated from the spin-healing length and the soliton velocity
(dashed coloured line) is narrower and reaches a peak magnetization of ~ +0.8. The
discrepancy between the observed and expected magnetization profiles can mostly be
explained taking into account the finite imaging resolution (black dashed line), hence we
can only give an upper bound to the width of the solitons. We do not observe a change
in the width and amplitude of the solitons during the dynamics, see Fig. 3.12(b, d). It
must be noted that during this evolution time the solitons have crossed each-other twice,
after 250 ms and after 500 ms and no change in width or amplitude after the crossing is
observed. Soliton-soliton collisions will be better analysed in the following Sections.
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Figure 3.12: Average magnetization profile of a soliton of positive (a) and negative
(c) magnetization, for evolution time of 150 ms. The experimentally observed profile
(points) is fitted with a Gaussian function (black, solid). From the spin-healing length
of the sample and the velocity of the solitons, we calculate the expected magnetization
profile (coloured, dashed) and we simulate the blurring effect of the imaging resolution
on such profile (black, dashed). Evolution of the observed RMS width (b) and amplitude
(d) of the solitons as function of the evolution time.

3.5.2 MS decay

Solitons with negative effective mass are stable only in one-dimensional systems. In
higher dimensions they decay due to “snake instability” [112, 47], due to the non-
negligible transverse size that allows the growth of transverse excitations. Other ex-
citations are produced in the decay, such as solitonic vortices and vortex rings [130, 131,
132, 133]. The parameter that determines the stability of solitons in an elongated system
is the ratio between the radial size of the condensate I, and the size of the soliton &.
In our system, this ratio is approximatively 5.

To check that the excitations that we produce are indeed MS and do not decay into
other excitations, we change from in-situ imaging to time-of-flight, leaving the sample
to expand ballistically for 30 ms in a levitating magnetic gradient. Due to the different
magnetic moment of the components, only the |1, —1) is levitated. In Fig. 3.13 we show
two example images taken after expansion. At short and long times after the creation of



3.6. COLLISIONS 84

t=50ms t=550ms
0 1.2
1.0
200
0.8
5— 400 068
-
0.4
600
0.2
A C T T = 400
o 500 200
‘é’ 0 1 I
0 200 400 0 200 400

x (pm) x (pm)

Figure 3.13: (left) OD of |1, —1) after 30ms of free expansion and evolution time of
50ms. The density bump (dip) caused by a negative (positive) magnetization soliton is
visible near the centre of the cloud, as a straight fringe. (right) At the longer evolution
time of 550 ms, the solitons are less clearly visible, however we do not observe bending
of the soliton. The bottom plots show the OD integrated along the y axis.

the solitons, they are visible even in a single component as density bumps and dips, that
show a straight profile and no bending or tilting due to transverse excitations arising
from snake instability. In particular, we do not observe the characteristic “S” figure of
an expanding solitonic vortex [134].

3.6 Collisions

The propagation of solitons is rigorously dispersion-less only when a single soliton is
propagating in a uniform background. In this Section, we experimentally investigate
collisions between same- and opposite-magnetization solitons.

3.6.1 Opposite magnetization collisions

The collision of solitons of opposite magnetization happens naturally in our system since
we produce couples of solitons moving in opposite directions. Each soliton performs then
an oscillatory motion in the trap until it comes back to the centre and collides with its
pair of opposite magnetization.

From the measurements of in-trap dynamics of Section 3.4 we already observed that
the solitons survive multiple collisions with no apparent change. To better study this
collision, we produced couples of MSs with initial velocity £0.6cs; and concentrate on
the first collision that happens approximately a ¢ = 300ms. After performing half
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Figure 3.14: (a) Magnetization of the sample during the collision of solitons of opposite
magnetization. Each row is an experimental realization. (b) Distance between colliding
solitons (grey points). The same data is binned in intervals of 20 ms (blue points and
errorbars). The solitons cross each other and their relative motion is compatible with
in-trap oscillation without interaction (dashed line).

an oscillation, the two solitons cross each other at the centre of the trap, apparently
unchanged (see Fig. 3.14a). To reduce the scatter in the position of the solitons, we
shift their average position to the centre. For this data set, only the shots where two
solitons have been clearly identified have been considered, to remove shots where one of
the solitons did not survive and the collision is not happening.

In Fig. 3.14b, we extracted the distance between the solitons (Az). Since each soliton
is moving of oscillatory motion the distance between the two solitons will describe,
approximatively, a sinusoid, hence we fit an arc of sinusoid on the data, with fixed
period according to the in-trap dynamics observed in Section 3.4. The large scatter in
the positions of the solitons prevents to investigate precisely the collision process, and a
more detailed investigation is required to experimentally highlight effect of interaction
between solitons. However, since we do not observe a discontinuity at the collision the
hypothesis of dissipation-less collision is compatible with the data.

3.6.2 Same magnetization collisions

To produce collisions between solitons of same magnetization, the phase-imprint beam
has been modified changing the intensity mask to create a uniformly illuminated central
region and dark lateral regions. The resulting imprinted phase profile consists of two
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opposite steps in the relative phase, at a distance of ~ 100 pm and centred on the BEC.
Each phase step will then generate a couple of MSs, with the solitons of positive (nega-
tive) magnetization travelling inward (outward). The solitons of positive magnetization
thus collide at the centre of the trap, 50 ms after their creation (see Fig. 3.15a). This
experimental condition has the advantage that the collision happens after a much shorter
time from the phase imprint than in the previous Section, reducing the scatter in the
position of the solitons. To further reduce the scatter, we set the average position of the
colliding solitons to the centre.
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Figure 3.15: (a) Magnetization of the sample during the collision of solitons of equal
magnetization. Each row is the average of up to five experimental realizations. (b)
Distance Ax between colliding solitons. Their relative motion is linear before (blue)
and after (orange) the collision, since the motion happens near the center of the trap.
Between 40 and 55ms the solitons can not be distinguished (gray). Dashed lines are
linear fits to Az, showing an increase of velocity after the collision. The motion before
the collision is extended to compare with dissipation-less behaviour. Dashed regions are
one-standard-deviation confidence intervals.

