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Abstract

For the purpose of estimating the state of a linear time-invariant system with measurements subject to outliers, we propose
an observer with a saturated output injection in such a way to mitigate the effect of abnormal and isolated measurement
noise on the error dynamics. Stability conditions in both the continuous-time and the discrete-time cases are derived, which
ensure global exponential stability to the origin for the error dynamics. Such conditions can be expressed in terms of linear
matrix inequalities, allowing for a viable design by using convex optimization. The effectiveness of the approach is illustrated
by means of simulations in comparison with the Luenberger observer.
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1 Introduction

The long-standing problem of estimating the state
variable of a plant was brilliantly solved in 1964 by
Luenberger, who proposed in [19] to use a dynamic
setup, called observer, which provides asymptotic state
estimates under the action of an output injection (see
also [18] for a further development). This pioneering
result was extended from linear time-invariant (LTI)
continuous-time systems to nonlinear and/or discrete-
time systems with a huge, still growing literature. The
observers for LTI systems have a linear structure, which
is well-suited for verifying the asymptotic stability of the
estimation error. In this paper, we focus on observers
for continuous-time and discrete-time LTI plants with a
nonlinear output injection because of a saturation that
depends on a variable threshold. The reason why we
propose this novel estimation paradigm is that we aim
at reducing the effect of measurement outliers, i.e., im-
pulsive disturbances that may irremediably corrupt the
measurements used for the purpose of state estimation.
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The literature on estimation in the presence of outliers is
vast but it refers mainly to identification problems. Most
of the results rely on the idea of setting the Kalman filter
so as to make it robust to outliers (see, among others,
[9,22,8]). In [1] statistical tests are proposed that are
less sensitive to abnormal noises. Identification based on
an l1 criterion is addressed in [16,27]. Instead of only
attenuating the effect of outliers, a different approach is
reported in [2], where a method based on a leave-one-out
moving-horizon estimation strategy is proposed.

In the past two decades suitable characterizations of in-
put saturation in control systems have been developed,
allowing to reach out beyond the mere application of ab-
solute stability concepts and global sector properties of
the saturation nonlinearity [15]. In particular, according
to the results in [23], it was recognized that global ex-
ponential stabilization of a linear plant using a bounded
input is impossible, unless the plant is already exponen-
tially stable. Therefore, suitable generalizations of the
standard (globally-based) absolute stability results were
proposed in [13,10,14], which allowed to establish local
results with a guaranteed region of attraction by way of
a generalized (or local/regional) sector condition satis-
fied by the saturation nonlinearity (see also [24,12]). This
generalized sector condition is nowadays a well known
tool to address analysis and design of control laws for
linear systems subject to saturations and deadzones.

In line with [3], here we employ a saturation function
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in the output injection signal of a linear asymptotic ob-
server for a linear plant. As compared to the typical use
of saturations, the novelty consists in using the satura-
tion level artificially and adjusting it in such a way that
global asymptotic stability properties of the error dy-
namics are guaranteed for any detectable linear plant.
The adaptive saturation of the output error makes it
possible to deal with specific types of measurement dis-
turbances, such as the ones characterized by rare out-
liers. We call the resulting observers stubborn because in-
deed the saturation threshold is guaranteed to converge
to zero in the absence of noise, and then possible out-
liers do not directly reach the error dynamics because
they are mitigated by the limiting effect of saturation.
On the other hand, persistent estimation errors gradu-
ally cause an increase of the saturation threshold and
become increasingly important in the error dynamics,
so as to guarantee global asymptotic stability of the ori-
gin for the estimation error dynamics. Interestingly, for
the continuous-time case we can strengthen the global
asymptotic stability (GAS) results to global exponen-
tial stability (GES) of the origin. This is however not
the case for the parallel discrete-time results, where a
significantly different proof technique must be adopted
and the weaker GAS property of the origin can be estab-
lished. We provide convex conditions for the selection of
the observer parameters that can be expressed by means
of linear matrix inequalities (LMIs) and easily solved by
using semidefinite programming (SDP) tools [5]. More-
over, we prove that such conditions are always feasible
under the (necessary) assumption that the plant state is
detectable from the available measurement output. Fi-
nally, it is worth mentioning that there exist some few
results on saturated high-gain observers for nonlinear
systems. In [17], the saturation is used to ensure that the
estimate takes into account the knowledge on the bound-
edness of the state trajectories. A nested-saturation low-
power approach is proposed in [4,25] to overcome the
well-known issue of the peaking, which affects high-gain
observers.

