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Estimating the decomposition of predictive information in multivariate systems
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In the study of complex systems from observed multivariate time series, insight into the evolution of one system
may be under investigation, which can be explained by the information storage of the system and the information
transfer from other interacting systems. We present a framework for the model-free estimation of information
storage and information transfer computed as the terms composing the predictive information about the target
of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform
embedding scheme that selects progressively, among the past components of the multivariate process, only
those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it
computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias
due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy,
storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic
and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the
traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic
time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and
cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.
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I. INTRODUCTION

A topical subject in many domains of science and en-
gineering is to investigate how the behavior of a complex
system arises from the dynamical interactions among its
component parts. This subject is commonly explored for an
assigned target system, describing its dynamics in terms of
the underlying sources of statistical dependence, identified
either within the system itself or from its interactions with
the other connected systems. A comprehensive approach to
perform such a description is framed in the emerging field of
information dynamics [1]. This approach has seen a surge
of interest with the introduction of operational definitions
of information storage [2] and information transfer [3] and
with the subsequent development of efficient algorithms for
the practical estimation of these measures [4–9]. Information
storage, reflecting the information contained in the past of
a dynamic process that is useful to predict its future, is
closely (and inversely) related to a set of measures of entropy
rate used in several contexts to assess the complexity of
the process [10–12]; direct measures of information storage
have been successfully used to study information processes in
neuroscience [5], physiology [13] and artificial systems [2].
Information transfer is assessed by means of the very popular
transfer entropy (TE) measure [3], which quantifies the
directional effects between two processes as the information
provided by the past of the driver about the future of the
target, conditioned on the information already provided by
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the past of the target. Also, given that the TE implements in
the information-theoretic framework the ubiquitous concept
of Granger causality [14], it has been proposed to assess
information transfer between coupled systems in a wide variety
of contexts [15–22].

The measures of information storage and information
transfer reveal the sources of statistical dependence, contained,
respectively, in the past states of the target system and in
the past states of the driving systems, which contribute to
the predictability of the future state of the target. Although
these two measures are usually studied in isolation, they are
not fully independent of each other. Indeed, they result as
the components of a specific decomposition of the so-called
predictive information about the assigned target process,
which is a measure of the overall dependence between
parts of a multivariate dynamical system [23]. In particular,
variations in one of the components of the decomposition,
induced, for instance, by a system transition, can be better
understood by examining the corresponding variations in the
other components. It is known that the information shared
between subsystems is limited by the entropy rate [24,25],
but can be biased by the complexity of the internal dynamics
of the subsystems [26]; in fact, the TE may reflect changes
in the internal properties of the subsystems and not only in
the interactions among them [23]. Moreover, the measure of
storage may reflect internal physical mechanisms in the target
system but also storage mechanisms in another system that
drives the observed one [5]. Following this line of reasoning, in
the present study we show in simulations that it is strongly ad-
visable to consider the information storage and transfer not as
standalone measures of interdependence, but rather as parts of
a whole framework for the analysis of dynamical dependences,
where they are seen as components of the decomposition
of predictive information. Moreover, we provide a complete
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framework for the joint estimation of the measures of informa-
tion storage and information transfer, computed as factors in
the decomposition of the predictive information about the tar-
get system (or subsystem) of a multivariate dynamical system.
The estimation problem is far from trivial, as the computation
of these quantities from experimental time series is hampered
by both theoretical and practical questions. A major issue is the
so-called curse of dimensionality [9], consisting in the fact that
the reliability of information-theoretic estimates unavoidably
degrades, increasing the dimension of the state spaces that need
to be explored. In the computation of the predictive information
and of its constituent terms, the dimension is kept high by
the need of covering reasonably well the past history of the
observed processes. This seriously hampers the estimation in
the presence of multiple interacting systems and/or short-time
series. Moreover, as with all information-theoretic functionals,
any estimate of predictive information, information storage,
and information transfer would show a bias dependent on
the method used and on the characteristic of the data [27]. It
turns out that the most common approaches to the estimation
of information dynamics measures, e.g., those based on the
uniform embedding of the observed multiple time series and
exploiting classical entropy estimators such as those based
on binning, yield highly biased estimates already for a small
number of time series and low dimensions, which prevent any
meaningful interpretation of the measures. To counteract all
these issues, we propose here an approach that combines a pro-
cedure for dimensionality reduction based on nonuniform mul-
tivariate embedding [28] with the nearest-neighbor estimation
of information-theoretic quantities [29]. While nonuniform
embedding and nearest-neighbor estimation were previously
proposed for the computation of causality measures [4,30],
here they are employed with the broader perspective of
quantifying jointly all the measures of information dynamics
that contribute to the predictive information of a target system
embedded in a network.

II. PREDICTIVE INFORMATION DECOMPOSITION

We start by presenting an information-theoretic framework
that provides a set of measures of information dynamics
designed to characterize the temporal statistical structure of
interacting dynamical systems [1,23]. Considering an overall
multivariate system composed of several potentially connected
subsystems, in this study we focus attention on an assigned
target system (or subsystem) and analyze the amount of
information carried by its present state that can be predicted
from the knowledge of the past of the whole multivariate
system. This information is known as predictive information
and can be intuitively understood as a measure of how the
uncertainty about the evolution of the target system can
be reduced by learning the past of the whole network of
interacting systems [23].

Given a set of M interacting dynamical systems, let us
assume that the course of visitation of the system states can be
described as a multivariate stationary stochastic process. We
consider the problem of estimating the factors in the decompo-
sition of the predictive information relevant to the target pro-
cess Y, considering X as the source process and grouping the re-
maining M–2 processes into the vector Z = [Z(1) · · · Z(M−2)].

Let us further denote by Xn, Yn, and Zn the random variables
obtained by sampling the processes at the present time n

and by X−
n = [Xn−1 Xn−2 · · · ], Y−

n = [Yn−1 Yn−2 · · · ], and
Z−

n = [Zn−1 ⊕ Zn−2 ⊕ · · · ] the vector variables describing
the past of the processes (⊕ denotes vector concatenation).
Then the prediction entropy (PE) of the target process Y

measures the predictive information defined as the amount of
information carried by the present of Y that can be predicted
by the whole past of the overall process {X,Y,Z} [23]:

PY = I (Yn; X−
n ⊕ Y−

n ⊕ Z−
n )

= H (Yn) − H (Yn|X−
n ⊕ Y−

n ⊕ Z−
n ), (1)

where I (·) stands for mutual information (MI) and H (·) and
H (·|·) denote, respectively, entropy and conditional entropy.
In order to put in evidence the statistical dependences related
to the information actively stored in the target process and
transferred to it from the source process and from the other pro-
cesses, the PE can be conveniently decomposed by exploiting
the chain rule for mutual information decomposition [23,31] as

PY = SY + TZ→Y + TX→Y |Z, (2)

where

SY = I (Yn; Y−
n ) = H (Yn) − H (Yn|Y−

n ) (3)

measures the information storage relevant to the target
process [2] and denotes here the storage entropy (SE), while

TZ→Y = I (Yn; Z−
n |Y−

n ) = H (Yn|Y−
n ) − H (Yn|Y−

n ⊕ Z−
n ),

(4)

TX→Y |Z = I (Yn; X−
n |Y−

n ⊕ Z−
n )

= H (Yn|Y−
n ⊕ Z−

n ) − H (Yn|X−
n ⊕ Y−

n ⊕ Z−
n ) (5)

are well-known measures of information transfer quantifying,
respectively, the TE from Z to Y [3] and the partial transfer
entropy (PTE) from X to Y conditioned to Z [7,8,32,33].

The framework presented above is developed under the
assumption that the joint process {X,Y,Z} is stationary and
ergodic, which means that the probability density functions of
any variable derived from the process do not change over time.
This allows us to drop the dependence on the time index n for
the information dynamics measures defined in (1)–(5) and to
provide their estimation based on a single process realization
by pooling data over time. A nonstationary definition of the
framework may be achieved intuitively, e.g., according to the
formulations proposed in [23].

