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Chapter 1

Introduction

Amorphous systems are companions in our everyday life, few examples being car
windows, glasses, mayonnaise, toothpaste or paints. Among all the materials
with structural disorder, glasses play a key role in both the industrial (drugs
delivery, food conservation and manufacturing, material strengthening) and
scientific world. But what is a glass, exactly?
Glasses are known from the dawn of humanity and are usually defined as a
liquid that is no more able to flow [1]. The cooling down of a liquid below its
melting point is accompanied by an increase of the viscosity. If the crystal-
lization is avoided (cooling the system fast enough), at a certain temperature,
called the glass transition temperature Tg, the viscosity becomes so high that
the molecules cannot explore anymore new structural configurations and the
system loses its ergodicity, falling out of equilibrium. We achieve the so called
glassy state. Notwithstanding that glasses have been produced for centuries,
the understanding of the glass transition at the atomic length-scale still remains
obscure and only recent studies have shone some light on the topic. Difficulties
in investigating such amorphous systems are due to different factors. First
of all, their disordered structure closely resembles the one of the liquid state,
but being the dynamics frozen in time, temporal averages cannot be invoked.
Furthermore, the dynamical signatures of the glass transition are expected to
be present in the dynamical correlations at the medium-range length-scale,
challenging to probe experimentally.
The most common family of glasses nowadays utilized are oxides of silica and
boron. The relatively low Tg, high corrosion resistance to chemicals and almost
inert behavior make these glasses the reference materials for both industrial
and scientific applications. It is not surprising then that they are considered as
the glassy materials par excellence.
With this Thesis we want to make a step further in the understanding of
the microscopic properties of the glass transition in oxides, elucidating the
dynamical aspects of such amorphous systems approaching the structural arrest.
The fall-out of equilibrium of the liquid toward the glassy state will be followed,
investigating the microscopic processes governing it and their spatial extent. In
particular, we will measure and characterize the density fluctuations approach-
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2 Introduction

ing Tg at the atomic length-scale (below the nm) and on typical rearranging
times in the range of seconds.
In order to satisfy these two conditions, we will utilize here the photon-
correlation technique. This scattering method was developed in the beginning
with the advent of lasers under the name of dynamic light scattering and is
based on the coherence properties of the probe radiation. In fact if the incident
light is coherent it will be scattered by the density modulations in the sample,
in a similar fashion to what happens in the Young’s double slit experiment or
with a diffraction grating. The scattered interference pattern is then related to
the structural configuration of the system and, following its temporal evolution,
it is possible to obtain information on the sample’s dynamics. More recently,
this technique has been implemented with the use of partially coherent X-rays
at third generation synchrotron facilities under the name of X-Ray Photon
Correlation Spectroscopy (XPCS) [2]. XPCS offers the possibility to effectively
investigate inter-atomic distances and time scales as long as thousands of sec-
onds, paving the way to the understanding of the slow dynamics in structural
glasses: for this reason, XPCS has been chosen as the leading technique to
pursue our study of the glass transition.
First applications of XPCS to the world of structural glasses involved the study
of metallic systems [3, 4], where atomic-scale density relaxations were measured
well below the glass transition temperature. These rearrangements have been
recognized as stress-related phenomena, similarly to what often observed in
colloidal systems [5]. In metallic glasses in fact the preparation procedure,
involving a very fast quench, leads to an extremely out-of-equilibrium glass:
XPCS has been demonstrated to be sensitive to stresses trapped in the system,
and has given the possibility to follow their release towards near equilibrium
configurations [6]. Analogously, fast relaxations were observed in oxide glasses
probed with XPCS [7]. Despite the similarities with a stress-release mechanism
as in metallic glasses, it was soon recognized that here the dynamics is induced
by the impinging photon flux, in a pump-and-probe fashion [8]. The typical
time of the relaxation process was observed to scale inversely with to the dose
rate delivered to the sample and got the name of beam-induced dynamics [8].
Furthermore, a recent study on boron oxide has shown that the beam-induced
dynamics is an effect in competition with the spontaneous structural rearrange-
ments, effectively masking them close and below Tg [9].
Despite the pioneering studies, beam-induced dynamics are still to be clarified
and there are many questions demanding an answer.

1. XPCS is one of the most promising techniques to elucidate the glass tran-
sition properties. In oxide glasses, however, the beam-induced dynamics
have posed difficulties in studying the spontaneous density fluctuations.
Is there any chance to utilize this technique to investigate the structural
relaxation in such systems?

2. Beam-induced dynamics are observed in many oxides, ranging from
silicates to borates. Which is the origin of this effect? Is it universal in
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all oxide glasses or are there peculiar, system dependent, differences?

3. It is well understood that dynamics in glasses are sensitive to trapped-in
stresses. How do these stresses depend on the physical properties of the
glasses, i.e. their structure or elasticity?

4. It was demonstrated that beam-induced dynamics are present at photon
fluxes and doses where radiation damage is still negligible. What is the
role of these photo-induced displacements on the structural properties of
the oxide glasses?

Structure of this Thesis

My Thesis is composed of 7 Chapters, where the results of different experiments
have been collected for their relevance on the different topics. More specifically,
it has been organized starting from the experiments in systems at equilibrium
and moving then to non-equilibrium conditions. In the end, I will discuss an
interesting link between these two classes of experiments.

• Chapter 2 is dedicated to introduce the fundamental concepts touched in
this Thesis.
The glassy state is discussed, highlighting in particular the out-of equi-
librium nature of glasses from a thermodynamical point of view. The
theoretical description of the density correlations is then introduced,
elucidating the experimentally accessible observables which characterize
the dynamics of amorphous systems. Finally, the concepts of dynamical
heterogeneities and four-point susceptibility are presented together with
recent results regarding the glassy dynamics.

• Chapter 3 is devoted to discuss the details of the experimental techniques
utilized here.
An introduction to the theory behind coherent scattering experiments is
reported, giving a summary of the state of the art. The coherence prop-
erties of the scattered field are then discussed and related to the density
correlations introduced in the previous Chapter. Different aspects of the
photon correlation spectroscopy technique are then touched, highlighting
the new possibilities offered by X-ray Photon Correlation Spectroscopy
(XPCS). In the end, a few fundamental aspects regarding the experiments
performed at synchrotron radiation centers are reported.

• Chapter 4 discusses the equilibrium dynamics in the undercooled LiBO2
liquid.
The sample preparation of lithium borate glasses, together with further
experimental details, is described. As a second point, the results of an
XPCS investigation of liquid LiBO2 are presented and those results are
compared with models and other results available in the literature. The
Chapter closes with a description of the visible photon correlation setup
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here utilized and a semi-logarithmic acquisition scheme implemented
to improve the performances of our setup. Finally, the glass transition
temperature together with the fragility index have been measured.

• Chapter 5 is dedicated to the study of the out-of-equilibrium dynamics.
The first part covers the investigation of the stress induced dynamics in
a colloidal glass, which is utilized to introduce the formalism of stress-
related velocity fields, compressed correlation functions and ballistic-like
rearrangements. The reported dynamics are shown to proceed through
anisotropic rearrangements characterized by dynamical heterogeneities
involving few thousands of particles. The second part of the Chapter
tackles the problem of beam-induced dynamics. We start by introducing
recent advancements in the field and then discuss results obtained for
a series of alkali-borates glasses. Here the beam-induced dynamics are
exploited as a probe sensitive to the medium-range network topology
of the glasses and are shown to be related to the stress-rigidity of the
network.

• Chapter 6 exploits the potential of XPCS and, in particular, of beam-
induced dynamics to probe the internal stresses of glasses which, in the
end, are released by the X-ray beam exposure.
The first part of the Chapter describes a study of the photo-induced
dynamics as a function of the temperature for the LiBO2 glass. The
signatures of stress-related dynamics in the probed system are discussed,
focusing the attention on the stretching parameter of the density corre-
lation functions and on how the thermal annealing procedure releases
partially the stresses stored in the network. The second part of the
Chapter is dedicated to the X-ray dose dependent dynamics observed
in two samples of lithium-borate glasses. The details of the dynamics,
characterized by a stress-release process at low absorbed doses, are pre-
sented and the similarities and differences with respect to dynamics in
the colloidal systems reported in Chapter 5 are highlighted. Finally, the
effect of X-ray photons on glassy samples is elucidated, showing that the
beam-induced dynamics effectively anneals the samples, leading to glasses
with dynamical properties similar to the ones observed in undercooled
liquids.

• Chapter 7 reports the main conclusions of this Thesis, summarizing the
findings discussed in the previous Chapters.



Chapter 2

Modelling disordered systems:
from liquids to glasses

This chapter is dedicated to the glass transition and its related properties:
starting from a phenomenological description, we will discuss the behavior of
macroscopic observables (for example the viscosity) approaching the arrested
phase. We will then describe the thermodynamic aspects of the glassy state
and, as a last point touched here, we will introduce the formalism of the density
correlations, essential in order to discuss the dynamical properties approaching
the glass transition.

2.1 The glassy state
”Glass, in the popular and basically correct conception, is a liquid that has lost its
ability to flow” [1]. In a single sentence, Angell captured many facets and aspects
of glasses. Actually, this coarse definition finds its roots in the usual melt-
quench way of producing them. Many other approaches have been developed
in the last century, few examples being physical or chemical vapor deposition
[10–12]. Despite that, Angell grasps a peculiar and fundamental property
of glasses: their structure is (almost) equal to the one of the corresponding
liquid. The lack of long range order and ergodicity (they indeed cannot ”flow”
and do not sample the phase space like the liquid, as we will see later in this
chapter) poses severe difficulties and limitations in modeling and simulating
such systems. This is one of the main reasons why the glass transition is still
nowadays somehow obscure and a hot topic of intense research both from a
theoretical and experimental point of view.
We will try to understand more aspects of the glass transition starting from
the ancient, well established way of production: the melt-quench technique.
Consider a good glass former melt, that is a substance unlikely to crystallize
upon cooling (for example molten oxide-based sand) and cool it down fast
enough below the melting temperature: the system will enter the so called
super-cooled liquid state, a liquid characterized by an increased (up to 14 orders
of magnitude and more) viscosity. If the system is further cooled down and
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6 Modelling disordered systems: from liquids to glasses

the crystallization avoided, at a certain point the viscosity becomes so high
that the liquid loses its ability to flow in an easily observable time-scale: we
say that the system has entered the glassy phase. The transition between the
liquid to glassy state takes place in a range of temperatures which are known
as the glass transition temperatures, however usually a single temperature, Tg,
is defined as the one where the shear viscosity, η, reaches 1012 Pa · s.
It is important to introduce here that, since real world glasses are intrinsically
out of equilibrium (we will introduce later the concept of ideal glass), the glass
transition temperature together with the other characteristic thermodynamic
properties will depend on the thermal history of the glass itself.
In the next sections we will develop in detail all the concepts introduced here,
trying to clarify the peculiar aspects of the glass transition.

2.1.1 The temperature dependence of viscosity
The aim of this section is to present phenomenologically the role of viscosity and
its temperature dependence in undercooled liquids toward the glass transition.
To start with, we should become familiar with the concept of frequency-
dependent viscosity: a liquid is effectively liquid (in the sense that is able to
flow) only on a given timescale. For example, if we consider water at ambient
temperature and we perturb it with an external stress with frequency of few
THz it will respond like a solid [13].
This elastic behavior is in net contrast with the more typical viscous one
observed in everyday life. We present here an over-simplified model for visco-
elastic properties of materials, following the Maxwell approach [14]. A more
complete formalism can be built starting from dedicated textbooks of elasticity
[15]. Let us consider a solid material subjected to a shear stress. Its stress-strain
relation will be given by

σ(t) = Gε(t) (2.1)
where σ(t) is the stress, ε(t) is the strain and G is the shear modulus. It is clear
that Eq.(2.1) is the equation governing the motion of a simple spring, with G
the elastic constant. We can now consider an energy dissipation mechanism. In
the Maxwell model, it takes the form of a viscous liquid damper, with a strain
rate proportional to the stress

ε̇(t) = σ(t)
η

(2.2)

where η is the shear viscosity of the liquid. We can now combine Eq.(2.1) and
Eq.(2.2) together to describe a visco-elastic medium

ε̇(t) = σ̇(t)
G∞

+ σ(t)
η

(2.3)

with G∞ the infinite frequency shear modulus1. In Fourier space, Eq.(2.3) reads
1It is useful to define G∞ = limω→∞ G(ω), with ω the frequency of the excitation. The

choice here is justified since a liquid behaves like a solid in the limit of high frequencies.



2.1 The glassy state 7

σ̃(ω) = η̃(ω)iωε̃(ω) = G∞
iω +G∞/η

iωε̃(ω) (2.4)

The complex viscosity defined in Eq.(2.4) shows two limiting behaviors as a
function of the frequency. For ω � G∞/η we are in the viscous regime, with the
dynamics governed by Eq.(2.2), while for ω � G∞/η the material behaves like
an elastic medium and Eq.(2.4) corresponds to Eq.(2.1). The crossover between
the two regimes is given by the Maxwell frequency ωM = G∞/η. To grasp
better the meaning of this frequency, the dynamical equation can be solved in
the homogeneous case (ε̇(t) = 0) with the boundary condition σ(0) = σ0. The
solution is given by

σ(t) = σ0 exp[−ωM t] = σ0 exp[−t/τM ] (2.5)

with the Maxwell relaxation time defined as τM = 1/ωM . This relaxation time is
the time needed for the system to respond to (or relax) an external perturbation
(or spontaneous fluctuation), and indeed is the one which is probed with the
techniques discussed in the next chapters. This relaxation time ranges from
few picoseconds for liquid systems (like water at ambient temperature [13]) to
hundred of seconds at the glass transition temperature Tg and up to geological
time-scales (for example for the windows of our houses).
It has to be noted that since G∞ is weakly temperature dependent, the re-
laxation time temperature dependence is very similar to the viscosity one
[16]. A consequence of this property is that the empirical equations developed
to describe the viscosity as a function of temperature work extremely well
for the relaxation time too. Moreover, since typically G∞ ≈109 Pa, another
definition of the glass transition temperature naturally arises: it can be defined
as the temperature where the system needs ∼ 102 seconds to relax towards the
equilibrium. Before proceeding, we highlight that the relaxation mechanisms in
glasses are in fact more complex [17–19]. A secondary process decouples from
the main, structural relaxation one, at a temperature ≈1.2 Tg. The structural
relaxation, also known as α−relaxation, is the slowest process, characterized
by the Maxwell relaxation time and related to the results reported hereafter.
The faster process that becomes effective at low-enough temperature, known
as the β-relaxation, corresponds to the rattling of a particle in the transient
cage of neighbor particles. Despite being not crucial for the discussion reported
in this thesis, we will briefly discuss this decoupling of relaxation processes in
chapter 4.
Historically, glasses can be classified according to the temperature dependence
of the viscosity. To appreciate the properties for systems with very different
glass transition temperatures (for example oxide and organic glasses), the viscos-
ity (or its logarithm) is usually reported as a function of the normalized inverse
temperature Tg/T , in a so called Angell-plot. An example of this plot with few
representative glass forming systems is reported in Fig.(2.1). Depending on the
behavior of viscosity in the Angell-plot, two limiting families can be defined:
”strong” and ”fragile” glasses. The first one is represented by those systems



8 Modelling disordered systems: from liquids to glasses

Figure 2.1: Logarithm of the viscosity as a function of the inverse temperature
normalized for Tg. Here three typical glass formers have been reported: the
strong SiO2 with a kinetic fragility m = 20, the fragile o-terphenyl (m = 80)
and the intermediate glycerol (m = 50). The black solid lines are fits to the
viscosity data with an Arrhenius and a VFT equation for silica and for the two
organic glasses, respectively. Data taken from [1].

which display an Arrhenius-like behavior [1, 20]

η = η0 exp
(
E

kBT

)
(2.6)

with η0 the ”infinite” temperature viscosity limit (almost 10−5Pa · s for any
glass forming liquid), E an activation energy and kB the Boltzmann constant.
In Fig.(2.1) the prototypical strong glass former SiO2 displays an Arrhenius
temperature dependence, and its behavior is clearly represented by a straight
line. Fragile glasses behave in a different way (see for example green circles in
Fig.(2.1)), having a faster than exponential divergence of the viscosity in the
proximity of Tg [21–23]

η = η0 exp
(

B

T − T0

)
(2.7)

where B and T0 are phenomenological parameters. This equation, known
as Vogel-Fulcher-Tammann (VFT) from the names of the 3 scientists who
independently reported it (more details about the history of the equation can
be found in [24]), reduces to Eq.(2.6) when T0 = 0. From Fig.(2.1) one can
observe that the classification strong and fragile glasses does not need the
introduction of Eq.(2.6, 2.7). The differences can be captured by the viscosity
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change rate close to Tg and are classified by the so called kinetic fragility
m[1, 20]

m = lim
T→Tg

∂ log10 η

∂ Tg
T

(2.8)

The fragility ranges from values of m ∼ 17 for strong glass formers to m ∼ 150
for very fragile ones.

2.1.2 The glass transition: thermodynamics
If in the previous sections we have introduced the glass transition from a
phenomenological point of view, we review here the thermodynamic aspects of
this intriguing falling out of equilibrium process.

Figure 2.2: Volume (and enthalpy) as a function of temperature, showing the
possible routes for a liquid upon cooling. Two glassy states are reported, which
differ for the cooling rate from the liquid phase. A 2-dimensional sketch of the
structural configuration for SiO2 is reported: on the right side the crystalline
state, an ordered-packing of tetrahedrons; in the glassy phase (top left) this
configuration is distorted, leading to the loss of long range order.

Experimentally, during the glass transition an abrupt (but continuous) change
of the thermal expansion coefficient αp2 and the heat capacity Cp3 is observed

2The isobaric thermal expansion coefficient is defined as the derivative of the volume, V ,
at constant pressure with respect to the temperature, αp = 1

V

(
∂V
∂T

)
p
.

3The isobaric heat capacity is defined as the derivative of the enthalpy, h, at constant
pressure with respect to the temperature, Cp =

(
∂h
∂T

)
p
.
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[19, 25]. In Fig.(2.2) a diagram of the volume (or enthalpy) as a function of
temperature is reported. As it can be seen, upon cooling down the liquid, two
routes are possible: at the melting temperature Tm the system can crystallize
(orange solid line) undergoing a first order phase transition, or it can continue
on the equilibrium line in the undercooled liquid. On further cooling, the
system reaches the glass transition temperature Tg and, unable to explore the
phase space, deviates from the equilibrium configuration. It is important to
stress here that this deviation is continuous in the first derivative (the change
of slope in Fig.(2.2) is smooth), as just said. Since this change of derivative
takes place over a range of temperatures, the glass transition can be located as
the virtual intersection of the liquid line with the extrapolation of the glassy
one (black dashed lines). Moreover, being the glassy state an out of equilibrium
one, different glasses can be prepared following different thermal protocols:
the green curve represents a fast-quenched glass (with a higher enthalpy, thus
closer to the liquid-like configuration) while the blue curve is representative
of a slow-quenched glass (closer to the equilibrium configuration). The glass
transition temperature changes according to the thermal history, being lower
for slow quenched glasses (this variation is relatively small, roughly 5◦C after a
change of cooling rate of an order of magnitude [18]).
We want now to discuss what happens microscopically during the glass tran-
sition. To start with, we recall the definition of configurational entropy of a
system of N particles with volume V

SC(N, V,E) = kB log Ω (2.9)

with E the energy, kB the Boltzmann’s constant and Ω the number of states
that the system can visit. By construction, S cannot be negative (Ω ≥ 1).
A perfect crystal at T = 0 K has zero entropy by definition, since only one
particles’ configuration exists which satisfies the symmetry requirements (for
a sketch of the long range order, see Fig.(2.2)). The melting of the crystal,
being a first order phase transition, is accompanied by a discontinuity in the
entropy(∆Sm, sometimes called ”melting entropy”). Now let us consider an
undercooled liquid: its entropy must decrease upon cooling since, following
Eq.(2.9), more and more configurations become prohibited. This behavior can
be written in the following form [26]

SC(T ) = ∆Sm −
∫ Tm

T
∆Cp(T ′) d log T ′ (2.10)

with ∆Cp(T ) = Cp(T )liquid − Cp(T )crystal and Tm the melting temperature. In
the end, if the glass transition is avoided and the system is kept in equilibrium,
a disordered structure with zero configurational entropy is reached: the ideal
glass. The ideal glass transition would then be a phase transition, accompanied
with a discontinuity in the specific heat. This state would be achieved at the
so called Kauzmann temperature TK defined by the following integral equation
[1, 19, 26]



2.1 The glassy state 11

∆Sm =
∫ Tm

TK
∆Cp(T ′) d log T ′ (2.11)

The zero configurational entropy of the ideal glass imposes that it must be a
unique, perfect ordered amorphous phase. This counter intuitive concept of
glass is known as ”Kauzmann paradox” [27]. Up to now, nobody has created
an ideal glass neither experimentally nor in simulations. The ideal glass is
indeed kinetically prohibited, since the freezing of degrees of freedom and the
loss of ergodicity drive the system out of equilibrium before reaching TK [19].
Up to now, we have attacked the glass transition from two different points
of view: the kinetic and the thermodynamic one. The first, as we have
seen, is related to the slowing down of the dynamics as a consequence of the
increased viscosity (equivalently, of the relaxation time). On the other hand,
the thermodynamic aspects of the glass transition are governed by the entropy
of the system. The connection between these two approaches was established a
long time ago by Adam and Gibbs [28]

τ(T ), η(T ) = A exp( B

TSC
) (2.12)

with A and B constants. It is important to notice here that A depends on the
chosen observed quantity, i.e. the relaxation time τ or the viscosity η.
In this view, the slowing down of the dynamics is then a consequence of the
reduction of possible configurations that the undercooled liquid can sample.
Moreover, Adam and Gibbs proposed that, upon cooling, the exploration of new
configurations involves rearrangements of an increasing number of correlated
particles, called Cooperative Rearranging Regions (CRR). A beautiful result of
this theory was reported in [26], where it was shown that Eq.(2.11) leads to the
empirical Vogel-Fulcher-Tammann (Eq.(2.7)) dependence of the relaxation time
for fragile glass formers (for example o-terphenyl or n-propanol). Furthermore,
for fragile glasses the connection between the entropy-driven and kinetic-driven
glass transition is highlighted even more by some empirical observations. For
example, if the Kautzmann temperature TK is extrapolated from calorimetric
measurements and compared with the T0 of the VFT (the temperature at
which the relaxation time or viscosity diverges, with a complete freezing of the
system), one finds an incredible agreement in the order of 10% [29]. Another
peculiar correspondence is found comparing the kinetic fragility, discussed
above, and the calorimetric one [30].
All those pieces put together show that the glass transition cannot be simply seen
as a pure kinetic transition, but needs more attention from a thermodynamic
and statistical point of view. This aspect will be tackled in detail in the next
section.

2.1.3 The glass transition: energy landscape and aging
In this section we will describe and discuss the potential energy hyper-surface,
namely the potential energy landscape (PEL) [31] that the system explores
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during its route toward the glassy state. Let us start considering a system of N
particles (for simplicity assume here indistinguishable structure-less particles),
which interact with a many-body potential Φ(~r1, ..., ~rN). The system is then
described by a 3(N −1) potential energy hyper-surface [1, 17, 19, 25, 32, 33]. A
sketch of a PEL is reported in Fig.(2.3). As it can be seen there, the potential
surface is composed of many local minima and maxima, separated by energy
barriers of different height [17]. The temperature corresponds to a given energy
value (plus fluctuations) and therefore selects a given class of minima. Each
minimum is a point of stability of the system (inherent structure), and different
minima for the same potential energy correspond to different configurations.
The system rattles between neighbor basins due to thermal energy. At high
temperatures, the system is able to sample the PEL, easily escaping even the
deepest basins (”metabasins” or ”craters”)[17, 29, 33]. The undercooled liquid
then explores the surface of the PEL in an ergodic way, moving almost freely
around in a timescale small compared to the one of observation. Lowering the
temperature, when kBT becomes comparable to the depth of a metabasin, the
dynamics strongly slows down, entering the glassy state and losing ergodicity.
If the crystal state is avoided, the system gets trapped in a metabasin, and
can only sample nearby basins on a reasonable time-scale. Stillinger proposed
that the structural relaxation (also known as α-relaxation) is related to this
trapping in metabasins, while faster relaxations (for example the β-relaxation)
are related to jumps between shallow basins [17]. Moreover, in this picture, one
can discriminate between fragile and strong glasses: the former are characterized
by many metabasins, in which the system gets easily stuck during the cooling,
while in the latter case just few of them are present [19, 29].
It is important to stress the fact that the ideal glass must be characterized by
a singular basin, since its configurational entropy is zero (see Fig.(2.3)).
To go a step further in the understanding of the PEL, we need to know the
basins’ distribution. The number of minima, Ω(N), is expected to increase in an
exponential fashion with the number of particles N [17, 32, 34, 35]. In the end,
the basins can be classified according to their depth (normalized for the total
number of particles N), φ = Φ/N , and it is possible to write [17, 19, 25, 32]

dΩ
dφ
∼ exp(Nσ(φ)) (2.13)

where the quantity of interest here is the basin enumeration function σ(φ).
Taking the logarithm of Eq.(2.13), it is easy to show that kBσ(φ) corresponds
to the density of configurational entropy per particle (Eq.(2.9)). σ(φ) is then a
measurement of how many basins of depth φ are present in the PEL.
The Helmholtz free energy, A = U − TS, with U the internal energy of the
system, can be written as

A

N
= φ̄+ Ev − TkBσ(φ̄) (2.14)

with φ̄ the average energy of the basins populated and Ev the vibrational
energy [19, 25, 36–40]. The Helmholtz free energy is of extreme importance
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Figure 2.3: Sketch of a one-dimensional potential energy landscape (PEL).
On cooling, the system explores different basins, eventually being trapped in
one of the deepest close to Tg (metabasins). The annealing procedure (heating
the sample close to the glass transition temperature and cooling down slowly)
restores partially the ergodicity, letting the system relax to lower local minima:
accordingly, the glass transition temperature (and configurational entropy) for
the annealed glass is lower than the pristine one.

for describing the transition between the equilibrium undercooled liquid to the
out-of equilibrium glassy state.
Indeed, let us consider the system at the starting temperature Ti in the super-
cooled liquid state. By definition, the system will be at the thermodynamic
equilibrium if φ = φ̄, that is the occupied basin is, within fluctuations, the
one corresponding to the expected energy. Now we can couple the equilibrium
system to a lower temperature thermal bath at Tf < Ti: this procedure is
equivalent to abruptly change the temperature of the undercooled liquid. The
new value of φ at equilibrium can be calculated minimizing the free energy,
imposing ∂A/∂φ = 0 [40]. Two distinct contributions to the free energy must
be now taken into account: the vibrational and the basin one. After the quench,
the system is located in an out of equilibrium basin: the vibrational degrees of
freedom, associated with the term Ev in Eq.(2.14), are the first to thermalize
(in a time of the order of ps) [40, 41]. At longer times, the system starts to
explore new basins, trying to achieve the condition φ = φ̄. The time needed for
reaching equilibrium depends on the final temperature Tf and its dependence
is logarithmic in time [41–43]. This potential energy landscape ”exploration”
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is known as aging. Upon undercooling the liquid, one needs to wait for each
temperature step δT that aging brings the system on the equilibrium curve.
However, at some point, the time needed to completely age the system becomes
too long (practically infinite), and the system falls out of equilibrium. It is clear,
from this thermodynamic consideration, that the glassy state has ”memory”
of the thermal history, since the final position in the PEL depends on how it
is reached. An experimental way to erase this memory (or better, to control
it) is the annealing procedure: the glass is heated close to the glass transition,
restoring partially the ergodicity, and then cooled down in a slow and controlled
way.

2.2 Density correlation functions
This section is dedicated to introduce some observables useful to describe both
the structural properties of amorphous systems and the relaxation processes
from a microscopic point of view. In particular, the attention will be focused
on the (space-time) density correlations, quantities which can be studied both
experimentally and in simulations.

2.2.1 Two-body correlations
Let us consider a system of N particles, with time-dependent position R(t) =
[r1(t), ..., rN (t)]. A configuration of the system will be mathematically described
by a sum of Dirac-deltas

ρ(r, t) =
N∑

i=1
δ[r− ri(t)] (2.15)

The single particle density function can then be defined [44]

ρ
(1)
N (r, t) =

〈 N∑

i=1
δ[r− ri(t)]

〉
(2.16)

with 〈...〉 an ensemble average. To simplify the notation, we can for the moment
forget the time t, that is equivalent to study a completely frozen system (or a
snapshot of it). For a uniform system, it is easy to show that the single particle
density corresponds to the average number density ρ

ρ
(1)
N (r) =

〈 N∑

i=1
δ[r− ri]

〉
= N/V = ρ (2.17)

with V the volume. As it can be seen, the single particle density gives no
information about the mutual position of particles in the system. Indeed,
Eq.(2.17) returns the same value ρ both for a completely random system and a
crystalline one. In order to discriminate between such systems, a two particle
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density function must be introduced [44]

ρ
(2)
N (r1, r2) =

〈 N∑

i=1

N∑

j 6=i
δ[r1 − ri]δ[r2 − rj]

〉
(2.18)

The two particle density function gives the probability to find simultaneously a
particle in r1 and r2. It is clear that for a completely random arrangement of
particles, the two particle density function can be written as the product of two
single particle densities. However, when the structural arrangement deviates
from randomness, the pair distribution function g(2)

N (r1, r2) must be introduced

g
(2)
N (r1, r2) = ρ

(2)
N (r1, r2)

ρ
(1)
N (r1)ρ(1)

N (r2)
= ρ

(2)
N (r1, r2)
ρ2 (2.19)

with the last equality valid for an homogeneous system. In the following, the
subscript and superscript will be dropped for convenience, referring simply to
g(r) (notice here that without losing generality we can embed the 2-vectors
dependence in just one variable r). Moreover, if the system is isotropic, the
vector r becomes a scalar.
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Figure 2.4: Sketch representing the pair distribution function g(r) for an
homogeneous isotropic system (left) and the relative static structure factor
S(q) (right). On the horizontal axis the position of the first peak have been
reported.

away must be independent. Moreover, g(r) = 0 for r æ 0 since two particles
cannot stay in the same position (here we assume particle i located at 0, thus
omitting the double vector). For a real life system, g(r) is an oscillating function,
with peaks located at the most probable distance. The main peak describes
the nearest-neighbour shell (or ”cage”) of particles around a given one. The
peaks are sharper the more ordered the structure, tending to Dirac-deltas for
an infinite perfect (vibration free) crystal. We are now ready to switch on again
the time t. The probability to find a particle j in a region around a point r at
time t given a particle i at the origin at time t = 0 is given by the van Hove
function (known as density–density time-correlation function)[35]

G(r, t) =
= 1
N

Nÿ

i=1

Nÿ

j=1
”[r ≠ rj(t) + ri(0)]

>

= 1
N

= ⁄ Nÿ

i=1

Nÿ

j=1
”[rÕ + r ≠ rj(t)]”[rÕ ≠ ri(0)]drÕ

>

= 1
N

= ⁄
fl(rÕ + r, t)fl(rÕ, 0)drÕ

>
= 1

fl
Èfl(r, t)fl(0, 0)Í

(2.21)

The van Hove function can be naturally split in two terms, taking a cue from
Eq.(2.19). We divide the term with i = j, calling it the self part, from the one
with i ”= j, the distinct part

G(r, t) = Gs(r, t) + Gd(r, t) (2.22)
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S(q) is known as the static structure factor, and is a measurement of the degree
of correlation between the density components. In fact, it can be written in
terms of the pair correlation function

S(q) = 1
N

= Nÿ

i=1

Nÿ

j=1
eiq·rie≠iq·rj

>
= 1 + fl

⁄
(g(r) ≠ 1)eiq·rdr (2.29)

If the system is isotropic too, the integral can be further simplified using
the real notation

S(q) = 1 + fl
⁄
dr4fir2 sin qr

qr
[g(r) ≠ 1] (2.30)

The static structure factor is probed with elastic scattering techniques, as
we will see later. It is clear from this last equation that the static structure
factor will be an oscillating function. The first peak can be seen as a ”Bragg
reflection” from the plane of nearest-neighbour particles, due to the relation
between reciprocal and real space. It is then clear that rm qm ¥ 2fi
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Figure 2.4: Sketch representing the pair distribution function g(r) for an
homogeneous isotropic system (left) and the relative static structure factor
S(q) (right). On the horizontal axis the positions of the first peak have been
reported. Figure adapted and redrawn from [45].