Preliminary results of this work were presented in [3]
only for the continuous-time case with a first proposal
of tuning procedure for the observer parameters. Here,
in addition to extending the results to the discrete-time
case, we provide the proofs that were missing in [3], we
discuss a novel tuning procedure for the observer param-
eters, and we illustrate the effectiveness of the proposed
strategy on new simulation studies. We note that the
discrete-time case discussed here presents somewhat dif-
ferent challenges for the proof of stability, which must
follow a different paradigm.

The paper is structured as follows. The main results
concerning the proposed stubborn estimator in the
continuous-time and discrete-time cases are presented
in Sections 2 and 3, respectively. Since numerical results
in the first case are reported in [3], novel simulation
results concerning only the second case for discrete-

time LTI systems are shown in Section 4. Based on the
foregoing, conclusions are drawn in Section 5.

Notation. The minimum and maximum eigenval-
ues of a real, symmetric matrix P are denoted
by λmin(P ) and λmax(P ), respectively; in addi-
tion, P > 0, P ≥ 0, P < 0, P ≤ 0, means that
P is positive definite, positive semidefinite, nega-
tive definite, and negative semidefinite, respectively.
Given a generic matrix M , HeM := M> + M and

|M | :=
(
λmax(M>M)

)1/2
=
(
λmax(MM>)

)1/2
. Fi-

nally, let (x, y) := [x>, y>]>, where x and y are two
vectors.

2 Main results for continuous-time LTI systems

2.1 Observer architecture

We consider an LTI continuous-time plant with state
x ∈ Rn, output y ∈ Rny , control input u ∈ Rnu , and
disturbance d ∈ Rnd :

ẋ = Ax+Buu+Bdd

y = Cx+Duu+Ddd.
(1)

In this paper, we propose the following dynamic state
estimator:

˙̂x = Ax̂+Buu+ L satσ(y − ŷ)

ŷ = Cx̂+Duu,
(2a)

where satσ is a symmetric vector saturation func-
tion with variable non-negative saturation limits
σ = (σ1, · · · , σny ) ∈ Rny

≥0 defined for each s =

(s1, · · · , sny
) ∈ Rny as

satσ(s) =


satσ1(s1)

...

satσny
(sny

)

 , (2b)

satσk
(sk) = max{−σk,min{σk, sk}} being the standard

scalar symmetric saturation function. The observer dy-
namics is completed by the following scalar equation
governing the evolution of the saturation limits σ:

σ̇ =−λσ + (y − ŷ)>R (y − ŷ), σ ∈ R≥0 (2c)

σi =
√
σ/wi, i = 1, . . . , ny, (2d)

where λ > 0 scalar, R = R> > 0 and wi > 0, i =
1, . . . , ny are suitable parameters. Moreover, by σ ∈ R≥0
we mean that the dynamics of σ is constrained to the
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non-negative real axis, which is indeed forward invari-
ant for dynamics (2c). This constraint clearly makes the
square root in (2d) well posed.

The rationale behind the nonlinear observer (2) is that
of a “stubborn” observer, in the sense that the output
estimation error ey := y− ŷ ∈ Rny is injected in the ob-
server equations (2a) through a bounded function. The
advantage of such an observer structure is that possible
outliers in the measurements are suitably canceled (ac-
tually saturated) and their effect on the estimation error
is reduced. Dynamic adaptation of the saturation level is
then necessary in such a way that global asymptotic sta-
bility of the estimation error dynamics can be ensured.
In particular, in the adaptation equation (2c), the ef-
fect of the first term (involving λ) is to push to zero the
saturation levels σ, while the effect of the second term
(depending on R) is to ensure that an output estimation
error eventually leads to a suitable increase of σ in such
a way that the error dynamics can be stabilized.