In order to understand the theoretical properties of the mea-
sures of information dynamics presented above, we performed
their evaluation on an analytically tractable model of linearly
interacting Gaussian systems. This class of systems allows us
to compute exact theoretical values of predictive information,
information storage, and information transfer rather than their
statistical estimates, thereby isolating the fundamental proper-
ties of each measure from the unavoidable bias that is carried
by any estimation approach. The exact computation relies on
the correspondence between the conditional entropy and the
prediction error variance of linear regression models [34],
which was exploited to provide an exact expression for the
TE based on the vector autoregressive (VAR) representation
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FIG. 1. Exact computation of the measures of information dynamics for the benchmark simulation example of Eq. (6). Plots depict the
trends of PE (solid lines), SE (dotted lines), TE (dashed lines), and PTE (gray dash-dotted lines) computed with varying one or two of the
simulation parameters (as indicated in the x-axis label of each plot), keeping the remaining parameters at the constant values specified below
the plot.

of multivariate Gaussian processes [35,36]. In this study
we generalize the approach to the exact computation of the
measures of information dynamics (the formal derivation is
detailed in the Appendix) so as to allow a highly reliable
comparative evaluation of the properties of these measures.
The considered benchmark system is defined by the equations

Xn = −aXn−2 + Zn−1 + UX
n ,

Yn = −bYn−2 + cXn−1 + dZn−1 + UY
n , (6)

Zn = UZ
n ,

where UX
n ,UY

n , and UZ
n are uncorrelated Gaussian white noise

processes with zero mean and unitary variance. The causal
statistical structure of the processes in (6) is such that the target
Y has autonomous dynamics determined by the parameter b

and is affected by the process X (directly through the link
weighted by the parameter c) and by the process Z (both
directly through the link weighted by d and indirectly through
the connection Z → X → Y ); the driver process X also shows
internal dynamics weighted by a and receives direct causal
influences from Z, which is an autonomous random process
without temporal dynamics.

Figure 1 reports the trends of the measures of information
dynamics obtained for representative combinations of the
simulation parameters. The figure shows how, depending
on the strength of the underlying causal connections, the
predictive information of the target Y is decomposed in
different amounts of information stored in Y and transferred
to Y from X and Z. The information storage assessed by the
SE increases with the strength of the autodependence effects
in Y modulated by the parameter b [Figs. 1(a) and 1(b)], but
increases also with the strength of the causal effects from X

to Y modulated by c [Fig. 1(c)]. Similar reciprocal changes

in the strength of autodependence and causal effects may
produce either an increase or a decrease of the SE, as shown,
respectively, in Figs. 1(d) and 1(e). Moreover, the SE of Y

is sensitive also to the intrinsic dynamics of X [Fig. 1(f)].
These results indicate that the information storage quantifies
the overall dependence of the present of the target process
on its past as the result of multiple causation mechanisms,
which incorporate the internal dynamics of the target process,
but also dynamical properties of the source process and the
causal interactions from source to target. This is in line with
the notion that the task of actively storing information in the
past of a target process is subserved both by mechanisms
of internal memory in the target and by mechanisms of
input-driven storage determined by causally connected source
processes [5,37]. As to the information transfer, we see that
both TE and PTE are zero in the absence of causal connections
(from Z to Y and from X to Y , respectively), do not depend
on the strength of the internal dynamics of Y modulated by
the parameter b [Figs. 1(a) and 1(b)], and increase with the
strength of the causal interactions from X to Y modulated by c

[Figs. 1(c)–1(e)]. The distinction between TE and PTE stands
in the fact that the first measures the transfer of information
along both the direct causal connection Z → Y and indirect
connection Z → X → Y , while the second measures only the
direct transfer along the connection X → Y and is not sensitive
to the interaction between Z and Y [Figs. 1(g) and 1(h)]. These
results pinpoint the usefulness of the information transfer as
a measure reflecting the causal interactions in the observed
multivariate system. Nevertheless, besides reflecting the causal
interactions, the information transfer may be sensitive also to
the complexity of the internal dynamics of the driver system,
as shown in Fig. 1(f), where TE and PTE vary (slightly in
this example) with the parameter a. In general, the trends
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observed in Fig. 1 for the measures of information storage and
transfer indicate the importance of evaluating the complexity
of the individual systems, and not only their causal interaction,
to properly assess how the target dynamics arise from the
causal structure of the overall system. Moreover, since the
contributions of the various terms composing the predictive
information may be different depending on the underlying
causal structure, it is important to evaluate all measures in
a unified framework rather than in isolation. This confirms
previous observations remarking that functionally relevant
changes in the dynamics of the coupled systems can be
more properly described through a combined evaluation of
the decomposition terms rather than through an analysis based
on single measures of storage and transfer [5,23,38].

III. ESTIMATION APPROACH

All measures of information dynamics defined in Sec. II
can be derived from computations of the entropy of the
present variable of the target process Yn conditioned to the
semi-infinite past of the observed processes X−

n , Y−
n , or

Z−
n . Such computations are obviously a daunting task in

practical time-series analysis because they require entropy
estimation for high-dimensional vector variables even when
the past history of the observed processes is truncated to some
small lag. To tackle the estimation issue, we here propose a
two-step procedure based first on performing a parsimonious
state space reconstruction that selects from each process the
past (lagged) variables that are more informative to Yn [28]
and then exploits only the selected variables to estimate
predictive information, information storage, and information
transfer. In both steps, estimations are performed using a
nearest-neighbor approach that adopts an efficient strategy
to reduce the bias arising from the computation of entropies
involving variables of different dimension [29].

A. Embedding schemes

The first crucial step in the estimation of information
dynamics is to provide a reasonable approximation of the
infinite-dimensional past states of the observed systems. In
the analysis of dynamical systems, this is achieved through
the state space reconstruction of the observed multivariate
process. When the aim of the analysis is the computation of
information dynamics, state space reconstruction serves, rather
than to infer the properties of the attractor of the underlying
dynamical system, to identify the most relevant finite set of
state variables to be taken as representative of the system
dynamics. To this end, reconstruction is viewed as a way to
sample the past of the processes X−

n , Y−
n , and Z−

n in order to
provide as much information as possible about the dynamics of
the target variable Yn. Two possible approaches are described
in the following.

1. Uniform embedding

The most obvious approach to state space reconstruction
is to follow a uniform embedding scheme [39] whereby the
past of each considered process is approximated using a
predetermined number of variables equally spaced in time.

In the univariate case, only the state space of a scalar process
needs to be reconstructed, e.g., for the computation of the SE
in (3). In this case the uniform embedding vector descriptive
of Y−

n is V Y
n = [Yn−mY

Yn−2mY
· · ·Yn−dY mY

], where dY and mY

are the embedding dimension and delay time, respectively.
The computation of the TE in (4) requires a mixed embedding
approximating the past of the joint process {Y,Z}; in this case,
the uniform embedding vector approximating Y−

n ⊕ Z−
n is

V YZ
n = V Y

n ⊕ [Zn−mZ
Zn−2mZ

· · · Zn−dZmZ
]. In a similar way,

a full mixed embedding representing the past of the whole
joint process {X, Y, Z} is required to compute either the PE
in (1) or the PTE in (5); in this case, the whole past Z−

n

is approximated by the uniform embedding vector Vn
XYZ =

Vn
YZ ⊕ [Xn−mX

Xn−2mX
· · · Xn−dXmX

].

2. Nonuniform embedding

As an alternative to uniform embedding, we propose a
nonuniform embedding approach, which follows the philos-
ophy of some previous work from our group [28,30,40,41],
seeking maximum relevance, and at the same time minimum
redundancy, in the selection of components to be included
in the embedding vector. The approach is based on the
progressive selection, from a set of candidate components
� including the lagged variables that sample the past of the
relevant processes up to a maximum lag L, of the variables
that are the most informative about the target variable Yn.
In the case of the univariate state space reconstruction of the
process Y , the initial set of candidate components will be �Y =
{Yn−1, . . . ,Yn−L} and the selection procedure will approximate
the past Y−

n with a nonuniform embedding vector V Y
n = YY

n

composed of the dY most relevant lagged variables of Y . In
the case of the mixed embedding of {Y,Z}, the candidate set
will be �YZ = �Y ∪ {Zn−1, . . . ,Zn−L} and the selection pro-
cedure will approximate Y−

n ⊕Z−
n with the embedding vector

V YZ
n = YYZ

n ⊕ ZYZ
n , where YYZ

n and ZYZ
n denote the selected

components belonging, respectively, to Y and Z. With similar
notation, for the full mixed embedding of {X,Y,Z} the initial
candidate set will be �XYZ = �YZ ∪ {Xn−1, . . . ,Xn−L} and
the nonuniform embedding vector will be V XYZ

n = XXYZ
n ⊕

YXYZ
n ⊕ ZXYZ

n . With respect to uniform embedding where the
embedding vectors contain a predefined number of variables
for each process, the vectors resulting from nonuniform
embedding contain only the variables found to be relevant to
the description of Yn. This parsimonious selection of variables
favors entropy estimation as it reduces the dimension of the re-
constructed state space. In the following we describe the selec-
tion procedure considering the generic candidate set � and the
approach adopted to estimate information-theoretic quantities.