A sketch of a pair distribution function g(r) for an homogeneous isotropic
system is shown in Fig.(2.4). Starting from the figure, we can make few
observations. First of all, g(r) must tend to 1 for r →∞, since two particles
infinitely far away must be independent. Furthermore, g(r) = 0 for r → 0
since two particles cannot stay in the same position. g(r) is then an oscillating
function, with peaks located at the most probable distances. The main peak
describes the nearest-neighbor shell (or ”cage”) of particles and is located at rm.
The peaks are sharper the more ordered the structure, tending to Dirac-deltas
for an infinite perfect (vibration free) crystal.
We are now ready to switch on again the time t. The probability of finding a
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particle j in a region around a point r at time t given a particle i at the origin
at time t = 0 is given by the van Hove function (also known as density–density
time-correlation function) [44]

G(r, t) =
〈 1
N

N∑

i=1

N∑

j=1
δ[r− rj(t) + ri(0)]

〉

= 1
N

〈 ∫ N∑

i=1

N∑

j=1
δ[r′ + r− rj(t)]δ[r′ − ri(0)]dr′

〉

= 1
N

〈 ∫
ρ(r′ + r, t)ρ(r′, 0)dr′

〉
= 1
ρ
〈ρ(r, t)ρ(0, 0)〉

(2.20)

The van Hove function can be naturally split in two terms, taking a cue from
Eq.(2.18). We divide the term with i = j, calling it the self part, from the one
with i 6= j, the distinct part

G(r, t) = Gs(r, t) +Gd(r, t) (2.21)

thus defined as

Gs(r, t) = 1
N

〈 N∑

i=1
δ[r− ri(t) + ri(0)]

〉
(2.22a)

Gd(r, t) = 1
N

〈 N∑

i=1

N∑

j 6=i
δ[r− rj(t) + ri(0)]

〉
(2.22b)

We will appreciate better in the next sections and chapters the convenience of
this separation. For now, we can observe that in the limit t = 0, Gs(r, 0) = δ(r)
and Gd(r, 0) = ρg(2)(r). This last equality can be simply obtained exploiting
the properties of the δ-function (as done in Eq.(2.20)) and using the definition
of two particle density (Eq.(2.18)). With increasing time t, the peaks in the
correlation functions broaden: the self part becomes a bell-shaped function
and the peaks in the distinct part blur. In the end, for t→∞, both functions
become r-independent [44]

Gs(r, t→∞) = 1
V

Gd(r, t→∞) = ρ
(2.23)

While the van Hove correlation function provides a real space direct measure-
ment of the degree of correlation of particles, it is useful to consider the Fourier
space counterpart. This equivalent approach is justified since scattering experi-
ments probe the Fourier components of that observable. We can then define the
intermediate scattering function (ISF) as the correlation of the density Fourier
components
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F (q, t) = 1
N
〈ρq(t)ρ−q(0)〉 (2.24)

with q the wave-number of the density Fourier component. It is straightforward
to show that the ISF is the Fourier transform of the van Hove correlation
function

F (q, t) =
∫
G(r, t)eiq·rdr (2.25)

It is important to stress the fact that the frequency power spectrum of the
intermediate scattering function is the dynamic structure factor [44]

S(q, ω) = 1
2π

∫
F (q, t)eiωtdω (2.26)

The dynamic structure factor can be probed with energy-resolved scattering
techniques, such as inelastic neutron scattering, inelastic X-ray scattering
and Brillouin spectroscopy. It is easy to show, exploiting the properties of
the Fourier transform, that the energy integrated dynamic structure factor is
equivalent to the zero-time intermediate scattering function

S(q) =
∫
S(q, ω)dω = F (q, 0) (2.27)

S(q) is known as the static structure factor, and it is a measurement of the
degree of correlation between the density components. In fact, it can be written
in terms of the pair correlation function

S(q) = 1
N

〈 N∑

i=1

N∑

j=1
eiq·rie−iq·rj

〉
= 1 + ρ

∫
(g(r)− 1)eiq·rdr (2.28)

If the system is isotropic, the integral can be further simplified using the real
notation

S(q) = 1 + ρ
∫
dr4πr2 sin qr

qr
[g(r)− 1] (2.29)

An example of a static structure factor is shown in Fig.(2.4), right panel. Like
its real counterpart, g(r), S(q) is an oscillating function, with the first peak
(located at qm) related to the inverse average distance (rm) of nearest-neighbor
particles. It is then clear, from the Fourier relation, that rmqm ≈ 2π. Finally,
we can remark that for liquids the structure factor is proportional to the
isothermal compressibility χT for small q-values [44]

lim
q→0

S(q) = ρkBTχT (2.30)
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2.2.2 The intermediate scattering function for free dif-
fusing particles

We now show an example of intermediate scattering function for a simple system,
i.e. an ensemble of Brownian particles. The diffusion process is described by
the second Fick’s law [46]

D∇2ρ = ∂ρ

∂t
(2.31)

where D is the diffusion coefficient. We recall that the Van-Hove correlation
function, defined in the previous section, is nothing but the probability of
finding a particle at position r at time t given another one at the origin at
t = 0. The (self) van Hove function can be considered, for very diluted systems,
solution of Eq.(2.31) [47]

D∇2G(r, t) = ∂G(r, t)
∂t

(2.32)

To solve this partial differential equation, it is useful to move to Fourier space,
rewriting it in terms of the intermediate scattering function

−Dq2F (q, t) = ∂F (q, t)
∂t

(2.33)

Imposing the boundary condition obtained from Eq.(2.27), we finally get

F (q, t) = S(q) · e−q2Dt = S(q) · e− t
τ (2.34)

where τ = 1/Dq2 is the q-dependent relaxation time. It is useful to note that
the structural (S(q)) and dynamical (e− t

τ ) properties of the system factorize.
This is the reason why, when studying dynamical properties, one usually defines
the normalized intermediate scattering function

Ψ(q, t) = F (q, t)
S(q) (2.35)

In the following, we refer to the normalized intermediate scattering function
simply as the ISF, reporting it with the nomenclature F (q, t). This decision is
supported by the fact that with the photon correlation technique, extensively
exploited in this work, we probe the normalized intermediate scattering function.
Nevertheless, it will be clear from the context which function (normalized or
not) we will be referring to.
Fig.(2.5) shows a sketch of the (normalized) intermediate scattering function
for free diffusing particles at a given exchanged wave-vector q. The sketches
above the curve represent the particles’ configurations at different times (in
dashed red line the original, t = 0, configuration). For t� τ , particles move
very little with respect to the lengthscale fixed by 1/q. At t ∼ τ , particles have
moved on average 〈d〉 ∼ 1/q.
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2.4.1 The Intermediate Scattering Function for free dif-
fusing particles

We want now to show an example of intermediate scattering function for a
simple system, i.e. an ensamble of Brownian particles. The di�usion process is
described by the second Fick’s law [36]

DÒ2fl = ˆfl

ˆt
(2.31)

where D is the di�usion coe�cient. We can now recall that the Van-Hove cor-
relation function, defined in the previous section, is nothing but the probability
to find a particle at position r at time t given another one in the origin at t = 0.
The Van-Hove function must then satisfy Eq.(2.31)

DÒ2G(r, t) = ˆG(r, t)
ˆt

(2.32)

For solving this partial di�erential equation, it is useful to move to Fourier
space, rewriting in terms of the intermediate scattering function

≠ Dq2F (q, t) = ˆF (q, t)
ˆt

(2.33)

Imposing the boundary condition obtained with Eq.(2.28), we finally get

F (q, t) = S(q) · e≠q2Dt = S(q) · e≠ t
· (2.34)

where · = 1/Dq2 is the q-dependent relaxation time. It is educative to notice
here that the structural (S(q)) and dynamical properties (e≠ t

· ) of the system
factorise. This is the reason why, for dynamical purpose, one usually defines
the normalised intermediate scattering function

�(q, t) = F (q, t)
S(q) (2.35)

In the following of this thesis, we will refer to the normalised intermediate
scattering function simply as the ISF, reporting it with the nomenclature F (q, t).
This decision is supported by the fact that with the photon correlation technique,
extensively exploited in this work, we probe the normalised intermediate
scattering function. Nevertheless, it will be clear from the context which
function (normalised or not) we will be referring to.

In Fig.(2.4) it is reported a sketch of the (normalised) intermediate scattering
function for free di�using particles at a given exchanged wave-vector q. The
sketches above the curve represent the particles’ configurations at di�erent
times (in dashed red line the original, t = 0, configuration). For t π · , particles
move very little with respect to the lengthscale fixed by 2fi/q. At · , particles
have moved on average of ÈdÍ ≥ 2fi/q.
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simple system, i.e. an ensamble of Brownian particles. The di�usion process is
described by the second Fick’s law [36]

DÒ2fl = ˆfl

ˆt
(2.31)

where D is the di�usion coe�cient. We can now recall that the Van-Hove cor-
relation function, defined in the previous section, is nothing but the probability
to find a particle at position r at time t given another one in the origin at t = 0.
The Van-Hove function must then satisfy Eq.(2.31)

DÒ2G(r, t) = ˆG(r, t)
ˆt

(2.32)

For solving this partial di�erential equation, it is useful to move to Fourier
space, rewriting in terms of the intermediate scattering function

≠ Dq2F (q, t) = ˆF (q, t)
ˆt

(2.33)

Imposing the boundary condition obtained with Eq.(2.28), we finally get

F (q, t) = S(q) · e≠q2Dt = S(q) · e≠ t
· (2.34)

where · = 1/Dq2 is the q-dependent relaxation time. It is educative to notice
here that the structural (S(q)) and dynamical properties (e≠ t

· ) of the system
factorise. This is the reason why, for dynamical purpose, one usually defines
the normalised intermediate scattering function

�(q, t) = F (q, t)
S(q) (2.35)

In the following of this thesis, we will refer to the normalised intermediate
scattering function simply as the ISF, reporting it with the nomenclature F (q, t).
This decision is supported by the fact that with the photon correlation technique,
extensively exploited in this work, we probe the normalised intermediate
scattering function. Nevertheless, it will be clear from the context which
function (normalised or not) we will be referring to.

In Fig.(2.4) it is reported a sketch of the (normalised) intermediate scattering
function for free di�using particles at a given exchanged wave-vector q. The
sketches above the curve represent the particles’ configurations at di�erent times
(in dashed red line the original, t = 0, configuration). For t π · , particles move
very little with respect to the lengthscale fixed by 2fi/q. At t ≥ · , particles
have moved on average of ÈdÍ ≥ 2fi/q.
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Figure 2.5: Schematic representation of an intermediate scattering function
F (q, t) for a given exchanged wave-vector q as a function of time t (here reported
in units of the relaxation time τ). The sketches above the curve represent the
particles’ configurations at different times.

2.2.3 Structural relaxation in glasses
We will explain in detail in the next chapter the experimental technique which
gives the possibility to investigate the intermediate scattering function, however
we introduce here what is observed in systems close to the glass transition.
Experimentally, the decorrelation of the density fluctuations is characterized by
the superposition of different relaxations [17–19], among which the slowest, the
structural relaxation or α−relaxation, is the one of interest in this thesis. This
latter decay is well represented by the empirical Kohlrausch-Williams-Watts
(KWW) function [48]

F (q, t) = fq exp

−

(
t

τ(q)

)β(q)

 (2.36)

with β(q), the so called stretching parameter, < 1 in undercooled liquids close
to the glass transition.
Two pictures have been proposed in the past to explain this behavior. The first,
called the homogeneous scenario, involves a real microscopic non-exponential
relaxation for all particles. This picture originates from mean field studies
on spin glasses, where this peculiar behavior can be attributed to the local
disordered structure of the glass [49, 50]. However nowadays the accepted
description is the heterogeneous one, where the system is seen as composed of
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many (from this the term heterogeneous) different simple exponentially relaxing
regions, each one with its own relaxation time. This picture is supported both by
numerical simulation [51–55] and experimental [56–59] results. It is important
to point out here that the complex dynamics of undercooled liquids is likely
to be best described as being intermediate between these extreme scenarios,
with the relaxation being indeed heterogeneous, with regions faster and slower
than the average one [60]. Within this spirit, we can imagine the stretched
exponential as a superposition of simple relaxing regions, thus writing

F (q, t) ∼
∫
G(τ)e− t

τ dτ (2.37)

with G(τ) the distribution of relaxation times.
Recalling the concept of cooperative rearranging regions (CRR) introduced
by Adam and Gibbs [28], we can now link it with the KWW. Upon cooling,
the system starts to rearrange in a cooperative way, involving an increasing
number of correlated particles. The growth of these regions is accompanied by
an increase of heterogeneity, which is indeed reflected in the behavior of the
stretching parameter: on lowering the temperature β decreases, deviating more
and more from the value β = 1 [61, 62]. A question naturally arises: how can
we measure these cooperative rearranging regions?

2.2.4 Higher order correlation functions: the four-point
susceptibility

The glass transition is challenging not only from a theoretical point of view,
but experimentally too. Indeed, the almost indistinguishable structure of
the glass with respect to the undercooled liquid makes two-body correlations
weakly sensitive to the glass transition. Despite careful study of the van-Hove
function (or the ISF), it remains difficult to catch whether the glass transition
is accompanied by a growing length scale of correlations. It is then important
to find a new observable to overcome this limitation.
The history of many-body correlations starts from the field of spin glasses. In
such systems a long-range order is observed at the spin glass transition [63].
However, a simple correlation between two spins 〈sisj〉 is useless, since the
average over space will wash out any contribution. It was then proposed to
square the correlation between the spins before averaging over the volume:
this corresponds effectively to a four-point correlation function and it was
shown that this correlation extends to the entire spin glass below the critical
temperature TC [63, 64].
Starting from this idea, people asked if a 4-point correlator might be introduced
for glasses that would capture the statistical space-temporal properties of
the CRR. Soon, the heterogeneous, space-time correlation dynamics of CRR
approaching the glass transition became known as dynamical heterogeneities.
While the observation of these dynamical heterogeneities dates back to the
first years of 2000 (see for example [59, 65, 66]), we follow here the formalism
developed by Berthier in [67] for of its direct connection to the intermediate
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scattering function.
We have seen that in liquids approaching the glass transition the density remains
homogeneous while the dynamics becomes heterogeneous; the natural quantity
to consider is then the so called mobility field [67]

C(r, t) =
N∑

i

ci(t)δ(r− ri) (2.38)

Here ci(t) is the mobility of the particle i, namely a function that describes the
particle displacement in a time interval given by t. The field correlation of two
points separated by a distance r (note here the modulus of r, since the system
considered is isotropic and homogeneous) can be defined as [67]

G4(r, t) = 〈C(r, t)C(0, t)〉 − 〈C(r, t)〉2 (2.39)
The function G4(r, t) is known as the four-point dynamic correlation, since it
measures the degree of correlation in the motion (over a time t) of two points
separated by a distance r. It is worth to highlight that the definition of mobility
is kept obscure for a reason: it is not needed to define it specifically, since the
four-point dynamic correlation can be build with any observable which probes
the dynamics over a time-length scale, independently of the details. In the
previous section we have defined the density Fourier components ρq(t); we can
define a mobility field as C(t) = ρ-q(t)ρq(0), thus probing length-scales ∼ 1/q.
The four-point correlation function can then be rewritten as

G4(r, t) = 〈ρ-q(0, 0)ρq(0, t)ρ-q(r, 0)ρq(r, t)〉 − 〈ρ-q(r, 0)ρq(r, t)〉2 (2.40)

It is crucial to stress the fact that, with the choice of ρq(t) as observable, the
spatial correlation is embedded both in r and q. This will be of extreme impor-
tance, as we will see soon, since gives the possibility to probe the length-scale of
spatial heterogeneities with scattering techniques. Nevertheless, going further
in the development of the theory, we can define a susceptibility integrating over
the volume

χ4(t) =
∫

V
G4(r, t)dr (2.41)

The four-point susceptibility is by definition a measurement of the ”volume” dy-
namically correlated. Manipulating Eq.(2.39), it is straightforward to show that
χ4(t) can be obtained as the variance of the total mobility C(t) =

∫
C(r, t)dr,

except for a volume-related factor [64, 67]

χ4(t) = N
[
〈C(t)2〉 − 〈C(t)〉2

]
(2.42)

where we have assumed implicitly that the total mobility is a function normal-
ized to unity [64]. If the chosen mobility field is then properly normalized, the
four-point susceptibility is a direct measurements of the number of particles
involved in a rearrangement (on average). An example of χ4(t) for an under-
cooled liquid approaching the glass transition is shown in Fig.(2.6).
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Figure 2.6: Example of four-point susceptibility χ4(t) as a function of time
obtained with molecular dynamics simulations for an undercooled Lennard-
Jones liquid. Data taken from [67].

The bell-like shape of the χ4(t) is readily explained if we think of its physical
meaning. The dynamical susceptibility is a measurement of the degree of
correlation of the motion as a function of time. At short times, we expect
a vanishing value for the correlation, since particles are moving almost inde-
pendently, rattling in the transient cage of neighbors particles. On the other
hand, in the limit of long times, the trajectories of particles become completely
uncorrelated for the many collisions they experience. The peak is found around
a timescale typical of the structural relaxation time [64, 67] supporting, as
already pointed out, that the α−relaxation involves the cooperative motion
of CRR. Furthermore, its maximum value is the average number of particles
which participate in a rearrangement. This behavior can be well appreciated
in Fig.(2.6): on lowering the temperature, the peak shifts towards longer times
(symptom of the slowing down of the dynamics) and its value increases up to
roughly 20 correlated particles in the average structural rearrangement.
It is important to stress a point in the theory developed up to now: the χ4(t)
gives the number of particles dynamically correlated, but we cannot directly link
this to a correlated volume. This indeed requires the knowledge of the spatial
dimension d of the dynamical heterogeneities, from which max [χ4(t)] ∼ ξd

with ξ the CRRs’ length-scale. It was shown both in simulations and experi-
ments that d can be fractal too [52, 58, 59, 68], depending on the interaction
potential [58] and becoming more compact on cooling [68]. Since in this thesis
we are not employing direct space measurements (as the one reported in [59])
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nor simulations, we will focus here on the number of particles dynamically
correlated. However, sometimes we will try to estimate a correlated volume
assuming for simplicity d = 3. This rough approximation cannot be considered
as quantitative, but gives the possibility to grasp the length-scale we are talking
about.

2.2.5 Experimental results on the χ4

In this last section of the chapter we want to spend a few words discussing the
experimental challenges regarding measurements of the four-point susceptibility
and recent advancements. In simulations one has direct access to all the ingre-
dients required to compute the correlation functions (the mobility introduced in
the previous section). However, experiments are usually performed in real-space
(for example microscopy) or in Fourier-space (scattering).
In the former ones, the particle trajectories and the heterogeneous domains
evolution are directly tracked. Colloidal systems are the main characters of
these imaging techniques, since their relevant length-scale (µm) matches the
space-resolution achievable with standard visible-light microscopes. For this
reason, many experiments have been performed on colloidal glasses, exploring
the influence and peculiarities of different interaction potentials [58, 59]. The
results are in agreement with simulations and corroborate the idea that the
glass transition is accompanied with a cooperative dynamics involving a num-
ber of particles in the order of 102 [59, 67, 69]. Recently, electron correlation
microscopy was successfully applied to the study of an undercooled liquid metal
[70], demonstrating that the size of the dynamical heterogeneities approaching
the glass transition temperature grows up to few nanometers, a result in agree-
ment with previous studies based on different experimental techniques [56, 71].
As aforementioned the mobility field can be linked to any observable properly
normalized: for our purposes is then convenient to consider the intermediate
scattering function, F (q, t) and investigate the dynamics in Fourier space. The
time-correlations will be probed on a length-scale dictated by the exchanged
wave-vector with the relation 1/q. We recall here that the visibility of the
fluctuations due to the heterogeneous dynamics is proportional to the inverse
number of particles, following the central limit theorem. It is clear that the
intermediate scattering function, in order to carry information on the four point
susceptibility, has to be probed on a ”small” scattering volume, i.e. containing
few dynamical heterogeneities. For structural glasses, this corresponds to con-
sider nanometric-size volumes and only recent advancements in synchrotrons
and free-electron lasers are enabling nano-focus beams, with important ad-
vancements in the field expected in the next years.
Finally we should highlight that the relevance of the four-point susceptibility is
not restricted to the study of liquids approaching the glassy state. In fact, it is
a powerful tool to investigate out-of equilibrium systems too, for example aging
colloidal suspensions [72], foams [73] and gels [74, 75]. In the fifth chapter of
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this thesis we will exploit the formalism of the χ4(t) in order to investigate
in details the stress-release mechanism in a colloidal glass, which determines
long range cooperative structural rearrangements involving many thousands of
particles [76].



Chapter 3

Photon correlation spectroscopy

This chapter is dedicated to the introduction of the experimental techniques
exploited in this thesis. We will describe the general aspects of coherent
scattering together with the theory of photon correlation spectroscopy. We
will conclude this chapter discussing X-ray photon correlation spectroscopy
(XPCS) and the fundamental elements regarding the experiments performed at
synchrotron radiation centers.

3.1 Coherent scattering: theory
The scattering theory should be discussed using a quantum field theory approach
in order to fully appreciate its different facets [77]. There are indeed scattering
phenomena that can only be described using a quantum mechanics framework,
as the well known example of Compton scattering which played historically
an important role to emphasize the limitations of Classical Physics. For what
regards coherent scattering from liquids and glasses at temperatures not too
low, which is the main theme of this thesis, the results of the full quantum
treatment differ little from those obtained using a classical approach, and is
therefore customary in many textbooks to use a classical approach to introduce
this topic, see e.g. the reference book by Berne and Pecora [47]. In this chapter,
we will follow this approach as well since, despite being an approximation, it
captures all the aspects needed for the discussion of the photon correlation
spectroscopy experiments discussed in the following.
In a scattering experiment, the sample under investigation is illuminated with
an incident beam (it can be any probe, for example neutrons, X-rays or visible
light) and the diffused (scattered) radiation is collected at a given angle θ,
called scattering angle. In this section, to simplify the description, we decided
to consider a monochromatic (visible light) plane-wave as incident radiation.
The extension of the theory to other types of radiation is straightforward. Each
probe couples to a different property of the sample, for example visible light is
scattered by modulations of the refractive index, X-rays by electron density
and neutrons by nuclei. However, despite the exact mechanism of scattering,
the physical information that can be extracted, as we will see, is very much
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the same.

3.1.1 Visible light scattering
An example of a scattering experiment is reported in the scheme in Fig.(3.1)
top-right. In the sketch, all optical elements (slits, lenses, pinholes) used to
shape the beam and collect the light have been omitted for the sake of clarity.
The incident radiation is characterized by a polarization vector, n̂i, an angular
frequency, ωi, and a propagation vector ki with magnitude ki = 2π/λ, where λ
is the wavelength of the incident radiation (inside the sample)

Ei(r, t) = n̂iE0e
i(ki·r−ωit) (3.1)

with r the position with respect to a given reference system. The field interacts
with the sample and a portion of it (Es) is scattered with a propagation vector
kf , with the direction given by the scattering angle θ, see Fig.(3.1).

Detector

22 CHAPTER 3. PHOTON CORRELATION TECHNIQUES

Ds(r, t) = r⇥r⇥

E0

4⇡

Z
d3r0

�✏(r0, t0) · n̂i

|r � r0| ei(ki·r0�!it
0)

�
with t0 = t �

p
✏0
c

|r � r0| (3.45)

To go a little bit further, we need to make some approximation:
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The first approximation is due to the fact that the detector is far away from the scattering medium, thus
one can expand |r � r0| as already done for x-ray scattering. The second and the latter are due to the
fact that the modulation in the dielectric function is caused by rotations and vibrations of the system.
For this modes, the typical related frequencies ⌦p are of the order of few GHz and thus much smaller
than visible frequencies (1014Hz). The full calculation for the scattered field under this approximations
can be found in Berne and Pecora. At the end one gets:
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where q = ki � kf and |ki| = |kf |. If we consider a v-v scattering configuration (n̂i and n̂f orthogonal
to scattering plane ) the triple cross product can be reduced to a n̂f · �✏(r0, t) · n̂i.

3.5 Scattering from particles

Until now we have introduced the general scattering for X-Rays and visible light. However, since we
study a colloidal system, is important to understand the scattering for particles.

3.5.1 X-Rays

Let us recall the fundamental equation for the scattering intensity that we have found in the above
section:
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In the equation, we had considered the scattering from Z electrons. Lets now assume that at each
position rj we place a big particle, with a given density ⇢(r). From a mathematical point of view, this
is equivalent to a convolution. Passing in Fourier space we can write:
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where now rj is the position of the center of the j particle and the static structure factor takes into

account the position of particles. The term |⇢̃(q)|2 is known as form factor and usually is indicated with
P (q) (sometimes one can find also the notation |f(q)|2).
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Chapter 3

Photon correlation spectroscopy

This chapter is dedicated to introduce the experimental technique

3.1 Coherent scattering: theory
In a scattering experiment, the sample under investigation is illuminated with
an incident beam (it can be any probe, for example neutrons, X-rays or visible
light) and the di�used (scattered) radiation is collected at a given angle ◊, called
scattering angle. In this section, for simplifying the description, we decided
to consider a monochromatic (visible light) plane-wave as incident radiation.
The extension of the theory to other types of radiation is straightforward. Any
probe is indeed sensitive to di�erent aspects of the sample, for example visible
light is scattered by variations in the refractive index, X-rays by electrons and
neutrons by nuclei; however, despite the exact mechanism of scattering, the
’coherent’ contribution that can be extracted, as we will see, is the same.
To clarify how a real scattering experiment works, a schematic is reported in
Fig.(3.1) top-right. An incident plane wave with polarisation vector n̂i is shine
on the sample with the use of optics

Ei(r, t) = n̂iE0e
i(ki·r≠Êit) (3.1)
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o

Figure 3.1: Sketch of a scattering experiment (top-right). An incident plane
wave beam of monochromatic light is shined onto a sample. The scattered light
is collected at a given angle θ. The scattering volume (the intersection between
the incident beam and the scattered one) is marked in orange. The optical path
difference for two scattered spherical waves originating in o and r′ respectively
is reported in the zoom in the center. From geometrical considerations (bottom-
left), the phase factor gain is given by exp[iq · r′]. Figure adapted and redrawn
from [45].

We now ask how much of the incident radiation is scattered as a function of the
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outgoing propagation vector kf . To answer this question we start by defining
the dielectric tensor [47, 78]

ε(r, t) = ε01 + δε(r, t) (3.2)
where ε01 is the dielectric tensor for a linear, homogeneous and isotropic
material while δε(r, t) is the local fluctuation. The displacement vector can be
written multiplying the total electric field with the dielectric tensor (the r and
t dependence is implied to lighten the notation)

D = (ε01 + δε) · (Ei + Es) ' ε0(Ei + Es) + δε · Ei (3.3)
Here, in the last step, the second order term δε · Es has been dropped since
negligible with respect to the others. Using Maxwell’s equations, we obtain an
expression for the scattered displacement vector

− 1
c2
∂2Ds

∂t2
= ∇×∇× Es (3.4)

which can be rewritten, together with Eq.(3.3), as

∇2Ds −
(
ε0
c2

)
∂2Ds

∂t2
= −∇×∇× (δε · Ei) (3.5)

While this equation can be readily solved [78], it is simpler to introduce the so
called Hertz vector π [47]

Ds = ∇×∇× π (3.6)
from which we end up with the wave-equation for the Hertz vector itself

∇2π −
(
ε0
c2

)
∂2π

∂t2
= −δε · Ei (3.7)

The exercise of solving this last equation with the retarded Green’s function
can be found in any textbook of classical fields (see for example [79]). We
report here just the final solution

π(r, t) = 1
4π

∫
d3r′
−δε( r′, t−

√
ε0
c
|r− r′|) · Ei(r′, t−

√
ε0
c
|r− r′|)

|r− r′| (3.8)

from which we readily obtain, substituting the incident plane wave defined in
Eq.(3.1)

Ds(r, t) = ∇×∇×
[
E0

4π

∫
d3r′

δε(r′, t′) · n̂i
|r− r′| ei(ki·r

′−ωit′)
]

with t′ = t−
√
ε0
c
|r−r′|

(3.9)
In order to conclude this calculation, we need to introduce few approximations.
First of all, the detector is far away from the sample (in the so called far field)
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and we can expand the term |r − r′| as a function of the outgoing direction.
Secondly, the modulation of the dielectric tensor evolves in time much slower
than the incident frequency. This is readily satisfied for visible incident radiation.
In the end, one gets a scattered field with propagation vector kf , polarization
n̂f , frequency ωf = ωi and amplitude [47]

Es(r, t) = E0

4πε0r
ei(kf r−ωit)

∫
d3r′eiq·r

′n̂f · [kf × kf × [δε(r′, t) · n̂i]] (3.10)

with q = ki − kf and |ki| = |kf | = k. Here q is the already introduced
scattering wave-vector which, for geometrical considerations, can be calculated
starting from the scattering angle θ, see Fig.(3.1)

q = 4π
λ

sin
(
θ

2

)
(3.11)

where λ = λvacuum/n, with n the refractive index of the material.
In order to grasp the physical meaning of Eq.(3.10), the triple vector cross
product can be worked out defining δεif(r′, t) = n̂f · δε(r′, t) · n̂i. The total
scattered amplitude can then be written as the sum of the amplitudes of the
fields scattered by the infinitesimal volume elements d3r′ [45]

Es(r, t) =
∫

V
dEs(r, r′, t) (3.12)

with

dEs(r, r′, t) = −k
2E0

4π
exp[i(kr − ωit)]

r

[
δεif (r′, t)

ε0

]
d3r′ exp(iq · r′) (3.13)

We can now discuss in detail the different contributions present in Eq.(3.13).
First of all, the term k2 is reminiscent of an emitting dipole. Indeed, the
incident electric field induces in the volume element d3r′ an oscillating dipole
with frequency ωi, which radiates a spherical wave (second term in Eq.(3.13)).
The coupling between the incident field and the sample is given by the third
term,

[
δεif (r′,t)

ε0

]
. It is clear that for a completely optically homogeneous sample

(no modulation in the dielectric constant or equivalently in the refractive index)
the radiation cannot be scattered. Finally, the last phase term arises from
the spatial position of the volume element d3r′: the light scattered at r′ needs
indeed to travel an overall extra distance given by r′ · (ki − kf )/k, see Fig.(3.1)
for more details.

3.1.2 Generalizing the scattering theory
With the considerations above, we are now ready to generalize the scattering
theory to an ensemble of discrete scatterers. First, let us define the density of
scattering material [45]
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∆ρ̌(r, t) = k2

4π

[
δεif (r, t)

ε0

]
(3.14)

This definition is extremely useful since it not only simplifies the notation, but
will be crucial to extend the theory to different probes, as we will see.
We can now consider an group of N particles of volume Vj and centre of mass
described by the time-dependent position Rj(t). The scattered field from this
ensemble of particles will be

Es(r, t) = −E0
ei(kr−ωit)

r

N∑

j=1

[∫

Vj
∆ρ̌(rj, t)eiq·rjd3rj

]
eiq·Rj(t) (3.15)

where we have split the phase term for each particle j calling rj the position of
the volume element d3rj with respect to the center of mass Rj.
As a last step, we can define the so called scattering length as [45]

bj(q, t) =
∫

Vj
∆ρ̌(rj, t)eiq·rjd3rj (3.16)

which is nothing but the Fourier transform of the density of scattering material.
It is worth to notice here that the name scattering length derives from the fact
that the unit of measurement is [m]. The final result for the scattered field is

Es(r, t) = −E0
ei(kr−ωit)

r

N∑

j=1
bj(q, t)eiq·Rj(t) (3.17)

With Eq.(3.17) we have founded a general theory of coherent scattering: indeed,
any structural probe gives rise to one such contribution, the only difference
being the scattering length which is specific instead to the probe. For example,
in the case of X-rays, scattering is related to the electrons in the sample
(Thompson scattering), with each electron contributing with a scattering length
re = 2.8 × 10−5Å. For neutrons the scattering length is different for each
isotope, and can be found in dedicated tables. We emphasize that the theory
discussed above covers a particular channel of the scattering process. In fact,
we assumed only single, non-resonant scattering and, although such kinematic
approach accounts for all the phenomena discussed in this thesis, there are
many situations where a more general theoretical treatment is required. Some
examples are the scattering of low energy electrons from surfaces [80], X-ray
resonant scattering [81] or neutron magnetic scattering [82].
In real world experiments, however, we are not able to measure the scattered
field but the intensity, I(q, t) = |E(q, t)|2. For clarity we keep proceeding from
Eq.(3.17) and write the average scattered intensity at a given q as

〈Is(q)〉 = E2
0
r2

〈 N∑

j=1

N∑

k=1
bj(q)b∗k(q)eiq·(Rj−Rk)

〉
(3.18)
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with 〈...〉 an ensemble average (or time average for ergodic systems). We assume
now that all scatterers are equal (this condition can be relaxed, see [83] for
binary mixtures)

〈Is(q)〉 = E2
0
r2 〈|b(q)|2〉

N∑

j=1

N∑

k=1
〈eiq·(Rj−Rk)〉 (3.19)

Recalling the definition of static structure factor, Eq.(2.28), and defining the
form factor as P (q) = 〈|b(q)|2〉/〈|b(0)|2〉, we get a general equation to describe
a scattering experiment

〈Is(q)〉 = α〈|b(0)|2〉NP (q)S(q) (3.20)

3.1.3 More on the form factor
We want now to spend few words about the form factor and show few examples
which will be important, especially for the study regarding the colloidal systems
reported in chapter 5.
By definition, the form factor is the Fourier transform of the density of scattering
material (squared and normalized to unity). Note here that, for particles
dispersed in a solvent, it corresponds to the difference in dielectric constant
(for visible light) or electron density (for X-rays) between the solvent and the
particles themselves. The form factor as we have seen, is defined by (we have
omitted the average brackets)

P (q) = |b(q)|2
|b(0)|2 (3.21)

As a first example, we want to consider the case for a homogeneous sphere with
radius R. We can write

b(q) = ∆ρ̌
∫

Vsphere

exp[iq · r]dV = ∆ρ̌4
3π

3
q3 (sin(qR)− qR cos(qR)), (3.22)

with the integral easily done switching to spherical coordinates. In the end, the
form factor for a sphere can be expressed as

P (q) =
[

3
(qR)3 (sin(qR)− qR cos(qR))

]2

(3.23)

A plot of Eq.(3.23) is reported in Fig.(3.2 left). The minima of the sphere form
factor are located at tan(qR) = qR.
As a last example, we want to introduce the atomic form factor for X-rays.
This factor is generally evaluated from ab-initio calculations of the electron
charge density [84]. In most cases, however, assuming a spherical symmetry is
a good starting approximation [84]. In Fig.(3.2 right) the scattering lengths,
normalized for the classical electron radius re and the atomic number Z, have
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2R

Figure 3.2: The form factor for an homogeneous sphere of radius R is reported
in a semi-logarithmic scale (left); the positions of the minima are located at
tan(qR) = qR, which correspond to qR ' 4.5, 7.7, ... . On the right panel the
atomic scattering length (normalized for re and Z) is reported for hydrogen,
lithium and boron.

been reported for 3 nuclei. As it can be clearly seen from the definition, the
scattering length for a given atom is proportional to Z for small exchanged
momentum, since for X-rays it is the Fourier transform of the atomic electron
density. The scattered intensity is then I ∝ Z2.
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3.2 The speckle pattern and its properties
In the previous section we have seen what happens to a monochromatic plane-
wave when it is shined onto a material. The scattered field, collected at a given
q (or scattering angle θ), is usually averaged over many different configurations
with an ensemble average, or a time-average for ergodic systems (see Eq.(3.18-
3.20)). This procedure gives a smooth intensity profile, where the instantaneous
local position of each scatterer is washed out. However, since the incident field
is coherent, at any instant of time t the scattered field at any position r must
contribute coherently. By this consideration, for a disordered system a grainy
intensity pattern is thus expected due to the field interference, where the size
of each ”grain” is determined by geometrical aspects.
Those grainy intensity patterns, first observed with the development of lasers,
are called speckle patterns and are nothing but the many body equivalent of
the Young’s double slit experiment; see Fig.(3.3) for an example of a measured
speckle pattern.
In the following sections we want to elucidate the speckles statistical properties,
which will be crucial in developing the photon correlation technique.

3.2.1 The speckle statistics
A speckle pattern is generated whenever a coherent beam (we will relax this
condition soon) is scattered by a randomly distributed medium. As an example,
we consider here a rough surface illuminated by such beam. The term ”rough”
must be intended on the length-scale dictated by the incident wavelength λ,
implying that the scattered field gains a position dependent random phase
factor.
The scattered field at a given position r will be the sum of all the scattered
fields from the surface elements j, see Fig.(3.3)

Etot(r) =
N∑

j=1
Ej(r) =

N∑

j=1
|Ej(r)|eiφj(r) (3.24)

with the phase φj(r) embedding the j-th scattering element position. Assuming
that the field amplitude Ej(r) and the phase φj(r) are statistical independent
variables with φj(r) uniformly distributed on the space [−π, π], one can demon-
strate that the real and imaginary parts of Etot(r) are zero mean Gaussian
variables, with σ2 = 〈Re(E(r))2〉 = 〈Im(E(r))2〉 [85]. Finally, the probability
density of the scattered intensity is given by [85]

P (I) = 1
〈I〉e

− I
〈I〉 with I ≥ 0 (3.25)

Note here that the n-th moment of the distribution can be easily evaluated
and is given by the following equation

〈In〉 = n!〈I〉n (3.26)
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The scattered field at a given position r will be the sum of all the scattered
fields from the surface elements j

Etot(r) =
Nÿ

j=1
Ej(r) =

Nÿ

j=1
|Ej(r)|ei„j(r) (3.24)

with the phase „j(r) embedding the j-th scattering element position. Assuming
that each field amplitude Ej(r) and each phase „j(r) are statistical independent
variable with phij(r) uniformly distributed on the interval [≠fi, fi] (here the
condition that the surface is rough with respect to ⁄), one can demonstrate
that the real and imaginary parts of Etot(r) are zero mean Gaussian variables,
with ‡2 = ÈRe(E(r))2Í = ÈIm(E(r))2Í [74]. Finally, the probability density of
the scattered intensity is given by [74]

P (I) = 1
ÈIÍe

≠ I
ÈIÍ with I Ø 0 (3.25)

3.2.2 The dynamics of speckle patterns: intensity auto-
correlation

3.3 Investigating the density rearrangements:
the intermediate scattering function

!