In Fig. 3.15b we plot the distance between the two solitons. Differently from the
previous Section, we can not clearly identify the solitons due to the equal magnetization.
Consequentially, between 40 and 55 ms the two solitons can not be distinguished as the
scattering in their position exceeds their (mean) relative distance. For other times we can
safely assume that the collision is already happened, or not happened yet. We measure
the relative velocity of the solitons before and after the collision using linear fitting. We
observed the two velocities to be statistically significant with values 1.83(8) mm/s before
the collision and 2.8(1) mm/s after. Since the solitons are colliding near the centre of
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the trap, their motion is linear to a good approximation, hence we can not explain the
discontinuity in the velocity with the trajectory inside the trap.

We explain this dissipative behaviour, in contrast with the expected dissipation-
less nature of the solitons, considering that the total magnetization of the overlapped
solitons would exceed unity, an unphysical condition. As the simulations of Section 3.1.1
show, during same-magnetization collisions the solitons do not cross, but rather rapidly
interact one with the other. This interaction may introduce a dissipation effect, due to
the strong perturbation that the solitons experience. This dissipation may be possibly
caused by the three-dimensionality of the system, since this effect is not present in 1D
simulations.
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Chapter

Spin quantum torque in magnetic
heterostructures in cold gases

Layered structures of materials with different magnetic properties, the so-called magnetic
heterostructures [135], are of particular interest in the field of material science. New
physical phenomena originate at the interface between these materials, such as exchange
coupling, giant magneto-resistance and spin torque [136]. These effects found many
technological applications even in common devices such as magnetic tape recorders and
hard drives. In Section 1.3.4, I introduced how the Gross-Pitaevskii equations of a
two-component Bose gas can be recast in the form of a dissipationless Landau-Lifshitz
equation, the governing equation of the magnetization dynamics in materials. Ultracold
Bose gases can therefore become a simulation platform for micro-magnetic phenomena
due to the high degree of control available in such systems.

So far this parallelism has been studied in Bose gases neglecting the spatial degree of
freedom, where the LLE reduces to the Josephson equation, both in double-well [74] and
in internally-coupled systems [60]. To create analogues of magnetic heterostructures,
however, the system must be extended in at least one spatial dimension. Elongated
Josephson systems in Bose gases [78, 80, 79, 82] have been studied both theoretically and
experimentally in double-well systems, however the realization of analogues to magnetic
heterostructures is still missing.

In this Chapter, I present the experimental realization of a one-dimensional internal
Josephson junction using a coherently-coupled two-component **Na BEC with a large
aspect ratio. In this system, the spatially-dependent atomic density naturally creates
regions with different magnetic properties. At the interface of these regions a domain
wall is formed, that then decays into magnetic excitations because of spin quantum-
torque. The first Section is devoted to the characterization of the system dimensionality
in relation to the spin dynamics, to the state preparation and to the measurement of the
relevant quantities governing the dynamics of the sample. The second Section presents
the experimental investigation of the creation and breaking of magnetic domain walls.
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4.1 Manipulation of an elongated JJ

In Section 1.3.1, I introduced how the Josephson equation describes the evolution of the
internal states of a Bose gas with its dependence on the atomic density and the Rabi
frequency. In our experimental system, the Rabi frequency is (to a good approximation)
uniform, while the density is inhomogeneous due to the harmonic trapping potential.
For a system with non-uniform density, we can consider two extreme cases. In the first,
the system is very large and the density changes so slowly in space that the atoms do
not move significantly during a Rabi period. Consequently, each atom evolves with
Josephson dynamics depending on the (local) value of the density and distant parts
of the system do not influence each other. Then, since each part of the system has
a different dynamics, the spin of the sample becomes inhomogeneous while the total
density remains constant. In the second case the system is very small and, due to atomic
motion, its spin averages much faster than a Rabi period in every part of the system.
Consequently, the spin dynamics of the system is homogeneous and evolves following the
Josephson equation, with an “average” atomic density. In other words, the first example
shows a purely local Josephson dynamics while the second is a single (spatial) mode
approximation of the system. In between the two limits, the local Josephson dynamics
and the movement of the spins will influence each other.

In a strongly elongated system, whose size along one direction is much larger than
along the other two, the first limit might hold along the long direction, while the sec-
ond limit holds along the other two. In this system, the spin dynamics is purely one-
dimensional and, along the long axis, strictly local. The system therefore is analogous
to an elongated Josephson junction. In this Section, I report on the realization of an
experimental system with effectively 1D spin dynamics. On this system, common tech-
niques for internal state preparation require revisiting, as the parameters of the local
Josephson dynamics depends on the inhomogeneous density profile.

4.1.1 Realization of 1D spin dynamics

We experimentally investigate for what parameters our system shows one-dimensional
spin dynamics, by changing the aspect ratio of our sample at fixed peak density ng.
As anticipated in Section 1.3.4, we expect the system to be one-dimensional as long
as the radial size is smaller than the dimension of spin-excitations. In the Thomas-
2 2
Fermi approximation, n(r) = ng(1 — E’,—% — £7), with z and p respectively the axial and
transverse direction of the system, the radiaﬁl) size is given by the Thomas-Fermi radius
R,. We consider that spin excitations have a characteristic length scale given by &,
calculated at the center of the sample. The ratio R,/¢; depends on the choice of the

radial trapping frequency w, and on the peak density as

By _ 2mog 99 (4.1)
&s hw, g

In our experimental setup we can vary this ratio approximately between 1 and 5.



91 CHAPTER 4

To verify that the spin-dynamics can be approximated as one-dimensional, we try
to create spin excitations along the transverse direction. To do so, we leverage the
fact that for different densities the spin can be in different dynamical regions of the
Josephson equation (Section 1.3.2). Let us consider only the transverse cut at © = 0 of
the sample, where the density is ng at the center and vanishes at R,. Starting from a
fully polarized system in |1, —1) = |]) and suddenly applying a resonant Rabi coupling
with |1,4+1) = |[1) , the spin can be either in the Rabi oscillating regime or in the self-
trapped regime. Choosing a coupling strength < "ggg, we then expect the center
of the cloud to be self-trapped. If the transverse size is large, the center of the cloud
remains self-trapped, while the local spin performs Rabi oscillations at some value of p,
creating transverse excitations. If the transverse size is small, instead, the spin remains
self-trapped at all values of p, since all the atoms evolve with the average value of non-
linear coupling strength  (actually, the condition of self-trapping is more stringent, cf.
Section 1.3.4). We test if the system has one-dimensional spin dynamics by applying
the coupling for a time corresponding to a m-pulse for a single ||) atom. After the pulse,
there is no population transferred to |1) only in the case of one-dimensional dynamics.