The procedure starts with an empty embedding vector V 0
n =

[·] and, at the step d � 1, given the embedding vector formed
at the previous step V d−1

n , each candidate component Wn∈� \
V d−1

n (\ denotes subtraction from a set) is tested computing
the conditional MI (CMI) I (Yn,Wn|V d−1

n ) and the component
selected is that yielding the maximum CMI:

Ŵn = arg max
Wn

I
(
Yn,Wn

∣∣V d−1
n

)
. (7)

After selection, the component Ŵn is tested for significance
using an empirical approach based on surrogate data [30].
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Specifically, the CMI I (Yn,Ŵn|V d−1
n ) is compared with a

threshold taken as the 100(1–α)th percentile of its empirical
null distribution estimated over Nr random counterparts
obtained by shuffling randomly and independently the points
of Ŵn and the points of Yn. Then if the original CMI is above the
threshold, the component Ŵn is included in the embedding vec-
tor to form V d

n = Ŵn ⊕ V d−1
n ; otherwise it is discarded and the

procedure terminates with an embedding vector Vn = V d−1
n .

In this study, each CMI is estimated using the k-nearest-
neighbor approach, based on estimating entropy sums through
a neighbor search in the space of higher dimension and range
searches in the projected subspaces of lower dimensions [29].
Specifically, to estimate the CMI I (Yn,Wn|V d−1

n ) we first
express it as the sum of four entropies

I
(
Yn,Wn|V d−1

n

)
= H

(
Yn ⊕ V d−1

n

) − H
(
V d−1

n

)
−H

(
Yn ⊕ Wn ⊕ V d−1

n

) + H
(
Wn ⊕ V d−1

n

)
. (8)

The entropy in the (d + 1)-dimensional space is estimated,
using the maximum norm to calculate distances, as

Ĥ
(
Yn ⊕ Wn ⊕ V d−1

n

)=−ψ(k) + ψ(N ) + (d + 1)〈ln εn〉,
(9)

where ψ is the digamma function, N is the total number of
available (d + 1)-dimensional points Yn ⊕ Wn ⊕ V d−1

n , εn is
twice the distance from Yn ⊕ Wn ⊕ V d−1

n to its kth neighbor,
and 〈�〉 denotes average over all n. As we use the natural
logarithm in (9), the entropy is measured in natural units (nats).
Then the three other entropy terms of (8) are estimated by
treating the relevant variables as projections from the (d + 1)-
dimensional space, yielding

Ĥ
(
Wn ⊕ V d−1

n

) = ψ(N ) − 〈
ψ

(
NWnV

d−1
n

+ 1
)〉 + d

〈
ln εn

〉
,

Ĥ
(
Yn ⊕ V d−1

n

) = ψ(N ) − 〈
ψ

(
NYnV

d−1
n

+ 1
)〉 + d〈ln εn〉,

Ĥ
(
V d−1

n

) = ψ(N ) − 〈
ψ

(
NV d−1

n
+ 1

)〉 + (d − 1)〈ln εn〉,
(10)

where NWnV
d−1
n

, NYnV
d−1
n

, and NV d−1
n

are the number of points
whose distance from Wn ⊕ V d−1

n , Yn ⊕ V d−1
n , and V d−1

n ,
respectively, is strictly less than εn/2. Then the CMI estimate
results simply by substituting (9) and (10) into (8):

Î
(
Yn,Wn|V d−1

n

) = ψ(k) + 〈
ψ

(
NV d−1

n
+ 1

) − ψ
(
NWnV

d−1
n

+ 1
)

−ψ
(
NYnV

d−1
n

+ 1
)〉
. (11)

B. Estimation of information dynamics measures

In this section we describe how the measures of information
dynamics defined in Eqs. (1)–(5) were estimated by means of
the k-nearest-neighbor approach using the embedding vectors
determined by the uniform or nonuniform embedding schemes
presented in Sec. III A.

1. Estimation of information storage

To estimate the SE relevant to the target process Y , uni-
variate (uniform or nonuniform) embedding is first performed
for the single process Y to get the dY -dimensional embedding

vector V Y
n = YY

n composed of lagged variables from Y . Then,
expressing the SE as SY = H (Yn) − H (Yn ⊕ V Y

n ) + H (V Y
n ),

the term H (Yn ⊕ V Y
n ) is estimated through a neighbor search

in the (dY + 1)-dimensional space, while the terms H (Yn) and
H (V Y

n ) are estimated through range searches in the spaces of
dimension 1 and dY . This results in the estimate

ŜY = ψ(N ) + ψ(k) − 〈
ψ

(
NYn

+ 1
) + ψ

(
NV Y

n
+ 1

)〉
, (12)

where NYn
and NV Y

n
are the number of points whose distance

from Yn and V Y
n , respectively, is strictly less than the distance

from Yn ⊕ V Y
n to its kth neighbor.

2. Estimation of information transfer

The estimation of the TE and PTE measures defined
in (4) and (5) exploits mixed embedding schemes aimed at
describing the past of multivariate systems. In particular, to
estimate the TE from Z to Y , mixed (uniform or nonuniform)
embedding is performed for the joint process {Y,Z} to get
the (dY + dZ)-dimensional embedding vector V YZ

n = YYZ
n ⊕

ZYZ
n . Then expressing the TE as TZ→Y = H (Yn ⊕ YYZ

n ) −
H (YYZ

n ) − H (Yn ⊕ V YZ
n ) + H (V YZ

n ), the term H (Yn ⊕ V YZ
n )

is estimated through a neighbor search in the (dY + dZ + 1)-
dimensional space, while the three other terms are estimated
through range searches in the spaces of dimension dY + 1,
dY + dZ , and dY . This results in the estimate

T̂Z→Y = ψ(k) + 〈
ψ

(
NYY Z

n
+ 1

) − ψ
(
NYnYY Z

n
+ 1

)
−ψ

(
NV Y Z

n
+ 1

)〉
(13)

where NYY Z
n

, NYnYY Z
n

, and NV Y Z
n

are the number of points whose
distance from YYZ

n , Yn ⊕ YYZ
n and V YZ

n , respectively, is strictly
less than the distance from Yn ⊕ V YZ

n to its kth neighbor.
To estimate the PTE from X to Y conditioned to Z,

mixed embedding is performed for the joint process {X,Y,Z}
to get the (dX + dY + dZ)-dimensional embedding vector
V XYZ

n = XXYZ
n ⊕ YXYZ

n ⊕ ZXYZ
n . Then expressing the PTE

as TX→Y |Z = H (Yn ⊕ YXYZ
n ⊕ ZXYZ

n ) − H (YXYZ
n ⊕ ZXYZ

n ) −
H (Yn ⊕ V XYZ

n ) + H (V XYZ
n ), the term H (Yn ⊕ V XYZ

n ) is esti-
mated through a neighbor search in the (dX + dY + dZ + 1)-
dimensional space, while the three other terms are estimated
through range searches in the spaces of dimension dY + dZ +
1, dY + dZ , and dX + dY + dZ . This results in the estimate

T̂X→Y |Z = ψ(k) + 〈
ψ

(
NYXY Z

n ZXY Z
n

+ 1
)

−ψ
(
NYnYXY Z

n ZXY Z
n

+ 1
) − ψ

(
NV XY Z

n
+ 1

)〉
, (14)

where NYXY Z
n ZXY Z

n
, NYnYXY Z

n ZXY Z
n

, and NV XY Z
n

are the number
of points whose distance from YXYZ

n ⊕ ZXYZ
n , Yn ⊕ YXYZ

n ⊕
ZXYZ

n , and V XYZ
n , respectively, is strictly less than the distance

from Yn ⊕ V XYZ
n to its kth neighbor.