Coherent beam
Sample

2D-Detector

I(q,t)
t⟨I2(q)⟩ 

Delay time⟨I(q)⟩2 Autocorrelation

A
B

Figure 3.4: P

Rough surface

Figure 3.3: Sketch of a rough surface illuminated by a monochromatic light
(left). The scattered radiation is collected through a lens and imaged on a
screen. An example of measured speckle pattern for a colloidal sample is
reported (right).

It is straightforward to see that the variance of the intensity, defined as σ2 =
〈I2〉 − 〈I〉2, is equal to the squared average intensity: σ2 = 〈I〉2. The contrast
of a speckle pattern is defined as

C = σ2

〈I〉2 (3.27)

For the case reported above, we have C = 1: we say that the speckle pattern is
fully developed.
We can now ask ourselves how the speckles are spatially distributed. To answer
this question, let’s have a look at the sketch reported in Fig.(3.3). Neglecting
for the moment the diffraction of the optics, consider two near points on the
screen, let us say X and X + δX, close enough that the phase change of the
scattered light is negligible. Given a lens of diameter d and located at a distance
D far away from the screen, the condition I(X) ∼ I(X + δX) is fulfilled if [86]

d
δX

D
� λ (3.28)

We can find the linear size of the speckle with Eq.(3.28) considering an optical
path difference of λ. We end up with [86]

∆ ' 2λD
d

(3.29)
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The very same considerations can be carried out in the case of a free diffusing
speckle pattern, that is without the insertion of optical elements between the
source and the screen. In this case [47], the linear size of a speckle is given by

∆ ' λ

δα
(3.30)

with δα the angle of the source subtended at the screen.

3.2.2 The dynamics of speckle patterns: intensity auto-
correlation

It is clear from the aforementioned considerations that, if the system’s density
of scattering material changes with time, the speckle pattern will change
accordingly. We can then consider again the sketch reported in Fig.(3.1).
Assuming the linear size of the detector comparable or smaller than the linear
size of a single speckle, let us collect the scattered intensity as a function of
time. If the speckle pattern changes slowly with respect to the integration time
of the detector, we will measure something like the signal reported in Fig.(3.4
left).

I(q,t)

t

⟨I2(q)⟩ 

Delay time

⟨I(q)⟩2

Autocorrelation

Figure 3.4: A sketch of the measured intensity at a point-like detector for an
evolving speckle pattern (left). Each oscillation corresponds to a new speckle
entering the detector. The typical time between two peaks (or valleys) can be
measured and used to compute the intensity autocorrelation (right).

Not very much information can be extracted from a plot like the one reported
in Fig.(3.4 left), but it should be noted that the average time between two
peaks (or valleys) in the intensity is related to how fast the speckle pattern
changes. It is then natural to measure such time computing an auto-correlation
(or self-correlation) of the intensity

〈I(0)I(t)〉 = lim
T→∞

1
T

∫ T

0
I(t′)I(t+ t′)dt′ (3.31)



3.2 The speckle pattern and its properties 35

with t the so called delay time. Note here that the dynamics of the speckle
pattern are considered stationary, meaning that there is no dependence on the
chosen initial time; in other words, 〈I(t)〉 = 〈I〉 ∀ t. Moreover, it is easy to
demonstrate that 〈I2〉 ≥ 〈I(0)I(t)〉, and that in the limit of large times t the two
series considered in Eq.(3.31) become uncorrelated, limt→∞〈I(0)I(t)〉 = 〈I〉2.
The autocorrelation function will be a decaying function, starting from 〈I2〉
and reaching a plateau equal to 〈I〉2, see Fig.(3.4 right). It is useful now to
normalize such correlator in order to separate the contribution of external
parameters, for example the incident beam intensity or the efficiency of the
detector. We define then the normalized intensity autocorrelation function [47]

g2(t) = 〈I(0)I(t)〉
〈I〉2 (3.32)

Note that g2 is a second-order degree of coherence, hence a 4-field correlation
function, and it is also known as the homodyne autocorrelation function,
since the correlation involves intensities rather than 2-fields as in heterodyne
detection. Without entering in the details of this last technique (see [47] for a
complete overview), we just report here the definition of first-order degree of
coherence

g1(t) = 〈E(0)E∗(t)〉
〈I〉 = 〈∆ρ̌(q, 0)∆ρ̌∗(q, t)〉

〈∆ρ̌(q, 0)〉2 = F (q, t) (3.33)

with the last two equalities following from the expression of the scattered field.
We recall here that F (q, t) is the intermediate scattering function, the Fourier
transform of the van Hove density-density correlation function.
Eq.(3.32) and Eq.(3.33) can be linked together if the fields are Gaussian random
variables (Gaussian approximation) [87]

g2(t) = 1 + A|g1(t)|2 (3.34)
with A a parameter determined by the experimental conditions. Eq.(3.34)
is the well-known Siegert relation, and paved the way of photon correlation
spectroscopy. The first application of Eq.(3.34) is dated back to the ’50s, when
Hanbury Brown and Twiss performed the first astronomical homodyne photon
correlation experiment, measuring the angular size of celestial radio sources.
For this historical reason, the Siegert relation is also known as ”Hanbury Brown
and Twiss” effect.
Coming back to scattering experiments, performing heterodyne detection is
challenging in many situations (for such experiments a local oscillator is needed)
while the homodyne configuration is much simpler experimentally. In a homo-
dyne photon correlation (also called dynamic light scattering) experiment, the
scattered intensity is collected at a given q-value. The intensity autocorrelation
(hardware or software) is then performed, and the intermediate scattering
function calculated through the Siegert relation, Eq.(3.34).
It is important to conclude this section highlighting that the contrast A is
by definition 1 when the detector is point-like and decreases approximately
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as 1/N , where N is the number of speckles that are collected by the detector
[47]. Despite the exact value of the contrast in a real experiment depends
on many factors [88], including the beam profile, as a rule of thumb the best
configuration is achieved when the speckle size is roughly equal to the size of
the detector (or of its pixels in case of a 2D detector).

3.3 The multi-speckle technique

𝜃

Coherent beam

Sample

2D-Detector
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D = kBT

6fi÷R
(3.35)

with kB the Boltzmann constant, T the system’s temperature and R the particle
radius. Substituting the experimental parameters and recalling that ·≠1 = Dq2,
we get · ≥ 450µs. It is clear that in few minutes of experiment, one is able
to probe millions of speckles, building up the true speckle pattern statistics
and ending up with a reliable intermediate scattering function. However, this
approach is not always feasible. In the case of slow relaxing system (for example
a glass close to Tg) the time required for obtaining a good enough statistics
usually exceeds the available experimental time.
To overcome this limitation, at the end of the ’90 a new approach was developed
involving the use of 2D detectors [78, 79]. The idea was to probe simultaneously
many speckles (ideally, one per pixel) and performing not only a time average
but an ensemble one on the pixels of the detector. An example of such
experiment is reported as a sketch in Fig.(3.5). The pixels related to the same
exchange wave-vector interval [q ≠ �q, q + �q] are selected (note that in the
sketch reported in Fig.(3.5) this correspond to rings) and a sequence of N
images is collected at even time-intervals �T . Choosing two images collected
at times t1 and t2 we can calculate the degree of correlation between them

C(t1, t2) = ÈI(t1)I(t2)Íp
ÈI(t1)ÍpÈI(t2)Íp

(3.36)

with the average È...Íp performed over the detector pixels. The procedure can
be repeated for all pairs of images, building the so called autocorrelation matrix
or two times correlation function. An example of such matrix is reported in
Fig.(3.5 left). The main diagonal (in figure reported in red), corresponds to
the term C(j, j), thus the correlation of an image with itself. This lead to
the maximum of correlation which decreases increasing the lag time t between
images. Note here that Eq.(3.36) can be rewritten considering the lag time t
and defining the waiting time tw = t1: C(t1, t2) = C(tw, tw + t) (see Fig.(3.5)
for the graphical representation). It is clear from this last definition that the
intensity autocorrelation function, defined with Eq.(3.32), can be obtained
averaging the two times correlation function over the waiting time

g2(t = k�T ) = ÈC(tw, tw + t)Í = 1
N ≠ k

N≠kÿ

j=1
C(j, j + k) (3.37)
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Figure 3.5: Sketch of a photon correlation experiment using a 2D detector
(right). Here the detector is positioned in the so called small-angle configuration
(downstream of the beam). A series of images separated by a time interval are
collected for the subsequent software correlation. On the left an example of
two time correlation function is reported. The green square represents a subset
of the matrix from which a partial autocorrelation function can be extracted.

The Siegert relation, presented above, is a powerful method to probe density
rearrangements in a system. However, its validity is restricted to the case where
the (almost) full speckle pattern distribution is sampled and the dynamics are
stationary.
For example, let us consider a dilute colloidal suspension of nanoparticles
(100 nm in diameter) dispersed in water at ambient temperature (η ' 1mPa · s).
Considering a incident laser wavelength of 500 nm and θ = π/2, the probed q is
roughly ' 23µm−1. Using the Stokes–Einstein relation, the diffusion coefficient
can be written as
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D = kBT

6πηR (3.35)

with kB the Boltzmann constant, T the system’s temperature and R the particle
radius. Substituting the experimental parameters and recalling that τ−1 = Dq2,
we get τ ∼ 450 µs. It is clear that in few minutes of experiment, one is able
to probe millions of speckles, building up a strong estimate of the speckle
pattern statistics and ending up with a reliable intermediate scattering function.
However, this approach is not always feasible. In the case of slow relaxing
systems (for example a glass close to Tg) the time required for obtaining a good
enough statistics usually exceeds the available experimental time. Moreover, if
the system ages, the temporal average in Eq.(3.31) will lead to a wrong result.
To overcome these limitations, since the end of the ’90s a new approach was
developed involving the use of 2D detectors [89, 90]. The idea was to probe
simultaneously many speckles (ideally, one per pixel) and perform both a time
and ensemble average on the pixels of the detector. An example of such an
experiment is reported as a sketch in Fig.(3.5). The pixels related to the same
exchanged wave-vector interval [q −∆q, q + ∆q] are selected (note that in the
sketch reported in Fig.(3.5) these pixels belong to rings) and a sequence of N
images is collected at even time-intervals ∆T . Choosing two images collected
at times t1 and t2 we can calculate the degree of correlation between them

C(t1, t2) = 〈I(t1)I(t2)〉p
〈I(t1)〉p〈I(t2)〉p

(3.36)

with the average 〈...〉p performed over the detector pixels. The procedure can be
repeated for all pairs of images, building the so called autocorrelation matrix or
two time correlation function. An example of such matrix is shown in Fig.(3.5
left). The main diagonal (in figure reported in red), corresponds to the term
C(j, j), thus the correlation of an image with itself. This leads to the correlation
maximum decreasing with time t between images. Note that Eq.(3.36) can
be rewritten considering the lag time t and defining the waiting time tw = t1:
C(t1, t2) = C(tw, tw + t) (see Fig.(3.5) for the graphical representation). It
is clear from this last definition that the intensity autocorrelation function,
defined with Eq.(3.32), can be obtained averaging the two times correlation
function over the waiting time

g2(t = k∆T ) = 〈C(tw, tw + t)〉 = 1
N − k

N−k∑

j=1
C(j, j + k) (3.37)

Despite the higher computational effort needed for the multispeckle technique
with respect to the single speckle approach, the advantages are not only limited
to the possibility to investigate slow relaxing systems. Indeed it is possible
to probe the out of equilibrium dynamics on time-scales comparable to the
relaxation time τ . If the speckle statistics are good enough (here good depends
not only on the number of the sampled speckles but on their signal to noise
ratio too) one can obtain a reliable autocorrelation function correlating a series
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of images collected over a time ∼ τ . This autocorrelation corresponds, for
example, to cutting out a square from the two times matrix (the green square
in Fig.(3.5)) and calculating a reduced g2(t). Note that the autocorrelation
function obtained is reliable and a good estimate of the underlying relaxation
if the evolution of the dynamics (for example, aging) is negligible in the chosen
integration window. Considering a set of images starting at tw and ending at
tw + δt this condition can be expressed as

τ(tw)/τ(tw + δt) ' 1. (3.38)

3.3.1 The role of dark noise
Up to now, all the theoretical approaches assume a noise-free and homoge-
neous detection of the scattered signal. In a real experiment, however, these
effects must be taken into account in order to extract correctly the dynamical
information from the experimental data. First of all, let us assume a uniform
illumination of our detector (for example a CCD camera). The measured signal
for each pixel p will be superimposed to an intrinsic electrical noise, also known
as dark noise

Sp(t) = Ip(t) +Dp(t) (3.39)
with Dp(t) the dark counts of the pth pixel. Note that the dark noise is usually
composed of a static baseline (pixel dependent) plus a random (zero mean)
instantaneous fluctuation. This can be written as

Dp(t) = D0p + δDp(t) (3.40)
To lighten the notation, we drop now the subscript p. The autocorrelation of
the measured signal can be expressed taking into account Eq.(3.39)

〈S(t1)S(t2)〉 = 〈[I(t1) +D(t1)][I(t2) +D(t2)]〉
〈I(t1) +D(t1)〉〈I(t2) +D(t2)〉 (3.41)

To proceed in the simplification of Eq.(3.41), we assume that the average
scattered intensity remains constant over time, that is 〈I(t1)〉 = 〈I(t2)〉 = 〈I〉.
It must be pointed out that this assumption is not relevant for the following
considerations, which are still valid in the case of fluctuating intensity; however,
this choice increases the readability of the equations.
Following Eq.(3.40) the dark noise average is independent of time: 〈D(t)〉 = 〈D〉.
We assume here that the intensity and noise are mutually uncorrelated too; we
can then write

〈S(t1)S(t2)〉 = 1 + 〈I(t1)I(t2)〉 − 〈I〉2
〈I〉2 + 〈D〉2 + 2〈I〉〈D〉 + 〈D(t1)D(t2)〉 − 〈D〉2

〈I〉2 + 〈D〉2 + 2〈I〉〈D〉 (3.42)

This equation is extremely interesting for many reasons. First of all, if the noise
is removed, we recover the simple form of the two time matrix, starting from
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the value A+ 1 for t1 = t2 and decreasing to 1 when the two considered images
are uncorrelated. Switching on a noise source has two consequences. On the one
hand it decreases the measured contrast: indeed, the second term in Eq.(3.41)
is somehow over-normalized. On the other hand, the noise itself introduces
a correlation (third term of Eq.(3.41)), which is a constant term only if the
fluctuating part of the noise δD(t) in temporally uncorrelated (white noise).
This is the most usual case, see for example [91]: the dark noise introduces a
baseline which must be taken into account when applying the Siegert relation.
One can measure directly D0 (for example acquiring few dark images) and then
subtract it from the measured S(t) [92]. With this procedure, the effective
noise on the images is just the instantaneous δD(t), with 〈δD(t)〉 = 0. We get
then

〈S(t1)S(t2)〉 = 1 + 〈I(t1)I(t2)〉 − 〈I〉2
〈I〉2 + 〈δD

2〉δ(t1 − t2)
〈I〉2 (3.43)

with the last term being the autocorrelation of the noise. Note that its contri-
bution can never be removed when correlating an image with itself and this is
the reason why the zero-delay point of the intensity autocorrelation is never
considered in the data analysis. We highlight that despite the equations derived
here being obtained for dark noise arising from the detector electronics, the
same approach can be followed for any other noise source.
For example, in an X-ray photon correlation experiment the scattered intensity
is usually so low that single photons are counted and shot noise becomes
relevant. The zero-delay point of the correlation function in this case is totally
dominated by the last term in Eq.(3.43) and this is relevant for schemes relying
on the single image photon statistics, such the X-ray speckle visibility (XSVS)
[93]. Note that for shot noise the time correlation is exactly a Dirac-delta.
Another common source of noise encountered in visible-light based photon
correlation spectroscopy is related to stray light coming from the sample, mostly
in small angle geometry [91]. Although corrections to the Siegert relation are
available [91] and the stray light can be included as for the dark noise, the best
way to deal with it is to reduce as much as possible its contribution optimizing
the optical elements in the setup (this also reduces the possibility of spurious
heterodyne contamination to the measured speckle pattern and the need of
further corrections [94]).

3.3.2 Non uniform detector illumination
Finally we want to discuss briefly the role of non uniform illumination of the
detector. This effect is extremely common, and it is not only due to technical
imperfections (collecting optics, dust on the camera chip and so on) but can be
intrinsic to the scattered intensity, for example if we are measuring scattered
radiation over a range corresponding to the peak of the static structure factor.
The measured intensity on the pth pixel would then be
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Sp(t) = Ip(t) ·Mp (3.44)
with Mp a spatially varying multiplicative factor. We assume that M and I
are mutually uncorrelated again. It follows that

〈S(t1)S(t2)〉 = 〈I(t1)I(t2)〉
〈I(t1)〉〈I(t2)〉 ·

〈M2〉
〈M〉2 (3.45)

The contribution of a non uniform illumination is then a multiplicative factor
proportional to the variance of the illumination profile. The impact of this
effect can be drastically reduced applying the correction scheme as reported
in [92]: each image is normalized for the ”illumination” profile, measured
averaging many uncorrelated images in order to wash out the speckle pattern.
However there are situations where the illumination profile cannot be directly
measured and each image properly corrected. An example of this case is an
experiment with a not stationary intensity profile, as we will see in detail in
Ch.(6). For these cases, one can rely on a modified Siegert relation introducing
a multiplicative factor α or, more frequently, adding a baseline in order to
capture eventual sources of noise too

g2(t) = A′|F (q, t)|2 + d (3.46)
Finally note that the experimental contrast A′ obtained with the modified
Siegert relation is in principle different from the setup’s one.

3.3.3 The four-point susceptibility extrapolation
The two time correlation function gives the possibility to investigate the four-
point susceptibility too. Indeed, knowing the number of particles N in the
scattering volume and the experimental contrast A of Eq.(3.34), it is easy to
show that the χ4 can be calculated recalling Eq.(2.42)

χ4(t) = N

A2

[
〈C(t′, t+ t′)2〉t′ − 〈C(t′, t+ t′)〉2t′

]
= N

A2σ
2
C(t) (3.47)

Here particular care must be taken in case of non-uniform illumination of the
detector. The factor reported in Eq.(3.45) can modify the measured contrast
and thus lead to incorrect values of χ4. For this reason, in this thesis the
”illumination profile” normalization is applied whenever we aim at extracting a
four-point susceptibility.
We can then extract χ4 by calculating the variance of the diagonal of the
two time correlation function. However, as noticed in [92], one needs to take
into account the contribution of the limited number of speckles recorded. In
the limiting case where the number of pixels →∞, the full speckle pattern is
sampled and the variance of the diagonals in the two time correlation function is
only due to the real dynamics. For a realistic number of pixels, a measurement
noise n(t1, t2) is introduced
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C(t1, t2) = g2(t1, t2) + n(t1, t2) (3.48)

with g2(t1, t2) the value of the ”instantaneous” real intensity correlation. With
the additional noise term, the two time diagonals’ variances are related both to
the intrinsic heterogeneity of the sample and to the measurement noise. Duri
et al. demonstrated in [92] that the variance of C(t1, t2) can be written as the
sum of a noise-related signal and the real dynamical signal

σ2
C(t) = 1

N

3∑

k

αk〈C(t′, t+ t′)〉kt′ + σ2
g2(t) (3.49)

where N is the number of sampled speckles (or pixels), αk is a real coefficient
and the third order polynomial term is calculated making use of the standard
formula to propagate uncertainties for a function f(x), σ2

f(x) = Jσ2
xJ

T , with σ2
x

and J the covariance and Jacobian matrices, respectively.
Note that, despite the exact functional form (αk) depending on the chosen
normalization, the ”measurement” noise term is multiplied by 1/N , a feature
coming from the central limit theorem. This ensures the possibility to remove it
in a straightforward way as proposed in [92]: Eq.(3.49) is calculated for different
values of N and a linear fit is performed in order to extract the intercept σ2

g2(t)
for each time t. This procedure allows the extrapolation of the true value of
the χ4(t), and in this thesis such extrapolation has consistently been used to
derive four-point susceptibilities.

3.4 Towards nanometric spatial resolution: X-
ray photon correlation spectroscopy

We described in previous sections the properties of photon correlation spec-
troscopy (or dynamic light scattering), highlighting its applications to the
study of slow relaxing systems such as liquids approaching the glass transition.
However, little attention has been given to the role of the exchanged wave
vector. We showed that the probed length-scale is somehow linked to the
inverse of the scattering vector, which is defined as q = 4πn

λ
sin(θ/2). Note that

there is not theoretic limit to the smallest q-vector which can be probed in
a scattering experiment (although experimental and geometrical constraints
impose practical limits). However, the largest q value accessible is bound by
the incident wavelength λ (the index of refraction n introduces just a factor
close to unity). With visible radiation, for example λ ∼ 500 nm, the maximum
scattering value is q ∼ 25µm−1 (n = 1), which corresponds to length-scales in
the order of few hundreds of nanometers.
It is clear that the only way to probe density rearrangements on smaller length-
scales is to use smaller wavelengths, moving to ultraviolet and X-ray radiation.



42 Photon correlation spectroscopy

Visible Photon 
Correlation

X-Ray Photon 
Correlation

Neutron 
Scattering

Inelastic X-ray 
Scattering

Brillouin 
Scattering

Raman 
Scattering

Figure 3.6: Energy-space range covered by different scattering techniques.
Figure adapted and redrawn from [2].

X-ray photon correlation spectroscopy (XPCS) is overall a recent technique,
despite being a natural extension of dynamic light scattering into the X-ray
regime [2]. X-rays present many advantages: low interaction cross section
(almost no multiple scattering), low refraction at the interfaces (n ' 1 for
any material) and a wavelength comparable with inter-atomic distances are
only few of them. In Fig.(3.6) the energy-scattering vector range accessible to
different techniques has been highlighted. Note that the whole frequency (or,
equivalently, energy) range is covered with visible probes at small exchanged
wave-vector: Raman and Brillouin scattering are well established frequency-
domain techniques for ω > 107 rad/s, while for ω < 106 rad/s we find visible
photon correlation spectroscopy (PCS). At the nanometer length-scale, many
techniques with different probes are nowadays available. Here we reported
just few representative examples: at high energy transfer (ω > 108 rad/s),
both inelastic x-ray and neutron scattering (neutron spin-echo, inelastic and
quasi-elastic) give the possibility to investigate the atomic dynamics. In the
low frequency regime (ω < 106 rad/s) dynamics can be probed with XPCS.
Note that PCS and XPCS are represented in the same box: this is due to the
fact that XPCS in small scattering angle configuration can cover almost the
same range of PCS, but with all the advantages of using X-ray beams. Before
proceeding, we should mention that the use of X-rays has sometimes severe
drawbacks. When working with soft matter systems or biological samples
particular attention must be posed to the radiation damage which can affect
both structural and dynamical properties. The beam damage problem often
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requires solutions where the sample is replaced frequently using, for example,
flow cells and is of concern for new generation X-ray sources. A second drawback
regards the relatively low coherent photon fluxes available in the X-ray range
with respect to visible PCS. Experiments usually require a long beamtimes
at synchrotron radiation centers, and only recently the atomic-scale study of
liquids approaching the glass transition has became feasible, as reported in
recent literature [95] and in this thesis.
In the next sections we will discuss briefly the requirements for beam coherence
in order to perform XPCS measurements and we will show some experimental
details regarding this scattering technique.

3.4.1 The coherence of chaotic sources
We started this chapter illustrating fundamental aspects of coherent scattering,
but we have intentionally avoided talking about the coherence of real radiation
sources. A monochromatic plane wave is by definition a coherent wave, but
how is coherence exactly defined?
Coherence can be seen as the ability to create interference phenomena, and can
be quantified by a field correlation at two positions r1 and r2 at times t1 and
t2 [96, 97]

Γ(r1, r2, t1, t2) = 〈E
∗(r1, t1)E(r2, t2)〉√
I(r1, t1)

√
I(r2, t2)

(3.50)

By definition, |Γ(r1, r2, t1, t2)| ≤ 1 for every couple of positions and times.
Moreover, if one performs a Young’s double slit experiment, the contrast of the
interference fringes is given by |Γ|. We say that the field is fully coherent if
|Γ| = 1, while an incoherent field has |Γ| = 0. If 0 < |Γ| < 1 the field is defined
as partially coherent.
The coherence is then a measurements of how much a field is correlated in
space and time. Equivalently, it is the time- and space-length over which one
can predict the field phase knowing its value at the origin at time zero.
It is clear from this set of definitions that a laser is a coherent light source. The
electromagnetic wave is built up inside the cavity as a standing wave, amplified
by the stimulated emission of the active medium. When this monochromatic
standing wave exits the cavity, it preserves the coherence: one can find indeed
a well defined phase relationship between any two points in the beam path.
However, interference patterns can be observed with thermal or chaotic light
too (for example, the double slit experiment can be performed with a sodium
lamp). In this case, tho source is partially coherent and it is characterized by
two transverse and one longitudinal coherence lengths. In order to grasp the
meaning of these lengths, two sketches are shown in Fig.(3.7). On the top, a
source of diameter w emits a monochromatic wave which impinges on a double
slit (characterized by an aperture separation distance d) located at position R.
The intensity is then measured on a screen far away from the slit, let say at
L. Let us consider the wave emitted by an infinitesimal surface element of the
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source, located at its center (blue-dashed lines in the sketch). On the screen we
will measure an interference pattern with a spatial separation λL/d, that is at
diffraction angles integer multiples of λ/d. Consider now a point close to the
edge of our source: the interference pattern on the screen will be shifted of a
distance wL/2R, that is an angular deviation of w/2R (yellow lines). It is clear
from geometrical considerations that the two patterns interfere destructively if
d = λR/w. We define this distance as the transverse coherence [98]

ξt = λR

w
(3.51)

For insertion devices at synchrotron radiation centers, such as undulators (see
next section for details), the source intensity is usually well approximated by
a Gaussian distribution; the transverse coherence is then defined as ξt = λR

2πσ ,
with σ2 the distribution’s variance. Furthermore, the source size is usually
smaller in the vertical direction (σv ∼ 10− 50µm) than in the horizontal one
(σh ∼ 100−500µm)1. This difference, which would cause ξv � ξh at the sample,
is compensated by an appropriate use of mirrors and slits (see Sect.(3.6) for
details).
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Figure 3.7: Top: Sketch of the double-slit diffraction pattern from a finite size
source. Bottom: Sketch of the propagation of two plane waves of different color.
Figure adapted and redrawn from [98].

Let us imagine now a source emitting plane waves with two different colors
(or wavelengths) as reported in Fig.(3.7 bottom). Let us say that the first

1Note that for new generation of synchrotron sources, for example ESRF-EBS, the source
is fairly symmetrical in the vertical and horizontal directions.
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wave has a wavelength of λ while the second λ+ ∆λ. Given the two waves in
phase at position zero, by definition a length Nλ exists for which the waves
are again in phase. This can be found imposing Nλ = (N − 1)(λ+ ∆λ) from
which we get N = (λ+ ∆λ)/∆λ ' λ/∆λ, with the last equality valid since we
assume a small difference in wavelength. Similarly to what already done for
the transverse coherence, we define the longitudinal coherence length as the
distance over which the two waves become in antiphase, which is Nλ/2 or [98]

ξl = λ2

2∆λ (3.52)

Note that an additional factor must be introduced depending on the spectrum
of the source: for example, a Lorentzian spectrum has a factor 4/π [96]. For
synchroton radiation one usually defines the coherence length as ξl = λ2/∆λ
[2]. Typical values in XPCS experiments are in the order of ∼ 1µm for Si(111)
reflection monochromators (∆λ/λ = 1.4× 10−4).
But what does exactly happen if we illuminate a sample volume much larger
than the coherence volume? The measured intensity pattern would be the
superposition of many (let us say M) independent speckle patterns. It can be
demonstrated that the intensity distribution follows the function [85, 88]

PI(M) =
(
M

〈I〉

)M exp[−MI/〈I〉]IM−1

Γ(M) (3.53)

with Γ(M) the gamma function. The first and second moments of the distribu-
tion are respectively 〈I〉 and σ2 = 〈I〉2/M . The contrast of the speckle pattern
is then reduced to C = 1/M . A decrease is expected inversely proportional to
the number of modes M, and in the limit M →∞ we completely wash out the
speckle pattern. While Eq.(3.53) works well in describing speckle patterns for
visible light, for X-rays the shot noise term must be included. Eq.(3.53) has
then to be convoluted with the Poisson distribution 〈k〉k exp[−〈k〉]/k! with k
being the number of photons per pixel [93, 99]

PI(k,M) = Γ(k +M)
Γ(M)Γ(k + 1)

(
1 + M

〈k〉

)−k (
1 + 〈k〉

M

)−M
(3.54)

This represents a negative-binomial distribution function, and its second mo-
ment is given by σ2 = 〈I〉2/M + 〈I〉2/〈k〉. Note that the Poisson noise, as
anticipated, plays a key role in determining the statistics at low count-rates.
In this thesis we will not talk about single image speckle contrast (see [93]), thus
the term due to the shot noise can be discarded, as stated before. However, we
point out that in a XPCS experiment usually M � 1 and particular attention
must be paid to reduce its value (and thus increase the contrast). We will
see in the next sections how this can be done, but before that we want to
briefly discuss how partially coherent X-rays are produced at third generation
synchrotron radiation centers.
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3.4.2 Partially coherent X-rays
It is well known that when a charge is accelerated it emits radiation. Synchrotron
radiation was first observed as a parasitic consequence of the acceleration of
particles for high energy physics experiments. Nowadays, however, large
facilities are completely dedicated to the production and use of this kind of
radiation.
In synchrotron radiation centers, bunches of electrons are accelerated close
to the light speed, c, and kept on a circular-like trajectory. When the very
energetic electron beam (usually E ∼ GeV) is bent within a bending magnets,
it emits synchrotron radiation in the range of hard X-rays. The emitted beam is
characterized by the so called brilliance, B, which is the number of photons per
second emitted in a given solid angle and in a given bandwidth (BW) per source
area. For a bending magnets, B ∼ 1012 − 1014 ph/s/(mrad)2/mm2/0.1%BW.
In 1947 Ginzburg invented a new way to produce synchrotron radiation [100],
that is forcing the relativistic electrons in an insertion device on a sinusoidal
trajectory with period λu.

Figure 3.7: Example of the working principle of an undulator. Two sets of
magnetic arrays (1) induce an oscillatory trajectory in a bunch of relativistic
electrons (2) which emit synchrotron radiation in the forward direction (3).

generation synchrotron radiation light sources, they are composed by a
periodic array of magnetic dipoles arranged as in fig. 3.7. If the magnet’s
periodicity is ⁄u and “ is the electrons Lorentz factor, then the produced
radiation will be a discrete spectrum with a fundamental wavelength given
by [94]

⁄0 = ⁄u
2“

(1 + 2K) ,

where K is the undulator parameter, and the other photon energies will be
multiples of the one ‘N = N}c/⁄0. Undulators can be extremely brilliant
sources of X-rays, reaching brilliances of 1020photons/s/mrad2/mm2/0.1%
bandwidth or higher. The width of the collimating aperture is determined
by another transverse coherence length lt of the photon beam which can be
defined via the visibility of interference fringes, that for a circular monochro-
matic source of diameter � seen at distance D, is

lt = ⁄

2 (R/�)

Having access to a large number of coherent photons, allow the extension
of the photon correlation techniques even to the X-ray regime reaching probed
length-scales smaller than typical inter atomic distances (fg. 3.8). Carrying
out dynamical experiments like the ones described in the previous section
imply that all the scattering volume has to be illuminated by a coherent
radiation, implying that the maximum path-length di�erence (PLD) for rays
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4 1 Introduction

Fig. 1.1. Schematic representation of electron motion in a planar undulator and
the emission of undulator radiation. For simplicity the alternating magnetic field
and the sine-like electron orbit have been drawn in the same plane. The amplitude
of the sinusoidal orbit is exaggerated, in reality it is only a few µm

radiation because it consists of narrow spectral lines and is concentrated in a
narrow angular cone along the undulator axis. The fundamental wavelength
can be roughly estimated from the following consideration. Call λu the period
of the magnet arrangement. In a coordinate system moving with the speed of
the beam the relativistic length contraction reduces the period to λ∗

u = λu/γ,
and the electrons oscillate at a correspondingly higher frequency ω∗ = 2πc/λ∗

u

and emit radiation just like an oscillating dipole. For an observer in the labo-
ratory who is looking against the electron beam the radiation appears strongly
blue-shifted by the relativistic Doppler effect. The wavelength in the labora-
tory system is λ! ≈ λ∗

u/(2γ) ≈ λu/(2γ2). For example, at an electron energy
of 500 MeV the radiation wavelength is more than a million times shorter than
the undulator period.
A more accurate treatment, taking into account the sinusoidal shape of the
electron trajectory and the fact that the longitudinal velocity of the electrons
is lower than their total velocity, leads to the formula

λ! =
λu

2γ2

(
1 +

K2

2

)
with K =

eB0λu

2πmec
. (1.4)

The dimensionless quantity K is called the undulator parameter, and B0 is the
peak magnetic field on the undulator axis. The undulator parameter is in the
order of 1. The proof of formula (1.4) is presented in Chap. 2. Equation (1.4),
which is also valid for the FEL, describes the fundamental wavelength λ1 ≡ λ!.
Note that the radiation in forward direction contains odd higher harmonics
with the wavelengths

λm =
λ!

m
, m = 1, 3, 5, .. (1.5)

The wavelength of undulator radiation can be varied at will, simply by chang-
ing the electron energy W = γ mec

2.
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case the emitted spectrum is composed of mainly just one, extremely bright,
peak. A sketch of one of these insertion devices is reported in Fig.(3.8). An
arrangements of magnets is positioned along the beam-path in order to create
a sinusoidal-like magnetic field, B = B0 sin(⁄ux) orthogonal to the direction of
propagation of the beam [88]. For the electrons’ reference system, the period
of the undulator is reduced due to the relativistic contraction of lengths to
⁄ú
u = ⁄u/“, with “ = 1/

Ò
1 ≠ (v/c)2 the Lorentz factor. They emits then as a

simple oscillating dipole, with a frequency given by ‹e = c/⁄ú
u In the laboratory

reference system, this emitted radiation is blue shifted due to the relativistic
Doppler e�ect by a factor ≥ 2“, leading to ⁄l ƒ ⁄u/(2“2). In Fig.(3.8) the
exact solution of this electrodynamics problem is reported, where the sinusoidal
trajectory of the electron-beam is taken into account. The final results is a
slightly larger emitted wavelength (indeed electrons forward velocity is slower
if they are kept on a sinusoidal trajectory) [88]

⁄l = ⁄u

2“2 (1 + K2

2 ) (3.53)

where K = eB0⁄u
2fim3c

is the so called undulator strength parameter. When K π 1,
the oscillation is well confined in the emitting cone (◊ = 1/“); the emitted
radiation consist in almost just one well defined peak at energy E = ~Êl (the
Fourier transform of the entire electron oscillation). If K > 1, the oscillation is
no more contained in the angle 1/“ and, for symmetry reason, odd harmonics
appears in the energy spectrum: ⁄h = ⁄l/m with m = 1, 3, ... the harmonics’
order [88]. Note here that we obtain a so called wiggler for K ∫ 1.
It is crucial to stress the fact that the emission of an undulator is not coherent in
a laser-like way. Indeed, each electron in the beam emits incoherently. Despite
the emitted power is equal to the one of a bending magnet with B = B0/

Ô
2 [88],

the radiation is confined in a narrower angle and spectral band. For this reason,
the brightness of undulators can exceed B ≥ 1021 ph/s/(mrad)2/mm2/0.1%BW.