2.2 Stability and feasibility

Given the observer architecture (2), we provide here nec-
essary conditions on the observer parameters L, λ, R,
and W that ensure uniform global asymptotic stabil-
ity of the dynamics of the error variables (e, σ), where
e := x − x̂, in the absence of disturbances, i.e., with
d = 0. This dynamics can be easily computed from (1)
and (2) as follows

ė = (A− LC)e+ Lq

σ̇ = −λσ + e>C>RCe, σ ∈ R≥0
q = dzσ(Ce) := Ce− satσ(Ce),

(3)

where the deadzone function dzσ(s) := s − satσ(s) and
the auxiliary variable q ∈ Rny are introduced to simplify
the notation.

Remark 1 Note that the adaptation law in (2c) is nec-
essary if one wants to propose an observer with a satu-
rated output injection for general linear plants. Indeed,
the simple alternative of selecting a constant (or bounded)
saturation level σ would dramatically fail to work when-
ever the matrix A has eigenvalues with positive real part.
This is apparent if one realizes that the error dynamics
(3) corresponds to a linear plant with a saturated linear
output injection and, as established in [23], exponentially
unstable linear dynamics cannot be globally asymptoti-
cally stabilized through a bounded input. In this paper we
propose the dynamic saturation level in (2c), (2d) which
instead makes our solution applicable to any linear plant,
as long as the pair (C,A) is detectable, as established
later in Proposition 1.

Below, we state our main result, where the observer pa-
rameters will be designed according to a few convex con-

straints. A first constraint ensures that the interplay be-
tween parameters λ and R of the adaptation forces σ to
grow fast enough in such a way as to prevent the diver-
gence of a suitable quadratic Lyapunov function e>Pe:

He

[
PA−XC + 1

2

(
λP − C>RC

)
X

UC −U

]
< 0. (4a)

with P = P> > 0 X ∈ Rn×ny is an auxiliary variable
allowing us to linearize the dependence on the output
injection gain L, and where U > 0 is a diagonal scaling
matrix introduced to have extra degrees of freedom for
parameter optimization.

Two constraints will be imposed to ensure that, once σ
has grown large enough to “capture” the error, both the
error e and the saturation level σ will actually converge
to zero:

He

[
PA−XC X

WC + Y −W

]
< 0 (4b)

[
P Y >i

Yi wi

]
≥ 0, i = 1, . . . , ny, (4c)

where wi denotes the i-th diagonal entry of the di-
agonal positive definite matrix W > 0 (i.e., W :=
diag(w1, . . . , wny

)) and Yi denotes the i-th row of matrix
Y ∈ Rny×n. Our main stability result follows.

Theorem 1 Consider any feasible solution to the matrix
inequalities (4) in the variables X, Y , λ > 0, P = P> >
0, R = R> > 0, U > 0 diagonal, W > 0 diagonal,
and use them as parameters R, W , λ for observer (2),
together with

L = P−1X. (5)

Then the error dynamics (3) associated with the observer-
plant interconnection (1)-(2) is globally exponentially
stable to the origin.

Remark 2 Note that Theorem 1 claims that GES (global
exponential stability) holds in both state variables e and
σ, thereby establishing useful uniform boundedness and
exponential convergence to zero for both the error e and
the saturation levels σ (see equation (2d)).

Proof. We prove the theorem by introducing a suitable
non-differentiable Lipschitz Lyapunov function V . Fol-
lowing [26], we only need to establish a flow condition
for almost all x (namely, wherever the gradient of V is
defined). Indeed, around each point where the condition
does not hold there is a full measure set of points where
it holds. Then following the reasoning in [26, p. 100], we
obtain that the Lyapunov condition holds for the gener-
alized gradient [7] and asymptotic stability follows from
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the derivations in [7,26]. To define the Lyapunov func-
tion, first note that both inequalities (4a) and (4b) are
strict so that one can find a small enough ε > 0 such that

He

[
PA−XC + 1

2

(
λP − C>RC

)
X

UC −U

]
<−2εI, (6)

He

[
PA−XC X

WC + Y −W

]
<−2εI. (7)

Then we define the Lyapunov function as

V (e, σ) = e>Pe+ ζ σ︸ ︷︷ ︸
V1(e,σ)

+η max{e>Pe− σ, 0}︸ ︷︷ ︸
V2(e,σ)

, (8)

where ζ and η are positive scalars selected below. Note
that V is positive definite in the set Rn × R≥0 where
the dynamics is constrained. Indeed, the first term is
positive definite and the second term is non-negative.
As mentioned above, the function V is non-differentiable
in the zero measure set where e>Pe − σ = 0. Below,
we prove the theorem by establishing the decrease of V
wherever it is differentiable. In particular, we split the
analysis in two cases.