3. Estimation of predictive information and its decomposition
based on full embedding

Estimation of the PE about the target process Y is performed
following the same full mixed embedding performed for the
whole joint process {X,Y,Z} to estimate the PTE. Specifically,
the embedding vector V XYZ

n is used to express the PE as PY =
H (Yn) − H (Yn ⊕ V XYZ

n ) + H (V XYZ
n ), so its nearest-neighbor
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estimate becomes

P̂Y = ψ(k) + ψ(N ) − 〈
ψ

(
NYn

+ 1
) + ψ

(
NV XYZ

n
+ 1

)〉
,

(15)

where NYn
and NV XYZ

n
are the number of points whose distance

from Yn and V XYZ
n is strictly less than the distance from

Yn ⊕ V XYZ
n to its kth neighbor. Note that, because of the

different bias resulting from estimating the various measures
of information dynamics, the equivalence between the PE and
the sum of SE, TE, and PTE stated in (2) does not hold
for the estimates resulting from (15) and from (12)–(14).
In this study we investigate the difference between P̂Y and
ŜY + T̂Z→Y + T̂X→Y |Z from the point of view of comparing
uniform embedding and nonuniform embedding schemes as
to their ability in estimating the prediction entropy and the
terms of its decomposition.

IV. SIMULATION STUDY

In this section we test the proposed estimation approach
on well-known linear stochastic (VAR models) and nonlinear
chaotic (coupled Hénon maps) multivariate systems,
comparing uniform and nonuniform embedding schemes
regarding their ability to quantify the various measures of
information dynamics under different coupling conditions.
While the considered systems are rather simple, their
utilization allows a clear understanding of the performance of
the proposed estimators: In VAR processes the estimates of
information dynamics can be compared with their theoretical
values (see the Appendix), while Hénon systems have been
exhaustively studied [30]. Moreover, simulation studies
were conducted both in standard and in more challenging
conditions, induced by increased interaction lags or a higher
number of interacting processes.

In all simulations, 100 realizations of the simulated
processes, each lasting 512 points, were generated for each
of the selected values of the coupling parameter C. Uniform
embedding was performed by setting for each simulation the
optimal values of the embedding parameters from the system
equations. Nonuniform embedding was performed by testing
for the significance of each selected component by means of
Nr = 100 replicas generated by a random and independent
shift of the target variable and the selected component and
by setting α = 0.05 as the statistical significance level. The
number of neighbors used for all entropy estimations was set
to k = 10. This choice was based on the results of previous
explorations of a wide range of values of k in the estimation of
MI and CMI based on nearest neighbors [28,30]. In general,
k-nearest-neighbor methods for the estimation of information
measures were found to be stable and not significantly affected
by the choice of k [29]. All time series were normalized to
zero mean and unit standard deviation before computation of
the measures.

A. Linear stochastic processes

The first system considered is a linear stochastic VAR
system described by the equations

Xn = 0.8485Xn−1 − 0.36Xn−2 + UX
n ,

Yn = C(Xn−δ + Zn−δ) +
(

1− C

2

)
(0.8485 Yn−1−0.36Yn−2)

+UY
n , (16)

Zn = 0.8485 Zn−1 − 0.36Zn−2 + UZ
n ,

where UX
n , UY

n , and UZ
n are uncorrelated Gaussian white noise

processes of unitary variance. The parameters in (16) were
chosen to simulate a situation typical of cardiovascular and
cardiorespiratory variability analysis, where a target process
may exhibit autonomous oscillations and also be driven by
other processes oscillating at the same frequency [41]. In this
simulation we used two different settings for the delay of the
coupling imposed contemporaneously from X to Y and from
Z to Y : δ = 1 and 10. In both cases the coupling parameter C

was varied from 0 to 1 in steps of 0.1.
In this simulation we compared the exact values of

the measures of information dynamics, obtained under the
assumption of Gaussianity using the formulation detailed in
the Appendix, with the estimates resulting from the application
of the approach presented in Sec. III. The comparison between
exact and estimated trends allowed us to assess the bias of our
estimation approach. The analysis was performed computing
PE, SE, TE, and PTE as a function of the coupling parameter
C, taking Y as the target process and X as the source
process. Uniform embedding was performed with unitary
embedding lags (mX = mY = mZ = 1) and optimal values
for the embedding dimensions (dX = dY = dZ = 2 in the
first simulation with δ = 1 and dX = dY = dZ = 10 in the
second simulation with δ = 10). Nonuniform embedding was
performed including L = 10 past components in the set of
candidates for each considered process.

The results are reported in Fig. 2 for δ = 1 and in
Fig. 3 for δ = 10. In general, we found that all estimates
of information dynamics have a negative bias, i.e., tend to
underestimate the actual quantities. This bias was relatively
small and did not impair the detection of trends of the measures
(e.g., for varying coupling parameter) when estimation was
based on nonuniform embedding. In contrast, the estimation
based on uniform embedding degraded as the coupling delay
increased. Indeed, with δ = 1 (Fig. 2) the two schemes yielded
similar results, with only a slightly better performance of
nonuniform embedding for high values of C, noticeable at
the lower bias of TE and especially PTE. With δ = 10 (Fig. 3),
results were almost the same as with δ = 1 for nonuniform
embedding, while the estimates based on uniform embedding
were highly biased. In particular, the estimates based on
uniform embedding were almost unresponsive to variations
in the coupling parameter (e.g., the estimated PTE was very
low and almost flat for all values of C), while those based
on nonuniform embedding approximated well the theoretical
profiles. The better performance of nonuniform embedding
can be ascribed to its ability to pick up only the relevant terms
for describing the dynamics of the target process, regardless
of their lag. In contrast, uniform embedding covering long
interaction delays has to include many components in the
embedding vectors, thus hindering the estimation computed in
the presence of short realizations of the investigated processes.

The comparison between the two possible ways of assessing
the overall predictive information showed that the estimation
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FIG. 2. Estimation of measures of information dynamics for
simulation A (linear VAR process) with delay δ = 1. Plots depict
the theoretical values (dots) and the estimated values (black and
white symbols) (median and 10th–90th percentiles over 100 process
realizations) of the PE of Y , SE of Y , TE from Z to Y , and PTE from
X to Y conditioned to Z, computed as a function of the coupling
parameter C by means of (a) the uniform embedding approach and
(b) the nonuniform embedding approach. The Prediction Entropy is
computed through the direct estimation (white squares) as well as the
sum of the estimated SE, TE and PTE (black triangles).

bias is lower when PE is computed by summing up the storage
and transfer estimates of Eqs. (12)–(14) than when it is directly
computed in the full space of {X,Y,Z} through Eq. (15).
Thus, it seems that practical estimation of the predictive
information may be performed more effectively by estimating
separately each of the terms that contribute to the generation
of predictable dynamics. If we would use the other approach
(i.e., computing all storage and transfer terms with reference
to the largest dimensional space) there would be no difference
between the direct estimation of the PE and the sum of the
estimated SE, TE, and PTE. So the difference is due to defining
a different largest space for each of the three decomposed
terms. A possible explanation for such a difference may be
the fact that the bias of each individual term is small since
the corresponding CMI is given as the difference between two
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1.2
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SE
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C
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PT
E

0.0

0.5

C
0.0 0.2 0.4 0.6 0.8 1.0

TE
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0.25

FIG. 3. Estimation of measures of information dynamics for
simulation A (linear VAR process) with delay δ = 10. Plots and
symbols are the same as in Fig. 2.

sets of MI (or entropies) involving vectors of dimension that
differs much less than for PE, so the sum of the three biases is
still smaller than the bias of the direct PE estimate.