3.6 From SAXS to WAXS: experimental con-
siderations
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Figure 3.8: Schematic representation of an undulator. The electron trajectory
is reported as a dark line, while the emitted light as a yellow cone.

Depending on the amplitude of the oscillation these insertion devices are
called wigglers or undulators. In wigglers, the large amplitude of the electron
trajectory causes the emission of a very broad spectrum; in undulators, instead,
the oscillation of the particles has smaller amplitude, and the electrons oscillate
within the cone of the emitted light. In this case the emitted spectrum is
dominated by one, extremely bright, peak. A sketch of one of these devices is
reported in Fig.(3.8). A sequence of magnets is positioned along the beam-path
in order to create a sinusoidal-like magnetic field, B = B0 sin(λux) orthogonal
to the direction of propagation of the beam [101]. In the electrons’ reference
system, the period of the undulator is reduced due to the relativistic contraction
of lengths to λ∗u = λu/γ, with γ = 1/

√
1− (v/c)2 the Lorentz factor. They
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emit then as a simple oscillating dipole, with a frequency given by νe = c/λ∗u.
In the laboratory reference system, this emitted radiation is blue shifted due
to the relativistic Doppler effect by a factor ∼ 2γ, leading to λl ' λu/(2γ2). In
Fig.(3.8) the exact solution of this electrodynamics problem is shown, where
the sinusoidal trajectory of the electron-beam is taken into account. The final
result is a slightly larger emitted wavelength (indeed the electrons forward
velocity is slower if they are kept on a sinusoidal trajectory) [101]

λl = λu
2γ2 (1 + K2

2 ) (3.55)

where K = eB0λu
2πmec is the so called undulator strength parameter. When K � 1,

the oscillation is well confined in the emitting cone (θ = 1/γ); the emitted
radiation consist of almost just one well defined peak at energy E = ~ωl (the
Fourier transform of the entire electron oscillation). If K > 1, the oscillation
is not anymore contained in the angle 1/γ and, for symmetry reason, odd
harmonics appear in the energy spectrum: λh = λl/m with m = 1, 3, ... the
harmonics’ order [101]. For K � 1 the oscillation is still more accentuated and
the device is called a wiggler, as already introduced above.
It is crucial to stress the fact that the emission of an undulator is not coherent
in a laser-like way. Actually, each electron emits coherently but independently
of the other electrons in the bunch. Despite the emitted power is compa-
rable to the one of a bending magnet with the same magnetic field [101],
the radiation of an undulator is confined in a narrower angle and spectral
band. For this reason, the brightness of such insertion device can exceed
B ∼ 1021 ph/s/(mrad)2/mm2/0.1%BW.

3.5 SAXS and WAXS: experimental consider-
ations

Before proceeding, we should spend few words about the two main configura-
tions used in X-ray scattering experiments. We have seen that the exchanged
wave-vector determines the probed length-scale: while for hard condensed mat-
ter this length-scale is the atomic distance, the story is completely different for
colloidal and biological materials. In the latter case, the relevant length-scale is
few nanometers up to microns. It is then natural to optimize X-ray scattering
experiments in two different configurations: the Wide Angle X-Ray Scattering
(WAXS), devoted to the study of atomic length-scales, and the Small Angle
X-Ray Scattering (SAXS), employed in the study of the mesoscopic length-
scales. Despite technical details which will be touched in this thesis when
required, the main difference is the scattering angle: for SAXS, one places the
detector downstream of the incident beam, measuring scattering angles up to
θ ∼ 10−3, while in WAXS one covers a broad angle range that can sometimes
reach back scattering (θ ∼ π). Next we discuss a few experimental parameters
which are crucial in coherent SAXS and WAXS experiments. In particular,
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since the number of impinging photons on the sample is much less than for
typical visible scattering experiments and the elastic scattering cross section is
small compared to photoelectric absorption, some attention must be taken to
maximize the signal at the detector.

3.1 Coherent scattering: theory 25

Despite this equation can be readily solved [68], it is more simple to introduce
the so called Hertz vector ⇡ [69]

Ds = Ò ◊ Ò ◊ ⇡ (3.6)

from which we end up with the wave-equation for the Hertz vector

Ò2⇡ ≠
3

‘0

c2

4
ˆ2⇡

ˆt2
= ≠”✏ · Ei (3.7)

The exercise of solving this last equation with the retarded Green’s function
can be found in any textbook of classical fields (see for example [70]). We
report here just the final solution

⇡(r, t) = 1
4fi

⁄
d3rÕ ≠”✏( rÕ, t ≠
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In order to conclude this tedious calculation, we need now to introduce few
approximations. First of all, the detector is far away from the sample (in the so
called far field) and we can expand the term |r≠rÕ| as a function of the outgoing
direction. Secondly, the modulation of the dielectric tensor evolves in time
much slower than the incident frequency. This is readily satisfied for visible
incident radiation. In the end, one gets a scattered field with propagation
vector kf , polarization n̂f , frequency Êf = Êi and amplitude [69]
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with q = ki ≠ kf and |ki| = |kf | = k. Here q is the already introduced
scattering wave-vector which, with geometric considerations, can be calculated
starting from the scattering angle ◊ (see Fig.(3.1))

q = 4fi
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where ⁄ = ⁄vacuum/n, with n the refraction index.
In order to grasp the physical meaning of Eq.(3.10), the triple vector cross
product can be worked out and, considering a v-v scattering configuration
(n̂i and n̂f orthogonal to the scattering plane), let us define ”‘if(rÕ, t) =
n̂f ·”✏(rÕ, t) · n̂i. The total scattered amplitude can finally be written as the sum
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case the emitted spectrum is composed of mainly just one, extremely bright,
peak. A sketch of one of these insertion devices is reported in Fig.(3.8). An
arrangements of magnets is positioned along the beam-path in order to create
a sinusoidal-like magnetic field, B = B0 sin(⁄ux) orthogonal to the direction of
propagation of the beam [88]. For the electrons’ reference system, the period
of the undulator is reduced due to the relativistic contraction of lengths to
⁄ú
u = ⁄u/“, with “ = 1/

Ò
1 ≠ (v/c)2 the Lorentz factor. They emits then as a

simple oscillating dipole, with a frequency given by ‹e = c/⁄ú
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reference system, this emitted radiation is blue shifted due to the relativistic
Doppler e�ect by a factor ≥ 2“, leading to ⁄l ƒ ⁄u/(2“2). In Fig.(3.8) the
exact solution of this electrodynamics problem is reported, where the sinusoidal
trajectory of the electron-beam is taken into account. The final results is a
slightly larger emitted wavelength (indeed electrons forward velocity is slower
if they are kept on a sinusoidal trajectory) [88]
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where K = eB0⁄u
2fim3c

is the so called undulator strength parameter. When K π 1,
the oscillation is well confined in the emitting cone (◊ = 1/“); the emitted
radiation consist in almost just one well defined peak at energy E = ~Êl (the
Fourier transform of the entire electron oscillation). If K > 1, the oscillation is
no more contained in the angle 1/“ and, for symmetry reason, odd harmonics
appears in the energy spectrum: ⁄h = ⁄l/m with m = 1, 3, ... the harmonics’
order [88]. Note here that we obtain a so called wiggler for K ∫ 1.
It is crucial to stress the fact that the emission of an undulator is not coherent in
a laser-like way. Indeed, each electron in the beam emits incoherently. Despite
the emitted power is equal to the one of a bending magnet with B = B0/

Ô
2 [88],

the radiation is confined in a narrower angle and spectral band. For this reason,
the brightness of undulators can exceed B ≥ 1021 ph/s/(mrad)2/mm2/0.1%BW.
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Despite this equation can be readily solved [68], it is more simple to introduce
the so called Hertz vector ⇡ [69]

Ds = Ò ◊ Ò ◊ ⇡ (3.6)

from which we end up with the wave-equation for the Hertz vector
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The exercise of solving this last equation with the retarded Green’s function
can be found in any textbook of classical fields (see for example [70]). We
report here just the final solution

⇡(r, t) = 1
4fi

⁄
d3rÕ ≠”✏( rÕ, t ≠

Ô
‘0
c

|r ≠ rÕ|) · Ei(rÕ, t ≠
Ô

‘0
c

|r ≠ rÕ|)
|r ≠ rÕ| (3.8)

from which we readily obtain, substituting the incident plane wave defined in
Eq.(3.1)
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In order to conclude this tedious calculation, we need now to introduce few
approximations. First of all, the detector is far away from the sample (in the so
called far field) and we can expand the term |r≠rÕ| as a function of the outgoing
direction. Secondly, the modulation of the dielectric tensor evolves in time
much slower than the incident frequency. This is readily satisfied for visible
incident radiation. In the end, one gets a scattered field with propagation
vector kf , polarization n̂f , frequency Êf = Êi and amplitude [69]
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with q = ki ≠ kf and |ki| = |kf | = k. Here q is the already introduced
scattering wave-vector which, with geometric considerations, can be calculated
starting from the scattering angle ◊ (see Fig.(3.1))

q = 4fi
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where ⁄ = ⁄vacuum/n, with n the refraction index.
In order to grasp the physical meaning of Eq.(3.10), the triple vector cross
product can be worked out and, considering a v-v scattering configuration
(n̂i and n̂f orthogonal to the scattering plane), let us define ”‘if(rÕ, t) =
n̂f ·”✏(rÕ, t) · n̂i. The total scattered amplitude can finally be written as the sum
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Figure 3.9: Left: Example of a sample of thickness W . Right: Optical path
difference in a coherent scattering experiment with a beam of diameter d and
sample thickness W . The path length difference for the scattered waves from
the two orange volumes can be calculated subtracting the green path from the
yellow one.

Let us consider a piece of material of density ρ, thickness W and linear attenu-
ation coefficient µ as reported in Fig.(3.9 left) with a small scattering volume
located at position x (highlighted in orange in figure). The intensity measured
at the detector will be dependent on the subtended solid angle, the polarisation,
the material electron density, the detector efficiency and other contributions
external to the scattering volume: we embed all this information in the term
Σ, a sort of overall cross section (see [45] for the complete expression). The
intensity at the detector scattered from the small orange volume element will
then be [45]

dIs = Iince
−µxΣe−µ

W−x
cos(θ)dx (3.56)

where Iince−µx is the beam intensity reaching the volume element at x and
e−µ

W−x
cos(θ) is the further attenuation of the scattered radiation due to sample

absorption. The integration over a length W leads to

Is = ΣIinc cos(θ)e
−µ W

cos(θ) − e−µW
µ(cos(θ)− 1) (3.57)

The optimal thickness can be found maximizing Eq.(3.57)
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Wopt = cos(θ) ln[cos(θ)]
µ(cos(θ)− 1) (3.58)

Furthermore, for small angles, we can expand the logarithm and obtain

Wopt '
cos(θ)
µ

(3.59)

For small angle scattering cos(θ)=1 and thus the sample thickness should be
chosen to match the absorption length. However, as we will see soon, this is
not the most stringent condition to be considered in an XPCS experiment.
In these experiments, it is usually preferable to increase the speckle contrast
rather than to maximize the scattered intensity.
Consider now a partially coherent synchrotron beam of diameter d. The beam
is designed to be coherent in the transverse direction, that is d ≤ ξt for both
vertical and horizontal directions. However, the longitudinal coherence length
ξl is on the order of microns for standard monochromatic beams. In order
to keep a high contrast, the waves scattered from the sample must lie in the
same coherence volume. Let us then consider the scattered radiation from two
points of the sample, as reported in Fig.(3.9 right). The difference in path
length (PLD) can be calculated considering the two scattering paths reported
in figure as green and yellow lines. It is easy to show from simple geometrical
considerations that [2]

PLD ' 2W sin2(θ/2) + d sin(θ) (3.60)
To preserve the coherence between scattered waves inside the whole scattering
volume, the condition PLD ≤ ξl must be satisfied. It is clear that for small
angle scattering (θ ∼ 10−3) this constraint is strongly relaxed and mm-thick
samples can be used (then one can use Eq.(3.58) to maximize the scattered
signal).
The situation for WAXS experiments is quite different since the thickness
required to optimize the contrast is usually much less than the absorption
length. A compromise sample thickness must then be chosen, in order to get a
reliable signal with a sufficient contrast. For the experiments reported here on
borate glasses, the thickness was chosen to be ∼ 100 µm, despite µ−1 ∼ 600 µm.
This guaranteed a contrast of a few percent at scattering angles θ ∼ 0.35.

3.6 Experimental setups: ID10 at the ESRF
and P10 at PETRA III

In this last section we will discuss briefly the experimental setups for XPCS
available at synchrotron radiation centers. In particular, the high flux and
coherence required for XPCS experiments restricts the possible beamlines to
a very few around the world. The experiments reported here have been per-
formed at two different synchrotron radiation centers in Europe: the European
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Synchrotron Radiation Facility, ESRF (Grenoble, France) and Petra III at
DESY (Hamburg, Germany). The detailed description of these beamlines can
be found in the respective websites [102, 103]; here a brief summary is reported
to better explain how a XPCS experiment works.

OH1OH2+EH1OH3EH2

c-c monoPseudo
c-c mono

CRLs
High-power

slits

U35/U27sample

EH1

USAXS, REO-XPCS

EH2

sample CRLs
HHL mono

U29

0 m142838688486.187.793

0 m2632395256.561.565.7

ESRF
ID10

Petra III
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GISAXS

EIGER 500K

EIGER 4M

OH

Figure 3.10: Top: Sketch of the ID10 beamline at the ESRF (Grenoble, France).
A pink beam coming from the undulator is monochromatised and focused on
the sample using a combination of slits and mirrors (not shown here). The
scattered intensity is collected with a pixelated single photon counter detector.
For the sake of clarity, just few beamline elements have been reported here.
More details and the complete layout can be found in [102]. Bottom: Sketch of
the P10 beamline at Petra III at DESY (Hamburg, Germany). The general
layout is similar to ID10. Also in this case, only the beamline elements of
interest here have been reported. More details and the complete layout can be
found in [103].

In Fig.(3.10 top) a simplified layout of the ID10 beamline at the ESRF is
reported. The ”pink” beam from an undulator (U35 or U27) is shaped with
high-power slits in order to reduce the angular divergence and then monochro-
matised with a silicon channel-cut monochromator in the Optics Hutch 1 (OH1).
The beam then passes through additional optics (OH2) and enters the first
experimental hutch (EH1). EH1 is devoted to grazing incident diffraction
(GID), X-ray reflectivity (XRR) and grazing incident small angle x-ray scatter-
ing (GISAXS). Downstream of this hutch OH3 is located, where the beam is
focused with compound refractive lenses (CRLs) and further monochromatised
with a pseudo c-c monochromator (if the experiment requires it). Guard slits are
used to select the coherent part of the beam. A beam spot of 8×10 µm2 (V×H)
is thus obtained in the XPCS hutch, at roughly 60m from the source, with a
typical flux of 1011 photons per second at 8keV. The sample is mounted in a
vacuum environment and the scattered intensity is collected through vacuum
pipes with a pixelated single photon counter detector (EIGER 500K, Dectris).
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The sample-detector distance is chosen in order to match as close as possible
the speckle size with the pixel size (75× 75 µm2 for the cited detector).
In Fig.(3.10 bottom) the layout of the P10 beamline at Petra III is shown.
The overall setup is very similar to the one found at ID10: the pink beam is
monochromatised with a high-heat load monochromator and then focused with
CRLs placed close to the sample. At this beamline, the beam focus at the
sample is usually in the range of 3 × 3 µm2 (V×H) with a flux close to 1011

photons per second at 8keV. The beamline is designed to perform rheology
combined with XPCS (REO-XPCS) in the first experimental hutch, as well as
ultra small angle scattering (USAXS), with the sample located in EH1 and the
detector at the end of EH2 (see the figure for some details).
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Chapter 4

The equilibrium dynamics in
undercooled liquids

4.1 LiBO2 undercooled liquid
This chapter describes the experiments exploring the undercooled liquid state
of lithium metaborate. We will start by presenting the sample preparation
procedure; the physical properties of the borate family will be discussed in
detail in the next chapter. We will continue here describing some experiments
performed on LiBO2 and the relative results: firstly XPCS measurements in
the undercooled liquid state, carried out at the beamline P10 of the Petra III
(DESY) synchrotron radiation center. The experiment clarifies the peculiar
q-dependence of the relaxation time, showing similarities with other systems
and in agreement with simulations and theoretical models. Secondly, we will
report visible photon correlation measurements, utilized to characterize in detail
the sample. The obtained results are in agreement with literature data.

4.1.1 Sample preparation and characterization
The samples studied in this thesis have been produced following the procedure
reported in [104], except for pure boron oxide; the preparation of this last
glass will be discussed in Ch.(5). We describe here the process followed for the
lithium based borates, (Li2O)x(B2O3)1−x, with x the alkali molar fraction. The
procedure is essentially the same for sodium and potassium borates [104].
Alkali borates can be prepared with different starting compounds and techniques.
With the instrumentation available in our laboratory, we opted for lithium
carbonate (Li2CO3, 99.99% purity) and anhydrous boron oxide (B2O3, 99%
purity) as starting chemicals, both purchased from Sigma-Aldrich. A few grams
of the powders were placed in an electric furnace (temperature stability ±1◦C)
and heated to 125 ◦C for 24 hours. This baking is essential to remove water
traces in order to correctly weigh the amount of Li2CO3 and B2O3 needed to
reach the target alkali molar fraction x. The powders were then mixed and
melted in an aluminium oxide crucible at 1000◦C for 4.5 hours. Note that in
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[104] the fusion procedure was performed in two steps, in order to get enough
material for casting. Here we decided to produce a smaller amount of glass,
and thus melting the powder once was sufficient. We kept the mixture at a
temperature above melting for a total time similar to that in the original receipt
[104] since it is known that at high temperature the gaseous monomer LiBO2
is released from the samples [105]. While this does not alter the composition
for lithium metaborate (x = 0.5), for other compositions it can introduce a
systematic error in the molar fraction estimation. The melt was then quenched
between stainless-steel plates preheated at 200◦C. The obtained slabs of few
mm in thickness were then placed in a tubular oven and heated at 3◦C/min up
to a temperature 20◦C below the tabulated glass transition temperature [106].
The sample was annealed at that temperature for 6 hours, and then slowly
cooled down to 150◦C at 0.5◦C/min. Subsequently, the slabs were sealed in
vacuum and, only few weeks before the XPCS experiments, they were cut, and
then polished with silicon carbide sandpaper and ethanol down to the desired
thickness, usually ∼ 100 µm. The use of ethanol as lubricant was preferred
since borate glasses are highly hygroscopic. During the beamtime, just before
putting the samples in the experimental chamber, a final polishing with a very
fine silicon carbide sandpaper was done to remove any trace of possible surface
contamination. The final exact thickness has been estimated measuring the
attenuation of the X-ray beam through the sample with the Lambert–Beer law

I = I0 exp(−µW ) (4.1)

with I and I0 the transmitted and the incident beam intensities, respectively,
both measured with a photo-diode downstream of the sample, µ the linear
attenuation coefficient and W the sample thickness. Despite the measurement is
extremely precise (with a standard deviation σ of ∼ µm), the total uncertainty
must include the variations of the sample thickness due to scratches and non
planar surfaces: these features are intrinsic of the polishing procedure here
utilized to produce the samples. We observed that a reasonable uncertainty on
the sample thickness is around 10%.
The sample preparation of LiBO2 glasses for visible photon correlation measure-
ments was essentially the same. To perform the experiment, however, a much
larger amount of material is required. The furnace designated for visible PCS,
described in details in [107], is optimized for samples of 10 mm in thickness
and few cm in height. The right amount of LiBO2 glass was then produced as
described above. The obtained slabs were reduced to a powder with the use
of a mortar and then inserted in silica (SiO2) cuvettes. The powder was then
melted at 1000◦C for few minutes in order to remove air bubbles. LiBO2 is
known to be a solvent for silica-based materials: we observed that the surface of
the silica cuvette became indeed opaque, symptom that the lithium-metaborate
was dissolving it. For visible measurements the flatness and transparency of
the container surfaces are essential since spurious scattering can easily affect
the sample’s signal. The LiBO2 glassy sample was then removed from the
opaque cuvette, polished with sand-paper and then inserted in a new cuvette.
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The sample was heated at 500◦C in order to let it take the form of the new
container. PCS measurements were then performed, taking particular attention
to avoid lowering the temperature too much since the difference in thermal
expansion between lithium metaborate and silica would crack the cuvette.

4.1.2 High temperature XPCS measurements
The data reported in the following chapters of this thesis have been collected
both at beamline ID10 at the ESRF and at beamline P10 at Petra III. For this
reason, we decided to give the main experimental details (for example incident
photon flux, beam spot size and detector configuration utilized) whenever
a new set of data is presented. With this choice, we hope to provide a self-
consistent description for each section, avoiding the need to look for the relevant
information elsewhere. Anyway, in this section we want to discuss briefly few
aspects which are common to all the experiments.

EIGER 4M

Sample 
environment

Sample

Kapton 
window

Vacuum 
pipe

Figure 4.1: Photo of the XPCS end-station of the P10 beamline at the Petra
III synchrotron radiation center (DESY, Hamburg). Starting from the left:
EIGER 4M detector, 1.8 m long vacuum pipe, kapton window and sample
environment. In the circle a frontal photo of the hot finger is reported, with
the sample mounted on it (small whitish disk in the center). The diameter of
the hole through which the X-ray beam goes through in transmission geometry
is 2.5 mm for the present case.

In Fig.(4.1) we illustrated the experimental setup of the end-station at the
P10 beamline at Petra III. The X-ray beam, focused with beryllium compound
refractive lenses to a spot of few µm2, impinges on the sample mounted on
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a hot-finger in a vacuum environment (rightmost part in the image). The
scattered photons exit the sample-chamber and are collected in a vacuum tube
mounted on a motorized goniometer. At the end of the pipe, the detector
is mounted in air, with kapton (polyimide) windows separating the different
vacuum sections. While at first sight the vacuum pipe could seem not necessary,
it is fundamental to perform wide-angle XPCS experiments. At the standard
energies of XPCS beamlines (∼ 8 keV) the absorption length of air is roughly
1-1.5 meters. If the pipe reported in figure is omitted (being ∼ 2 m in length),
more than 70% of the scattered photons would be absorbed by air.
The sample of ∼ 100 µm in thickness is mounted between the two copper pieces
screwed to the hot finger (insert in the figure). The thermal contact between
sample and holder is improved by means of thin copper or aluminum sheets
inserted in between. Measurements are performed in transmission geometry,
with an available sample surface of about 6 mm2. Note that a small hole without
sample is usually kept to provide the opportunity of measuring the reference
beam intensity I0 (see Eq.(4.1)) before/after the transmission measurements
carried out to estimate the sample thickness. This allows us to correctly
normalize the data for possible time-dependent fluctuations in the incident
photon flux.
In XPCS experiments, the scattered photons are collected with 2D detectors
(multi-speckle technique, as described in Ch.(3)). Nowadays many types of
detectors are available, among which hybrid photon counting detectors are the
most suitable for XPCS measurements. These new-generation detectors, such
the here utilized EIGERs of Dectris, allow for high repetition rates (above the
kHz range) with few millions of pixels (depending on the model). Not only
these detectors are much faster than standard X-ray CCDs, where the typical
time in between frames is limited by the read-out time (in the order of seconds),
but are noise-free: the photon discrimination is automatically performed in real
time and produces images with zero dark counts, where the integer number of
photons detected by each pixel is directly reported.
Fig.(4.2 a) shows an example of an image for a LiBO2 glass collected with
an EIGER 4M detector. The image is the average of 18000 frames exposed
for 0.1 s each. The blue grid is due to the intrinsic hardware structure of the
detector, composed of different modules, while the circular shape is the shadow
of the vacuum pipe. The images were collected at θ = 23◦ corresponding to
the maximum of the structure factor for the energy utilized in that experiment
(8.4 keV). The profile of the structure factor (or, to be more precise, of the
scattered intensity), as a function of the scattering angle θ, is seen as a change
in color between light-green (left of Fig.(4.2 a)) to light-red (center of Fig.(4.2
a)). The configuration here adopted, with the detector 1.8 m away from the
sample to match speckle size and pixel size (75 µm), implies that the detector
covers almost 5◦. To improve the angular resolution, the images can be divided
in regions of interest (ROI) as reported in Fig.(4.2 b). The regions are calculated
according to geometrical considerations, mapping the position of each pixel
in space and associating it to the relative scattering angle. The procedure is
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Figure 4.2: a) Example of an image recorded with an EIGER 4M detector,
composed of ∼ 4×106 pixels. The reported image is the average of 18000 frames.
The direction of increasing scattering angle is indicated by the arrow. The
experimental scattering geometry involves the detector moving in the horizontal
scattering plane. b) Example of the region of interest (ROIs) considered for
the analysis of the XPCS data.

performed by dividing the detector in a variable number of ”slices” depending
on the scattered intensity: on the peak of the structure factor, for example,
dividing the detector in 4 ROIs still results in reliable correlation functions,
while at small angles (θ ∼ 5◦) the best compromise is obtained reducing the
ROIs to 3 (we recall here that the signal to noise ratio is proportional to the
square root of the number of pixels [99]). Finally, note that the same ”slicing”
procedure is applied for the calculation of the scattered intensity as a function
of θ (or q). In this specific case the detector was divided in a variable number
of ROIs comprised between 20 and 30 and depending on the scattering angle.
The calculated scattered intensity for liquid LiBO2 is reported in Fig.(4.3).
In this thesis we discuss in some detail the properties (both structural and
dynamical) of our sample glasses as a function of the X-ray irradiation. The
quantity which characterizes the amount of energy absorbed by the sample is
the dose, measured in Gray, Gy = J

kg. The photon flux of the incident beam is
estimated during each experiment, using both a measurement of the scattered
radiation by a thin kapton foil intercepting the beam and directly with the
use of a silicon diode [108]. The beam profile is measured by knife-edge scans,
utilizing a thin tungsten wire as knife. However, what shall we define as the
average absorbed dose by the sample? It is clear that the almost Gaussian beam
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Figure 4.3: Scattered intensity for liquid LiBO2 as a function of q. The missing
points between 5 and 10 nm−1 are caused by a flange present in this setup
which blocks the scattered radiation at the corresponding angles.

profile is reflected in a distribution of dose across the scattering volume. In a
similar way, the beam is attenuated as it penetrates the sample (exp[−µW ]).
We decided, in agreement with the previous works [9, 109, 110], to assume
that the whole energy is deposited in a volume whose surface is given by the
beam full-width at half maximum (FWHMh,v for the horizontal and vertical
directions respectively). Regarding the beam-attenuation, we utilized samples
with W � 1/µ, thus it is safe to assume that the absorbed dose is almost
constant across the sample thickness. The volume of interest it then described
by V = FWHMh×FWHMv ×W . This definition will be utilized in all the
calculations involving the dose hereafter.
The XPCS data reported in the following section have been collected during
an experiment at P10 (Petra III) with a beam of 8.0 keV photons focused
on 3.3 × 3 µm2 H × V (FWHM). The full flux of F0 = 9.7 × 1010 ph/s was
attenuated by a factor 4.84 with silicon foils (25 µm each) as absorbers. The
sample, W = (175± 25) µm, was mounted in the furnace (hot finger) described
above and heated to different temperatures, with a maximum of T=773K. We
observed that, despite the thermal contact between the sample and the hot finger
being improved with copper foils, a temperature gradient was present between
the real sample temperature and the one read by the thermocouples. We
estimated a difference of 65 K at the maximum temperature probed (T=773 K),
which is reflected in an effective temperature of T=708 K, as hereafter reported.
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4.1.3 The q-dependence of the relaxation time
In the following chapters we will discuss in detail an unusual effect observed in
oxide glasses probed with XPCS: the X-ray photons not only probe the dynamics
but induce it themselves. This effect, known as beam-induced dynamics [8],
can be mitigated in the liquid state, as we will show in detail in Ch.(6) and as
originally demonstrated in [9]. For the sake of clarity, we will not enter in this
discussion here. We only say that, despite some dynamics being induced by the
photon beam, the use of an attenuated beam (F1 = 0.2067F0) together with the
fact that the structural relaxation is on the order of few seconds, allows us to
probe with XPCS the q-dependence of the spontaneous, structural relaxation
in a reliable way. We anticipate that, on the peak of the structure factor, the
equilibrium structural relaxation time is a factor two longer with respect to
the values reported hereafter: this aspect, together with possible correction
schemes, will be discussed in details in Ch.(6).
In order to perform measurements in the liquid state and avoid possible beam
damage, the images’ acquisition scheme was spread over smaller scan series
on different sample’s spots. In detail, between 20 and 30 scans with duration
of 210 seconds each were performed for the different probed scattering angles.
The sample was moved 5 µm after each acquisition, keeping the absorbed dose
always below 0.4 GGy. The sample’s homogeneity in thickness was checked
before performing the scans: we aim in fact at collecting data with the same
contrast in order not to deform their average (different thicknesses would imply
different experimental contrasts, see Ch.(3) for more details). The images
were not normalized for the average intensity profile [92], thus a baseline must
be introduced to correctly model the intensity autocorrelation function, as
discussed in Sect.(3.3). The stretched exponential function (KWW function
[48]) was utilized for the fit

g2(t) = c exp[−2(t/τ)β] + d (4.2)

where c is the experimental contrast and d the baseline.
Since the collected correlation functions are characterized by a stretched be-
havior with fast relaxation times, we decided to divide the fitting procedure in
two steps in order to increase its reliability. First of all, a straightforward fit of
Eq.(4.2) to the experimental data is performed. The most sensitive parameters
are the stretching parameter and contrast: their values are dominated by the
statistical fluctuations of the first few points in the autocorrelation function.
For this reason, the average stretching parameter is calculated over the whole
probed exchanged wave-vector range, leading to a value of β = 0.5± 0.1. This
average value is then fixed at all qs in a second fit run carried out to extract
the relaxation time. An example of a measured autocorrelation function is
reported in Fig.(4.4 a). Together with the experimental data (logarithmically
binned to improve visibility) we reported 3 different fits using Eq.(4.2) and
fixing the stretching parameter β to 3 values, namely 0.3, 0.5 and 0.7. The
relaxation is well captured by all curves with a small difference at short delays:
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Figure 4.4: a) Intensity autocorrelation function for liquid LiBO2 (T=708
K) at the exchanged wave-vector q = (13.34± 0.44) nm−1 together with three
KWW fits (colored-dashed lines) with different fixed stretching parameters (as
reported in the legend). b) Normalized intensity autocorrelation functions for
two representative exchanged wave-vectors. The black dashed lines are the best
KWW fits with β = 0.50.

this gives a direct idea of the level of (in)sensitivity of the fit to the stretching
parameter. Furthermore, literature data report that the stretching parame-
ter for undercooled lithium metaborate is close to β = 0.64 [111], while our
dynamic light scattering measurements, to be presented in the final part of
this chapter, suggest β = 0.57± 0.04. It is clear that the choice of fixing the
stretching parameter to the average value of β = 0.5 in the whole exchanged
wave-vector range is compatible with the equilibrium data within ±0.1.
In Fig.(4.4 b) the autocorrelation functions for two selected q values have been
reported. The g2 functions have been normalized for the fitted experimental
contrast c after the subtraction of the baseline d. As it can be clearly seen, the
two curves superpose almost perfectly, symptom that the relaxation time is
the same at the two q values. The KWW best fits, reported as black dashed
lines, confirm this.
In Fig.(4.5) we show the relaxation time as a function of q in the liquid LiBO2
system (T=708 K). The relaxation time shows an almost flat q-dependence,
with a small peak close to the maximum of the structure factor. We will discuss
these data just after a small theoretical detour.
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Figure 4.5: Relaxation time for the LiBO2 undercooled liquid as a function of
the exchanged wave vector q.