Trap compression

In order to vary the ratio R,/&,, we modify the preparation of the condensed sample
described in Section 2.3. After the loading of the Hybrid Trap with a thermal cloud, we
apply a high-stability magnetic field B = 1.3 G along z. Then, we transfer the cloud to
a purely optical trap formed crossing the Cigar (waist 18 pm, power 800 mW) and the
Xaxis beam (vertical waist 72 pm, horizontal waist 700 pm, power 1 W), then remove
the magnetic quadrupole. We perform evaporative cooling ramping down the power of
the Cigar beam with a 1-s-long exponential ramp, down to a final value of ~ 50 mW.
We adjust this final value to set the sample temperature. To change the radial trapping
frequency, we then compress the optical trap by adiabatically increasing its power with
a l-s-long half-Gaussian ramp. By compressing the trap, we tune the radial trapping
frequency w, /27 at values from 500 Hz to 1000 Hz, while keeping fixed the axial trapping
frequency w, /27 at 10(2) Hz.

Determination of coupling parameters

In the following Sections, we investigate the role of the non-linear coupling strength in the
internal dynamics of the system that also depends on the Rabi frequency 2 and detuning
0. In the measurements presented in this Chapter, we apply the two-photon coupling
using the “hook-side” antenna (cf. Section 2.2.6). We stabilize the mixture with an
artificial quadratic Zeeman shift using a microwave field radiated from the “hook-vert”
antenna blue-detuned with respect to the |1,0) — |2,0) transition.

We measure independently 2 and § on a very dilute thermal cloud, held in the
same optical trap. To produce a thermal cloud instead of a BEC, we lower the power
in the Cigar beam during the loading of the Hybrid Trap, to drastically reduce the
number of atoms transferred in the optical trap prior to the evaporation ramp. No other
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Figure 4.1: Example calibration measurement for § (a) and € (b) on a thermal cloud.
In (a), we observe the magnetization after a m-pulse for different detuning and extract
the resonant frequency fitting Eq.(2.3). In (b), we drive Rabi oscillation and extract
the oscillation frequency of the centre of the cloud by fitting to a sinusoid. We observe
the frequency in the center due to the spatial inhomogeneity of the Rabi coupling (cf.
Section 2.4.3)

experimental parameter is modified, and this allows to measure €2 and 0 for the same
experimental protocol that normally produces the BEC, while ensuring that the system
is deep in the Rabi regime (2 > |ngdg|).

We determine § with a spectroscopic measurement on this thermal cloud. To de-
termine €2, we drive Rabi dynamics on resonance, and observe full-constrast oscillations
with hundreds of ms of coherence time (see Section 2.4.4). An example of these calibra-
tion measurements is reported in Fig. 4.1.

Imaging

Since R, is comparable to our imaging resolution, the in-situ imaging protocol of Chap. 3
is not suitable to observe the transverse distribution of our sample. Therefore, we ex-
pand the sample prior to imaging, in order to magnify the radial distribution of the
populations. After releasing the atoms from the trap, we let them freely expand for 2 ms
(3ms) before the state ||) (1)) is imaged. The state-selective imaging is performed by
transferring atoms to the imaging state |2,0) with a resonant microwave pulse and then
performing absorption imaging along the vertical direction. Different expansion times
for the two states are necessary for the camera readout and to allow for the atoms of the
first image to exit the field-of-view of the camera. Right after the first image, in fact, a
pulse of resonant light from the x direction blows the atoms in the imaging state away.
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Due to the different expansion times the atomic clouds have a different radial di-
mension (see Fig. 4.2a;b). We consider that each cloud is radially expanding following

the Castin-Dum equation R,(t) = R,(0),/1 + w2t? [137]. This equation considers that,

during the initial expansion, the mean field energy of the sample is converted into ki-
netic energy. While this relation holds for an expanding single-component condensate,
we expect it to hold also for a two-component system, even in the presence of magnetic
excitations. In fact, due to the large energy difference between the density and spin
mean-field energy, the former dominates the expansion at short times. In the presence
of magnetic excitations only, therefore, the expansion of the sample is nearly equal to
the one of a single-component condensate. The expansion at longer times is instead bal-
listic, and by scanning the expansion time we checked that the Thomas-Fermi radius of
the total density and the distribution of each component indeed expand linearly in time,
also in the presence of spin excitations. We then rescale the second image along y in
order to account for the spin-dependent expansion time, to measure the magnetization
profile of the sample after the expansion. It should be noted that, due to the absorption
imaging technique, we observe the radial direction column-integrated along the direction
of imaging (z), hence we do not observe the true radial distribution in Fig. 4.2. Since the
expansion times are much shorter than 1/w,, the axial motion of the sample is negligible,
allowing for imaging of the radial distribution as a function of the z coordinate.

Spin dimensionality

We then proceed to observe the population distribution after a pulse of duration t = 7/
(m-pulse). Fig. 4.2 shows the distributions of both components for a sample with 1D
dynamics (a) and one with 3D dynamics (b). In the first case, R,/§; = 1.2 and the
population remains self-trapped near the center where the density is sufficiently high.
In the second case R,/&; = 4.9, there is transfer of population also at the center and
the radial distribution is clearly inhomogeneous. To ensure self-trapping both in the 1D
and 3D case, we set ) =~ 0.3ngdg/h. In Fig. 4.2c, we report the radial magnetization
near v = 0 as we vary R,/{s. For R,/&; < 3, the sample remains self-trapped, showing
that the spin dynamics is one-dimensional. At larger values, the transfer of population
indicates the three-dimensionality of the spin dynamics and the failing of the single-mode
approximation. In the rest of the Section, we consider samples with R,/{s < 3, such
that their spin dynamics is one-dimensional. Therefore, referring to Section 1.3.4, the
non-linear term of the Josephson dynamics will be expressed with the one-dimensional
quantities £ and 7, and the peak value of the linear density is ng. Along the z axis,
instead, the size of the condensate R, is always much larger than &, therefore we consider
Josephson dynamics as local (at least for short-time evolutions).