B. Coupled Hènon maps

The second system considered was the nonlinear determin-
istic system with M coupled Hénon maps studied in [30]:

Xi,n = 1.4 − X2
i,n−1 + 0.3Xi,n−2, i = 1,M

Xi,n = 1.4−[0.5C(Xi−1,n−1+Xi+1,n−1) + (1−C)Xi,n−1]2

+ 0.3Xi,n−2, i = 2, . . . ,M − 1, (17)

where the parameter C was varied to modulate the coupling
from the (i + 1)th and (i − 1)th systems towards the ith
system. We considered the cases of M = 5 and 15 coupled
systems, for which complete synchronization is not observed
for any pair of systems. Moreover, since the time series of
the driven system explode for C > 1 [30], the analysis was
performed by letting C vary from 0 to 0.8 in steps of 0.1.

The analysis was performed by considering the central map
of the cascade as the destination process and taking either the
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FIG. 4. Estimation of measures of information dynamics for simulation B (nonlinear Hénon maps) with M = 5 processes, assuming the
target process Y = X3 and source process (a) and (b) X = X1 or (c) and (d) X = X2. Plots depict the estimated values (median and 10th–90th
percentiles over 100 process realizations) of the PE of Y , SE of Y , TE from Z to Y , and PTE from X to Y conditioned to Z, computed as a
function of the coupling parameter C by means of (a) and (c) the uniform embedding approach and (b) and (d) the nonuniform embedding
approach. The number of realizations (out of 100) for which a measure was detected as statistically significant is reported close to its distribution.
The Prediction Entropy is computed through the direct estimation (white squares) as well as the sum of the estimated SE, TE and PTE (black
triangles).

closest not directly coupled map or the closest directly coupled
map as the source process. Thus, we considered Y = X3

together with X = X1 or X = X2 when M = 5 and Y = X8

together with X = X6 or X = X7 when M = 15, collecting
in each case all the remaining maps in the vector process
Z. Uniform embedding was performed using mX = mY =
mZ = 1 and dX = dY = dZ = 2 as embedding parameters,
while nonuniform embedding was performed using L = 5
candidates for each process. To evaluate the sensitivity and
the specificity in the estimation of the information dynamics,
in this simulation we assessed also the statistical significance
of each estimated PE, SE, TE, and PTE measure. The
measures assessed by nonuniform embedding were considered
as statistically significant whenever they resulted in being
strictly positive as a consequence of the selection of at least
one relevant component [i.e., at least one past component
from the processes appearing only in the second conditional

entropy term on the right-hand side of Eqs. (1) and (3)–(5)].
The statistical significance of measures assessed by uniform
embedding was assessed through surrogate-data analysis,
generating 40 time-shifted surrogates [42] and rejecting the
null hypothesis of the absence of predictive information,
storage, or transfer, respectively, if the original PE, TE, or PTE
took the first or second position in the descending ordered
sequence of original and surrogate values; according to the
distribution-free plotting position formula given in [43], this
corresponds to a significance level of 4.05%.

The results of this simulation are depicted in Figs. 4 and 5.
Similarly to what was observed for simulation A, we found that
the PE estimates were generally lower when computed directly
using Eq. (15) than when computed by summing up the SE,
TE, and PTE estimates. Although theoretical values allowing
exact bias inference are not available for this nonlinear system,
the comparison between the two estimates of PE suggests
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FIG. 5. Estimation of measures of information dynamics for simulation B (nonlinear Hénon maps) with M = 15 processes, assuming the
target process Y = X8 and source process (a) and (b) X = X6 or (c) and (d) X = X7. Plots and symbols are the same as in Fig. 4.

that the nonuniform embedding scheme achieves a lower bias
than uniform embedding in the estimation of the predictive
information. This observation is supported by (i) the greater
difference between the two estimates of PE using uniform
embedding [Figs. 4(a), 4(c), 5(a), and 5(c)] and nonuniform
embedding [Figs. 4(b), 4(d), 5(b), 5(d)] and (ii) the consistent
trends in magnitude and statistical significance of the two PE
estimates as a function of C using nonuniform embedding
[Figs. 4(b), 4(d), 5(b), and 5(d)], which were not achieved using
uniform embedding [e.g., the two PE estimates in Figs. 4(a)
and 4(c) did not show similar trends at increasing C].

The results shown in Fig. 4 regard the analysis with M = 5
interacting processes and particularly the indirect coupling
X1 → X3 [Figs. 4(a) and 4(b)] and the direct coupling X2 →
X3 [Figs. 4(c) and 4(d)], both absent when C = 0 and present
when C > 0 with a strength related to C; in addition there is an
autodependence of X3 on its own past, always present but with
decreasing strength as C increases. Accordingly we expect, for
the target process Y = X3 to measure PY as always significant,
SY as always significant and decreasing at increasing C, TZ→Y

as significant for C > 0 and increasing with C, and TX→Y |Z

as never significant when X = X1 but significant for C > 0
and increasing with C when X = X2. These expected results
were fully verified only when the estimation was based on
nonuniform embedding [Figs. 4(b) and 4(d)]: PE and SE were
estimated as statistically significant in all conditions; TE was
almost zero and insignificant for C = 0 but significant and
increasing with C for C > 0; PTE was insignificant for all
values of C (though with some false positives at C = 0.5 and
0.6) in the absence of direct coupling [Fig. 4(b)] and well re-
flecting the coupling strength in the presence of direct coupling
[Fig. 4(d). Using uniform embedding [Figs. 4(a) and 4(c)], we
found that the PE was high and significant for all values of C

only when it was computed as the sum of SE, TE, and PTE
estimated separately; the SE estimates were reliable; the TE
and the PTE were also reliable, but showed a higher number
of false positives and a less evident trend with increasing C

compared to the estimates yielded by nonuniform embedding.
The results of the analysis performed on simulations with

M = 15 processes are reported in Fig. 5. Since the coupling
structure is preserved, the expected trends of the various
information dynamics are the same as for the simulation
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with M = 5. However, in this more challenging condition the
estimation led to fewer interpretable results in the case of
uniform embedding. In particular, using uniform embedding,
we could not clearly detect the expected increase of the TE
with C [see Figs. 5(a) and 5(c), in which the response of
both the magnitude and the statistical significance of TZ→Y to
increasing C was blunted] and even less the increase of the PTE
with C [see Fig. 5(c), in which TX→Y |Z exhibited an almost
flat profile with a limited number of realizations indicating
statistical significance of the measure]. As can be seen in
Figs. 5(b) and 5(d), the estimation improved with utilization
of the nonuniform embedding scheme, as both the TE and the
PTE were of higher magnitude (though with high variability
across realizations) and the results of statistical significance
evidenced high specificity and sensitivity of the measures
(apart from the higher number of false positives estimated
for TX→Y |Z with C = 0.8).

V. REAL DATA APPLICATIONS

This section describes the evaluation of our framework for
the estimation of information dynamics on real time series
obtained from interacting physiological systems. The consid-
ered applications are the analysis of how short-term heart rate
variability is generated from cardiovascular and cardiorespi-
ratory interactions and the study of brain-heart interactions
during sleep. These applications present challenging analysis
conditions, as only short time series (a few hundred points) are
made available due to stationarity constraints or finiteness of
the measurable data sets. The analysis is focused on demon-
strating the feasibility of information decomposition in terms
of capability of the proposed estimators to detect statistically
significant information dynamics and to describe expected
physiological knowledge about the observed systems.

In real data applications, estimation of information dy-
namics measures was performed on normalized versions
of the considered time series, using the following settings
for the parameters: k = 10 neighbors, mX = mY = mZ = 1
and dX = dY = dZ = 5 as embedding parameters (uniform
embedding), L = 5 as the maximum lag, and Nr = 100 and
α = 0.05 for candidate component selection (nonuniform
embedding). As in the simulations, the statistical significance
of each measure was assessed when the measure was strictly
positive for nonuniform embedding and using time-shifted
surrogates for uniform embedding.