4.1.4 The density relaxation approaching the glassy state
In order to discuss the results reported in Fig.(4.5) and thereafter the ones
regarding the photo-annealed glasses in Ch.(6), we need to spend few words on
the theoretical models at the basis of the description of liquids approaching
the glassy state. We intentionally avoided introducing this argument at the
beginning of the thesis, since its relevance is better appreciated here.
Before tackling the discussion about density relaxation and its fundamental
properties, we recall that in this work we always consider the collective density
correlation function (namely the total van Hove function). While in simulations
it is quite simple to split the density correlation in the total, distinct and
self parts, (Eq.(2.20) and following), in XPCS experiments usually one has
access only to the total (also known as coherent) density relaxation. We should
note that the coherent correlation function reduces to the self part whenever
the correlation between distinct particles is zero (for example in the case of
Brownian diffusion of a dilute solution of macromolecules). In the following
we will not discuss the properties of the self dynamics, but focus our attention
only on the collective one.
It is well understood that approaching the glass transition the slowing down
of the dynamics is accompanied by the decoupling of different relaxations
[17–19]. The reference theory describing the behavior of the density relaxation
in this regime is the Mode-Coupling-Theory (MCT) [112, 113]. The MCT is a
first-principles theory which relies on the system’s static properties (the static
structure factor S(q)) and memory functions with the aim of describing the
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temporal and exchanged wave-vector dependence of the intermediate scattering
function F (q, t) [114]. The theory developed in the 1984 [112], also known as
”ideal” MCT, predicts for the density correlation a two-step behavior. F (q, t)
decays firstly to a plateau value (non-ergodicity parameter) and then a sec-
ond slower decay, the structural (α) relaxation, completely decorrelates the
intermediate scattering function. From a physical point of view, the first, fast
relaxation is due to the rattling of a particle in the transient ”cage” of neighbor
particles, while the slower structural one is due to the escape from these ”cages”.
Note that the theory predicts a liquid-glass transition happening at a critical
temperature Tc, with the relaxation time diverging in a critical fashion with a
power law τ ∼ (T − Tc)−|γ|. The theory analytically describes the short time
and scaling behavior of the relaxation process and has been refined (for example
considering the coupling between the momenta too [115]) in order to describe
the main features observed in experiments and simulations; anyway, for the
basic introduction we are giving here, we will stick to the ideal MCT. More
details can be found in recent reviews [114] as well as in the original papers
published on the topic [112, 113, 115].
The structural relaxation predicted by the ideal MCT displays a decay slower
than exponential, which is well captured by the stretched (β < 1) KWW func-
tion commonly utilized to model it [116]. Note that the MCT equations cannot
be solved analytically for what regards the α−relaxation, whose details depend
on the particular system considered since the interaction potential modifies
the q-dependence of the dynamical parameters (the non-ergodicity factor, the
relaxation time τ and the stretching parameter β). These aspects have been
investigated numerically and experimentally in many different systems, exam-
ples being hard spheres [117, 118], Lennard-Jones liquids [119], water [116],
ortho-terphenyl [120, 121], silica [122] and other liquids (polymers, patchy
particles, Lennard-Jones binary-mixtures, metals [95, 123–126]). A common
feature observed in almost all systems is that the relaxation parameters are
weakly dependent on the exchanged wave-vector if not for an oscillation in
phase with the static structure factor. This phenomenon gets its name from
the first scientist who analyzed the relation between dynamics and structure,
de Gennes [127]. The main signature of the de Gennes effect (or narrowing,
since it was investigated with frequency-domain techniques) is a slowing down
of the dynamics at qs corresponding to the first neighbor particle distance. It
is associated with the cooperative nature of the dynamics approaching the
glassy state: a particle (say i) is unlikely to move over a typical nearest neigh-
bor distance (i− j) since this has to involve the movement of particle j too.
The de Gennes approximation leads to a prediction of the relaxation time as
τ ∼ S(q)/q2. At intermediate exchanged wave-vectors, this equation captures
the q-dependence of τ [116, 118, 120], but in the low-q regime it fails. The
de Gennes approximation is developed and valid for the dynamics at short
times [118, 122], implying a long spatial-range diffusive-like behavior. It is then
not surprising that it cannot describe correctly the collective slow structural
relaxation for small qs, which from MCT predictions is found to be almost
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q-independent. However, the de Gennes effect captures well the dependence of
τ close to the peak of the structure factor and for this reason it is customary
to refer to it whenever τ oscillates in phase with the structure factor.

Figure 4.6: Relaxation time for the LiBO2 undercooled liquid as a function of
the exchanged wave vector q together with the de Gennes narrowing approxi-
mation, S(q)/q2 (black-dashed line), and the structure factor, S(q) (black dots)
properly normalized.

In Fig.(4.6) we show the same data as in Fig.(4.5), but plotted here together
with the de Gennes narrowing approximation. The black dashed line reported
here corresponds to S(q)/q2, properly scaled in order to match the same scale
of the relaxation time, while the black dots refer to the structure factor S(q).
Here the S(q) is the total scattering structure factor, calculated normalizing
the measured intensity to the square of the sum of the concentration-weighted
atomic form factors

S(q) = I(q)/
∑

i,j

cicjfi(q)fj(q) (4.3)

where i, j runs over Li, B and O, ci is the fraction and fi(q) the atomic form
factor of the i atom, respectively. We recall that the atomic scattering factor
is defined as the atomic scattering length normalized to the classical electron
radius, f(q) = b(q)/re, see Sect.(3.1.3) for more details. The experimental total
scattered intensity utilized here is additionally corrected for the contribution of
the polarization (scaling as cos2 θ) and sample thickness, see Eq.(3.57).
The de Gennes effect captures the relaxation time oscillation observed close to
maximum of the structure factor of the glass. However, it fails to describe the
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low-q limit (q ≤ 5nm−1), where the relaxation time becomes almost independent
of q. To the best of our knowledge, this is the first XPCS measurement in
oxide liquids that elucidates the q-dependence of the spontaneous dynamics at
the atomic length-scale. Recent results on multi-component liquid metals [95]
have shown that the dynamics of such systems are characterized by a marked
de Gennes narrowing too.
To conclude this part, we highlight that the almost flat q-dependence of τ
observed in liquids justifies the comparison in the following section of XPCS
data with measurements performed with visible photon correlation: the q-
value ratio between wide-angle XPCS and visible PCS is almost 103, but the
relaxation time does not change considerably.
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4.2 Visible PCS measurements
The relaxation time dependence close to the glass transition temperature was
characterized with visible dynamic light scattering (DLS) as anticipated at the
beginning of this chapter. The experiments displayed here have been performed
with the main goal of supporting the XPCS data reported in Ch.(6).
The utilized experimental apparatus is a custom setup, improved from the
one described in [107]. In Fig.(4.7) we show a photo of it, in order to help
discussing its main components.

532 nm laser

CMOS

Furnace

PHMirror

Attenuators
Lenses

Figure 4.7: Experimental setup utilized for the DLS measurements.

A 532 nm continuous-wave diode-pumped laser (Cobolt Samba) was employed
as light source; the output power (300 mW) was attenuated with the use of
neutral filters to the desired power on the sample, which was on the order of
100 mW. The spurious scattering from the filters and the mirror was removed
with pin-holes (PH) and the beam was then focused on the sample located
inside a furnace. The geometry of the furnace allows us to collect the light
scattered at 90◦. A fixed lens to collect the light was then mounted in order to
obtain the well-known photon correlation imaging configuration [128]. With
this approach, the image of the scattering volume is projected on the camera
chip, allowing easy selection of portions of the image where no parasitic light
is present [129]. This setup was designed to achieve a magnification of about
3 on the camera chip. Finally, an iris positioned between the lens and the
detector allowed the selection of the speckle size by controlling the solid angle,
see Eqs.(3.29;3.30). Here, we decided to have one speckle each 2 pixels. The
most significant difference with respect to the setup developed and reported in
[107] is the detector. Here we used a Hamamatsu CMOS camera (Orca-FLASH
4.0, with 2048 × 2048 pixels of size 6.5 × 6.5 µm2) which permits very high
frame rates (> 25 kHz on a reduced ROI). The sample environment was a
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tubular furnace, specifically designed for visible scattering experiments that
was controlled by a standard Eurotherm PID controller. In order to better
control the temperature of the sample, a thermocouple was inserted in direct
contact with the sample close to the scattering volume (temperature resolution:
0.5 K).

Figure 4.8: Normalized autocorrelation functions for liquid LiBO2, measured
at different temperatures as reported in the legend. Black dashed lines are the
best KWW fits. The small oscillations in the yellow curve are an artifact due
to the vibrations of the CMOS caused by the air cooling system.

In Fig.(4.8) we report a selection of normalized autocorrelation functions com-
puted at different temperatures for the LiBO2 undercooled liquid. The functions
are fitted with a stretched KWW function, Eq.(4.2). The integration time has
been varied from 1 ms (yellow diamonds) up to 1 second (not shown here),
with sequences up to 20000 images and using ∼ 10000 pixels. The correlation
functions have been computed with a custom MATLAB code, which first ex-
tract the two time correlation functions and then computes g2(t).
The autocorrelation functions display a stretched behavior, with β ∼ 0.6. In
these cases, enlarging the time window to cover both small lag-times (t� τ)
and large ones (t� τ) helps correctly extract the shape of the autocorrelation
function. Unfortunately, covering more than 5 decades with standard linear
acquisition is almost prohibitive. The correlation of millions of images is nowa-
days the bottleneck of multi-speckle photon correlation and new schemes have
been adopted, such the multi-tau correlation [91], which perform the correlation
in a partially-logarithmic time spacing. However with that approach one loses
information on the two time function and has to work with millions of images
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anyway. Here we decided to tackle the problem from an hardware point of
view. Instead of performing the multi-tau correlation, we adopted a pseudo
multi-tau acquisition scheme (named here ”Hardware Multi-τ”) proposed and
developed very recently [130].

Figure 4.9: Correlation functions obtained with our custom code and acquisition
scheme. Black-dashed lines are the best KWW fit.

In this scheme, a main linear acquisition is performed (let us say that images
are acquired at times t2i, with a given integration time ∆t). An additional
image is inserted between t2i and t2(i+1) at time t2i+1. The lag between t2i
and t2i+1 is variable, and chosen to be spaced in time in a logarithmic fashion,
between ∆t and t2(i+1)−t2i. This scheme is repeated many times (in the present
case, between 100 and 400 cycles) and the final sequence of images saved on
the computer. Post processing is the trickiest part of this approach: a simple
two time correlation function can be calculated from the whole set of images,
but the g2(t) cannot be extracted as reported in Ch.(3). Each point in the
two-times matrix must be mapped with the correct lag, given by the difference
of acquisition times tj and tk. The same-lag image-correlations must then be
averaged, which requires a high computational effort since one needs to cycle
over all couples of acquisition times. To speed-up the process, we decided to
utilize this approach only for lags smaller than the main time step t2(i+1) − t2i,
keeping the standard linear correlation for larger lag-times.
The algorithm was implemented on a Field Programmable Gate Array (FPGA)
board (Xilinx Spartan-3A) and the CMOS simply controlled with a low-TTL
signal in edge-trigger mode. An example of the obtained autocorrelation func-
tions is reported in Fig.(4.9). The curves have been calculated with a total
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number of images up to 12000: a standard linear acquisition scheme, to cover
the same timescale, would have required 250000 frames.

Figure 4.10: a) Relaxation time for LiBO2 as a function of the temperature. b)
The relaxation time is again reported as a function of the inverse temperature
Tg/T. The fragility index m can be calculated as graphically reported, m =
limT→Tg

∂ log10 τ

∂
Tg
T

. Gray full lines are the best Arrhenius fit (Eq.(2.6)), while the
red-dashed line are the best VFT one (Eq.(2.7)). In the small temperature
range probed here, both functions well describe the experimental data.

Fig.(4.10 a) shows the relaxation time as a function of the temperature. The
data can be modeled according to the equations reported in Ch.(2), which are
a simple exponential behavior (Arrhenius-like, Eq.(2.6)) or faster than exponen-
tial (VFT, Eq.(2.7)). Both curves adequately describe the data (gray-full line
and red-dashed line respectively) over the considered temperature range. The
glass transition temperature, defined as the temperature where τ = 100 s, is
found to be Tg = 704 K. This Tg is slightly higher but in substantial agreement
with the Tg = 694 K reported in the literature [131]. Other authors report a
much different glass transition temperature (Tg = 663 K) from calorimetric
measurements [106]. This latter value has been utilized to anneal the samples,
as anticipated at the beginning of the chapter. We recall that from the tem-
perature dependence of the relaxation time (or, equivalently, of the viscosity)
approaching the glass transition temperature one can extract the so called
fragility m, Eq.(2.8). The meaning of this latter quantity is better grasped if
the data are reported as a function of the inverse temperature, as displayed
in Fig.(4.10 b). The graphical inset shows how to calculate the fragility, that
is performing the derivative of the logarithm of τ with respect to the inverse
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normalized temperature. The value obtained utilizing the Arrhenius fit is
m = 60± 1, quite different from the one extrapolated from literature data of
m ∼ 75 [132].

Figure 4.11: Stretching parameter β obtained from the DLS measurements
as a function of temperature. The red-dashed line is the value β = 0.64
reported in [111], while the continuous black line is the average of the green
data (excluding the lowest temperature one). The shadowed region delimited
by the black-dashed lines is the confidence’s interval of the average value.

Finally, the stretching parameter as a function of the temperature is reported
in Fig.(4.11). The non-monotonic behavior is quite surprising, and should be
attributed to the quality of the data. The stretching parameter is expected to
decrease when cooling the system [61, 62]: anyway, the probed temperature
range is so small with respect to Tg that we do not expect a substantial change
in the shape parameter, at least not as large as the one reported in Fig.(4.11).
We suspect that a few setup problems could affect our measurements. Above Tg,
where the relaxation time is below 1 second, the minimum lag between images
was chosen in the range of few ms. We noticed that vibrations originating from
the air cooling system of the CMOS detector induce beatings in the autocorre-
lation function, see Fig.(4.8) leftmost curve. This spurious contribution could
cause a small change in the shape of the stretching parameter. In addition,
for low temperatures where the relaxation time is in the order of hundreds of
seconds, we encountered a problem in the setup stability. Small fluctuations
(in the order of 0.2 ◦C) of the laboratory temperature induce spurious corre-
lations. For this reasons, we think that the temperature dependence of the
stretching parameter deserves more attention from an experimental point of
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view. However, the obtained average value, β = 0.57± 0.04, is in reasonable
agreement with the one reported in the literature of β = 0.64 [111].



Chapter 5

The stress driven dynamics in
glasses

5.1 The arrested colloidal glass phase
In the first part of this chapter we will discuss the stress-driven dynamics in
a colloidal glass. Although the main topic of the thesis regards oxide glasses,
we have decided to include this part on colloidal systems since the observed
peculiar dynamics has strong common points with the one of structural glasses
below the glass transition temperature, as we will see. We will start discussing
shortly the sample preparation of such systems and then concentrate on the
main dynamical features observed: compressed correlation functions together
with a ballistic like dynamics which proceed in a cooperative way, with the
relaxation of regions of few µm in linear size.

5.1.1 The preparation of colloidal glasses and experi-
mental details

Colloidal systems are mixtures of two phases, few examples of everyday life
being toothpaste, mayonnaise, smoke or coffee. Their physical and mechanical
properties depend on many factors: mayonnaise is liquid when the egg is added
to the oil and vinegar, but once the two compounds are vigorously mixed oil
droplets form a micro-emulsion in the water-based matrix, ending up in solid
substance. Given the tunability of their properties and the range of possible
applications, it is not surprising that colloidal systems are at the center of an
huge effort in the scientific community.
Among the many different colloidal suspensions, we will concentrate on nanopar-
ticles dispersed in a liquid solvent. In these systems the interaction between
the particles can be precisely controlled, for example with the addition of salts,
changing the temperature or with electric fields [133]. The success of colloidal
suspensions lies in the possibility of mimic fundamental systems (such molecular
liquids or glasses), but on a mesoscopic length-scale, thus much more easily
accessible with standard experimental techniques (for example microscopy or
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scattering). For these reasons such suspensions have been often utilized to
explore the glass transition, for instance testing the mode-coupling theory
introduced in Ch.(4) [134].
The fundamental quantity characterizing a suspension of nanoparticles is the vol-
ume fraction: it is defined as the ratio between the volume of the nanoparticles
and the total volume of the system. At low volume fractions (or concentra-
tions), particles are free to diffuse in the solvent, and their motion is governed
by the Brownian dynamics (see Sect.(2.2.2)). When the volume fraction is
increased, the particles start to interact and enter an undercooled-like liquid
state. Further addition of particles in the solvent can induce a phase transition,
with the crystallization of the system, or with the freezing of an amorphous
configuration, namely a colloidal glass. The (inverse) volume fraction plays the
same role of the temperature in structural glasses.
We discuss here the dynamical properties of a colloidal glass of silica (SiO2)
nanoparticles dispersed in a nearly critical binary mixture of water and 2,6-
lutidine [135]. This system has been intensively investigated in the past due to
the possibility of tuning the interaction potential between the silica nanopar-
ticles. At low temperatures, the colloids interact with a repulsive Coulomb
potential. Increasing the temperature, a preferential lutidine-wetting of the
silica surface is observed, that is due to a partial separation of lutidine from
water [135]. The layer which forms onto the nanoparticles screens the repulsive
interaction and induces the aggregation with flocculation in the dilute solution
[136] or a repulsive to attractive glass-glass transition in more concentrated
systems [137]. This versatile toy-system was chosen to investigate the effect of
the interaction potential on the dynamics and glass transition properties, for
example the behavior of the four point susceptibility studied in the 2D version
of this glass [58]. In this thesis we report the results obtained in the repulsive
glass. Further investigations of the repulsive-attractive glass transition will be
object of future studies.
The volume fraction of 2,6-lutidine (C7H9N, 99% purity purchased from
Sigma Aldrich) with respect to the total solvent volume was chosen to be
Cv
L = 0.265± 0.010, well within the region where wetting of the silica surfaces

occurs [135] on approaching the critical temperature of TC ∼ 33 ◦C. All the
measurements reported here have been performed at ambient temperature
(T=298.15 K), far away from the critical temperature TC and deep in the
repulsive region.
The plain surface silica nanoparticles (100 nm in diameter) were purchased
from Micromod in a distilled water solution at mass concentration of 100 mg
per 1 ml. The seller declares a density of particles of 2.0 g/cm3 and a polydis-
persivity index smaller than 0.2. Our colloidal samples have been prepared
via a centrifugation procedure. First of all, the right amount of 2,6-lutidine
is filtered with a 0.2-µm polytetrafluoroethylene (PTFE) filter and added to
the solution of nanoparticles in order to achieve Cv

L = 0.265 ± 0.010. The
suspension is centrifuged at 15000g for 10 min to concentrate the nanoparticles
on the bottom of the cuvette. The excess solvent is then removed mechanically
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until the target volume fraction is obtained. The solid sample at the bottom of
the cuvette is dispersed in the remaining solvent and vigorously mixed until it
becomes again homogeneous. The obtained paste is transferred in borosilicate
capillaries with wall thickness of 10 µm and inner diameter of ∼ 500 µm. A
further centrifugation (100g for 60 s) is applied to the sample in order to remove
any bubble and completely fill the capillary. Finally, the sample is sealed with
a flame and stored for the experiment.
The experiments on these colloidal glasses have been performed at the beamline
P10 of the Petra III synchrotron. The small-angle setup was employed, with
a photon energy of 8.0 keV monochromatised with a Si(111) monochromator.
The beam was focused on the capillaries with beryllium compound refractive
lenses to a spot of 2× 3µm2 (V×H) full width at half maximum. The sample
chamber described in Ch.(4) was directly connected to a 5 m vacuum pipe
with a kapton window at the end. A beamstop was inserted at the end of the
vacuum pipe, in order to block the direct beam from reaching the EIGER 4M
detector mounted in air just after the kapton window (few cm away).
It is well known that organic materials are much more sensitive to radiation
damage than oxide glasses. For this reason, we characterized the beam damage
threshold very carefully at the beginning of the experiments. We found out that
there is no signature of any radiation-induced effect in both the structure and
the dynamics up to absorbed doses of 30 MGy. To be safe, we decided to set a
limit to the total absorbed dose of 15 MGy. The full beam was attenuated with
the use of silicon foils (25 µm of thickness) down to a value of ∼ 1.5× 108 ph/s.

5.1.2 Characterization of the colloidal glasses
The aforementioned procedure to prepare the colloidal samples does not allow a
precise estimate the final volume fraction of the glasses. In fact we do not know
how many particles are lost during the adjustments of the solvent fraction,
neither we can infer how much solvent evaporates during the preparation.
For this reason, a more precise approach must be followed to estimate the
volume fraction. To this end, we have used directly the Lambert-Beer equation,
Eq.(4.1), taking into account the different components of the sample

I(y) = I0 exp [−(C(y)µcapillary +W (y)ϕµSiO2 +W (y)(1− ϕ)µWL)] (5.1)

Here y is the horizontal direction orthogonal to the beam propagation vector,
I0 and I(y) are the incident and transmitted intensity respectively, C(y) is the
thickness of the two capillary walls at position y (to be geometrically calculated
for each y-value), W (y) is the thickness of the sample, ϕ is the volume fraction,
µcapillary, µSiO2 and µWL are the attenuation coefficients of the borosilicate
capillary, silica nanoparticles and water-lutidine mixture, respectively. The
water-lutidine attenuation coefficient is calculated summing up the attenuation
coefficients of the two liquids, weighted for the relative volume fraction, that is
µWL = Cv

Lµlutidine+(1−Cv
L)µH2O, with Cv

L = 0.265±0.010 the volume fraction
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of lutidine with respect to the total binary solvent. The attenuation coefficients
for each component have been obtained from the database of CXRO [138].

Figure 5.1: a) Transmission I/I0 through the capillary containing the colloidal
glass sample. b) The volume fraction is calculated as a function of the orthogonal
beam direction y inverting Eq.(5.1). The average value is indicated by the
full-red line. Figure adapted from [76].

Fig.(5.1 a) shows an example of a transmission measurement, performed scan-
ning the sample in the y direction across the X-ray beam. The shape of the
sample (a cylinder), determines the measured profile. Note that the diameter
of the capillary is W ∼ 360 µm, notwithstanding the nominal value is 0.5 mm.
Fig.(5.1 b) shows the obtained volume fraction, ϕ, utilizing Eq.(5.1) to model
the transmitted intensity. Noticeably, ϕ is constant along the whole capillary,
indicating that the sample is homogeneous. The mean value can be calculated
by averaging over the points inside the capillary, leading to ϕ = (37.65±0.11)%.
Considering the uncertainties on the the parameters of Eq.(5.1) we estimate an
error of 0.2% on the absolute volume fraction. The major contribution comes
from the uncertainty in the capillary wall thickness since the value declared by
the producer (10 µm) was observed to fluctuate by a few microns for different
capillaries. For this reason, the wall thickness is considered as a free parameter
in the fitting of the absorption profile, see Fig.(5.1 a).
Before discussing the details of the dynamical properties of the colloidal glass,
we will describe a little bit the structural aspects. In the small angle geometry,
the detector is orthogonal to the direction of propagation of the beam. For
this reason, each ring on the detector (centered at the transmitted beam posi-
tion) corresponds to a given exchanged wave-vector q (in modulus). We recall
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Eq.(3.20), from which the scattered intensity can be written as I(q) ∝ S(q)P (q).
The visibility of the particles with respect to the solvent is given by the differ-
ence in electron density between the two. The form factor can be measured
directly if the structure factor contribution is negligible, that is S(q) = 1. This
is achieved reducing the volume fraction of the sample, in the present case
we have chosen ϕ < 0.001. The experimental data are reported in Fig.(5.2
a). Comparing the experimental results with the theoretical curve calculated
in Fig.(3.2) we notice that, while we would expect sharp minima, a smoother
dependence is observed experimentally. This effect has to be attributed to
the polydispersivity of the particles: we can take this into account convolving
Eq.(3.23) with the particle size distribution, which is well captured by the
Schultz distribution [139]

fz(r) = 1
z! [z + 1/r̄]z+1rz exp [−(z + 1)r/r̄] (5.2)

with r̄ the average radius of the particles and z a function of the second moment
of the distribution, that is ∆r2 = r̄2/(z + 1).

Figure 5.2: a) Scattered intensity for two relevant colloidal suspensions: white
points correspond to a dilute sample (ϕ < 0.001) while green ones to the sample
discussed in the main text, with ϕ = (37.65± 0.11)%. The red-continuous line
is the best fit of Eq.(3.23) to the data taking into account the polydispersivity,
Eq.(5.2). b) Static structure factor for the sample with ϕ = (37.65± 0.11)%,
calculated as I(q)/P (q). Figure adapted from [76].

The best fit to the experimental data with the polydispersed model is reported
as a red continuous line in Fig.(5.2 a). The resulting parameters are an average
radius of r̄ = (50.8 ± 0.3) nm and a polydispersivity of ∆r

r̄
= (9.4 ± 0.6)%,



76 The stress driven dynamics in glasses

within the specifications reported by the producer.
Increasing the volume fraction of nanoparticles with respect to the solvent, the
structure factor starts to play a role, an effect that is clearly visible for the
solution at ϕ ∼ 37%, green dots in Fig.(5.2 a). The structure factor can be
calculated experimentally as I(q)/P (q), after background subtractions due to
the solvent and capillary scattering [45] and is reported in Fig.(5.2 b).
The interaction between the particles could be modeled with a screened Coulomb
potential plus a hard sphere contribution, which is known as Derjaguin-Landau-
Verwey-Overbeek (DLVO) pair potential [140], and the structure factor could
be calculated in the mean spherical approximation closure [141]. This approach
has been followed in previous experiments, where the lower polydispersity
of the particles lead to satisfactory results [129, 142]. The polydispersity
should nonetheless be taken into account, for example as reported in [143].
Despite a simple DLVO interaction can be used to model the low temperature
repulsive potential [129, 142], recent studies included a temperature-dependence
interaction with a square well [137] and more complex long-range terms [144],
finding good agreement with the experimental data in a wide temperature
range. We avoid however to enter in this discussion here: the experimental
structure factor will be used in the following only to show that the structural
properties of our colloidal glass are isotropic.

5.1.3 Anisotropic compressed relaxations

The small angle scattering geometry offers the possibility to investigate the
relevant properties of the system (both structural and dynamical) as a function
of the vector q. As already mentioned, in SAXS a given q value corresponds to
a ring on the detector, see the inset of Fig.(5.3) for an experimental pattern.
One can also select different sections of the detector, for example horizontal and
vertical ones, and calculate the properties in that reduced regions of interest
(ROIs). For instance, in Fig.(5.3) we report the structure factor calculated
along the vertical (green) and horizontal (yellow) directions. The two curves
perfectly overlap, a clear signature that the structure is isotropic, as expected
for a glassy system.
The same considerations are valid for the dynamical properties. A ROI of
pixels corresponding to the same q can be selected and the intensity auto-
correlation function fitted with a KWW function [48], Eq.(4.2). An example
of such procedure is reported in Fig.(5.4 a), where the g2 is calculated for
q = (11 ± 1) × 10−2 nm−1 over the whole scattering ring (see insert). The
KWW fit returns a stretching parameter of β = 1.61± 0.14, but is not able to
capture the long stretched tail of the correlation function. This effect has been
sometimes reported in literature where the dynamics is strongly non-diffusive
and dominated by stresses, see for example [145, 146], but its origin is still
debated. Here, on the other hand, the stretched tail originates from geometrical
aspects.
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Figure 5.3: Structure factor calculated along the vertical (green squares) and
horizontal (yellow diamonds) directions. The inset reports an experimental
SAXS pattern, with the beam stopper clearly visible to mask the direct beam.
The regions considered for the extraction of the S(q) have been highlighted with
the respective colors and correspond to an azimuthal angular range ∆φ = π/6.
Figure adapted from [76].

In Fig.(5.4 b) the autocorrelation functions are calculated considering horizontal
and vertical sectors, as already done for the structure factor S(q). In this case
the dynamics is strongly anisotropic, with relaxation times much faster in the
horizontal direction. Averaging over the whole diffraction ring leads then to a
convolution of the decay function with the distribution of relaxation times.

5.1.4 Stress dynamics and the stress-induced velocity
field

In order to make a step further, we define the exchanged wave-vector utilizing
the azimuthal angle φ. Calling the horizontal direction ŷ and the vertical one
ẑ (we keep here the convention adopted for the transmission measurements
reported in the previous section), the exchanged wave-vector can be written as

q = q[ŷ cosφ+ ẑ sinφ] (5.3)

For a graphical illustration of the azimuthal angle, see the inset in Fig.(5.4 a).
The autocorrelation functions can then be calculated selecting an annular region
within a given angular aperture, called ∆φ. Fig.(5.5) shows the normalized g2
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Figure 5.4: a) Autocorrelation function calculated for q = (11±1)×10−2 nm−1

over the whole scattering ring (insert). The azimuthal angle is reported, with
the 0 fixed in the horizontal direction. b) The autocorrelation functions have
been calculated for the horizontal (orange points) and vertical (blue points)
ranges. A strong anisotropy is present, causing the stretching of the curve
reported in a). Figure adapted and redrawn from [76].

for a selection of azimuthal angles (reported in the legend), computed within a
range ∆φ = π/16. The relaxation time increases in a monotonic way starting
from φ = 0 up to the vertical direction, φ = π/2.
The fits of the KWW function to the curves, as in the example shown in
Fig.(5.5) as red-dashed line, now capture satisfactorily the whole relaxation.
Note that the stretching parameter is now very close to the Gaussian value,
β = 2. The set of inverse relaxation times as a function of the azimuthal angle
is reported in Fig.(5.6 a).
The data correspond to a single exchanged wave-vector value, q = (12.0 ±
0.3)× 10−2 nm−1, and have been computed with ∆φ = π/16. The distribution
of 1/τ is almost a perfect cosine of the angle φ. Going back to Eq.(5.3), it can
easily be observed that this effect can be accounted by a scalar product between
the q and a horizontal vector field, let us call it δv = δvŷ. Furthermore, the
dimensions of the involved quantity clarify that the field δv is a velocity. The
obtained modulus for the field is δv = (0.97± 0.03) nm/s and is dictated by
the release of stresses, as we will see soon, which in turn induce the particles’
displacements.
The observed effect can be compared to the one investigated in shear flow
studies, see for example [147]. The intermediate scattering function can be
factorized as
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Figure 5.5: Autocorrelation functions calculated for different azimuthal angles
with ∆φ = π/16 and at q = 0.12 nm−1. The dynamics is faster in the horizontal
direction (leftmost curve) with a monotonic slowing down with increasing angle.
An example of KWW fit is reported as red-dashed line, leading a β ∼ 2. Figure
adapted from [76].

F (q, t) ∼ exp[−iq · (rj(0)− rk(t))]
∼ exp[−iq · (rdj (0)− rdk(t))] × exp[iq · 〈v〉t] × exp[iq · δvt] (5.4)

Here we omitted for clarity the double sum over the particles j, k; the displace-
ment of the two considered particles can be split if we assume the presence of a
velocity field v. Indeed, in the second row of the equation above the first term
represents the intrinsic displacement of the particles (it could be, for example,
diffusive-like), the second term is the displacement due to common flow of both
particles, with 〈v〉 being the average drift velocity. Finally, the third term
accounts for the flow difference between the two particles, which we defined as
δv = δvj,k.
In a homodyne experiment the square modulus of F (q, t) is measured. For
this reason, the term due to the average velocity 〈v〉 cancels out. We should
note, however, that it can play a role as the scattering volume is ”replaced”
over time: the typical time of the process would be given by the ratio of the
beam size (h) with the average velocity, τV ∼ h/|〈v〉|. For the simplest case
of a Gaussian beam profile it introduces a contribution in the g2 function of
the type ∼ exp[−(t/τV )2] [147]. If that would be the case for our sample, we
should observe a variation of the volume fraction in the scattering volume (a
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Figure 5.6: a) Relaxation time calculated at q = (12.0 ± 0.3) × 10−2 nm−1

for different azimuthal angles. The red line corresponds to a fit with 1/τ =
|qδv cos(φ)|, leading to δv = (0.97 ± 0.03) nm/s. b) Shape parameter as a
function of φ calculated at the same exchanged wave-vector reported in a).
The drop in the value for φ ≈ ±π/2 is an artifact due to the finite q-resolution.
The red dashed line is obtained fitting with a KWW ansatz the function
exp[−2(qδvt cos(φ))2] convoluted with the experimental resolution in φ. Figure
adapted from [76].

net particle flow must be present pointing towards the center or the walls of the
capillary). This, however, is not observed, see Fig.(5.1). Most importantly, this
finite-volume contribution should be independent of the exchanged wave-vector
as it is dictated only by the time needed to replace the scattering volume
with new material. We can thus rule out that the glassy sample reported here
experiences this effect.
The cause of the dynamics here observed must then be looked for in the third
term of Eq.(5.4). The contribution of the relative velocity field can be calculated
by summing over every pair of particles in the scattering volume. A classical
configuration encountered in flow experiments is the Couette flow, for which
the analytical integration leads to a term in the g2 proportional to a sinc-like
decay [147]. In general, the shape of the corresponding intensity autocorrelation
function (neglecting diffusion), is dictated by the distribution of the relative
velocity field [148]. In fact it is clear that the intermediate scattering function
can be written as [148]

F (q, t) =
∫
d[δv]f(δv) exp[itq · δv] (5.5)

with f(δv) the distribution of the relative velocity. Working out the equation
in spherical coordinates and reducing the vector notation to a scalar one for
isotropic systems, one can link the shape of the intermediate scattering function
(∼ exp[−(t/τ)β]) β to a Levy distribution Lβ,0(z) [148, 149]
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Lβ,0(z) = 1
2π

∫ ∞

−∞
dkeikze−C|k|

β (5.6)

where C is a normalization parameter. Comparing Eq.(5.5) and Eq.(5.6) it
is clear that the Levy distribution is related to the velocity distribution. In
particular, the asymptotic behavior of Lβ,0(z) is ∼ z−(β+1) for 0 < β < 2 [149],
which is equal to the asymptotic behavior of the isotropic relative velocity
distribution, fiso(v), given by [148]

fiso(v) = − 2v
〈v〉

d

dv
Lβ,0

(
v

〈v〉

)
===⇒
v→∞∼ v−(β+1) (5.7)

In consideration of the fact that the stretching (in this case compressing) param-
eter is dictated by the distribution of the relative particle velocities, regardless
of the microscopic mechanism giving rise to this distribution, it is not surprising
that different stretching exponents are reported in literature. For example,
in gels and colloidal systems near the jamming transition a value of β = 1.5
is often observed (corresponding to a v−2.5 asymptotic decay of the velocity
distribution) [5, 148, 150, 151], with a physical interpretation, supported by
numerical simulations, in terms of micro-collapses of the gel’s network [5, 152].
On the other hand, a Gaussian distribution of particles’ velocities would lead
to β = 2. In Fig.(5.6 b) the stretching parameter calculated as a function of
the azimuthal angle φ is shown. In the horizontal sectors β = 2.05± 0.05, con-
firming that in our colloidal glass the distribution of relative particles velocity
is almost Gaussian. Note that the drop of β in the proximity of the vertical
directions is an artifact due to the finite q-resolution. A simple numerical
model, taking this into account, is shown as a red-dashed line, and confirms
this conclusion. Finally, we note that the first term in Eq.(5.4), related to the
intrinsic dynamics, cannot play a role here. The almost pure cosine behavior
of the inverse relaxation time, Fig.(5.6 a), clearly indicates that the dynamics
is governed by the velocity field distribution.
From the considerations made so far, it is clear that our glass exhibits a peculiar
symmetry break which is usually not observed in similar systems. While in flow
experiment the (anisotropic) velocity field is due to a macroscopic, externally
induced, flow of the sample, here the field must originate from an internal
mechanism. As proposed for colloidal gels [5], it must be related to the release
of the stresses stored in the sample. In the present case, they are a leftover of
the preparation procedure: the centrifugation performed in order to fill the
sample inside the capillary induces stresses in the network. Those stored in the
vertical direction have time to relax between the centrifugation phase and the
measurements, while the stress field in the horizontal direction is not able to
relax macroscopically as it is constrained by the capillary walls [76]. For this
reason, the observed dynamics are confined to the horizontal plane.
Regardless of the exact details of the mechanism leading to the anisotropic
stress (and, consequently, velocity) field, we want to investigate in more depth
the dynamical properties of these compressed dynamics. In particular, the
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Figure 5.7: Autocorrelation functions calculated for different exchanged wave
vectors for horizontal sectors, ∆φ = π/16. Figure adapted from [76].

q-dependence of the relaxation time and the stretching parameters give valuable
information on the process. Fig.(5.7) shows a set of correlation functions corre-
sponding to the horizontal sectors (∆φ = π/16) as a function of the exchanged
wave-vector.
The inverse relaxation time, reported in Fig.(5.8 a), scales as 1/τ = |q · δv|,
with δv = (0.99 ± 0.02) nm/s, consistent with the previously reported value.
Furthermore, the stretching parameter is constant in the whole probed range,
Fig.(5.8 b), leading to an average value of β = 2.04± 0.02.
Note that compressed correlation functions are usually accompanied by a
ballistic-like dynamics (∼ 1/q), in the spirit of the equations previously men-
tioned. This is observed in many soft system [5, 74, 75, 145, 148, 150, 151, 153]
and the overall picture was recently enriched by simulation results [152, 154]
and new studies on both gels and colloidal glasses [76, 155], as the one discussed
here and recently published [76]. We will show in the last chapter of this thesis
that ballistic dynamics together with compressed correlation functions are
observed in structural glasses too, and are again attributed to the relaxation of
stresses.
We conclude this discussion by bringing attention to the q-dependence of
Fig.(5.8 a). The observed dynamics are dictated by a velocity field over the
whole range of probed length-scales, up to at least few particle distances (the
smallest q reported is indeed q ' 0.03 nm−1). We will tackle this aspect in the
next section, where we will show that the dynamics proceeds with cooperative
rearrangements of few-thousands of particles.
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Figure 5.8: a) Inverse relaxation time as a function of the exchanged wave-
vector q for the horizontal sectors, ∆φ = π/16. The orange dashed line is a
linear fit to the data: 1/τ = |q · δv|. b) Stretching parameter as a function of
q. The average value of β = 2.04± 0.02 is reported as the orange dashed line.
Figure adapted from [76].