4.1.2 Spectroscopic density shift

In dense atomic clouds, the energy levels are modified by the presence of mean-field
interactions, and these frequency shifts, commonly known as collisional shifts, have great
importance in metrology [53]. In the Josephson regime, when the non-linear detuning
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Figure 4.2: ODs of the two components after applying a m-pulse to an elongated sample
initially in |{), with 1D (a) and a 3D (b) spin dynamics. R,/{s are 1.6 and 4.9, respec-
tively. For 1D spin dynamics, the central region at x = 0 is self-trapped for any y. If
the dynamics is 3D, the regions of lower density along the transverse direction are not
self-trapped. (c) Magnetization along y averaged along z, after a m-pulse for different
values of R, /&, (values are reported above the plots). Confidence interval due to imaging
shot-noise of one standard deviation is indicated as shaded region. The averaging region
is 100 pm-wide (grey boxes in plot a and b).

and the Rabi coupling are of the same order of magnitude, these shifts can become
dramatic. In our system, moreover, the non-linear detuning depends on the local value
of the density.

Starting from a fully polarized sample in ||), we apply a m-pulse with Rabi coupling
of Q = 27 x 126 Hz and observe that the population transferred to |1) depends on
the (global) detuning 6 and on the (local) spatially-varying nonlinear coupling strength
kn(z) (see Fig. 4.3a). The experiment is repeated for different values of the detuning
0 from the transition frequency and we measure the local magnetization of the sample
(Fig. 4.3b).

On the edges of the cloud the density is low, therefore the non-linear effects can be
neglected and the system is deep in the Rabi regime. Hence the amount of transferred
population depends on the detuning § according to the common sinc-like spectroscopic
curve (orange points and curve in Fig. 4.3c). At the center of the cloud the non-linear
term is no longer negligible and the system is in the Josephson regime (blue points
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Figure 4.3: (a) Spin evolution during a m-pulse for negligible (orange) and non-negligible
(blue) non-linear coupling strength, compared to the Rabi coupling Q (black). (b) Mag-
netization after a m-pulse as function of §. The center of the cloud is at z = 0 and
R, =200 pm. (c) Magnetization for high- (blue, z = —20 um to 20 pm) and low-density
(orange, |x| = 180 um to 200 um) regions of (a), with corresponding fit of the Josephson
dynamics (lines). (d) Local xn at different positions (points). The data well follow a
Thomas-Fermi profile (black line) with fixed TF radius (measured on the total atomic
density) and amplitude equal to the peak value of kny/2m = 297(15) Hz. The values
of kn expected from the atomic density and Eq. 1.55 are systematically lower (orange
region). Error bars coming from the fit in (b) are smaller than symbol size.

Fig. 4.3c). The spectroscopic curve, obtained by numerical integration of the Josephson
equations, becomes asymmetric and its peak is shifted. The direction and magnitude of
the shift depends on the sign and magnitude of xkn, respectively, permitting to fit the
numerical solution of the Josephson equations (blue line) to the data, with kn as the
only free parameter. By performing this fit on the magnetization observed at different x
we extract the spatial dependence of the local value of the non-linear coupling strength.
The obtained values (points in Fig. 4.3c) are in good agreement with the expected
Thomas-Fermi profile of the cloud (black line). The measured peak value is k1y/2m =
297(15) Hz. The non-linear coupling strength can be calculated from the atomic density
from Eq. (1.55). We estimate the latter from the condensate number and the trapping
frequency, finding a systematically lower value (orange line), presumably because of
systematic errors in determining the atom number.

4.1.3 Density-dependent ARP

When observing the magnetization of Fig. 4.3b, one understands how we cannot prepare
a state of spatially uniform magnetization in the regime 2 ~ kn by pulsing the Rabi
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coupling. In the presence of a spatially inhomogeneous non-linear term, in fact, the
exact preparation is possible only in the Rabi regime. A different approach is based on
the Adiabatic Rapid Passage (ARP), that was used, for example, in Chap. 3. We now
investigate how the non-linear term affects this procedure.
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Figure 4.4: (a) Spin evolution during a ARP for negligible (orange) and non-negligible
(blue) non-linear coupling strength. (b) Magnetization after a ARP as a function of the
final detuning 6. (c) Magnetization for high- (blue, = —20pm to 20 pum) and low-
density (orange, x = —150 pm to —130pm) regions. Errorbars are standard deviation
in the integrated region. Line is a sigmoidal function fitted to the data. (d) Non-linear
parameter extracted from the sigmoidal fit (points). We show a Thomas-Fermi profile
(black line) with fixed TF radius (measured on the total atomic density) and amplitude
equal to the peak value k7p/2m = 398(7) Hz. The values of ki expected from the atomic
density and Eq. 1.55 are systematically lower (orange region).

In the ARP, the Rabi coupling is applied to a polarized state with an initial large
detuning 9§, so that the system is in the state of minimum energy. The detuning is then
slowly swept, so that the system adiabatically follows the change of § and remains in
the energy minimum state. During the ramp, § and Z satisfy the following condition

Z
0 = Q—== + knZ, 4.2
,/1 _ Z2 ( )
while ¢ = 0 during the whole passage, corresponding to the energy minimum state.
This relation can be obtained setting to zero the derivative in Z of Eq. (1.40). While
in the Rabi regime the magnetization depends only on /4§, in the Josephson regime
an additional term containing xn is present. For large values of the detuning, the state
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of minimum energy is strongly polarized in both regimes. As § approaches 0, in the
Josephson regime the non-linear term brings the magnetization closer to 0, with respect
to the Rabi regime. The value Z = 0, however, is reached for § = 0, independently of
the non-linear coupling strength (Fig. 4.4a). It should be noted how the magnetization
at 6 = 0 is less sensitive to magnetic field fluctuations, since the state of equal magneti-
zation is favoured by the non-linear term. In a quantum description of the system, this
phenomenon produces number-squeezing [66]. Expanding Eq. (4.2) near Z = 0, one gets
the sensitivity of the magnetization
0z _ 1 (4.3)
a5  Q+kn
that can be used to measure xn.

In our experiment, we start from a polarized sample in |}), turn on a coupling with
Q = 27 x 185 Hz with an initial large detuning § ~ —27 x 3kHz. We then sweep
the detuning while keeping constant microwave frequencies and ramping in 50 ms the
magnetic field on a half-Gaussian trajectory. The final value of the ramp corresponds
to a final dy. In Fig. 4.4b I plot the magnetization of the sample as a function of the
coordinates x and dy.