A. Cardiovascular and cardiorespiratory variability

In the first application we study cardiovascular and car-
diorespiratory variability measured in healthy subjects during
a head-up tilt testing protocol [44]. The protocol consisted in
simultaneously monitoring the electrocardiogram (ECG), the
finger photoplethysmographic arterial pressure, and the respi-
ratory airflow in 15 subjects, both lying in the resting supine
position and standing in the upright position reached by passive
head-up tilting. The beat-to-beat variability series of the heart
period (HP), the systolic arterial pressure (SAP), and the res-
piratory activity (RA) were measured, respectively, as the con-
secutive heartbeat interval durations from the ECG, the local
maxima of the pressure signal considered between consecutive

heartbeats, and the values of the respiration signal sampled at
each heartbeat. For each subject and body position, stationary
time series of 300 points were made available for the analysis.
Weak stationarity was assessed by means of a test checking the
stability of the mean and variance of the series over the analysis
window [45]. We then considered the cardiac, vascular, and
respiratory physiological systems as dynamical systems and
let them be characterized by the HP variability (process Y ),
SAP variability (process X), and RA variability (process Z).
Note that, since the time series are measured in a way such that
the occurrence of the nth RA precedes in time the occurrence
of the nth SAP and both occur before the end of the nth HP, the
zero-lag terms Xn and Zn were considered in the embedding
schemes adopted to describe the target variable Yn [7].

In this application, utilizing the decomposition strategy
detailed in Eqs. (1)–(5), the predictive information about
the cardiac system, measured in terms of HP variability,
is expressed as the sum of three meaningful contributions
reflecting the information dynamically stored in the cardiac
system and that transferred to the system from the respiratory
and vascular systems. Measuring how much of the information
about the present HP can be predicted from its past, the SE
is a quantity closely related to several complexity indexes
measuring how much of the information about the present
cannot be predicted from the past, which have been fruitfully
used to characterize the short-term complexity of heart rate
variability, particularly in head-up tilt test protocols [46].
Additionally, the TE TZ→Y reflects the amount of information
provided to the present HP by the past of RA that was not
already provided by the past of HP, thus accounting for all (both
direct and mediated by SAP) respiratory effects on cardiac
variability [47]. Then the PTE TX→Y |Z quantifies the direct
effects of the past of SAP on the present of HP; in this case,
conditioning on the past of RA is advisable to rule out spurious
information transfers likely arising from the common driver
effect of RA on SAP and HP [48].

Estimation of all measures on the 15 subjects considered led
to the results shown in Fig. 6, where the statistical significance
of the difference between the distributions of a given measure
in the supine and upright positions was assessed using the
student’s t-test for paired data. As shown in the figure,
detectable amounts of predictive information, information
storage, and information transfer were observed in almost all
subjects. The PE and the SE were significant for all subjects
in both conditions independently of the method used for their
estimation, indicating that a significant part of the information
carried by HP variability can be explained from the knowledge
of its own past. In the supine position, the TE from RA to
HP was also always significant, documenting the existence
of an important cardiorespiratory information transfer that
likely reflects the well-known phenomenon of respiratory
sinus arrhythmia [49]. On the other hand, the existence of
a significant PTE from SAP to HP conditioned to RA was less
evident. However, this result is consistent with the observation
that the related mechanism, i.e., the baroreflex information
transfer from SAP to HP, seems not to be fully solicited in the
resting supine position [50]. With the transition to the upright
position, the predictive information increased significantly,
mainly as a result of the substantial increase of the information
storage. The higher SE observed after tilt is in line with several
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FIG. 6. Estimation of measures of information dynamics for the
first application (X, systolic arterial pressure; Y , heart period; and Z,
respiratory activity). Plots depict the estimated values (median and
10th–90th percentiles over 15 subjects) of the PE of Y , SE of Y , TE
from Z to Y , and PTE from X to Y conditioned to Z, computed
in the supine position and upright position by means of (a) uniform
embedding and (b) nonuniform embedding. The Prediction Entropy is
computed through the direct estimation (squares) as well as the sum of
the estimated SE, TE and PTE (triangles). The number of subjects (out
of 15) for which any measure was detected as statistically significant
is reported close to its distribution. Asterisks indicate statistically
significant differences of supine vs upright (paired t-test, p < 0.05).

previous findings that demonstrated that standing decreases the
complexity of HP variability; this decrease in complexity, here
detected as an increase of information storage, has been related
to the tilt-induced activation of the sympathetic nervous system
and corresponding deactivation of the vagal parasympathetic
system [13,46]. The shift of the sympathovagal balance
towards its sympathetic branch also likely explains both the
significant reduction of the TE from RA to HP and the
significant increase of the PTE from SAP to HP conditioned
to RA, observed in the upright position compared to the

supine. Indeed, vagal deactivation is known to be associated
with dampened respiratory sinus arrhythmia [49], which in
our protocol is reflected by a weakened cardiorespiratory
coupling. Moreover, the sympathetic activation induced by tilt
is known to solicit the heart rate response to arterial pressure
changes [51,52], which here is reflected in terms of enhanced
information transfer through the baroreflex.

The above physiological interpretations were better sup-
ported by the results obtained using the nonuniform embedding
approach. Indeed, uniform embedding generally provided
lower estimates of information dynamics, which in some cases
prevented the detection of expected changes; an example is
the increase of information transfer from SAP to HP that was
detected as statistically significant only when the PTE was
assessed through nonuniform embedding. Moreover, similarly
to what was observed for simulated data, the difference
between the two available PE estimates was more marked
when using uniform embedding compared to the nonuniform
scheme, suggesting a higher bias. These results indicate
that the proposed nonuniform embedding scheme should
be adopted for a more efficient estimation of information
dynamics in real physiological time series.

B. Electroencephalogram–heart rate interactions during sleep

In the second application we study interactions between
the time series of brain wave activities and cardiac vagal auto-
nomic activity and measured during sleep [53]. In this experi-
ment, polysomnography was performed in ten young healthy
male subjects, measuring electroencephalogram (EEG) and
ECG activity during the whole night. Five time series related
to brain wave activity were obtained by computing the spectral
power inside the conventional EEG bands (δ, 0.5–3 Hz; θ ,
3–8 Hz; α, 8–12 Hz; σ , 12–16 Hz; and β, 16–25 Hz) for
consecutive 5-s windows and then averaging every 60 s and
normalizing to the full night mean power in the band. At
the same time, the time series of cardiac vagal activity was
obtained by evaluating the spectral power of the heartbeat
intervals in the high-frequency (HF) band (0.15–0.4 Hz),
normalized to the total power in the range 0.04–0.4 Hz, for
consecutive 120-s windows overlapped by half. The whole
night analysis produced time series of length between 440
and 520 points. Details about experimental protocol and time
series measurement can be found in [53]. In this study we
consider the EEG band powers as the processes describing
the dynamics of the five subsystems that are thought of as
constituents of the brain system and the cardiac HF power
as the process describing the dynamics of the heart system.
Here the analysis of brain-heart interactions is focused on the
relation between EEG δ wave power and cardiac HF power,
which has been the subject of several previous studies about
brain-heart interactions [53–56]. Accordingly, we assume the
EEG δ power and the HF power as source and target processes
X and Y , investigating both directions of interaction, and
collect the remaining four EEG powers in the process Z.

Figure 7 reports the results of the analysis performed over
all subjects taking either the EEG δ power or the cardiac HF
power as the target process. In either case, both the PE and
SE resulted in being statistically significant independently of
the adopted estimator, documenting the existence of structured

032904-11



FAES, KUGIUMTZIS, NOLLO, JURYSTA, AND MARINAZZO PHYSICAL REVIEW E 91, 032904 (2015)

.

.

.

.

.

.
.

.