5.1.5 Dynamical heterogeneities: the cooperative na-
ture of the stress relaxation

In the last part of Ch.(2) we discussed the four-point susceptibility, χ4(q, t),
and its relation to the cooperativity of the dynamics. We introduced how the
visibility of this observable is related to the dimension of the scattering volume,
or to the number N of elemental particles in it. In order to measure a χ4(q, t)
we require a limited number of correlated regions in the scattering volume, so
that we can effectively probe the fluctuations of the dynamics. The visibility of
χ4(q, t) will be proportional to 1/N , following the central limit theorem. In the
present XPCS experiments the scattering volume is determined by the spot size
(here 2 × 3 µm2 FWHM) and the thickness of the sample, W ' 360 µm and,
with the considered volume fraction of ϕ ∼ 37%, we have N = (1.6± 0.3)× 106

[76]. Although the number of particles in the scattering volume is considerable,
χ4(q, t) is still observable. This can be visually appreciated directly from the
two time correlation function, as the one reported in the inset of Fig.(5.9).
The signatures of the dynamical heterogeneities are fluctuations in the typical
relaxation time of the correlation function, which can be seen as ”blobs” or
”bubbles”. Calculating the variance of each diagonal of the two-times matrix
one can build the complete time evolution of the χ4(q, t), see Fig.(5.9).
A reliable estimation of the value of the χ4(q, t) requires the extrapolation
scheme proposed in [92] and discussed in Ch.(3). The extrapolation works
through different steps: first of all, the considered ROI (defined by the azimuthal
angle φ and exchanged wave-vector q) is divided in subsets. For each of these
subsets, the variance of the autocorrelation (σ2

g2) is calculated. An example of
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Figure 5.9: Autocorrelation function (green points) together with the χ4(q, t)
(yellow points), calculated at the peak of the structure factor, q = qmax =
(6.4 ± 0.3) × 10−2 nm−1 and considering horizontal sectors with ∆φ = ±π/4.
The inset shows a portion of the corresponding two time correlation function
from which the main curves are extracted. Figure adapted from [76].

the obtained curves is shown in Fig.(5.10) for a variable number of pixels Npx,
from 215 up to 1615.
For each time ti the obtained points are reported as a function of 1/Npx and a
linear fit is performed. The intercept of the curve is the value of the χ4(q, ti) in
the limit of an infinite number of pixels, then it is the best estimator of the real
value of the four-point susceptibility. The extrapolated curve shown in Fig.(5.10)
as blue diamonds shows a much more defined peak with respect to the ones
obtained with a finite-ensemble of pixels. The extrapolation scheme is therefore
essential for capturing the real fluctuations in the dynamical properties.
As already discussed, the χ4(q, t) is expected to exhibit a peak in the time
domain. This is mainly due to the fact that the motion of a particle is correlated
with the neighbors for a typical time in the order of the relaxation time: such
peak is clearly visible in Fig.(5.9). On the other hand, a similar peak-shaped
dependence is expected as a function of the exchanged wave-vector. At large
distances (small qs), the particles are so far-away that they weakly interact
and their motion is uncorrelated. At high qs the contribution of the collective
dynamics starts to vanish, and one expects here too a weak correlation in
the motion. At intermediate q values the dynamics finds the maximum of its
correlation, since a particle moves in ”phase” with the neighbors.
In Fig.(5.11 b) the maximum values of the χ4(q, t) have been reported as a
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Figure 5.10: Sequence of the variance of the autocorrelation function σ2
g2(Npx, t)

calculated at qmax = (6.4± 0.3)× 10−2 nm−1 and for different Npx values. The
extrapolated χ4(qmax, t) for Npx → ∞ is reported as blue diamonds. Figure
adapted from [76].

Figure 5.11: a) Map of the χ4(q, t) as a function of the exchanged wave-vector
q and time t. b) Maximum value of the χ4(q, t) as a function of q. Gray-dashed
line is the structure factor (opportunely scaled). Figure adapted from [76].

function of q together with the structure factor (opportunely scaled, gray-
dashed line). The time-length scale of the dynamical heterogeneities is better
appreciated in a map as the one reported in Fig.(5.11 a). The χ4(q, t) is
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characterized by a single, broad peak centered at q ' qmax and time t ∼ τ .
Note that the peak at qmax is a symptom that the maximum of dynamical
correlation is observed over distances corresponding to the nearest neighbor
shell of particles. This is different with respect to the observations reported for
the bi-dimensional version of this glass [58]: there the authors report that the
maximum of the χ4(q, t) is located at distances much smaller than the average
neighbor distance. However, in that case they were investigating spontaneous,
near equilibrium dynamics while we are focusing on stress-driven dynamics.
Note that our results are in good agreement with the observations made on
colloidal gels [75] where the dynamics is dominated by stress-related phenomena,
but we also find an interesting similarity with the results of theoretical studies
on super-cooled liquids [156].
The peak value of the four-point susceptibility can be normalized for the
squared experimental contrast (measured with a xerogel) and multiplied for the
total number of particles in the scattering volume: the procedure leads to an
estimation of the number of particles dynamically correlated Ncorr. Note that
a q-dependent pre-factor should be introduced in order to correctly account
for Ncorr [75]. Despite that, this rough estimate leads to Ncorr ≈ 104 particles,
which correspond to regions of ≈ 2 µm in size. In this last step we made
the strong assumption that the fractal dimension of the dynamical correlated
regions is 3. However, in the bi-dimensional version of our glass, string-like
dynamical heterogeneities were observed [58]. Notwithstanding that, this coarse
calculation captures the typical length-scale of the regions that relax upon the
stress release, which is much larger than the inter-particle distance and is in
the order of the µm.
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5.2 Oxide glasses probed with XPCS
In the second part of this chapter we want to tackle the problem of the X-ray
induced relaxation in oxide glasses. It is clear that, since a glass is intrinsically
out of equilibrium, some stresses must be frozen in during the cooling process.
We have already seen the extreme case of colloidal glasses where the dynamics
can be completely driven by the stress release process. One can expect a
similar behavior in structural glasses, where the faster the quench, the higher
the quantity of stresses trapped in the network. These hypotheses have been
recently confirmed for the case of metallic glasses studied with XPCS [3, 4],
where well-below the glass transition temperature fast compressed (β > 1)
relaxation functions are a clear symptom of stress-related dynamics.
A similar, but intrinsically different, phenomenon was soon observed in oxide
glasses where deep in the glassy state fast relaxations were measured [7–9]. In
these systems, however, the dynamics are characterized by a relaxation time
which scales inversely to the incident flux: it is thus not an internal mechanism
that triggers the density rearrangements but the incident X-ray beam, which
induces a relaxation in the glass much faster than the one expected for the
equilibrium system, simultaneously pumping and probing the atomic motion.
Interestingly, this effect corresponds to the fact that X-rays locally ”fluidize”
the glass through probably radiolysis, as proposed in [8], and each absorbed
photon gives rise, in average, to a ”liquid-like spur” with a length-scale of few
nanometers [9, 104]. Incidentally, this nm length-scale is the same over which
the cooperative motions of the spontaneous glassy dynamics takes place but
the interplay between these two processes is yet under investigation. This
beam-induced dynamics has been observed in different systems, ranging from
silicates [7, 8], germanates [8] and borates [9, 109, 110]. XPCS experiments
have reported different stretching exponents for different glasses: silica shows
compressed correlation functions while borates stretched ones. We will show in
the next chapter of this thesis that in borates compressed correlation functions
can be observed too, as long as the absorbed dose is kept below a given, sample
dependent, threshold. We anticipate here that the relaxation time does not
change considerably as a function of the absorbed dose (at least up to the doses
considered in this chapter), thus the considerations carried out in the next
sections are still valid despite the dose is such that β ≤ 1.

5.2.1 The preparation of boron-oxide glass
We have already explained the sample preparation of borate glasses in Ch.(4),
where we have discussed the near-equilibrium dynamics of liquid LiBO2. While
the preparation protocol is very very similar to that of alkali-based glasses
[104, 157], a slightly different approach has been followed for pure boron oxide.
The extremely high hygroscopicity of this sample requires particular attention in
order to avoid any water contamination since a small amount of water trapped
in the glassy network is known to change the glass transition temperature Tg
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by many tens of degrees [158].
In order to prepare a boron oxide glass, the starting material was boron oxide
powder (99%-purity) purchased from Sigma-Aldrich. A few grams of powder
were dried in a furnace at 150◦C in an aluminum oxide crucible for 24 hours.
Then the temperature was raised to 1000◦C for 4 days, in order to remove as
much water contamination as possible. The glassy samples were produced as
1 mm thick slabs quenching the melt between steel plates previously heated
at 200◦C. The obtained samples were cut in small disks (5 mm in diameter)
and polished with silicon-carbide sandpaper down to the desired thickness
(∼ 100 µm). In this last step, pure ethanol was used as a lubricant to avoid
sample contamination caused by the ambient humidity.

5.2.2 The X-ray flux-dependent relaxation
As anticipated, in XPCS experiments on oxide glasses the measured dynamics
in the glassy state is faster the higher the incident flux. To be precise, the
relaxation time is related to the absorbed number of X-ray photons [9]

τ ∝ 1
F0[1− e−µW ] (5.8)

where F0 is the incident flux, W the sample thickness and µ the attenuation
coefficient. Eq.(5.8) has been verified in many experiments [8, 9, 109, 159] on
different families of glasses and it is an accepted signature of the beam-induced
dynamics.
Recently, this flux-dependence of the relaxation time has been additionally
verified in an experiment at beamline ID10 of the ESRF on a B2O3 glass [110].
XPCS measurements were performed on the peak of the scattered intensity
(which corresponds to the peak of the structure factor) at a scattering vector
q = (15.2± 0.2) nm−1, as highlighted in green in Fig.(5.12 a). Sequences of up
to 104 images were collected with an EIGER 500K detector placed at a distance
D=4.1 m from the sample in order to match the speckle size with the pixel
size (see Sect.(3.6) for further experimental details). The sample was moved by
20 µm after each run in order to avoid beam damage [9]. The incident beam
intensity modifies the relaxation time (see Eq.(5.8)) but not the shape parameter.
This can be observed in Fig.(5.12 b), where the intensity autocorrelation
functions are shown for two different incident fluxes: F0 = 11× 1010 ph/s and
F1 = 3.5× 1010 ph/s at the energy of 8.1 keV [110]. The time has been rescaled
using the relaxation time τ of the fitted KWW function [48], here reported
again for clarity

g2(t) = c exp[−2(t/τ)β] + d (5.9)

where we include the experimental contrast c and an additional baseline d,
as discussed in Sect.(3.3). The ratio between the relaxation times of the
curves shown in Fig.(5.12 b) is 3.0± 0.2, compatible with the expected one of
F0/F1 = 3.1 [110]. Furthermore, it should be pointed out that the stretching
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Figure 5.12: a) Scattered intensity in arbitrary units as a function of the
exchanged wave-vector q for the B2O3 glass. The green box indicates the δq
covered by the detector at the ID10 beamline of the ESRF. b) Autocorrelation
functions measured at T=563 K for two different incident photon fluxes (F0 =
3.1F1).The curves are averages of 20 scans of 104 images each with integration
time of 50 ms. The time axes have been rescaled for the relaxation time and
the KWW best fit is reported as a black dashed line. Error bars are calculated
as the standard deviation of the different measurements and reported only for
the F0 data (orange squares) for the sake of clarity. Figure adapted from [110].

parameter β does not change upon changing the incident flux: the two rescaled
autocorrelation functions indeed overlap. This feature is crucial since it is
related to the fact that the dynamics must be intrinsic to the absorption of a
photon and not to the average power delivered by the beam. It is then natural
to expect that each absorbed photon, on average, ”fluidizes” a given number of
atoms (or atomic units) on a length-scale 1/q.
We can rationalize these ideas in a plot like the one shown in Fig.(5.13). There,
the relaxation time has been displayed as a function of the average incident
flux. The green points correspond to the autocorrelation functions shown in
Fig.(5.12 b). The violet diamonds are the data reported in [9] and collected at
different temperatures but with the same photon energy (8.1keV) and beam
size (10 × 8 µm2 H × V FWHM). The average beam flux coincides with the
incident flux for the green data, while for the violet diamonds it is calculated
correcting for the read-out time of the CCD detector, since the shutter was
open only during acquisition and not during read-out [9].
It is clear from the data that the typical relaxation time is inversely proportional
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Figure 5.13: Relaxation time as a function of the inverse of the average incident
beam. The black dashed line is the fit of Eq.(5.10) to the green points. The
violet diamonds correspond to measurements collected at different temperatures,
however for the B2O3 glass no temperature dependence of the relaxation time
is observed [9, 110].

to the average absorbed flux, in agreement with Eq.(5.8). In detail, τ can be
interpreted as the time after which the fraction 1− 1/e of atoms (or particles)
in the scattering volume has moved of 1/q. The natural quantity to calculate
is then the ratio between the total number of atoms that have moved of 1/q
in the time τ and the number of photons absorbed in the same time yielding
the number of units (or atoms) that have moved after the absorption of a
single photon, Nu. We can thus write the relaxation time as a function of the
number of B2O3 units Nu (in this case 5 atoms) that move following a photon
absorption event [9, 110]

τ = e− 1
e

Ntot/Nu

F0[1− e−µW ] (5.10)

with Ntot = ρ V NA
M

the total number of chemical units in the scattering volume
(ρ = 1.83 g/cm3, V is the scattering volume, NA is the Avogadro number,
M=69.6 g/mol for B2O3) and W = (73 ± 10) µm. We note that the beam-
induced relaxation time is independent on the thickness of the sample ifWµ� 1.
Indeed, expanding the denominator of Eq.(5.10) in Taylor’s series we get

τ = e− 1
e

ρ S NA

MNuF0µ
(5.11)
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with S the beam spot size. For the energy considered here, 1/µ = 670 µm,
thus much longer than the thickness of the samples measured both in [9] and
[110]. This explains the coherence of Fig.(5.13), where the data collected
in two different experiments have been reported without correction for the
thickness. For the case of boron oxide, the number of units that move following
an absorbed photon is Nu = 1340 ± 100 [110], in agreement with the value
found in [9]. Hereafter, however, we will try not to mix results coming from
different experiments, in order to minimize the risk of propagating possible
errors due to independent measurements of absolute X-ray fluxes.

Figure 5.14: a) Autocorrelation functions at different incident fluxes (see
legend) for a lithium metaborate glass at T=575 K measured at P10 (Petra
III, DESY). The curves show a relaxation time inversely proportional to the
flux. This behavior is confirmed in b), where the relaxation time is reported as
a function of the inverse incident flux. More details on this particular system
and on the relaxation process as a function of the temperature will be given in
the next chapter.

As introduced at the beginning of this section, the beam-induced effect has
been observed on different borates and, in general, oxide glasses. However, it
was quickly understood that different materials are characterized by a different
number of atoms that move when an X-ray photon is absorbed. As an example,
we now discuss lithium metaborate, LiBO2, the main sample studied in this
thesis (a complete description of the dynamical properties of LiBO2 will be given
in the next chapter). In Fig.(5.14 a) the intensity autocorrelation functions
measured at the peak of the structure factor (q ∼ 17 nm−1) are shown for three
different incident fluxes. These data have been recorded at the temperature
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T=575K, below the glass transition temperature, measured in Ch.(4). Despite
a linear dependence of the relaxation time on the inverse incident flux, Fig.(5.14
b), Nu for LiBO2 is more than a decade smaller than for pure boron oxide. This
suggests that the introduction of an alkali-modifier in the network must play a
crucial, but unknown, role.
We will see in the following that Nu, for a given family of glasses, is controlled
by the network’s structural connectivity rather than the type of alkali modifiers
introduced in the system [104, 157].

5.2.3 The structural units of borate glasses
Borate glasses are an interesting class of materials for many reasons. Their
chemical durability and stability when mixed with silica and the relative low
processing temperature of the resulting borosilicate glass make them ideal
for applications in everyday life (windows, food containers). Also, they have
peculiar optical properties when doped with rare-earth elements. Finally,
their use as containers for radioactive wastes aroused interest in the scientific
community [160].
Despite the effort in studying and engineering those systems, alkali-borates
are still under active investigation. The difficulty of simulating the network
and the lack of a uniquely accepted structural model leave many problems still
open.
The simplest system is pure boron oxide B2O3. Its structure has been studied
with different techniques, among which nuclear magnetic resonance (NMR)
has been one of the most successful in providing detailed information [161–
163]. The network is composed of almost planar BO3 units of one boron atom
coordinated to three oxygens. These triangular structures are found to assemble
in structural rings called boroxol units, see Fig.(5.15). However, not all trigonal
BO3 units assemble in boroxol rings and, while still debated, experimental data
suggest that on average the ratio of boroxol rings to non-ring BO3 units is one
to one, that is 75% of B atoms are located in boroxol units [164].
The network of borate glasses becomes more interesting upon addition of an
alkali oxide (M2O)x(B2O3)1−x, where M is the alkali modifier and x is the molar
fraction of the alkali oxide. The alkali atoms distribute around the network,
but do not disrupt it in an essential way (we will discuss their exact role in the
next sections). For low alkali molar fractions, the major contribution is played
by the increased number of oxygen atoms, which tend to convert the boron
coordination from three to four [161, 163–165]. This change in coordination,
clearly observed in NMR measurements, is reflected in the trend of the glass
transition temperature as Tg increases up to x ∼ 1/3 (effect known as ”boron
anomaly”). Above this threshold, however, it is no longer possible to convert
the boron coordination from three to four. As a result, the formation of non-
bridging oxygens (ONB) is observed. ONBs weaken the network, and the glass
transition temperature Tg decreases accordingly. As in the case of pure B2O3,
the network can be seen as composed of intermediate range order structural
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Figure 5.15: Structural groups for the alkali-borate glasses. Green spheres
represent the boron atoms, while red ones are the oxygen atoms. For each
structural unit representative boron structural configurations are reported. The
negative charges - are located at non-bridging oxygens ONB.

groups whose fraction depends on the alkali content. The pioneering work of
Feller et al. [165] has quantified the fraction of these units in alkali-borate
systems. In particular, they investigated the neighborhood network around
each 10B atom. The boron structural configurations are shown in Fig.(5.15)
and their weight as a function of the alkali modifier (in the present case Li) in
Fig.(5.16).

5.2.4 The topology of borate glasses
It is a matter of fact that not all materials can be vitrified with melt-quench
techniques. For example, when cooling a TiO2 melt, one always obtains one of
the three crystalline structures: rutile, anatase or brookite. Zachariasen was one
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Figure 5.16: Fraction of boron structural configurations as reported by Feller
et al. [165]. Note that for pure boron (x = 0) all the B atoms are considered in
boroxol rings. This is in contrast with the more recent studies [164] which find
a 1:1 ratio of boroxol rings to non-ring BO3 units, as already said. Anyway, we
can assume here that the non-ring units are included in the B3, as suggested
in [166]. Data from [165].

of the first scientists asking why some oxide melts tend to vitrify (SiO2,B2O3)
while other to crystallize (TiO2,Al2O3) when cooled below the melting temper-
ature [167]. In one famous paper, he reported the following about glass formers:
”the substance can form extended three-dimensional networks lacking periodicity
with an energy content comparable with that of the corresponding crystal” [167].
This statement can be quantified in the well known three Zachariasen’s rules:
”(1) an oxygen atom is linked to not more than two atoms A; (2) the number
of oxygen atoms surrounding atoms A must be small; (3) the oxygen polyhedra
share corners with each other, not edges or faces.” [167].
This work was the first attempt to describe the glassy network using a topo-
logical language, linking the macroscopic properties to the local ones. The
ideas proposed there were extended few decades later when glasses started to
be described in terms of an ensemble of constraints [168, 169]. All amorphous
materials can be classified ”topologically” in three major categories: flexible
networks have a number of constraints per atom (nc) which is less than the
atomic degrees of freedom (in 3-dimensions it is equal to 3), stressed rigid
have nc > 3 and isostatic systems have nc = 3 [170]. The number of atomic
constraints is the link between the atomic-scale properties and the macroscopic
ones: for example, glasses with nc > 3 (stressed-rigid) exhibit brittle fracturing,
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while flexible networks dissipate better the excess energy in an elastoplastic
fashion; for a recent review on this topic see [170]. The topological models
have been recently refined in order to describe the fragility index and the glass
transition temperature too in GexSe1−x and alkali-borates [171, 172], taking
into account the temperature dependence of the constraints.
We will focus here on the case of alkali-borates systems, (M2O)x(B2O3)1−x ,
where 4 types of constraints are considered [166, 172, 173].

• α are the strongest constraints and are linear B-O bonds. There are 2 of
this type of constraints at each bridging oxygen.

• β are angular O-B-O constraints, and we have 5 of them at each G4 and
3 at each G3 structural configuration (G=T,D,...), see Fig.(5.15).

• γ are angular B-O-B, B-O-M∗ constraints and we have one of them at
every bridging oxygen.

• µ are additional constraints caused by the clustering effect of the alkali
modifier [174]. We have two of them for each alkali ion which participates
to the network.

Upon cooling the alkali-borate melt, constraints start to freeze in, leading to a
stiffening of the glassy network. It is a good starting approximation to assume
that the temperature dependence corresponding to this freezing of constraints is
a step-like function [171]. The relative bond strength then orders the activation
temperatures of the different constraints as follows [172, 173]

Tγ < Tg(0) < Tβ < Tµ < Tα (5.12)

with Tg(0) = 526 K the glass transition temperature of pure boron oxide (x = 0).
We are now ready to build up the topological model for alkali-borates glasses.
The number of constraints per atom can be calculated averaging the number of
constraints (both linear and angular) for all the network forming atoms. To do
that, the first step is to recognize the structures that contribute to the network
and then, for each one, calculate the associated constraints.
In this thesis we have investigated borate systems in the range 0 ≤ x ≤ 0.5. For
the sake of clarity, we will limit our considerations up to x = 0.5. Observing
Fig.(5.16), it is then clear that the boron structural configurationsO3 and P 3 can
be discarded, since they start to contribute for x > 0.5. The B atoms are thus
found in the following main groups: four-coordinated borons in tetraborate (T4)
and loose N4 (not contributing to any superstructural group); four-coordinated
borons in diborate units (D4); three-coordinated borons in boroxol rings (B3),
triborates (T3) and diborates (D3); and finally three-coordinated borons in
metaborate units (M3). For more details about these structures see Fig.(5.15).
The fractions of different boron configurations (Fig.(5.16)) can be used to
calculate the fraction of the network forming species (appropriately normalized,
as shown below). In addition to the groups just mentioned, oxygen atoms must
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be taken into account whenever they are in a so-called bridging configuration
OB (thus forming bonds). The alkali ions will also contribute to the formation
of a network, although their exact contribution is not yet completely clear. We
focus next on the case M=Li, since the majority of the reported measurements
have been performed with lithium as a modifier. However, as we will see at
the end of the chapter, the model developed here works independently of the
chosen alkali ion. We consider here that the lithium cations play a role in the
network only when they are compensating the negative charge of non-bridging
oxygens (LiNB). Finally, the fraction of network forming species, reported as
N(...), are

N(B4) = T 4 + LooseN4

Ω (5.13)

N(D4) = D4

Ω (5.14)

N(B3) = B3 + T 3 +D3 +M3

Ω (5.15)

N(OB) = 2[T 4 + LooseN4 +D4] + 1.5[B3 + T 3 +D3] +M3

Ω (5.16)

N(LiNB) = M3

Ω (5.17)

where the normalisation factor Ω is given by

Ω = 3[D4 + LooseN4 + T 4 +M3] + 2.5[D3 +B3 + T 3] (5.18)

The assignment of the constraints for each boron structural configuration is not
an easy task due to the complex nature of alkali borates. However, the models,
with the support of experimental data, are becoming more and more precise in
accounting for them [172, 173, 175]. We assign here the constraints as reported
above, with the exception of the β constraints for the B4 structures, which
are counted as 4.5. In particular in the diborate unit one of the tetrahedron’s
angles is determined by the other constraints and, as suggested in [173], must
not be included in the count of the constraints. At low temperature, where all
the constraints are present (see Eq.(5.12)), the average number of constraints
per atom, nc, is then given by

nc = 3N(OB) + 5N(B4) + 4.5N(D4) + 3N(B3) + 3N(LiNB) (5.19)

Eq.(5.19) is shown as a blue-solid line in Fig.(5.17).
Note that the model reported here is different from the one developed in

[173], shown as the blue-dashed line in Fig.(5.17). The ionic bonds between
lithium cations and Loose N4 are here not included in the topology of the
network and thus the relative µ constraints are discarded. Our choice is justified
by two arguments. First of all, numerical simulations have shown that the
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Figure 5.17: Number of constraints per atom, nc, as a function of molar lithium
oxide concentration. The values are calculated from Eq.(5.13-5.19) taking into
account the temperature dependence given by Eq.(5.12) too (solid-lines). For
comparison, the model developed by Takeda et al. is reported as dashed lines
[173].

position of the lithium cations depends strongly on the structural group [176].
In fact, when the Li+ cations compensate the negative charge of a sp3-hybridised
loose N4 boron, their distance with respect to the B atoms is ≥ 3Å. On the
other hand, when lithium cations compensate negatively charged non-bridging
oxygens, they are much closer to the O atom (1.9− 2.0Å) [176]. This is also
reflected in the lithium vibrational modes. Numerical simulations show that
the frequencies of those modes are a factor 2 higher when the alkali is close
to a non-bridging oxygen rather than to a loose N4 boron [176]. Despite the
possibility that lithium ions play a role when they are close to loose N4 borons,
we do not include those configurations in our version of the model.

5.2.5 The beam-induced dynamics as a probe of net-
work connectivity

The investigation of the beam-induced dynamics in alkali-borates glasses has
been carried out in detail by Pintori in her PhD thesis [104], and in successive
papers where more properties have been elucidated [9, 109]. Here, we link the
topological properties of the borate network to XPCS results, as reported in
our last submitted work [157].
The (M2O)x(B2O3)1−x glasses have been studied in detail with M= Li, Na, K
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and x = 0.14 while for the Li modifier the molar range has been extended to
x = 0.22, 0.3, 0.5. The data reported next have been collected during XPCS
experiments performed at the beamline P10 at PETRA III. The chosen X-ray
beam energy was 8.4 keV with an energy resolution of ∼ 1 eV. The beam was
focused to 3× 3 µm2 with compound refractive lenses, ending up in a photon
flux of 6 × 1010 ph/s. The scattered radiation was collected in transmission
geometry using a Princeton CCD (1340× 1300 pixels, 20× 20 µm2 pixel size)
positioned ∼ 40 cm downstream of the sample and mounted on a motorized
goniometer. The measurements were performed at the peak of the scattered
intensity, corresponding to the peak of the structure factor. The integration
time was chosen between 0.2 s and 2 s and up to 6000 images per scan were
collected. Particular attention was paid to avoid X-ray beam damage. As
already observed for the pure boron oxide glass [9], beam damage is negligible
up to absorbed doses of about 2.5 GGy. A more detailed discussion of the
dynamics as a function of the absorbed dose will be given in the next chapter.
The relevant parameters of the investigated samples are reported in Tab.(5.1),
including the glass transition temperature, the density and the stretching
parameter β of the KWW fits. This last parameter has been used to calculate the
mean relaxation time 〈τ〉 = τΓ(1/β)/β [48] in order to get robust estimations
and reduce the correlation between β and τ .

Sample ρ Tg vl β 〈Nu〉
(M2O)x(B2O3)1−x (g/cm3) (K) (m/s)
B2O3 1.83 526 3488 0.84± 0.03 990± 50
Na, x = 0.14 2.10 660 4840 0.93± 0.03 260± 10
K, x = 0.14 2.08 633 4439 0.84± 0.04 270± 10
Li, x = 0.14 2.01 679 5246 0.99± 0.06 280± 20
Li, x = 0.22 2.15 753 6106 0.9± 0.2 150± 20
Li, x = 0.30 2.24 771 6687 0.91± 0.07 120± 10
Li, x = 0.50 2.18 694 6780 0.75± 0.05 56± 3

Table 5.1: List of selected physical properties for the borates glasses. In the
first column the borate glass (M2O)x(B2O3)1−x is reported indicating the alkali
M and the molar fraction x. The mass density ρ has been tabulated from
[177, 178], the glass transition temperature for pure boron oxide and M=Na,K
from [106], while for M=Li from [131]. The longitudinal sound velocity vl has
been taken from [179–181]. The stretching parameter and average number of
units (calculated from the mean relaxation time 〈τ〉) that move following the
absorption of an X-ray photon are also reported for the studied borate glasses.
Table adapted from [157].

In Fig.(5.18 a) we show the different densities for the alkali borates as a
function of the molar fraction x. Two main features can be appreciated from
the plot. First, as expected, for a given molar fraction different alkalis lead
to different densities. Second, the density of lithium-metaborate (x = 0.5)
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is smaller than the one of x = 0.3 (non-monotonic behavior, related to the
boron anomaly). A similar non-monotonic dependence is observed for the glass
transition temperature, see Tab.(5.1).

Figure 5.18: a) Density of alkali borate glasses as a function of the molar
fraction x, as reported in Tab.(5.1). Data from [177, 178]. b) Average number
of units 〈Nu〉 as a function of the molar fraction x for the different borates
investigated here. Figure adapted from [157].

These features are not present if we plot the average number of units 〈Nu〉 as
a function of x, Fig.(5.18 b). 〈Nu〉 behaves indeed in a monotonic decreasing
way as a function of the mole fraction x and is insensitive to the different alkali
modifier. This is in contrast with the interpretation proposed in [159], where
it was claimed that the glass transition temperature fixes the timescale (and
therefore Nu) for a given glass. However, if that were the case, we would expect
a non-monotonic behavior of 〈Nu〉 vs x in the same way as for Tg. Furthermore,
the almost identical value of Nu for alkalis with very different atomic numbers
(Li, Na, K) in Fig.(5.18 a) shows that the crucial parameter accounting for the
dependence of Nu on x must be the structure of the glass itself, namely the
topology of the local and medium range structures.
We can then apply the topological model developed in the previous section.
All the data reported in Tab.(5.1) have been collected at ambient temperature
(T=300 K), thus we should refer to the blue-lines reported in Fig.(5.17) in
order to calculate nc. Moreover, the terminology related to Nu can be made
more self-explanatory if we convert it to an effective volume that relaxes upon
the absorption of an X-ray photon. That is, if we imagine that the Nu units
belongs to a compact (d = 3) volume, i.e. spherical for simplicity, we can write
[9, 104, 157]

ξ = 3
√

3〈Nu〉Vu/(4π) (5.20)
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where Vu is the volume occupied by a chemical unit. ξ is thus the average linear
size of the region that is ”fluidized” by one X-ray photon. In Fig.(5.19 a) the
value of ξ is reported as a function of the average number of constraints per
atom calculated in Fig.(5.17).

Figure 5.19: a) Average size of the relaxing regions ξ following the absorption
of an X-ray photon as a function of the atomic number of constraints nc. Two
different values of nc have been here reported: blue diamonds correspond to the
model developed here, while orange squares to the one reported by Takeda et al.
[173]. b) Longitudinal elastic moduli calculated from Brillouin measurements
[179–181] with the equation M = ρv2

l , with ρ from [177, 178]. Also in this case,
the blue diamonds correspond to the topological model reported here, while
the orange squares to the one reported by Takeda et al. [173]. Figure adapted
from [157].

We should highlight here that nc is related not only to the short range order of
the glass, but on the medium range order too. Indeed, in calculating it, we took
into account all the superstructural configurations typical of the alkali-borate
systems. The linear behavior reported in Fig.(5.19 a) shows that a strong
correlation exists between the average number of constraints (or the network
rigidity) and the size of the regions that move when X-rays perturb the glass.
Assuming a spherical compact volume, Eq.(5.20), we observed a dependence of
ξ inversely proportional to the number of constraints per atom. This behavior
is readily understood since the rearrangement of those regions requires the
rupture and formation of new bonds and thus has to be related to the local
elasticity of the network. In this spirit, the average energy density is captured
by the number of constraints per atom, nc.
The observed dependence is furthermore reminiscent of the well known mech-
anisms for fracture of tempered glasses. What glasses do beyond the elastic
limit is to dissipate stress via the development of free surfaces which ends up
in cracking the glass with a consequent macroscopic breakage into fragments.
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The more the glass is strengthened (thus more stressed), the smaller are the
fragments upon cracking. Fig.(5.19 a) shows a similar behavior since values of
nc beyond 3 correspond to a stressed-rigid glass. In the present case, however,
the system cannot physically create new surfaces. Thus, the network excess
energy is dissipated through nanometric rearrangements towards new configu-
rations, where the size of these ”rearranging fragments” is smaller the more
stressed is the glass.
Finally, we can further validate the topological model developed here observing
the behavior of the longitudinal elastic moduli (M) as a function of nc. From
simple qualitative considerations, we expect that the elastic modulus should
be linearly related to the energy density stored in the glassy network, in turn
quantified by nc. Fig.(5.19 b) shows indeed this linear behavior (blue diamonds),
confirming that the topological model developed here is coherent both with
XPCS measurements and Brillouin studies.
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Chapter 6

The photo-induced transition
from stress driven to stress free
dynamics

This last chapter is dedicated to a discussion of the photo-induced transition
from a stress driven dynamics to a stress free one observed in oxide glasses
probed with XPCS. In the first part, we will discuss the glass behavior ap-
proaching the glass transition temperature, highlighting the properties of the
relaxation time and of the stretching parameter. In the second half, we will
tackle the dependence of the dynamics on the absorbed dose. We will show
that the X-rays ”fluidize” the glass, as speculated in Ch.(5), inducing strong
modifications in the dynamical properties and relaxing the system towards a
fluid-like condition.