At the beginning of the ramp, all parts of the cloud are close to |}). The magneti-
zation evolves differently in different parts of the system, according to the local value of
kn. As expected, though, all parts of the cloud reach Z = 0 simultaneously when § = 0.
Proceeding further with the ramp, the cloud is transferred to |1). Comparing the magne-
tization as a function of ¢ in different regions of the cloud (Fig. 4.4c), the magnetization
transits from —1 to +1 over a larger range of ¢ in regions of higher density. Note that
the efficiency of the full rotation is increased by the non-linear term, due to the faster
precession of the spin-vector around the coupling vector (see also next Section).

By fitting the dynamics of the magnetization for each position with a sigmoidal
function, we extract the derivative in the vicinity of zero magnetization and compute xn
as a function of z from Eq. (4.3). The peak value of the non-linear term derived from
the ARP procedure is krp/2m = 398(7) Hz and results larger than the one coming from
spectroscopic measurements and the atomic density. However, we expect this method
to have larger systematic errors, due to the need to precisely image both states with
the same efficiency and due to the not complete adiabaticity of the process. In a late
stage of the writing of this Thesis, we improved the ARP procedure by turning on the
coupling with a 10 ms linear ramp, instead than abruptly.

4.1.4 Plasma oscillations

The ground state of the Josephson Hamiltonian at § =0 is Z =0, ¢ = 0, and for small
deviations near this point the system oscillates at the plasma frequency (see Section 1.3.2)

wp = V/QUQ+ ri), (4.4)

allowing to determine 7 from independent measurements of €2 and w,. The advantage of
this method over the previous ones is the high precision and the immunity to systematic
errors related to imaging, as the only quantities to be determined are frequencies.
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Figure 4.5: (a) The plasma oscillations are orbits near the z-axis, close to the vector
Qz. (b) Evolution of the magnetization for the initial state Z = 0, ¢ = 0.17, showing
position-dependent plasma oscillations. (c¢) Plasma oscillation frequency at x = 0 for
different values of ). The line is a fit according to Eq. (4.4), hence providing the xn
parameter at the position where the plasma frequency is measured. (d) Local non-linear
parameter extracted from plasma oscillation frequency. We show a Thomas-Fermi profile
(black line) with fixed TF radius (measured on the total atomic density) and amplitude
equal to the peak value k1 /27w = 276(3) Hz. The values of ki expected from the atomic
density and Eq. 1.55 are systematically lower (orange region).

Following the previously described ARP procedure, the sample is prepared in Z =
0,¢ = 0. Then, the phase of the coupling is suddenly changed by 0.17, triggering the
oscillatory dynamics (Fig. 4.5b). For each position =, we extract the frequency of the
oscillation by fitting the magnetization to a sinusoid. From Eq. (4.4), we extract the value
of the local non-linear parameter (Fig. 4.5d). This method works well near the center of
the cloud, where we can extract the peak value of kny/2m = 276(3) Hz with a relative
error on the order of 2%. Near the edges of the cloud, instead, the oscillation is less
visible due to the lower signal-to-noise ratio caused by the small change of magnetization
and the lower optical density. However, together with the measurement of R, from the
absorption images, we can fully and accurately measure kn(x), as we checked that it
follows the expected Thomas-Fermi profile with the spectroscopic measurement.

To check the validity of the method, we repeat the procedure for different values of
Q. After the ARP, performed at fixed €2, we change the detuning A from the virtual
state together with the phase. By extracting the oscillation frequency at the center of
the cloud we measure the dependence of the plasma frequency on Q (Fig. 4.5¢). The
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data is compatible with Eq. (4.4), and by fitting the data to this equation with xn as
free parameter, we obtain higher immunity to systematic errors. This methods is used
to calibrate k7 in the rest of this Chapter and in [138].

4.2 Breaking of magnetic heterostructures

In the previous Section, we considered the spin of the sample as evolving with a purely
local Josephson dynamics, as if the atoms of the sample were fixed in space. If the spin of
the sample becomes inhomogeneous, however, the movement of the atoms causes orbital
dynamics of the spin. The description of local Josephson dynamics is now insufficient
and we must introduce the orbital motion as a quantum-torque term (cf. Section 1.3.4).
In this Section, I present experimental results on the breaking of magnetic interfaces due
to quantum-torque.

4.2.1 Analogy with magnetic materials

V'
B

= y i

Figure 4.6: An elongated internal Josephson junction (a) mimics a magnetic material
with variable ferromagnetic anisotropy (c). The Rabi coupling © and the non-linear
detuning ks, are analogous to an external magnetic field B and the ferromagnetic
anisotropy ym.. In the regions of low atomic density (left and right), the non-linear
field is smaller than the Rabi coupling and the spin precess around the latter. Corre-
spondingly, the magnetic anisotropy is smaller than the external magnetic field and the
magnetization precess around the latter. In the regions of high atomic density (cen-
ter), the opposite happens. The spin is self-trapped around a finite value, while the
magnetization is aligned around the direction of preferred magnetization.
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The different kind of evolutions of the magnetization evolving under the LLE in a
magnetic material are similar to the different dynamical regimes of a spin evolving under
the Josephson equation. Fig. 4.6 represents schematically this analogy for an elongated
sample with inhomogeneous density.

Considering only the local dynamics, in a magnetic material the evolution is gov-
erned by the external magnetic field and the non-linear ferromagnetic anisotropy. A
magnetic anisotropic material has some preferred directions of magnetization, and this
property can originate for example from the crystalline structure or from the shape of
the material. A material with a single preferred magnetization direction has uniaxial
magnetic anisotropy, and the effective magnetic field of this material contains a term
proportional to the magnetization along this direction. The uniaxial magnetic anisotropy
is commonly referred to as easy-plane or easy-aris, respectively when the magnetization
energy is higher or lower in the preferred direction. In an internal bosonic Josephson
junction, the external magnetic field corresponds to the electromagnetic Rabi coupling
and the uniaxial magnetic anisotropy to the non-linear detuning «s,. When the exter-
nal magnetic field is larger than the magnetic anisotropy, the magnetization precesses
around the external field. Similarly, when the Rabi coupling is larger than the non-
linear term, the spin precesses around the coupling vector. In the opposite case, when
the magnetic anisotropy is larger than the external field, the magnetization precesses
around a preferential spatial direction characteristic of the magnetic material. Similarly,
when the non-linear term is larger than the Rabi coupling, the spin vector can become
self-trapped at a finite value. In the case of mixtures of 23Na in |1,41), the term & is
positive, therefore this system mimics a magnetic anisotropy of the easy-plane type.