(a) (b)

FIG. 7. Estimation of measures of information dynamics for the
second application (time series of EEG and cardiac HF variability
band powers). Plots depict the estimated values (median and 10th–
90th percentiles over 10 subjects) of the PE of Y , SE of Y , TE
from Z to Y , and PTE from X to Y conditioned to Z, computed by
means of (a) uniform embedding and (b) nonuniform embedding.
The analysis is performed by taking the cardiac HF activity as the
target process and the EEG δ power as the source process and
vice versa. The Prediction Entropy is computed through the direct
estimation (squares) as well as the sum of the estimated SE, TE and
PTE (triangles). The number of subjects (out of 10) for which any
measure was detected as statistically significant is reported close to
its distribution. Asterisks indicate statistically significant differences
between the two directions of interaction (paired t-test, p < 0.05).

dynamics in the processes descriptive of cardiac HF and brain
δ activities and indicating that a significant part of these
dynamics can be expressed in terms of information storage.
The analysis of TE computed with the EEG δ activity as
the target process demonstrated the existence of significant
information transfer directed towards the δ node of the brain-

brain subnetwork (TZ→Y was substantial and significant in all
subjects). This result agrees with the findings of a recent study
conducted on the same data set using a linear model-based
estimator [57], where we more specifically found that there
is significant information transferred to each node of the
brain-brain network composed of the δ, θ , α, σ , and β EEG
wave amplitudes. Taking the cardiac HF power as the target
process, we found high and significant TE values, indicating an
important transfer of information from the brain system to the
heart system. This result, which was fully evident only using
nonuniform embedding estimators, supports previous studies
conducted on the same data, based on linear frequency domain
analysis [53] and nonlinear synchronization analysis [56],
which showed that all EEG power band dynamics are linked
to cardiac HF variability. Additionally, our decomposition
shows that the important brain-to-heart transfer, documented
by the significant TE TZ→Y , is mediated only in a small part
by the δ activity because the corresponding PTE TX→Y |Z is
very low and barely significant. On the other hand, the PTE
estimated through nonuniform embedding over the opposite
direction from cardiac HF activity to EEG δ activity was
significantly higher (p < 0.05 according to the paired t-test)
and detected in a higher number of subjects (7 vs 3). This
result suggests that information is exchanged between the
brain and heart systems along the preferential direction going
from cardiac to δ wave activity and is in line with previous
findings reporting that the oscillations of the EEG δ power lag
behind those of the cardiac HF time series during sleep [53].
The inability of the traditional uniform embedding to detect
this expected direction for brain-heart interactions suggests
once more the better suitability of nonuniform embedding
schemes for the detection of predictive information transfer in
real data measured from physiological systems. Nevertheless,
the different complexity of the EEG δ amplitude and the
cardiac HF component, here documented by the different
SE values, may play a role in determining the asymmetry
of the information transfer between these two series. Also,
an important limitation of the adopted acquisition protocol is
that it did not include the respiratory signal. Since respiration
affects both the EEG power and heart rate variability, it may be
the case that the observed information transfer is driven by the
common effects of the unobserved respiratory variable. Future
studies should be directed to applying the proposed fully
multivariate framework to more complete data sets including
potentially confounding variables.

VI. DISCUSSION

The present study underlines the need to resort to ap-
proaches for an accurate selection of the variables to be
included in the entropy terms composing the measures of
information dynamics, when these measures have to be
estimated under conditions requiring the exploration of state
spaces of high dimension. Under these conditions, typically
occurring in the analysis of multiple interacting processes
with long memory, the curse of dimensionality becomes a
severe issue. In fact, this issue has limited the practical
development of fully multivariate approaches to the esti-
mation of dynamical information-theoretic measures. Only
recently have several approaches for dimensionality reduction
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been proposed specifically for the evaluation of multivariate
measures of direct coupling such as Granger causality or
the PTE [9,30,40,58]. The approach proposed in this study
generalizes the nonuniform embedding scheme introduced
in [30] to the estimation of the PE and of the factors of its
decomposition. With this approach, reduction of the dimension
of the state space to a minimum value is achieved by applying
an optimization criterion, based on CMI maximization, such
that only the past process components that contribute most
(in terms of CMI) to the present of the target process are
included in the computation. The most distinctive features
of the approach are that (i) it employs a nearest-neighbor
estimation technique specifically designed to compensate the
bias due to the different dimensionality of individual entropy
terms [4,29]; (ii) it incorporates an automatic termination crite-
rion for the selection of components, which allows bypassing
the problem of determining the embedding parameters; and
(iii) it returns values of PE, SE, TE, and PTE that are strictly
positive only when associated with significant predictive
information, information storage, or information transfer and
exactly zero otherwise. The latter property, which results from
the randomization test applied to assess the significance of
each selected component, adds to the output measure the
important information about its statistical significance, thus
avoiding the need of performing time-consuming significance
tests after the estimation. Therefore, while our approach is
slower than the traditional uniform embedding, it becomes
less computationally intensive when the statistical significance
of the considered information measure needs to be assessed.
Moreover, although this feature has not been exploited here,
the selection of significant lagged components achieved by
nonuniform embedding allows us also to infer the time lags at
which the causal dependences take place [41].

In general, it is known that the estimation of information-
theoretic measures is hampered by several problems other
than the curse of dimensionality, including the estimation
bias resulting from working on limited amounts of possibly
noisy data, the different bias brought by the estimation
of the different terms composing the investigated measure,
and the different internal dynamics of each investigated
system [26,27,29]. The most general measure considered in
this study, i.e., the predictive information, reflects the overall
statistical dependence of the present state of the observed target
system on the past history of the whole observed multivariate
system. Being expressed as the sum of different terms that may
contribute with different bias to the predictive information, its
direct estimation may not support the validity of tiny changes
in the composing terms, especially when they are of low
magnitude. We have shown that this issue is better addressed by
providing individual estimates of SE, TE, and PTE and using
their sum to estimate the PE. Moreover, it is known that infer-
ence of the causal relations, in this context performed through
the measures of information transfer, is not a trivial issue as it
is complicated by issues related to differences in the estimation
bias of the entropy estimates and in the internal complexity of
the observed source and target processes [26]. These issues
may have an impact on causality estimation, as they easily
lead to decreased sensitivity and false detections. A major aim
of the framework for the estimation of information dynamics
presented in this study was that of limiting such an impact.

Our results suggest that our approach addresses successfully
the problem of quantifying the predictive information about a
target process embedded in a network of interacting processes,
as well as the information storage and transfer terms that form
its decomposition, even in the challenging conditions posed
by the presence of several processes and/or long interaction
delays. In these conditions, the good statistical properties
and the bias compensation provided by the nearest-neighbor
estimation method are not sufficient to make it able to assess
reliably the values of PE, SE, TE, and PTE if it is implemented
according to the classical uniform embedding scheme. In
contrast, implementation of the nearest-neighbor estimator in
the proposed nonuniform embedding procedure leads to an
accurate detection of the significant values of all measures
of information dynamics and allows containing the bias of
their estimated magnitude. This has been documented by both
comparing expected and estimated values of the measures in
the simulation of linear Gaussian processes (Figs. 2 and 3) and
assessing the statistical significance of the estimated measures
in the simulation of nonlinear chaotic systems (Figs. 4 and 5).
The good sensitivity and specificity of nonuniform embedding
was also previously demonstrated for the task of causality
detection [30,59]. Of note is that the good performance has
been achieved in this study on very short process realizations
(a few hundred data points). This is important for the analysis
of real-world time series, for which the dynamics typically
unfold over short periods of time.

The feasibility of estimating predictive information and its
decomposition in real data has been demonstrated by the two
applications, in which the analysis of information dynamics
led to physiologically interpretable results. In particular, in
the cardiovascular application where the adopted experimental
protocol allowed us to establish a sort of verifiable ground
truth, the expected increase of information storage in the
cardiac system, decrease of cardiorespiratory information
transfer, and increase in cardiovascular transfer were all
detected at the transition from supine to upright body position
(Fig. 6). Also in the study of cardiac and EEG time series
during sleep, the observed patterns of brain-brain and brain-
heart interactions were in line with the results of previous
experimental findings.

From a more theoretical point of view, we confirm the im-
portance of adopting a complete analysis framework whereby
measures of information storage and transfer are computed
and interpreted together as constituents of the predictive
information about a dynamical system embedded in a network
of interacting systems [23]. In our study, the usefulness of a
combined analysis can be inferred, for instance, by looking
at Figs. 4 and 5, where the tendency towards a decrease in
the predictive information estimated for increasing coupling
parameter is explained by a decrease in the information
stored in the target process, not fully compensated by the
increasing information transfer. Another interesting behavior
is that displayed by the information storage in Figs. 2 and 3:
While one would expect the SE to decrease with the coupling
parameter [given that a higher C in Eq. (16) determines
less strong internal dynamics in the target process], the
nonmonotonic behavior of SE results from the knowledge that
information storage can be both internally driven and input-
driven [5] and from the observation that in this example the
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information transfer increases substantially with the coupling
parameter. The need to provide a joint interpretation of the
different measures of information dynamics is supported also
by our real data analysis. For example, in Fig. 6, the increase of
the predictive information about the cardiac system observed
going from the supine to the upright position is reflected
by variations of different sign, all physiologically well inter-
pretable, of the measures of information storage and transfer:
the SE increases reflecting sympathetic activation [46], the
TE decreases reflecting a dampening of the respiratory sinus
arrhythmia [18], and the PTE increases reflecting an activation
of the cardiac baroreflex [52].