6.1 From the glass to the supercooled liquid:
a temperature investigation

We start by reporting an XPCS study of the lithium metaborate (LiBO2) glass
as a function of the temperature. Different experiments have been performed
both at the European Synchrotron Radiation Facility (ESRF), beamline ID10,
and at the Petra III synchrotron (DESY), beamline P10.
We will focus on the beam-induced dynamics approaching the glass transition.
In the spirit of Eq.(5.11), for a given material the beam-induced relaxation
time does not depend on the thickness of the sample as long as it is much
thinner than the absorption length. In the present case, we prepared samples
of thickness W ∼ 150 µm (1/µ ≈ 600 µm for the energies used), so absorption
plays a negligible role in the beam-induced relaxation. In the following, we
report the details of each sample, together with other experimental parameters,
for all sets of data here presented.
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6.1.1 The scaling of the beam-induced dynamics in LiBO2

The data reported in this subsection have been collected at the Petra III
synchrotron, during the same beamtime discussed in Ch.(4). Two samples
of LiBO2, of thickness W = (150 ± 10) µm and W = (175 ± 25) µm, have
been placed in a furnace in vacuum and heated at few selected temperatures
across the glass transition. The detector (EIGER 4M) was placed at the peak
of the scattered intensity, here located at θ = 23.9 deg. The corresponding
q-window covered by the detector was q = (16.8± 2.0)nm−1. We recall that the
glass transition temperature for the lithium metaborate glass was measured
independently with dynamic light scattering and found to be Tg = 704 K,
compatible with the values reported, for example, in [131, 173].

Figure 6.1: Scattered intensity for the LiBO2 glass at T=300 K as a function
of the exchanged wave-vector q for different total absorbed doses. Note the
strong intensity increase at small qs (q ∼ 1 nm−1) for doses above about 10
GGy.

As noted in previous works on borate glasses studied with XPCS [9, 104, 109],
the scattered intensity profile experiences a small change upon irradiation. For
completeness, we remember here that the absorbed dose is calculated assuming
that all the absorbed energy is deposited in the volume defined by the vertical
and horizontal full-width half maximum and the thickness of the sample. This
is a fair estimate when the thickness is much smaller than the linear attenuation
length, which is the case for all the samples here considered.
Fig.(6.1) shows the scattered intensity for different irradiation doses as a
function of the exchanged wave vector q. In agreement to what observed on
the same sample by Dallari et al. [109], the peak intensity decreases with a
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Figure 6.2: Set of g2 data collected for the LiBO2 glass at two different
temperatures for different incident fluxes. On the left (panels a, c), the time
scale has been normalized to the fitted relaxation time τ corresponding to
the full beam data (green diamonds). On the right (panels b, d), the time
scale has been normalized for the respective relaxation times of the curves: all
the correlation functions collapse on a master curve. The black dashed lines
corresponds to the best KWW fits.

simultaneous increase of full-width half maximum (FWHM). Simultaneously,
the scattered intensity in the small q region increases. At very small scattering
angles, corresponding roughly to q ∼ 1 nm−1 a pronounced tail starts to appear
for doses greater than about 10 GGy. This feature is likely a symptom of sample
damage, with the increase of small angle scattering due to the formation of
structures with typical size of ∼ nm. This could be due, for example, to nano-
separation or to the formation of nanometric-size holes. The measurements
reported in this section are performed while keeping the absorbed dose below 2
GGy, a dose which induces changes in the intensity at the peak of the structure
factor of only a few percent. More details about the dose effect on the structure
and, more importantly, on the dynamics will be given in the next section.
We discussed in the previous chapter that the beam-induced dynamics relaxation
is triggered by the absorption of X-rays photons, with the decorrelation time
inversely proportional to the incident flux, Eq.(5.8). Fig.(6.2) shows a set of
representative correlation functions of the LiBO2 glass. The fluxes employed for
those measurements are F0 = 9.7×1010 ph/s, F1 = 0.2067F0 and F2 = 0.0445F0.
At low temperatures (below Tg) the relaxation time scales inversely to the
incident flux, becoming faster the higher the flux, Fig.(6.2 a− b). All the curves
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collapse on a master plot if the time-scale is normalized to the corresponding
relaxation time, Fig.(6.2 b), showing that the dynamics are triggered by a single
photon absorption event and does not depend upon the average power delivered
to the sample (at least in the range considered here). The g2 functions can be
modeled by a KWW ansatz, and it is possible to describe simultaneously all
the three curves by simply introducing a scaling factor between the respective
relaxation times. We emphasize that the obtained stretching parameter is
greater than one (β > 1), at variance to previous experiments on borate glasses
[104, 109, 157, 159]; we will concentrate on this aspect soon.

Figure 6.3: The flux dependence of the relaxation times corresponding to
the data reported in Fig.(6.2). All data are rescaled to the relaxation time
and flux corresponding to full beam conditions. The red dotted line shows
the linear dependence of the relaxation time deep in the glassy state while,
close to Tg, Eq.(6.2) leads to a saturation in the inverse flux dependence of the
measured relaxation time (blue dotted line) which corresponds to the value
of the structural relaxation time for F → 0. At T=575 K, τ0 = (15.4± 0.5) s
while at T=708 K, τ0 = (1.47± 0.08) s.

The situation is different for a temperature above the glass transition, Fig.(6.2
c− d). Here the relaxation time still has a clear correlation with the incident
flux, Fig.(6.2 c), but the dependence is weakened with respect to the linear
behavior observed at low temperatures. The curves can again be placed onto a
master curve by scaling the time-axes to the corresponding relaxation times,
but now the stretching parameter is less than one (β < 1), Fig.(6.2 d).
The scaling of the relaxation time close to the glass transition was studied
in B2O3 by Pintori et al. in [9], where it was shown that, approaching the
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glass transition, the beam-induced process and the structural relaxation start
to compete. The same considerations reported there are valid for the LiBO2
glass; the measured relaxation rate is the sum of the relaxation rates of the
two processes [9]

1
τ

= 1
τind

+ 1
τα

(6.1)

where τind and τα are the beam-induced and structural relaxation times, respec-
tively. We know that 1/τind is proportional to the flux F ; we can then rewrite
the above equation defining 1/τind = BF , leading to

τ = τα
BFτα + 1 (6.2)

with B the correct normalization factor which can be simply calculated from
Eq.(5.10).
Fig.(6.3) presents the relaxation times for the curves reported in Fig.(6.2) as
a function of the inverse flux. Both the relaxation times and the flux have
been normalized for the values corresponding to full beam conditions (τ0, F0,
respectively). At low temperatures (T=575 K), the relaxation time shows a
linear dependence in agreement with Eq.(6.1-6.2), since τα � τind and the
induced dynamics are dominating the overall relaxation. Close to Tg, however
τα ≈ τind and the sum in parallel of the two relaxation times (structural and
beam-induced) smears the flux dependence of the measured relaxation time:
in the end, the function of Eq.(6.2) saturates for small fluxes F , allowing the
measurement of the structural relaxation time, Fig.(6.3). The extrapolated
structural relaxation time (obtained fitting Eq.(6.2) to the experimental data)
at the peak of the structure factor at T=708 K is found to be τα = (10.6±0.6) s.
Note that this value is comparable to that obtained from the dynamic light
scattering measurements reported in Ch.(4), supporting the present analysis.
Finally, we should spend few words regarding the value obtained for the number
of LiBO2 units that move after a photo-absorption event. In fact, from the
estimation of the beam-induced relaxation time through Eq.(6.2) and using
Eq.(5.10) discussed in the previous chapter, we estimate a number of units
Nu = 665± 40 at T=708 K, a value almost a factor 10 larger with respect to
the one obtained at room temperature. The value might reflect a change of
the number of topological constraints in the network above the glass transition
temperature, but further studies are required to clarify this point.

6.1.2 The temperature dependence of the beam-induced
dynamics

A more detailed temperature investigation of the beam-induced dynamics in
the lithium metaborate glass has been performed during the experiment at the
ESRF reported in Sect.(5.2.2). The setup used was optimized for high contrast
and the measurement of fast correlation functions in the liquid (detector:
EIGER 500K). This limited the accessible q-range to very few angles across the
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peak of the structure factor. We decided then to perform the acquisitions at a
fixed q = (17.0± 0.2) nm−1 at the peak of the scattered intensity. A sample
of glassy LiBO2, W = (120± 10) µm, was mounted in a copper sample holder;
care was taken to improve as much as possible the thermal contact between
the sample and the holder by inserting thin aluminum sheets in between. The
sample holder was then mounted in a dedicated vacuum furnace with kapton
windows. The measurements were performed with full beam (F = 11× 1010

ph/s) and the sample temperature scanned several times across the glass
transition. Once again, we paid particular attention to avoiding beam damage,
as reported above and in the literature [9, 104, 109, 157]. For this reason, the
absorbed dose was kept below 1 GGy.

Figure 6.4: a) Relaxation times as a function of the normalized inverse
temperature for a LiBO2 glass measured with XPCS (blue squares) and with
visible light scattering (green diamonds). The grey dashed line is a VFT fit (see
Eq.(2.7)) to the DLS data. b) Relaxation times as a function of the normalized
inverse temperature for a boron-oxide glass measured with XPCS at the ESRF
(orange diamonds) during the here considered beamtime and compared with the
data reported in [9] (light purple circles). The gray dashed line is an Arrhenius
fit to the equilibrium data from [62]. The red dashed line is a fit with Eq.(6.1)
to the XPCS relaxation times.

Fig.(6.4) shows the relaxation time as a function of the inverse temperature
(normalized to the glass transition temperature Tg) for two samples, namely
lithium metaborate (LiBO2) and pure boron oxide (B2O3) glasses. For the
boron oxide glass, Eq.(6.1) holds for the whole probed temperature range with
a temperature-independent beam-induced relaxation time, i.e. from ambient
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(T=300 K) to above the glass transition temperature, see Fig.(6.4 b) for details.
The situation is very similar for the LiBO2 glass. As shown in Fig.(6.3), Eq.(6.1)
is still fully valid at a given temperature for different incident fluxes and close to
Tg too. However, here we have to hypothesize that the beam-induced relaxation
time is temperature dependent in order to describe the experimental data below
the glass transition where τα � τind. In Fig.(6.4 a) it is clear that the relaxation
time decreases by a factor almost 3 while cooling the sample from T=613 K to
ambient temperature (T=303 K). The relaxation time has an overall behavior
very similar to the one observed in pure boron oxide where, well below the
glass transition temperature, with the structural relaxation completely frozen,
the beam-induced effect triggers density rearrangements with each absorbed
photon moving a given number of atoms.
A similar behavior is observed in silicates [7] where, despite the beam dynamics
were still unknown at the time of the experiment, the authors showed that
the relaxation time tends to decrease upon heating, meaning that the beam-
induced dynamics are somehow activated by the temperature of the sample.
On the other hand, in the lithium-borate glass studied here, the photo-induced
relaxation becomes less efficient approaching the glass transition: we will show
in the following that this behavior can be associated with stresses frozen in
during the sample preparation.

6.1.3 The glass transition in LiBO2

We conclude here the investigation of the beam-induced dynamics as a function
of the temperature in the lithium-metaborate glass, discussing our findings in
more detail.
The measurements have been performed while cycling the sample temperature
from ambient condition to just above the glass transition temperature and
back. In Fig.(6.5 a) the relaxation time has been reported for three subsequent
temperature runs: starting from room temperature the glass was heated up to
T=703 K (orange squares); the sample was then kept in the under-cooled liquid
for 24 hours and cooled to room temperature (blue circles); measurements have
been collected at selected temperatures on the way back. The sample was
then heated once again to T=633 K (light-purple diamond). All the reported
changes in temperature have been performed with temperature ramps of 3
K/min.
The temperature paths followed are shown as colored arrows in Fig.(6.5 a). As
can be clearly seen, the relaxation time deep in the glassy state, where the
dynamics are completely dominated by the beam-induced effect, shows an effect
of annealing, with the relaxation time increasing after the first cooling (the
temperature was decreased at 3 K/min). We recall that the pristine glass was
produced quenching the liquid between preheated steel-plates and the obtained
glass kept for 6 hours at 643 K and then cooled down to room temperature at
0.5 K/min. We initially chose 643 K aiming at annealing the glass 20 K below
the calorimetric glass transition temperature reported in literature [106]. We
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discovered afterwards, thanks to light scattering measurements, that Tg=704
K was much higher, in agreement with other references [131]. Therefore, we
conclude that the cooling protocol followed during run 2 has effectively an-
nealed the as-prepared glass. This is reflected in the fact that, close to room
temperature, the relaxation time increases by a factor 2 after the thermal
protocol (right-most blue and orange points), and that heating up again the
sample (run 3) the dynamics slows down even more. Summarizing, a more
equilibrated structure shows a slower beam-induced relaxation time.

Figure 6.5: a) The relaxation time for a LiBO2 glass is reported as a function of
the normalized inverse temperature for three successive thermal runs: heating
(orange squares), cooling (blue circles) and heating again (light-purple diamond).
The measured DLS data are reported as green diamonds, together with the
VFT fit (gray dashed line). b) The stretching parameter β as a function of
temperature is reported for the three thermal runs indicated in a). The gray-
dashed line corresponds to β = 1. The equilibrium values measured here with
DLS and taken from the literature [111] are shown as a black-dotted line and
black-continuous line, respectively.

These aspects suggest that, despite the overall behavior being described as a
sum of spontaneous fluctuations and beam-induced relaxation rates, the details
are related to the stress frozen in the network. We recall that the inverse
relaxation time (1/τ) is proportional to the number of atoms that rearrange
after a photon-absorption event, Nu, as indicated by Eq.(5.10) [9]. Cooling
the liquid down slowly across the glass transition, as done here, gives rise to a
more equilibrated glass (lower in enthalpy) than the as prepared glass. The
experimental observation is that the more equilibrated is the glass, the smaller
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is the number of atoms that move when the X-ray beam perturbs the local
structure. The relaxation time of the beam-induced dynamics would then be,
in the end, related to the stresses frozen in the glass.
Note that the result can also be rationalized using a purely structural point
of view. In fact, as reported in Ch.(5), the LiBO2 glass is composed of two
superstructural units, namely the metaborate (M3) and (loose) N4. Their ratio
is well known in the glassy state from NMR measurements [165] and is roughly
60% and 40%, respectively (see Fig.(5.16)). Recently, it was demonstrated
that upon heating the system above the glass transition temperature, the sp3

hybridized N4 are converted in three coordinated sp2 [182–184]. From charge
conservation arguments [165], it is clear that the N4 units can only be converted
into M3 ones, leading to an effective change in the topology of the network as
the temperature is increased. In the liquid state, the fraction of four-coordinated
borons decreases down to ∼ 12% [183, 184]. When the liquid is quenched below
Tg to produce a glass, the ratio between three- and four-coordinated borons
will depend on the cooling rate, as observed in borosilicate glasses [185]. In fact,
a fast quench of the liquid will end up in a higher fictive temperature (that is
the temperature at which the liquid has the same structure as the glass), with
a structural configuration more similar to that of the high temperature liquid.
Recalling Fig.(5.19), we can calculate that an increase by a factor two in the
number of atoms that move following the absorption of an X-ray photon would
correspond to a ∼5% larger fraction of M3 units. Note that changes on the
order of a few percent between the fraction of different structural groups have
been observed for borosilicate glasses [185] when the cooling rate is changed by
three decades.
The picture that emerged in this section could seem, at first sight, in contradic-
tion with the discussion carried out in Sect.(5.2.2). There we showed that the
more the network is stressed-rigid, the smaller the number of atoms that move
following the absorption of a photon. Following the topological model of Mauro
et al. [172], we would expect that increasing the temperature of the system and
approaching the glass transition would decrease the number of constraints per
atom (see Fig.(5.12) for details). In particular, the temperature at which the
angular constraints B-O-B and B-O-M∗ soften is claimed to be close to the VFT
temperature for pure boron oxide (T0=328 K) [172]. Above that temperature,
the number of constraints per atom starts to decrease. Taking pure boron as the
prototypical example, we would expect that at the glass transition temperature
all the γ constraints are relaxed and the number of constraints per atom drops
to nc ∼ 2.4. In the spirit of this model, we would then predict a strong temper-
ature dependence of the dynamics, with shorter relaxation times upon heating.
This is clearly not the case for both samples studied here. What is the reason
of that? We believe the answer must be sought in the relevant time-scale of the
involved processes. We can expect that the softening of the angular constraints
(that is in fact the breaking and modification of the angular coordination) has
a time-scale comparable to the one of the structural relaxation (at least close
to Tg). On the other hand, the beam-induced relaxation must be much faster:
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the radiolysis process triggers a structural rearrangement which likely takes
place in the pico- to nano-second time range. The picture is confirmed by
the fact that the beam-induced dynamics appears as ”instantaneous” in our
experiments, just defined by the photon beam flux: the underlying process is
surely faster than all the time-scales involved in the experiment. Despite not
having precise values for the physical timescale over which the photo-induced
relaxation takes place, we can safely assume that it is much faster than that
related to the relaxation of the angular constraints close to Tg. In other words,
when the X-ray photon beam induces a density rearrangement, the glass ap-
pears frozen on the timescale of the process. The temperature does not then
play any relevant role here, neither at low temperature nor close to Tg. This
further explains why Eq.(5.10) works so well in the undercooled liquid. If our
interpretation is correct, we could observe an interplay between spontaneous
and beam-induced dynamics at high temperatures, i.e. at a temperature where
the timescale of the spontaneous density relaxations in the liquid matches that
of the beam-induced effect. However, this timescale is for the moment out of
range for XPCS experiments at synchrotron radiation sources.
The role of stresses in the beam-induced relaxation was quickly recognized in
the first works on the SiO2 silica glass [8]. There the authors found out that
this relaxation is characterized by compressed correlation functions (β > 1), a
phenomenon nowadays observed in many systems and considered an accepted
symptom of stress-related dynamics [3–5, 145, 152, 186], as discussed in detail
in Ch.(5). Until now, however, borate glasses have always shown stretched
or near simple exponential relaxations [9, 104, 109, 159]. Here we report that
this class of glasses show compressed correlation functions, in agreement with
observations of pure silica glass [8]. The stark contrast of our findings with
respect to the previous studies [9, 104] is attributed to two reasons. First
of all, the use of new generation, single photon counter detectors in place of
CCD cameras has greatly improved the quality of wide angle XPCS data. The
high frame rate of the EIGER detector utilized here does not limit the lowest
reachable integration time, which is actually fixed by the intensity scattered
by the sample. A second reason regards the peculiar dose-dependence of the
dynamics in borate glasses. In the second part of this chapter we will discuss
in detail that these systems exhibit a stretching of the correlation functions
that takes place after a few GGy of absorbed dose. This could be the reason
why compressed correlation functions were not observed in [159], where the
steady-state, high-dose regime was studied.
Finally, a few comments should be made regarding the experimental setup. We
have observed that compressed correlation functions can arise from artifacts
in the setup, in particular from a rigid macroscopic movement of the sample,
see Ch.(5) for the theoretical aspects and [187] for a work dedicated to the
nature of these spurious compressed correlation functions. The results reported
in this thesis have been obtained on different beamtimes at both the ESRF
and PETRA III. In order to cause a spurious decorrelation, the beam position
should move a considerable fraction of its linear size to cause a drop to 1/e of
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the contrast. If we consider the ID10 beamline at the ESRF, the beam pointing
stability is of the order of a micron, and the sample is mounted on a motorized
stage with comparable or better stability. Being the beam of 10×8 µm2 (H×V
FWHM), the observed decorrelation is incompatible with a macroscopic relative
movement of the sample with respect to the beam. Furthermore, if that was the
reason behind our observations, one would expect pure Gaussian-like correlation
functions (β = 2). The very same considerations hold for the setup at P10 of
PETRA III. We definitely exclude the possibility of artifacts of this kind for our
results: these setups have been employed for measurements of extremely slow
dynamics and their overall stability is in the range of several hours [4, 6, 7].
Fig.(6.5 b) shows the stretching parameter for the three thermal cycles discussed
above as a function of the temperature. As clearly seen, deep in the glassy state
(T�Tg) compressed correlation functions are measured for the beam-induced
dynamics, with β ∼ 1.5, incidentally close to the value measured in the silica
glass by Ruta and co-authors [8]. This behavior validates our hypothesis that
the relaxation proceeds through the stress-release mechanism upon radiolysis.
Heating the sample close to Tg we observe a stretching of the density correlation
functions, with β eventually falling below one and reaching the equilibrium
value of the undercooled liquid. The value reported as a black-continuous line
is the one reported in the literature [111], β = 0.64, and is compatible with the
one measured here using DLS, β = 0.57± 0.04 (black-dotted line). A similar
temperature behavior was previously reported in metallic glasses [6] and in
the pure boron oxide glass [110], despite not observing compressed correlation
functions in the latter case.
The compressed nature of the correlation functions reported here does not
depend on the annealing procedure: β is always larger than one in the glassy
state. This suggests that, as discussed above, the relaxation process is always
stress-induced, and that only the effective size of the regions that rearrange
after a photon absorption event is modified by annealing. We can observe in
Fig.(6.5 b) that the stretching parameter β decreases below 1 before reaching
the glass transition temperature Tg. This last conclusion, however, is supported
by just a few experimental data points and it is difficult to claim at this stage
that it is a real signature of a physical process. If this result were confirmed
by further experiments, it would highlight that the stretching parameter is
extremely sensitive to the approach to the glass transition in a temperature
range where the spontaneous relaxation time is still orders of magnitude longer
than any accessible experimental timescale.



114
The photo-induced transition from stress driven to stress free

dynamics

6.2 X-ray induced non-thermal annealing
In the second part of this chapter we tackle the problem of the dose dependence
of the beam-induced dynamics. In the first paper on this effect, Ruta et
al. showed that in SiO2 and GeO2 glasses the dynamics are stationary and
completely reversible, at least up to given absorbed doses [8]. Beyond that
threshold, structural modifications are clearly visible in the scattered intensity.
We demonstrate here that, together with the structure, the dynamics of the
glass change as well. This modification is permanent, suggesting that the
beam-induced changes the glass to a new, more relaxed state.

6.2.1 The stretching of the correlation functions

No beam

Figure 6.6: Correlation functions collected at the peak of the scattered intensity,
q = (17.0± 1.8) nm−1, for a LiBO2 glass. The curves correspond to different
total absorbed doses. On top of the figure, a sketch of the analysis procedure
is reported, highlighting the 20 minutes of waiting time between the different
parts of the measurement.

The data reported in this section have been collected in an experiment performed
at beamline P10 at Petra III. A beam of 8.4 keV photons was focused with beryl-
lium compound refractive lenses onto a spot of 1.9×2.7 µm2 V×H full width half
maximum (FWHM) on samples of lithium borate glasses, (Li2O)x(B2O3)1−x,
with two different compositions: x=0.22 and 0.5. The thickness was chosen
to be well below the attenuation length for both compositions, and was in the
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range W ∼ 100-150 µm. XPCS measurements have been performed at ambient
temperature (T=295 K) and the scattered photons were collected using an
EIGER 4M detector mounted on a goniometer arm in order to cover different
scattering angles (θ ∼ 2◦ − 30◦).
Fig.(6.6) shows the correlation functions measured for a LiBO2 glass and for
different absorbed doses. With the experimental parameters described above,
the absorbed dose is 9 MGy per second. The green diamonds correspond
to the first 200 seconds (thus 1.8 GGy) of exposure to the X-ray beam and
the intensity correlation function g2 is characterized by a compressed shape
(β > 1). However, if the images starting from 400 to 600 seconds of exposure
are correlated (corresponding to a total absorbed dose of 5.4 GGy), the g2
clearly changes shape, becoming stretched (β < 1, orange circles) but with
the same relaxation time as before. In order to check whether this stretching
effect is due to a thermal effect in the sample, the beam was switched off for
20 minutes (see the sketch reported on the top of the figure) and then an
additional measurement performed on the same spot. As can be seen, the
function has not regained the compressed shape displayed at the very beginning
of the measurement and we conclude that the effect is not a transient feature
caused by a temperature-induced change. Finally, we note that the curves
essentially do not change with further increases of the absorbed dose (7.2 GGy
and 10.8 GGy). We now focus on the low-dose regime first, in order to highlight
similarities and differences with the well studied case of the silica (SiO2) glass.

6.2.2 The low-dose regime: ballistic like-dynamics
To begin with, let us consider the already discussed LiBO2 glass. For each
scattering angle, the detector has been divided in 3 or 4 regions of interest
(ROIs), see Ch.(4) for details, depending on the scattered intensity at that
given angle. In order to keep the absorbed dose as low as possible and catch
the first transient behavior of the beam-induced dynamics in our borate glasses,
we repeated measurements on a grid of points in the sample: each point is
irradiated for few tens/hundreds of seconds, and then the sample is moved
10 µm away (in horizontal or vertical directions). We composed in this way
grids up to 500 points covering few hundreds of microns of sample. During
the post-processing, the right number of images is selected and the correlation
function g2 calculated for each point and averaged over the mesh. We carefully
checked the homogeneity of the sample before performing the meshes (as already
discussed in Ch.(4)) which is essential since, in order to average, we require the
contrast to be the same for each scan. The obtained correlation functions then
have extremely good statistics, comparable to those of a long-exposure scan,
but with a relatively low dose, much less than 1 GGy. In order to understand
the effect of the dose and to choose the best compromise between the duration
of the measurement and the quality of the data, we calculated the KWW fit
parameters for different subsets of images. An example for the LiBO2 glass at
small angles is shown in Fig.(6.7). The low-q range is the most critical, since
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Figure 6.7: KWW fitting parameters for different lengths of the images’
sequences at few selected qs. While for large q-values the relaxation time
is shorter compared to the duration of the measurement, at the smaller qs
only the first part of the decay is measurable: it is therefore necessary to
accurately define a minimum duration to obtain good quality curves keeping
the absorbed dose as low as possible. We decided to select 40 seconds of
integration (highlighted rectangles) as a compromise.

there the correlation functions are longer and barely decay in the available
time-window. We decided to utilize the lowest q-data to find the upper limit of
the acceptable number of images for each point of the grid. The compromise
between the duration of the measurement and a dose as low as possible is
crucial, and in the end we opted for a maximum of 40 seconds of integration
time, as shown in Fig.(6.7), corresponding to a total absorbed dose of 0.36
GGy. In that time window the relaxation time does not change considerably.
The relaxation times of the derived correlation functions, in particular at the
smallest scattering angles, are comparable with the duration of the measure-
ment itself, as we anticipated. In order to better fit a KWW function to
the data, we have fixed the baseline to the value obtained correlating images
corresponding to different points of the mesh. Since those belong to different
structural configurations, we obtain a reliable estimate of the baseline, which
is essentially due to the non-uniform detector illumination (see Ch.(3) for
details). This procedure allows us to correctly fit the data even if only the
first part of the decay is present. A few representative experimental curves
are shown in Fig.(6.8). The autocorrelation functions have been normalized to
the experimental contrast c after subtraction of the baseline (d) calculated as
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Figure 6.8: Correlation functions, with the baseline (d) subtracted and nor-
malized to the experimental contrast (c), for different exchanged wave-vectors
and with a total integration times of 40 seconds (green and orange diamonds),
23 seconds (blue points) and 13 seconds (yellow points). The black-continuous
lines are the best KWW fits to the experimental curves.

described above. Note that the length of the scans is not fixed to 40 seconds
for all momentum transfers but, instead, a variable dose is selected for different
q-points. We in fact expect that, if the dynamics is characterized by a non
stationary behavior, its dose dependence scales as that of the relaxation time
(at that specific exchanged wave-vector value). The number of images used
to calculate the correlation function has then been fixed to correspond to one
relaxation time, τ , up to an upper bound of 40 seconds.
In Fig.(6.9 a) the relaxation times obtained from fitting the KWW model to
the g2 functions are reported. The dynamics are characterized by a ballistic-
like dependence, with 1/τ ∼ q: the red dashed line corresponds to a fit with
a power law, leading to τ ∝ q−γ with γ = 1.09 ± 0.04. In order to verify
whether our choice of the integration windows (fixed to one relaxation time) is
critical to grasp the peculiarity of the observed dynamics, we also calculated
the correlation functions fixing the integration time to 40 s for all exchanged
wave-vectors. The obtained relaxation times as a function of q are displayed in
Fig.(6.9 b). As can be clearly seen, the ballistic like dynamics is still preserved
at low momentum transfer, where the relaxation time is comparable to the
integration time (here the integration time is 40 seconds for both analyses).
However, at higher exchanged wave-vectors we observe a different q-dependence,
which ends up in a sub-linear dependence with 1/τ ∼ √q.
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Figure 6.9: a) Relaxation time as a function of the exchanged wave-vector for
the LiBO2 glass. The doses absorbed by the sample were selected integrating
for a time T ∼ τ , but with an upper limit of 40 seconds. The first 6 points
have been exposed for this duration, corresponding to 0.36 GGy, while the
others refer then to lower doses. The non-linear power law fit gives τ ∝ q−γ,
with γ = 1.09± 0.04, compatible with the ballistic picture (red dashed line).
b) Relaxation time as a function of the exchanged wave-vector fixing the
integration time to 40 seconds for all points. For q > 10 nm−1 the resulting
dependence is τ ∝ q−γ, with γ = 0.55± 0.06 (red-full line).

This direct comparison confirms that the change in the q-dependence of the
relaxation time from ballistic-like to sub-linear is clearly an effect introduced
by the chosen integration window.
Fig.(6.10 b) shows the stretching parameter as a function of the scattering vector.
At intermediate and high qs (q ≥ 8 nm−1) the value is almost q-independent
and β = 1.67± 0.03. A reduction is observed for q < 8 nm−1, where β tends to
fall even below 1. However, note that this behavior does not change the picture
discussed before. We still observe a ballistic-like dependence for the the average
relaxation time 〈τ〉, Fig.(6.10 a), which takes into account the q-dependence of
β. We recall here that 〈τ〉 = τ/βΓ[1/β], where Γ is the Euler function.
The drop in the stretching parameter at small angles is not observed, as we will
show soon, for the (Li2O)0.22(B2O3)0.78 glass and is probably an effect due to
the fast changing dynamics. Fig.(6.11) shows the two time correlation functions
for the lithium metaborate glass at q = 1.5 nm−1 and q = 15.3 nm−1 that
exhibit non-stationary dynamics. However, at q = 1.5 nm−1, a strong speed-up
after few tens of seconds is observed together with an anomalous beating in
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Figure 6.10: a) Wave-vector dependence of the average relaxation time for
the LiBO2 glass. The ballistic dynamics is well captured by the power-law
fit, which leads to τ ∝ q−γ, with γ = 1.11 ± 0.04 (red dashed line). b) The
stretching coefficient is reported as a function of the wave-vector. The average
value for q ≥ 8 nm−1 is β = 1.67± 0.03 (red dashed line).

the correlations. The window of 40 seconds for our ”low-dose” investigation,
despite being shorter than the first decay of correlation, could still be affected
by the non-stationary dynamics. However, as reported in Fig.(6.10 a), the
stretching of the correlation functions at low momentum transfer does not
change the dependence of the average relaxation time that remains ballistic.
The ”beatings” in the two time correlation function are not observed after the
sample has been irradiated. They may be due to the scattering from the surface
changing upon X-ray irradiation but we do not have other evidence supporting
this speculation.
The same measurements were performed on the (Li2O)0.22(B2O3)0.78 glass. Here
we applied the procedure reported for the LiBO2 glass, keeping an integration
time of up to 40 seconds per point (corresponding to an absorbed dose of 0.39
GGy) or equal to one relaxation time, when this is smaller than 40 s. Note that
the small difference in the absorbed dose for 40 seconds of exposure for the two
samples is due to small differences in thickness and attenuation length.
Fig.(6.12 a) shows the q-dependence of the relaxation time. As for the previous
glass, τ obeys a ballistic-like q-dependence, namely τ ∝ q−γ with γ = 1.10±0.02.
Furthermore, we observe that the stretching parameter is almost constant and
compressed over the whole probed q-range (β = 1.88 ± 0.02, Fig.(6.12 b)),
confirming that the reduction observed in LiBO2 at low q is likely due to the
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Figure 6.11: Two times correlation functions calculated for q = 1.5 nm−1

(left) and q = 15.3 nm−1 (right) for the LiBO2 glass. The red squares at the
bottom-left indicate the sub-matrix utilized to extract the correlation functions
(40 and 14 seconds, respectively). An anomalous beating effect is observed only
at small angles, and not at high qs. Note the different colorbars’ scale for the
two matrices, reflecting the higher contrast at low angles due to the reduced
path length difference in the scattering volume, Eq.(3.60).

fast speed-up of the dynamics.
The dynamical properties reported in this section shine some light on the
nature of the beam-induced relaxation. For very low doses, the emergence
of a τ ∝ q−1 for compressed correlation functions is a clear signature of a
stress-induced process, as discussed in detail in Ch.(5). The role of stresses in
the beam-induced dynamics was suggested in the first work on silica glasses,
where compressed correlation functions were observed [8]. Here we captured
an additional distinguishing feature of stress relaxation, which is the ballistic
q-dependence. Recalling the considerations carried out in the chapter dedicated
to the colloidal glasses, the dynamics here can be described in terms of stress-
induced velocity fields. The values of the β parameter obtained for the lithium
borate glasses, close to 2 for the (Li2O)0.22(B2O3)0.78, suggest that the dynamics
proceed with the ballistic displacement of atoms over a distance 1/q with a
relative particle velocity distribution close to a Gaussian (see Ch.(5)). Note that
for LiBO2, it is difficult to discriminate whether the observed β = 1.67± 0.03
is due to an effectively different microscopic velocity field distribution or an
artifact caused by non-stationary dynamics.
We highlight as well that the linear q-dependence of the relaxation time is ob-
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Figure 6.12: a) Wave-vector dependence of the relaxation time for the
(Li2O)0.22(B2O3)0.78 glass. The non-linear power law fit to the data gives
a relaxation time τ ∝ q−γ , with γ = 1.10±0.02 (red-dashed line). b) Stretching
parameter as a function of q. The weighted average (red-dashed line) of the
values obtained for q > 4 nm−1 gives β = 1.88± 0.02.

served over the whole exchanged wave-vector range investigated here, implying
that the dynamics are effectively ballistic from inter-atomic distances up to few
nanometers. Incidentally, this is the typical size of the regions ”fluidized” by a
photon absorption event, as demonstrated in Ch.(5). Furthermore, the data
show that the relaxation is not affected by the local environment (de Gennes
effect), but is fully dictated by the release of stresses at all probed length-scales.
To conclude, we comment on the different results obtained previously for LiBO2
[104, 109]. There, the inverse relaxation time was observed to scale as a square
root, 1/τ ∝ √q. From Fig.(6.9), it is clear that, as soon as the absorbed dose
is increased above a given threshold (here few relaxation times), the power
law describing τ(q) weakens, leading to a sub-linear q-dependence. At the
doses utilized in [104, 109] the sample is being effectively irradiated to a level
where the ballistic dynamics is no longer observable and further analysis in this
direction will be reported later in this chapter. Regarding the first experiment
on SiO2 glasses [8], a 1/τ ∝ √q dependence was also reported. It would be
interesting to further investigate that sample at even lower doses in order to
discriminate whether the ballistic dynamics is present there too.
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6.2.3 The dose dependence of X-ray annealed samples

Figure 6.13: a) Scattered intensity for the (Li2O)0.22(B2O3)0.78 glass as a
function of the exchanged wave-vector, q, for different total absorbed doses.
b) Two q-values have been selected and the dose-dependence of the scattered
intensity modeled using I(dose) = a + b exp[−dose/τd]. The obtained values
of the decay dose are τd = (3.53± 0.05) GGy and τd = (3.24± 0.07) GGy for
q = 2.49 nm−1 and q = 15.77 nm−1, respectively.