4.2.2 Breaking of magnetic interfaces
Breaking of local Josephson dynamics

We shall now consider how this analogy is applied to the elongated Josephson junction
characterized in the previous Sections. Due to the spatially inhomogeneous density of
the BEC, also the non-linear term of the local Josephson dynamics depends on space as

k() = khp(1 — 22/ R2). (4.5)

This is analogous to a magnetic material with a space-varying magnetic anisotropy (see
Fig. 4.7a). Consequently, if €2 is smaller than |kng| the local Josephson dynamics can be
in different dynamical regimes at different positions, even if the magnetization is initially
homogeneous. The numerical integration of the local Josephson dynamics of a sample
that is initially fully polarized in Z = —1 is shown in Fig. 4.7b. Where the density
is high, such that Q < |kn|/2, the system is in the self-trapped dynamical regime, the
magnetization remains close to —1 and the relative phase runs without bound. The
regions where {2 > |kn|/2, instead, are in the oscillating dynamical regime, with mag-
netization and relative phase oscillating around zero. Inside each region the dynamics
is approximatively uniform, however the dynamical regimes are separated by a domain
wall, at position z. such that Q = |kn(z)|/2. At the interface the dynamics sharply
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changes characteristics, with different average magnetization and relative-phase on the
two sides. Moreover, due to the divergence of the period of the orbits at the domain
wall, as time passes the system accumulates features of smaller and smaller size in the
vicinity of the domain wall. Clearly, the accumulation of these highly-energetic features
cannot proceed indefinitely because of the increasing kinetic energy cost. Therefore,
these features must break the strictly local Josephson dynamics.
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Figure 4.7: (a) The non-linear term xn of the sample has spatial Thomas-Fermi distri-
bution. The value kn/Q = 2 marks the separation between the self-trapped and the
oscillating region of the initially polarized sample. (b) Local Josephson dynamics for
an initially polarized sample, as function of time. At the domain wall between the self-
trapped and the oscillating regimes the dynamics changes abruptly. On the right, the
magnetization dynamics in each region is represented on a Bloch sphere. (c) Breaking
of the domain wall due to spin-torque. This numerical simulation is from [138]. From
the domain wall magnetization excitations originate and disrupt the local Josephson
dynamics. All data of the picture are numerical simulations.

We now consider also the orbital degree of freedom of the spin, i.e., the movement of
the atoms along the axis of the system. In a magnetic material the Heisenberg exchange
leads to the introduction of a term proportional to the Laplacian of the magnetization.
Equivalently, in an internal Josephson junction, the motion of the atoms introduces the
quantum torque term discussed in Section 1.3.4. These terms introduce an energy cost
in “twisting” spatially the magnetization (spin), and become predominant at the domain
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wall. In Fig. 4.7c, the quantum torque is added to the numerical simulation and disrupts
the local Josephson dynamics, breaking the domain wall into short-wavelength strongly
polarized magnetic excitations. This data is adapted from [138] and produced by A.
Gallemi. The excitations spread from the domain wall in to the surrounding regions
and thorough the sample, as the system started from a very out-of-equilibrium initial
condition and has a large amount of excess energy.

As a final remark, it should be noted that in real magnetic materials a strong Gilbert
damping term is present. It aligns the magnetization to the effective magnetic field. The
dynamics of a low-temperature BEC instead is mainly dissipation-less, hence excluding
damping mechanisms.

Experimental observation of domain wall breaking

We experimentally investigate the breaking of the magnetic interface in our elongated
Josephson junction. Starting from a BEC in [||), we suddenly apply a coupling Q <
|kno|/2 to [1), at 6 = 0. We determine knp using the method described in Section 4.1.4.
In Fig. 4.8 we show the results for a sample of ~ 5 x 10° atoms and trapping frequencies
[wg,w,]/2m = [10(1) Hz, 1006(1) Hz]. The corresponding Thomas-Fermi radii are R, =
210pm and R, = 2.2pm, and the ratio R,/{; = 2.8. We apply a coupling of Q@ =
27 x 118(1) Hz = 0.33 knp. In such a way, the cloud is self trapped from the center to
z. ~ 110(7) pm. The uncertainty of this value is evaluated from the uncertainties in
kno and R, and shown as black bars on the top of Fig. 4.8a. We apply the coupling
for a variable time ¢ and then measure the population in each state (see Section 4.1.1).
For this experimental parameters the spin dynamics is one-dimensional, hence all the
quantities in this Section are integrated along the transverse direction and are presented
as a function only of the axial dimension .

We show the evolution of the magnetization as a function of time in Fig. 4.8a, with
each row of the image being the magnetization in an experimental run. At short times,
the two distinct dynamical regions are clearly visible, separated by a magnetic domain
wall. At larger times the domain wall breaks into short-wavelength magnetic excitations,
creating a strongly fluctuating region that then spread thorough the sample.

To highlight the fluctuating region, we calculate the standard deviation of the mag-
netization in 5 pm-wide windows (Fig. 4.8b). Even if the magnetization has different
values in the self-trapped and oscillating region, its standard deviation has approxima-
tively the same (low) value. In the fluctuating region, instead, the standard deviation
has a larger and strongly fluctuating value. We perform a 1DGPE simulation for the
same experimental parameters of the experiment (Fig. 4.8¢,d), that is qualitatively in
agreement with the experimental results. Fig. 4.8e-g show the linear densities of the
components at different evolution times, and Fig. 4.8h-j the corresponding simulated
ones. From these figures one observes how the short-wavelength magnetic excitations
start to spread from the position of the domain wall. The agreement within simulation
and experiment is remarkable in the region of local Josephson dynamics.
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Figure 4.8: (a) Observed magnetization as a function of time for an initially polarized
sample in the presence of coupling (2 = 0.33 kng). (b) Standard deviation of the magne-
tization for spatial windows of 5 pm. (c¢,d) Numerical Gross-Pitaevskii simulation of the
same system. Around the critical position z. (black bars), we observe a net change in
the behaviour from the oscillating to the self-trapped regime. (e-g) and (h-j) Measured
and simulated density profile of each component, normalized to the local total density,
for Qrt = 27, 37 and 5.