Finally, it is worth noting that the decomposition of the
predictive information is not unique: The implicit arbitrariness
in the entropy decomposition rule allows decomposing the PE
following a different ordering, when progressively condition-
ing on the past of the processes, than that presented in Eq. (2).
While from a theoretical point of view none of the possible
decompositions may be considered as preeminent [23,60],
in this study we adopted the one in Eq. (2) because it puts
in evidence well-defined quantities such as the SE, the TE,
and the PTE. Here this decomposition is also supported a
posteriori by our applicative analyses showing how it helps in
understanding the dynamic dependences in different networks
of physiological systems. Nevertheless, the estimation frame-
work proposed in Sec. III can be intuitively implemented to
support other decompositions when they are considered more
appropriate. In addition, it is worth noting that the predictive
information terms computed for all possible target processes
form the so-called global multi-information [23], which is a
measure of the whole temporal statistical dependences for a
multivariate process. Since the global multi-information can be
alternatively decomposed evidencing amounts of information
related to the temporal internal dynamics of each process
and the directed transfer of information between processes
(plus instantaneous exchange of information) [23,61,62], the
predictive information decomposition presented in this study
can be placed in a more general context where its terms
characterize distinctive parcels of the overall causal statistical
structure of networks of dynamic processes.
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APPENDIX

Here we provide a derivation of the exact values of
the measures of information dynamics when the observed
M-dimensional process U = {X,Y,Z} has a joint Gaussian
distribution. The derivation is based on first expressing the
joint Gaussian process as a VAR process, for which the
autocovariance sequence can be computed, up to arbitrarily
large lags, from the VAR parameters and then exploiting the
equations that express PE, SE, TE, and PTE of joint Gaussian
processes in terms of the cross covariances between their
time-ordered variables.

Under the joint Gaussian assumption, it has been formally
proven [35] that the statistical dependences between the
present and the past variables constituting the process U are
fully represented in terms of linear functions and thus can be
properly accounted for by expressing U as a VAR process of
appropriate order p:

Un =
p∑

k=1

Ak Un−k + εn, (A1)

where Un = [Xn Yn Zn]T is the M × 1 vector including the
present variables of the joint process, Ak are M × M co-
efficient matrices, and εn is an M × 1 white noise process
with diagonal covariance matrix �. The autocovariance of
the process (A1) is a sequence of M × M matrices �k

that are related to the VAR parameters via the Yule-Walker
equations [63]

�k = E
[
UnUT

n−k

] =
p∑

l=1

Al �k−l + δk0�, (A2)

where δk0 is the Kronecker product. In order to solve (A2) for
k = 0,1, . . . ,p − 1, we first express (A1) as

Up
n = ApUp

n−1 + εp
n ,

where

Up
n = [

UT
n UT

n−1 · · · UT
n−p+1

]T
,

Ap =

⎡
⎢⎢⎢⎢⎣

A1 · · · Ap−1 Ap

IM×M · · · 0M×M 0M×M

...
. . .

...
...

0M×M · · · IM×M 0M×M

⎤
⎥⎥⎥⎥⎦ ,

εp
n = [

εT
n 01×M(p−1)

]T
,

Then we find that the pM × pM covariance matrix of Up
n

is of the form

�
p

0 = E
[
Up

n UpT

n

] =

⎡
⎢⎢⎢⎣

�0 �1 · · · �p−1

�T
1 �0 · · · �p−2

...
...

. . .
...

�T
p−1 �T

p−2 · · · �0

⎤
⎥⎥⎥⎦

and can be derived by solving the equation

�
p

0 = Ap�
p

0 ApT + �p, (A3)

where �p is the covariance of ε
p
n , equal to

�p = E
[
εp

nεpT

n

] =
[

� 0M×M(p−1)

0M(p−1)×M 0M(p−1)×M(p−1)

]
.

Equation (A3) is a discrete-time Lyapunov equation, which
can be solved for �

p

0 , thus yielding the values of �0, . . . ,�p−1.
Then the autocovariance matrices can be calculated recursively
for any k � p by solving (A2) for �k from the known

k−1, . . . ,
k−p. With this we have shown how to compute the
autocovariance sequence of a VAR process, up to arbitrarily
high lags, starting from the VAR parameters (A1, . . . ,Ap,�).
In the following we show how the elements of �k can be
exploited to calculate the information dynamics measures.
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Under the joint Gaussian assumption, the entropy of the
target variable Yn, the MI between Yn and the k-dimensional
vector variable V k

n , and the MI between Yn and V k
n conditioned

to the l-dimensional vector variable Wl
n can be formulated

as [34,64]

H (Yn) = 1

2
ln[2πeσ (Yn)],

I
(
Yn; V k

n

) = 1

2
ln

σ (Yn)

σ
(
Yn

∣∣V k
n

) , (A4)

I
(
Yn; V k

n

∣∣Wl
n

) = 1

2
ln

σ
(
Yn

∣∣Wl
n

)
σ
(
Yn

∣∣V k
n ⊕ Wl

n

) ,

where σ (Yn) is the variance of Yn and σ (Yn|V k
n ) is the partial

variance of Yn given V k
n , that is, the variance of the residuals

of a linear regression of Yn on V k
n . The generic partial variance

σ (Yn|V k
n ) can be expressed in terms of covariance matrices

as [34]

σ
(
Yn|V k

n

) = σ (Yn) − �
(
Yn,V

k
n

)
�

(
V k

n

)−1
�

(
Yn,V

k
n

)T
, (A5)

with �(·) and �(·,·) indicating, respectively, covariance and
cross-covariance matrix. Therefore, PY and the terms of its
decompositions (i.e., SY , TZ→Y , and TX→Y |Z) can all be
obtained: (i) letting V k

n and Wl
n be the appropriate vector

variables including the lagged components taken from the past
of the observed processes X−

n , Y−
n and Z−

n ; (ii) computing
the relevant covariances to be used in (A5), which contain as

scalar elements the covariance between lagged components
of X, Y , and Z and as such can be extrapolated by proper
arrangement of the elements of the autocovariance sequence
�k of the overall process U ; and (iii) solving (A5) to get
the partial variances to be inserted in (A4). For practical
computation, the infinite-dimensional vectors X−

n , Y−
n , and Z−

n

are truncated at dimension L: XL
n = [Xn−1Xn−2 · · · Xn−L],

YL
n = [Yn−1Yn−2 · · · Yn−L], and ZL

n = [Zn−1 ⊕ Zn−2 ⊕ · · · ⊕
Zn−L]. For instance, the PTE defined in (5) is computed
through the last equation in (A4) after setting V k

n = XL
n and

Wl
n = YL

n ⊕ ZL
n [with k = L and l = (M − 2)L]. As regards

the optimal truncation for the past history of the processes,
we note that considering the past up to lag L corresponds to
calculating the autocovariance of the process (A1) up to the
matrix �L. Since the autocovariance of a VAR process decays
exponentially with the lag, with a rate of decay depending
on the spectral radius of the process ρ(A) (which is just the
modulus of the largest eigenvalue of Ap), it has been suggested
as a rule of thumb to compute the autocovariance up to a lag
L such that ρ(A)L is smaller than a predefined numerical
tolerance [e.g., 10−8, which can lead to very high lags as the
VAR approaches the unstable regime ρ(A) → 1] [63]. Nev-
ertheless, after trying different VAR configurations, we found
that the computation of very long autocovariance sequences
is not necessary for the purpose of evaluating information
dynamics because all measures stabilize to constant values
already for small lags (typically L = 10) even for reasonably
high values of the spectral radius [47].
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