As we have seen in the previous section, the dynamics of borate glasses are
extremely sensitive to the absorbed dose. Thus, it is natural to investigate the
relaxation properties as a function of the irradiation.
We start by discussing the structural modifications upon X-ray irradiation
[8, 9, 104, 109] for the two different samples of interest here. Fig.(6.13 a)
shows the scattered intensity for the (Li2O)0.22(B2O3)0.78 glass. Two repre-
sentative momentum transfer values have been selected (q = 2.49 nm−1 and
q = 15.77 nm−1) and the intensity there is reported as a function of the dose,
Fig.(6.13 b). We modeled the experimental dose-dependence as an exponential
function, I(dose) = a + b exp[−dose/τd], where b > 0 for q > 14 nm−1 and
b < 0 for q < 14 nm−1 (following the intensity decrease/increase). The fit of
this model to the dose-dependence of the intensity suggests a decay dose of
τd ∼ 3.3 GGy at the considered exchanged wave-vector which is the typical
time needed for the structure to change upon irradiation.
A similar analysis can be carried out over the investigated exchanged wave-
vector range, as shown in Fig.(6.14). The dose-dependence of the scattered
intensity is modeled at each q and the obtained decay dose τd reported (red
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squares). Two regimes are clearly observable. At small exchanged wave-vectors
(q < 3 nm−1) the typical decay dose seems to increase up to 5 GGy at the
lowest probed q. For q > 3 nm−1 the decay dose is almost independent of the
exchanged wave-vector with a value close to 3 GGy. Note that the singular
behavior at q ∼ 14 nm−1 and q > 18 nm−1 is due to the fact that the scattered
intensity does not change considerably in those ranges (see the scattered intensi-
ties shown in Fig.(6.14) for different doses). We conclude that the average dose
which leads to a decay in the scattered intensity is ∼ 3 GGy (value close to the
one obtained from the two selected momentum transfer values in Fig.(6.13)).
Note that this value is much larger than the total absorbed dose considered
for the low-dose analysis reported in the previous section, where the maximum
exposure was fixed to 0.39 GGy because the dynamics are more sensitive to the
dose than the average structure. Finally, we observe that the intensity changes
by about 15% at the peak of the structure factor while, at small angle, the
change is much more marked, reaching 40% at q ∼ 2 nm−1.

Figure 6.14: Scattered intensity of the (Li2O)0.22(B2O3)0.78 glass as a function of
the exchanged wave-vector for two representative doses. The red squares are the
decay dose of the intensity as a function of q, according to the phenomenological
equation reported in the main text.

The same procedure has been followed for the other sample of interest here,
namely LiBO2. Fig.(6.15 a) shows the scattered intensity for different doses at
two representative exchanged wave-vectors (dashed regions) and the relative
intensity as a function of the calculated dose (Fig.(6.15 b)). The fit to the
model I(dose) = a+b exp[−dose/τd] has been performed up to a total absorbed
dose of 6 GGy (black-full lines). For q ∼ 1 nm−1, the formation of the low-q
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tail discussed in Fig.(6.1) has been described adding an additional stretched
exponential term (red line). The intensity starts to deviate from the simple
exponential dependence after 5 GGy and a considerable difference is observed
by 10 GGy. For this reason, 10 GGy could be indicated as a dose above which
the glass suffers significant beam damage. However, we decided to use a more
conservative threshold of 7 GGy for the discussions carried out in the following.

Figure 6.15: a) Intensity as a function of q for different absorbed doses for
the LiBO2 glass. b) The dose-dependence of the scattered intensity at two
exchanged-wave-vectors is reported, together with the best exponential fits
(black-full lines) and the additional stretched exponential term related due to
the small angle intensity increase (red dashed line). The obtained values of the
decay dose (black lines) are τd = (7.4± 1.3) GGy and τd = (3.3± 0.3) GGy for
q = 0.82 nm−1 and q = 17.05 nm−1, respectively.

Fig.(6.16) shows the fitted decay doses for the intensity as a function of q, as
already done for the other glass of (Li2O)0.22(B2O3)0.78. In this case, the decay
is again almost constant for q > 3 nm−1. A singular behavior in the fit results
appears at points where the intensity does not change as a function of the dose.
We can conclude that for LiBO2 the scattered intensity also decays at ∼ 3 GGy.
A peculiar difference in the relative change in intensity is observed: while at
small angles this change reaches 40 %, on the peak of the structure factor the
intensity decay corresponds to a reduction of intensity of only about 6%, much
less than for the (Li2O)0.22(B2O3)0.78 glass.
At the beginning of this section we introduced the fact that in borate glasses,
but possibly in other systems as well, the beam-induced dynamics is far from
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Figure 6.16: Scattered intensity for the LiBO2 glass as a function of the
exchanged wave-vector for two representative doses. Note that at 9.9 GGy the
small angle peak starts to be visible. The red squares are the decay doses of
the scattered intensity as a function of q, according to the phenomenological
exponential equation reported in the main text. The fitting procedure has been
performed up to 6 GGy for all q-points.

being a stationary process. Upon irradiation, the shape of the intensity corre-
lation function changes strongly, passing from being compressed to stretched,
see Fig.(6.6). For the sake of clarity, we now restrict our attention to the peak
of the scattered intensity. The full q-dependence will be discussed in the next
part of this section.
Fig.(6.17) shows the relaxation time and the stretching parameter for LiBO2 as
a function of the irradiation dose for q = (17.14± 0.45) nm−1. For this analysis,
we first computed a full two time correlation matrix for all the available images
and then extracted small subsets lasting 300 seconds each. This ”extraction”
window has been moved in steps of 100 seconds in order to build up the dose
dependence of the KWW parameters. Note that this procedure introduces
some smoothing of the parameters, since we are considering partially over-
lapped intervals of images. However, the procedure allows the estimation of
both the stretching parameter and the relaxation time. The lowest dose point
reported in Fig.(6.17) has been extracted from the low-dose analysis discussed
previously. Regarding the relaxation time, we observe that the reported values
are constant for all absorbed doses, up to 15 GGy (see Fig.(6.6)). As we
will show later, this result is not universal. However, the peculiarity of the
beam-induced dynamics is captured by the stretching parameter, Fig.(6.17 b).
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Figure 6.17: Relaxation time (a) and stretching parameter (b) as a function
of the total absorbed dose for q = (17.14 ± 0.45) nm−1 for the LiBO2 glass.
The intensity correlation functions used to extract these parameters have been
calculated over 300 seconds of integration. The black-continuous line on the
right is a fit of the experimental data with a simple exponential. The zero
dose stretching parameter is β(0) = 1.74± 0.08 while the infinite dose value is
β = 0.65± 0.02, compatible with the undercooled liquid values measured with
visible dynamic light scattering (dotted points, β = 0.57) and reported in the
literature (black-dashed line, β = 0.64) [111].

The decay of the stretching parameter, from the strongly compressed initial
value down to a stretched plateau, is well described by a simple exponential law
(black-continuous line). The model has no special physical basis, but gives the
possibility to extract important information in a systematic way. In particular,
the stretching coefficient is characterized by a decay dose of τd = (3.0±0.3) GGy,
incidentally the same dose-scale reported for the intensity drop. Furthermore,
the plateau value reached asymptotically is β = 0.65± 0.02, a value in good
agreement with that reported in the literature for the undercooled liquid [111]
and measured here using dynamic light scattering. This is a quite surprising
finding since, at room temperature, the glass of LiBO2 is more than 400 K
below the glass transition temperature and the dynamics that we are probing
is purely dictated by X-ray photo-absorption. The fact that for the pristine
glass compressed relaxation functions are observed is instead more expected.
As discussed during the temperature investigation, the frozen-in stresses relax
in a similar way as reported for metallic glasses [3, 4, 6], with the stresses
being released by the beam-induced dynamics as for silica [8]. However, a drop
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in the β parameter was not observed before. In previous works on borates,
the stretching parameter was always found smaller than one and even close
to the equilibrium value [9, 104, 109, 159]. Here we observe the full story of
the process. In the very beginning, the dynamics are governed by the stress
relaxation while, after they have been fully released, the relaxation is very
similar to the equilibrium typical, e.g., of the undercooled liquid (despite being
our samples hundreds of degrees below the glass transition temperature). The
process which is observed here is a sort of ”X-ray annealing”, where the photons
effectively fluidize the network, restoring the ergodicity of the system. The
main (relevant) difference with respect to what observed in a liquid is that the
relaxation time is beam-induced, dictated by the incident X-ray flux.

Figure 6.18: Relaxation time (a) and stretching parameter (b) as a function of
the total absorbed dose for q = (15.50± 0.45) nm−1 for the (Li2O)0.22(B2O3)0.78
glass. The correlation functions have been calculated over a 300 seconds range.
The black-continuous line on the right is a simple exponential decay fitted to
the experimental data. The zero dose stretching parameter is β(0) = 2.08±0.06,
compatible with a Gaussian shape, while the infinite dose limit is β(∞) =
0.66 ± 0.02, close to the undercooled liquid value reported in the literature
[111] of β = 0.60 and shown in the figure as a black-dashed line.

A very similar dose dependence for the KWW fit parameters is observed for
the (Li2O)0.22(B2O3)0.78 glass. Fig.(6.18) shows the relaxation time and the
stretching parameter for q = (15.50± 0.45) nm−1. The relaxation time in this
case is dose dependent, changing by almost a factor 3 between very low doses
(0.11 GGy) and 6 GGy. The stretching parameter, reported in Fig.(6.18 b),
shows a decreasing behavior once again well approximated by an exponential
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decay. In this case, the plateau value reached for high doses is β = 0.66± 0.02,
still very close to the equilibrium value measured in the undercooled liquid
[111].
For this glassy sample, the zero-dose correlation functions are almost Gaussians,
with β = 2.08± 0.06. The decay dose for the transition from the compressed
to stretched behavior is τd = (2.8 ± 0.2) GGy, a value again very similar to
that corresponding to the decay of the scattered intensity (or to its increase,
depending on the considered q). The similarity of the two dose-scales is in-
triguing since it suggests that a strong correlation exists between the change in
the structural properties and in the dynamical ones. In particular, from the
data reported here, we can conclude that the release of the stresses upon X-ray
annealing drives the system to a new structural configuration, characterized by
a different S(q). Note that this corresponds to the evolution towards a new
glassy state with reduced trapped-in stresses. While in LiBO2 the increase of
the scattered intensity in the range of q ∼ 1 nm−1 could suggest that some
sort of damage is taking place (note the similar dose-scale for X-ray annealing
and the growth of intensity at small angles), we can exclude that this plays a
major role here. Indeed, the same photo-annealing process is observed for the
(Li2O)0.22(B2O3)0.78 glass, where no signature of small-angle scattering increase
is visible up to ∼ 12 GGy. We exclude then that the observed transition is
due to beam damage. However, a dedicated small angle study of the irradiated
LiBO2 glass could clarify the nature of the small-angle scattering. In order to
grasp more details about this X-ray annealing process and possible connections
to the undercooled liquid state, we will discuss the exchanged wave vector
dependence of the relaxation process in the next subsection.
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6.2.4 The q-dependence of X-ray annealed samples: to-
wards the liquid state

Figure 6.19: a) Relaxation time as a function of q for different absorbed doses
for the LiBO2 glass. b) Stretching parameter as a function of q for different
absorbed doses. A clear de Gennes narrowing is observable in the q-dependence
of τ and a related oscillation appears also in that for β once the stresses have
been annealed-out.

We now want to understand how similar the undercooled liquid and the
X-ray annealed glass are. The analysis reported here has been performed in the
same way as described above with the two time correlation matrix computed
for each q value and for all the available images. Subsequently, an appropriate
sub-matrix is extracted (the time-length was chosen to be 300 seconds). Finally,
the g2 function is calculated from the (sub) two time matrix and described
using a KWW model. The absorbed dose has been fixed in the whole exchanged
wave-vector range by selecting the same integration window for all the different
momentum transfer. Note that the low dose data, exhibiting ballistic dynamics,
were previously discussed in Sect.(6.2.1).
First, let us start to consider the LiBO2 glass. Fig(6.19 a) shows the relaxation
time for different total absorbed doses. An unusual dose dependence is observed
as a function of q. On the peak of the structure factor (q ∼ 17 nm−1) τ is almost
dose-independent while, a strong dependence is observed at smaller exchanged
wave-vectors, in the range q ∼ 1 − 10 nm−1. The relaxation time decreases
abruptly by almost one decade at the smallest probed q. The net effect is a
weakening of the q-dependence of the relaxation time and the formation of a
”peak” of slower relaxation close to the maximum of S(q): this is the de Gennes
effect discussed in Ch.(4). A similar oscillation in phase with S(q) is observed
in the stretching parameter, Fig(6.19 b).
Fig.(6.20 a) shows the same relaxation times as before, but with a power law
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Figure 6.20: a) Relaxation time as a function of q for different absorbed doses
for the LiBO2 glass, as already reported in Fig.(6.19). The black-dashed lines
are power law (τ = α · q−x) fits to τ for 2 ≤ q ≤ 8 nm−1 (for the lowest dose,
the fit has been performed over the whole available q-range). b) The fitted
power law exponent x is reported as a function of the absorbed dose.

Figure 6.21: a) Relaxation time as a function of q for different absorbed doses
for the (Li2O)0.22(B2O3)0.78 glass. b) Stretching parameter as a function of q
for different absorbed doses. The de Gennes effect is very pronounced in the
q-dependence of the relaxation time, but the corresponding oscillation in the
stretching parameter β is very weak.

fitted over the low q range (black-dashed lines). The power law weakens with
increasing dose, as reported in Fig.(6.20 b), passing from a ballistic regime
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Figure 6.22: a) Relaxation time as a function of q for different absorbed
doses for the (Li2O)0.22(B2O3)0.78 glass, as already reported in Fig.(6.19). The
black-dashed lines are power law (τ = α · q−x) fits to τ for 1 ≤ q ≤ 8 nm−1 (for
the lowest dose, the fit has been performed over the whole available q-range).
b) The fitted power law exponent x is reported as a function of the absorbed
dose.

(1/τ ∼ q) to 1/τ ∼ √q. Observing the exponent x as a function of q, it is clear
that after a few GGy the ballistic dynamics are already washed out, reaching
practically a 1/τ ∼ √q dependence as reported in [104, 109].
Very similar considerations are also valid for the (Li2O)0.22(B2O3)0.78 glass.
Fig.(6.21) shows both the relaxation time and the stretching parameter as
a function of q for a few relevant absorbed doses. Here we observe that the
relaxation time is not constant at the peak of the structure factor (q ∼ 15 nm−1)
but increases with the dose, as reported previously in Fig.(6.18 a). We still
observe the development of a clear de Gennes narrowing, with a weakening of
the overall q-dependence of τ . The stretching parameter decreases accordingly
with the absorbed dose, while in this specific case the oscillation in phase
with the S(q) is almost absent, in contrast to what observed in LiBO2. In
Fig.(6.22 a) the relaxation time is again shown together with the power law
fit, τ = α · q−x. In this case too, the disappearance of the ballistic dynamics is
evident after an absorbed dose comparable with the intensity decay dose (or
stretching coefficient decay dose) of few GGy.
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6.2.5 Direct comparison with the liquid
To better account for the similarities between X-ray annealed glasses and
undercooled liquids, we can compare the XPCS results shown in Fig.(6.23) with
the structural relaxation time of the undercooled liquid LiBO2, investigated in
Ch.(4) (plotted as light-blue circles appropriately normalized for its peak value
τmax). Note the close similarity with the X-ray annealed glass: both display
the de Gennes narrowing on top of an almost flat q-dependence, as expected
from simulations of different systems [116, 120, 125, 126] and as reported
in undercooled metallic liquids [95]. As discussed in Ch.(4), the stretching
parameter for the correlation functions for the liquid has been fixed to the
value β = 0.50 in the whole exchanged wave vector range, again very similar to
what observed for the X-ray annealed glass. In Fig.(6.23) we reported the de
Gennes approximation, S(q)/q2, utilizing the structure factor of the pristine
glass (black-dashed line) and the photo-annealed one (red-dashed line). It is
clear that the curves, regardless of failing to capture the low-q regime for the
relaxation time as anticipated, well approximate the behavior around the peak.
Moreover, the photo-annealed glass displays the peak of the relaxation slightly
shifted towards lower qs, a behavior reproduced by the de Gennes narrowing
approximation too.

Figure 6.23: Relaxation time as a function of the the exchanged wave-vector q
for the undercooled liquid at T=708 K (light-blue dots) and the X-ray annealed
glass (orange points). The data have been normalized to the value at the
peak of the oscillation at finite q, τmax. The de Gennes approximation for τ(q)
is reported as a black-dashed line and a red-dashed line for the pristine and
photo-annealed glasses, respectively.
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Fig.(6.24) shows the very same data as in the previous figure, but now compared
to the structure factor, S(q). As it can be seen, the flat q-dependence observed
at small exchanged wave-vector is well captured by the S(q), together with
the increasing relaxation time before the peak value (q ∼ 17 nm−1). At high
exchanged wave-vectors, instead, the relaxation time displays an important
reduction which is not captured by the structure factor. However, overall the
relaxation time for both the liquid and the photo-annealed glass oscillates in
phase with the structure factor, as observed for example in [95], a clear sign
that the observed dynamics involves a collective density relaxation.

Figure 6.24: Relaxation time (normalized) as a function of the the exchanged
wave-vector q for the undercooled liquid at T=708 K (light-blue dots) and
the X-ray annealed glass (orange points). The structure factor S(q) has been
reported for the pristine glass (black-dashed line) and the photo-annealed one
(red-dashed line).

Note that an oscillation in q in phase with the S(q) is also observed in the
stretching parameter for the X-ray annealed glass of LiBO2, Fig.(6.19), while it
is almost missing for the (Li2O)0.22(B2O3)0.78 glass.
Despite our experimental data showing a fascinating agreement with most
simulations [116, 120–122] (but not all, see [126]), we should spend few words
here discussing the role of the beam-induced dynamics. In fact, recalling
Fig.(6.3), we note that the true value of the structural relaxation is almost a
factor 2 slower than the characteristic time measured experimentally. Utilizing
the formalism discussed above, in particular Eq.(6.1-6.2), we can extrapolate a
value of τα = (10.6± 0.6) s at the peak of the structure factor (q ∼ 17 nm−1).
All the data shown in Ch.(4) have been collected with an attenuated beam
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Figure 6.25: Relaxation time for undercooled LIBO2 liquid at the temperature
T=708 K (green points) together with the same data corrected for the beam-
induced effect (light-blue and orange points). Two possible q-dependencies have
been guessed for the q-dependence of the beam-induced characteristic time:
τind ∼ q−1 (light-blue line) and τind ∼ q0 (orange line).

F = 0.2067F0. Following Eq.(6.1-6.2) we can estimate the contribution of
the beam-induced dynamics, which is equal to τind = (8.3± 0.5) s. A possible
correction scheme for the experimental data is thus the deconvolution of
the beam-induced effect utilizing Eq.(6.1). While this is straightforward at
the q-value corresponding to the maximum of the structure factor (where
τind = (8.3± 0.5) s), we need to guess a possible q-dependence for the beam-
induced dynamics in order to correct the data in the whole q-range. We have
demonstrated that for very low doses the dynamics are almost ballistic and
that τ tends to depend on q as a square root on increasing the dose. However,
this process is in competition with the structural relaxation and we do not
have direct access to it. A step ahead can be made considering the findings
on photo-annealing discussed in this chapter, where we have shown that the
beam-induced relaxation becomes almost q-independent as soon as the sample is
annealed towards the equilibrium state. In this spirit, in the undercooled liquid
we could expect an almost flat q-dependence of the beam-induced dynamics. For
these reasons, we show in Fig.(6.25) the experimental data for the LiBO2 liquid
(green points) together with the ones deconvoluted assuming a beam-induced
dynamics with two different power laws: τind ∼ q−1 (light-blue points) and
τind ∼ q0 (orange points). The black dot is the beam-induced relaxation time
extrapolated from Fig.(6.3) and is a fixed point for both possible q-dependences.
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The difference between the two correction schemes is small. The structural
relaxation time remains basically q-independent, and shows the characteristic
slow down of the dynamics in the proximity of the peak of the structure factor
(de Gennes narrowing effect).

Figure 6.26: Relaxation time as a function of the exchanged wave-vector for
three different systems. The exchanged wave-vectors have been normalized
for the value, qmax, corresponding to the peak of the structure factor. The
relaxation time has been normalized accordingly for τmax = τ(qmax). The
LiBO2 data (T=708 K) have been corrected for the beam-induced dynamics
effect, assuming for it a τind ∼ q0 dependence. The data for the liquid metals
are taken from [95].

Recently, a very similar result was reported for liquid metals where the probed
dynamics is purely spontaneous [95]. In Fig.(6.26) we show our data for the
q-dependence of the structural relaxation time for liquid LiBO2 together with
the ones of [95]. For the purpose of comparing such different data, both in
magnitude of the relaxation time and structure factor peak position (qmax),
we normalized the exchanged wave-vector for qmax and the relaxation time
for the corresponding τmax = τ(qmax). The data reported for the LiBO2 have
been corrected for beam-induced dynamics assuming a τind ∼ q0 dependence,
which in our opinion is the most plausible one. In any case, as discussed above,
the influence of this choice is very small. The strong similarity between the
two considered systems is clear. The relaxation time peaks in phase with the
structure factor, gaining almost a factor 2 with respect to the low-q regime.
This behavior confirms that the de Gennes narrowing effect is an ”universal”
feature of the structural relaxation close to the glass transition [116, 120–122].
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Figure 6.27: Scattered intensity as a function of the exchanged wave-vector
for LiBO2. The continuous lines are the data reported in Fig.(6.15) for two
selected doses. The light-blue diamonds and red squares are the data (rescaled)
collected during a different beamtime at P10 (Petra III, DESY). Note the
presence of small angle intensity also for a negligible dose: this might be due
to roughness of the sample surface.

To conclude this chapter, in Fig.(6.27) we compare the scattered intensity for
different samples of LiBO2. The continuous lines are the data already reported
in this section for the glass at two relevant doses. The points (light-blue
diamonds and red squares) have been collected during the beamtime discussed
in Ch.(4,6) where the temperature dependence was investigated. They have
been normalized in order to match the intensity on the peak at q ∼ 17 nm−1

which is necessary since in each beamtime we used samples with different
thickness and different sample-detector distances, corresponding to different
solid angles subtended by the detector pixels. After the normalization, we
observe a perfect agreement with the pristine samples measured in the two
different beamtimes (green-continuous line and light-blue diamonds). Heating
the sample up to just above Tg does not modify the structure of the system in
any relevant way.
The main feature we note observing Fig.(6.27) is the strong difference between
the scattered intensities of the pristine glass and the undercooled liquid with
respect to the X-ray annealed one. This implies that the glass is X-ray annealed
to a new, almost stress-free configuration, as suggested by the observation that
the stretching parameter has basically reached its equilibrium value. We could
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tentatively also say that this novel structure is more disordered, given the
lower scattered intensity at the peak of the structure factor. These conjectures
are, however, just speculations for the time being and will require additional
investigations to be accepted or discarded.
In any case, strong similarities in the XPCS data have been here reported
between X-ray annealed glasses and undercooled liquids. More studies have
then to be carried out, employing different techniques in order to measure
other properties (for example elastic moduli, density, effective temperature and
enthalpy) of the X-ray annealed glasses and clarify the nature of these systems.
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Chapter 7

Conclusions

In this thesis we have reported a detailed study of the relaxation processes
happening in glasses close to the glass transition temperature Tg. Our attention
was focused on two very different classes of materials, namely colloidal and
structural glasses, in which stress-induced rearrangements are in competition
with the spontaneous structural relaxation.

Stressed colloidal glasses: the induced-velocity field
Stresses are well known companions of amorphous materials, among which
colloidal systems exhibit the most extreme stress-driven processes. An exam-
ple is provided by the micro-collapsing gels [5], which paved the way to an
intense research on stress-induced dynamics. In this thesis, we investigated
in detail a suspension of silica nanoparticles dispersed in a binary mixture of
water-2,6 lutidine. The peculiarity of the samples discussed here is the strong
directionality of the dynamics. Our preparation procedure introduces stresses
in the network which do not relax before the experiment and trigger rearrange-
ments at the particle-size length-scale, characterized by the same symmetry
of the container, a cylindrical capillary. The dynamics can be modelled using
a formalism describing a net relative velocity field between different particles,
whose signature is a ballistic dynamics (τ ∼ 1/q) with compressed correlation
functions. The stretching parameter β = 2 is a symptom of a Gaussian distri-
bution of relative particle velocities. In addition, we investigated in detail other
aspects of this peculiar stress-induced relaxation. Using the formalism of the
four point susceptibility, χ4, we demonstrated that the rearrangements proceed
in a cooperative way, involving the joint displacement of almost 104 particles.
While the exact number is difficult to estimate [75], the length-scale of these
dynamical heterogeneities is an astonishing few micrometers. An accurate
analysis of χ4 with respect to q and t has shown that the dynamics have a
maximum of correlation at times corresponding to the relaxation time τ and
length-scales corresponding to the first neighbor distance. This result is in
agreement with existing simulations for undercooled liquids [156], despite the
relaxation in our case being completely dominated by stresses.
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The role of the network connectivity
A large part of the work presented here regards oxide glasses probed with
X-Ray Photon Correlation Spectroscopy (XPCS) with focus, in particular, on
the beam-induced dynamics [8]. While in the first studies [7–9], as well as in the
analysis of the XPCS measurements for the undercooled liquids reported here,
the photo-induced relaxation is treated as a detrimental effect which masks or
distorts the spontaneous rearrangements, we have shown in this thesis that one
can actually exploit this non-perturbative mechanism to efficiently investigate
fundamental properties of glasses. In Ch.(5) we utilized this mechanism to
study the medium-range order of lithium borate glasses. The structure of
this class of systems has been recently discussed in terms of network topology,
mostly due to the complex structures involving super-structural units in the
medium range. The development of new models to account for the network
rigidity [172, 173] is based on the available experimental results (mainly nuclear
magnetic resonance measurements [165]) and on the calculation of the average
number of constraints per atom, here called nc. Note that many details of
the network topology for alkali borate glasses are still unknown, and models
are becoming more and more precise only in recent years [173]. We have
demonstrated that the number of atoms (or equivalently the size of the regions)
that move upon the absorption of a hard X-ray photon (the beam-induced
dynamics) depends on the topology of the glass. In particular, this average size
is in the range of few nm and becomes smaller the more the glass is stressed.
The exact value ranges between 2.5 nm for pure boron oxide (an isostatic
glass, nc = 3) down to 1 nm for LiBO2 (a stressed-rigid glass, nc = 3.25). The
reported approach to probe the network topology is one of the first attempts to
directly measure it at the local atomic length-scale with scattering techniques,
despite it is known to play a role on macroscopic properties [170]. Furthermore,
our experiments shine new light on the role of alkali ions in the network: our
data suggest that the model proposed in [173] could be refined in the spirit
of numerical simulations [176]. The modified model developed here is further
supported by the fact that it captures the network topology dependence of
other physical quantities, for example the elastic moduli in the lithium-borate
glasses. The results that we have reported show the potential of exploiting
beam-induced dynamics as a pump and probe technique, and could pave the
way to a deeper understanding of medium-range order in glasses, a length-scale
difficult to access experimentally.

The undercooled LiBO2 liquid
We have further exploited the versatility of XPCS in order to explore the
wave-vector dependence of the density-density fluctuations in the liquid in the
range 2 . q . 22 nm−1, a q (across the maximum of the structure factor) and
time (order of seconds) range inaccessible to other experimental techniques.
We demonstrated that the relaxation time of the density fluctuation is almost
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constant at all probed length-scales, with a signature of de Gennes narrowing
close to the peak of the structure factor, as reported in simulations for many
[116, 120–122] but not all [126] systems. In fact we directly compared our
results with recent experimental data obtained in undercooled liquid metals,
systems well known not to display the beam-induced dynamics. The similarities
we observed support the thesis that the de Gennes effect is an universal feature
of undercooled liquids.
Despite the beam-induced dynamics contribution can be deconvoluted convinc-
ingly from the undercooled liquid data, as shown in Fig.(6.25), it is clear that
further investigations of the q-dependence of the beam-induced relaxation time,
τind, could give important information about the nature of the process. In
particular, it would be interesting to compare it with the photo-annealed data
obtained in Ch.(6). The most straightforward approach would be to perform
the same experiment for different q-values using different X-ray beam fluxes,
as done at the peak of the structure factor. This approach would allow us
to disentangle the beam-induced characteristic time q-dependence from that
of the structural relaxation. Finally, in order to get rid of the beam-induced
effect from the beginning and measure directly the structural relaxation, a
possible approach would be the low-dose scheme of speckle visibility [93, 188].
In all cases, new experiments are required in order to get access to the missing
information.

Beam-induced dynamics and photo annealing
In the last chapter of this thesis we explored the effect of the beam-induced
dynamics on the properties of the glassy state. In particular, we demonstrated
that in alkali-modified glasses compressed correlation functions, a symptom
of a stress-relaxation mechanism, are observed as long as the absorbed dose is
kept below a given threshold. This finding, similar to what has been observed
in silica and germanate glasses [8], has been further investigated in the LiBO2
glass showing that, on approaching the glass transition, the stresses trapped in
the network are released, which gives rise to stretched correlation functions.
This picture is confirmed by the investigation of the q-dependence of the
beam-induced dynamics, carried out on two particular glasses of the family
(Li2O)x(B2O3)1−x, with x=0.22 and 0.5. Our findings show that the dynamics
proceeds ballistically, with a relaxation time inversely proportional to the
exchanged wave-vector, τ ∼ 1/q in the whole probed q-range. The property,
very similar to the results obtained in the colloidal glass, clearly shows that
this dynamics can be related to a relative velocity field between the atoms.
The observed correlation functions are strongly compressed, with a value of
β approaching 2 for the (Li2O)22(B2O3)78, indication of an almost Gaussian
relative velocity distribution. The characteristic τ ∼ q−1 dependence is observed
over the whole probed exchanged wave-vector range and suggests that the
dynamics is effectively stresses-related at least up to ∼nm.
It was quickly recognized that the X-ray beam absorbed by oxide glasses tends to
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modify the structure of the glass [8, 9, 104]. In previous studies, it was imagined
that the structure remains basically unaffected until a threshold dose is reached,
and beyond that dose the beam damages the material. In this thesis, we aimed
at investigating in more detail the effect of these structural modifications on the
dynamical properties. We observed that the dynamics are much more sensitive
than the structure to the X-ray beam with the stress-induced ballistic dynamics
starting to disappear and being replaced by a dynamics characterized by a
weaker q-dependence very quickly and at very small doses. At the same time,
the β shape parameter decreases from a strongly compressed value (β ∼ 2) down
to the near-equilibrium one reported in literature [111]. The typical dose needed
for the dynamics to reach this limit is almost equal to the one observed for the
change of the structural properties and is about 3 GGy for both glasses here
investigated. A straightforward comparison of the data collected for the liquid
state and those collected for these irradiated samples has shown fascinating
similarities. Considering the LiBO2 glass, after ∼ 6 GGy of absorbed dose
the beam-induced dynamics is characterized by an almost flat q-dependence
with a marked de Gennes narrowing close to the peak of the structure factor.
This fact, together with the observation that the stretching parameter has
decreased to the equilibrium value, suggests that the beam-induced dynamics
effectively anneals out the residual stresses in the glass. In other terms, the
non-thermal rearrangements triggered by the photon absorption, whatever is
their exact mechanism, locally ”fluidize” the network restoring the ergodicity.
The system can then relax towards a more equilibrated configuration, releasing
the trapped-in stresses.

7.1 Future perspectives and applications
In this thesis we explored the relaxation of the density across the glass transition,
highlighting the different aspects of near-equilibrium dynamics, for example
in the undercooled liquid state, and non-equilibrium dynamics, dominated
here by the internal stresses. In order to investigate fundamental aspects
related to this latter process, namely the stress release mechanism, we decided
to study both colloidal glasses and the prototypical family of oxide ones. If
in colloidal systems the out-of-equilibrium relaxations are a well-established
feature [5, 148, 150, 151], in structural glasses the picture is still incomplete,
in part due to the difficulties of probing the slow timescales (seconds) on the
atomic distances. The studies of Ruta et al. on metallic glasses have elucidated
the role of stresses [3, 4, 6], but the peculiar beam-induced dynamics observed in
oxide glasses [8] complicates measurement and interpretation for the interesting
case of oxide systems.
We have studied in some detail beam-induced dynamics in the borate oxide
glasses. Among the topics touched here, one of the most intriguing is the
dose-dependence of the dynamical and structural properties. In particular, we
have observed that compressed correlation functions come together with the
signature of ballistic dynamics. A detailed characterization of the q-dependence
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of the beam-induced dynamics was reported previously in SiO2 [8], where a
1/τ ∼ √q was observed instead. Here, on the other hand, we demonstrated
that at very low doses the dynamics are characterized by ballistic displacements.
It is clear that a complete description of the mechanism behind this effect is
still missing and more experiments are required in the light of the results here
reported.
As a second interesting point, we have discussed the effect named photo-
annealing. We observed that the signatures of a stress-induced dynamics can
be erased if the samples are exposed long enough to hard X-rays. After a few
GGy (the value is likely sample dependent) the structure changes a bit, but
with no clear symptoms of beam-damage. The dynamics, however, become
very similar to the those measured in the corresponding undercooled liquid
state. These results suggest that the beam-induced dynamics is effective in
producing a new configuration of the glass via a non-thermal route. However,
it still has to be clarified how much the X-ray annealed glasses are different
from the pristine ones in terms of structure but also in terms of thermodynamic
properties, e.g., enthalpy. One interesting possibility would be that, under
X-ray irradiation, the glass is annealed and therefore reaches states lower in
the potential energy landscape. This would imply that X-ray irradiation would
be effective in producing stable glasses. This, however, is just a speculation for
the time being, and will require new studies and additional experiments to be
confirmed or discarded.



144 Conclusions



Bibliography

[1] Angell, C. A. Formation of glasses from liquids and biopolymers. Science
267, 1924–1935 (1995).
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