Scan of the Rabi coupling

The initial position of the magnetic domain wall depends on the value of the Rabi
coupling €2. By changing the value of 2, we investigate the behaviour of magnetic
excitations for different initial positions of the domain wall. For low values of the coupling
(Fig. 4.9a), the domain wall is formed close to the Thomas-Fermi radius of the sample,
and the fluctuating region reaches the center of the self-trapped region after a longer
time. As the coupling is increased (Fig. 4.9b,c), the domain wall is formed closer to
the center, and the self-trapped region is consumed faster. Finally, when the coupling is
greater than xkno/2 (Fig. 4.9d), the sample is completely in the Rabi oscillating region. In
this case we also observe creation of short-wavelength magnetic excitations, even in the
absence of a domain wall. Differently than the domain-wall breaking case, the excitations
originate simultaneously in a wide region at the center of the cloud. We suppose they
are originated from the quantum-torque since, due to the density-dependent frequency
of oscillation, the magnetization becomes inhomogeneous. On the other hand, numerical
simulations indicates that the excitations induced by the quantum torque in this regime
should appear at much longer times. For even higher values of the coupling, instead, the
magnetic excitations are suppressed.
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Figure 4.9: (a-c)Evolution of the magnetization of an initially polarized sample for
different values of Rabi coupling. As the coupling is increased, the domain-wall position
z. (black dashed line), calculated from xnp and R, moves from the TF radius (black
line) closer to the center, reducing the time of the spread of the magnetic fluctuation.
In (d), the sample is completely in the Rabi oscillating regime.

It should be noted that the initial position of the domain-wall depends not only
on Q and kn(x), but also on ¢ (see Fig. 4.3). Therefore, shot-to-shot magnetic field
fluctuations affect the measurement and their contribution is larger for small values of
the coupling. The data presented in this Section was taken at an earlier stage of the
experimental activity, with lower values of kng and 2 than the data in the previous
Section, hence increasing the sensitivity to magnetic field fluctuations.

4.2.3 Velocity of the wavefront

The breaking of the magnetic domain walls generates a strongly fluctuating region that
spreads into the self-trapped region. In Fig. 4.8(b,d), the “wavefront” of the fluctuating
region moves with approximatively constant velocity. For each spatial position, the
standard deviation of the magnetization has a transition from a low (self-trapped region)
to a high value (fluctuating region) (see Fig. 4.10a,b). We empirically determine the time
t; of the transition from one condition to the other by fitting a sigmoidal function (black
line) and taking its center (black dot) as time of passage of the wavefront. From the (z,
tj) points, we determine the velocity of the wavefront (Fig. 4.10c, dashed line) to be, for
this particular dataset, 4.1(1) mm/s. We compare this velocity with the sound velocity
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Figure 4.10: (a,b) Standard deviation of the magnetization (blue) as function of time for
different positions x in the sample. We determine the time ¢; (black dot) of the jump
from self-trapped to fluctuating dynamics with a sigmoidal fit (black). (c) Velocity of the
fluctuating region from the sigmoidal fit. The region spreads from the domain walls at
x ~ +110m towards the center of the sample at x = 0 with approximatively constant
velocity of 4.1(1) mm/s (black dashed line). Red and green lines indicates spread at the
sound and spin-sound velocity, respectively.

¢ =9.2mm/s and the spin-sound velocity ¢; = 1.7mm/s. We calculate this quantities
at the center of the cloud since the density at z = £80um is only 15% lower than the
peak value.

Waves travelling faster than the sound velocity of the fluid are known as shock waves,
and are typically non-linear waves that abruptly change the property of the fluid itself.
Shock waves in single component BECs have been studied, for example, in [139, 140,
141]. Since the wavefront moves faster than the spin-sound velocity, it forms a magnetic
shock wave, that have been so far only theoretically investigated for two-components
BECs in the absence of coherent coupling [70, 142] and in the presence of spin-orbit
coupling [143].

4.2.4 Correlation length

We select portions of the data in the three dynamical regions of the sample and anal-
yse the magnetization (Fig. 4.11a). In the self-trapped and Rabi oscillating regions,
the magnetization is spatially uniform, while having different mean value due to the
different Josephson dynamics. In the strongly fluctuating region, instead, the magneti-
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zation changes apparently randomly from shot to shot and, in the same experimental
realization, in space.
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Figure 4.11: (a) From left to right, magnetization of the sample in the self-trapped, Rabi
oscillating and fluctuating regions. (b) Autocorrelation Czz of the magnetization in the
corresponding regions of experimental data and for a numerical simulation, as a function
of the separation Azx.

We measure the autocorrelation of the magnetization

[ Z(x)Z(x 4 Az)da

Czz(Az) = f Z(x)2 dz (4.6)
in each region separately (Fig. 4.11b). Due to their near-uniform dynamics, the self-
trapped and Rabi oscillating regions show strong autocorrelation at long distances. In
the fluctuating region instead, the autocorrelation drops to zero after ~ 5um. The
autocorrelation of the magnetization, in the fluctuating region of a 1IDGPE numerical
simulation with the same parameters as the experiment, shows a similar behaviour. To
compare the experimental result with the numerics, we fit the autocorrelations in the
fluctuating regions to a Gaussian, and measure their standard deviation. The values
of 2.1(1) pm (experimental) and 1.55(3) pm (numerical) are qualitatively similar but in-
compatible given the error bars. In calculating the autocorrelation of the numerical
experiment, we take into account the contribution of the finite imaging resolution, how-
ever the ballistic expansion before the imaging protocol is not taken into account and
may contribute to the larger value of the experimental autocorrelation. The (spatial)
dimension of the region considered is limited to 30 pm, with limit set by the largest
region with uniform dynamics of the sample.
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4.2.5 3D system

3D dynamics, Q=2763Hz=0.186gng
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Figure 4.12: (a) Evolution of the magnetization Z(z) (Z(z,y) integrated along y) for a
sample with 3D spin dynamics. Experimental ODs (b-d), column-integrated magneti-
zation Z(x,y) (e-g, top) and magnetization after inverse-Abel transform Z4(z,p) (e-g,
bottom) at evolution times of 4, 9 and 57 ms. At short times, the system is self-trapped
for |z| < z. (black dashed lines) and Rabi oscillating elsewhere. Differently from the
1D-dynamics case, even inside the self-trapped region some population is transferred,
and short-wavelength magnetic excitations develop. A closer look at the ODs shows
that even at short time the 3D spin dynamics break the self-trapping. At longer times
short-wavelength magnetic excitations spread everywhere in the sample.

The discussion in this Chapter so far has been limited, with appropriate choice of
experimental parameters, to samples with one-dimensional spin dynamics. By increasing
the ratio R,/ of the sample, however, the spin dynamics becomes three-dimensional,
and in a preliminary stage of this work we observed such 3D spin dynamics. We did
not perform a detailed investigation of this condition, but I report an example of exper-
imental data with R,/{; ~ 5, as a starting point for further investigations.

A sample with 3D spin dynamics poses some additional challenges for the experi-
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mentalist. First, determining the distribution of the components in the presence of 3D
dynamics is more complicated than in the 1D case. In particular, the imaging resolu-
tion of our apparatus does not allow us to observe features below the radial size of the
sample. The imaging procedure of Section 4.1.1 relied on ballistic expansion to magnify
the radial direction. This ballistic expansion along the radial direction might then alter
the observed component distribution from the in-situ one.

Second, we cannot consider the dynamics at a position = in the local Josephson
approximation, hence the calibration and preparation techniques of Section 4.1 cannot be
applied. In particular, due to 3D spin dynamics we observed that the magnetization Z(x)
after a m-pulse is incompatible with the numerical integration of the Josephson equation
(see Fig. 4.3). We observe that the ARP procedure can still be used succesfully for state
preparation. To determine the non-linear parameter n(r)dg/h, the three-dimensional
counterpart to xn(x), one could use the plasma frequency and Eq. (4.4), however we
observed a reduced, but not negligible, radial-dependence of the magnetization dynamics
during a plasma oscillation. Due to this, for 3D samples we calculated the value of the
non-linear parameter from the atomic density. We corrected the atomic density from
absorption imaging, in a sample with 1D spin dynamics, such that kng from Eq. (4.4)
and Eq. (1.55) coincide.

In Fig. 4.12 we report experimental data resulting from applying the protocol of
the previous Sections on a sample with R,/{s = 4.3. Specifically, we prepare a sample
with non-linear parameter at is center of ndg/h = 27 x 350 Hz and apply the coupling
Q) = 21 x 63 Hz, such that most of the cloud is in the self-trapped regime. Observing
the magnetization integrated along the radial directions (Fig. 4.12a), at short times
one observes as expected the self-trapped and Rabi oscillating regimes. At ¢ = 10 ms,
however, the dynamics in the self-trapped region is different with respect to the 1D case,
with a large transfer of population concentrated at two positions x ~ +£100 pm. At even
longer times, from these positions are generated short-wavelength magnetic excitations,
that disrupt the self-trapped dynamics much sooner than in the 1D case (cf. Fig. 4.9).

To explain this change in dynamics, we must observe the OD of the components
before integrating along the radial direction in Fig. 4.12(b-d). We show the compo-
nents separately after rescaling of the y-axis. The |f) component, that should be only
minimally populated in the self-trapped region, instead shows a population with inho-
mogeneous radial distribution even when the coupling is applied only for 4 ms. In par-
ticular, we observe |1) population at the center of the cloud, where the sample should be
deeper in the self-trapped region. We suspect that either this component is converted
at the (radial) edge of the sample and then migrates to the center, or the imaged dis-
tribution does not coincide with the in-situ one. At longer times, complex structures
develops in the components, with non-trivial dependence on the axial and radial posi-
tion. The structure concentrates the |1) population at the x ~ £100 pm position, from
where the short-wavelength magnetic excitations develop. At longer times, the magnetic
excitations have spread everywhere in the sample. These excitations appear mostly one-
dimensional along the x axis, however we occasionally observe tilted excitations that we
speculate may be the magnetic analogue of solitonic vortices [134].
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Finally, in Fig. 4.12(e-g), we show the magnetization extracted from the distributions
of the components. Due to the absorption imaging procedure, the observed distributions
are integrated along the imaging direction, hence the observed magnetization Z(x,y)
(top panels) is also similarly integrated. To extract the three-dimensional magnetiza-
tion profile, it is necessary to reconstruct the 3D density distribution of each component
from the column-integrated ones. Assuming cylindrical symmetry around the z axis,
we use the inverse-Abel transform method [144, 145], in the particular implementation
used in [146]. With this method, we reconstruct the three-dimensional density distribu-
tion nyj(x, p) of each component, from the column-integrated one nyq(z,y). From the
distributions, we extract the magnetization as

7’L+1($,p) - nfl(:v,p)
ni1(z, p) +n_i(z,p)’

Za(z,p) = (4.7)

shown in the lower plot of Fig. 4.12(e-g). Observing in particular Z,4 in Fig. 4.12f, one
observes how the population is transferred nearly completely to the state |1) at some
positions inside the self-trapped regions.

Due to limited time, we did not perform a in-detail investigation of the spin dynamics
in this regime. However, the measurements show how studies of spin dynamics in two
and three dimensions are accessible in our apparatus. In higher dimensions, in fact,
interesting physical phenomena have been theoretically predicted, for example magnetic
domain-wall formation and vortex confinement [147, 148].
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Conclusions

In this Thesis I reported the results obtained during the course of my Ph.D. in the
realization and study of spin dynamics in two-component quantum mixtures of *Na
atoms in the |F' = 1,mp = £1) hyperfine states.

I realized and characterized a new experimental apparatus to realize ultracold atomic
samples in a highly-stable magnetic field. This apparatus enables the study of coherently-
coupled quantum mixtures of internal states with different magnetic moments in a previ-
ously inaccessible parameter regime, namely where the strength of the coherent coupling
is comparable to the energy of the spin excitations. I then studied solitonic spin waves
(Magnetic Solitons) in an equally-populated sample in |F' = 1,mp = £1), in the absence
of coherent coupling. I deterministically created solitons and observed their dynamics
on a timescale of the order of the second, and their robustness to collisions with other
solitons. Finally, I realized coherently-coupled two-component BECs with effectively one
dimensional spin dynamics, realizing an elongated internal bosonic Josephson junction.
In this system, I studied analogues to magnetic heterostructures realized in material sci-
ence, observing the creation and breaking of spontaneously-created magnetic interfaces
by the quantum torque effect.

This work prepares the way toward furthers studies of the spin dynamics in the
|F=1,mp = £1) mixture. With the degree of control achieved, new experimental in-
vestigations in the presence of coherent coupling are possible. For example, solitonic
topological excitations in one-dimensional systems [69], or dynamical instabilities at
finite momenta of the self-trapped state [149]. In higher dimensionality systems, an
intriguing phenomenon is the formation of bound states of magnetic vortices [147, 148,
150]. This phenomenon has analogies with the quark confinement of QCD, allowing for
the simulation of high-energy physics in Bose-Einstein condensates.
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