Case 1: e>Pe < σ. Here we will select the scalar ζ in
(8). Define matrix H = W−1Y . Then we can apply a
Schur complement to (4c) and pre- and post-multiply
by e and its transpose to get e>Pe − wie>H>i Hie ≥ 0,
which implies, together with the condition of Case 1, and
relation (2d):

wi|Hie|2 ≤ e>Pe ≤ σ = wiσ
2
i , ∀i ∈ {1, . . . , ny}.

Dividing the inequality above bywi we obtain dzσi(Hie) =
0 for all i ∈ {1, . . . , ny}, which implies dzσ(He) = 0.
Exploiting this property, we can use the following gen-
eralized (local) sector condition introduced in [10,14]
and reformulated in [24, Lemma 1.6] as follows:

dzσ(He) = 0 ⇒ q>W (Ce+He− q) ≥ 0, (9)

whose right hand inequality is therefore valid for all (e, σ)
satisfying the condition of Case 1.

Let us now use inequality (7), which can be pre- and
post-multiplied by (e, q) and its transpose, to get:

2e>P ((A− LC)e+ Lq)+2q>W (Ce+He−q) < −2ε|e|2,
(10)

where we have used X = PL (from (5)) and Y = WH
from the definition above. Finally, let us select

ζ =
ε

|C>RC|
(11)

and compute the variation of V in (8) along the dynamics
(3), which gives (note that the second term V2 in (8) is
identically zero in the set considered in Case 1, so it gives
no contribution to the equation below):

V̇ (e, σ) = 2e>P ((A− LC)e+ Lq) + ζσ̇

<−2q>W (Ce+He− q)− 2ε|e|2 + ζσ̇

≤ (−2ε+ ζ|C>RC|)|e|2 − λζσ
≤−ε|e|2 − λζσ, if e>Pe < σ, (12)

where we have used (9) and (10).

Case 2: e>Pe > σ. Here we will select the scalar η in (8).
For the case considered here, the maximum term in the
expression of V2 in (8) is always the first one, therefore
we may consider inequality (6), which can be multiplied
on both sides by (e, q) and its transpose, to obtain

V̇2(e, σ) = 2e>P ((A− LC)e+ Lq)− e>C>RCe+ λσ

< −2q>U(Ce− q)− 2ε(|e|2 + |q|2)

≤ −2ε(|e|2 + |q|2),

(13)
where in the first step we used σ < e>Pe (from Case 2)
and in the second step we used (9) with H = 0, which
clearly holds globally (because dzσ(0) = 0 for any σ).

Consider now the upper left component of inequality (7),
which implies P (A−LC) < −2εI, recall that (11) holds,
and select

η =
|PL|
2ε

to get (some steps related to σ̇ being similar to those in
(12)):

V̇ (e, σ) = 2e>P (A− LC)e+ 2e>PLq + ζσ̇ + ηV̇2(e, σ)

< (−2ε+ ζ|C>RC|)|e|2 − λζσ + 2e>PLq

−2ηε(|e|2 + |q|2)

≤−ε|e|2 − λζσ + 2|PL||e||q| − |PL|(|e|2 + |q|2)

≤−ε|e|2 − λζσ, if e>Pe > σ. (14)

Summary. Based on the analysis in Cases 1 and 2 above
and the resulting relations (12), and (14), we may prove
GES by replacing σ with σ as per (2d), which implies
|σ|2 = σ

∑ny

i=1 w
−1
i , so that we may establish the follow-

ing upper and lower bounds:

c1(|e|2 + |σ|2) ≤ V (e, σ) ≤ c2(|e|2 + |σ|2) (15)

c1 := min

{
λmin(P ), ζ

λmin(W )

ny

}
c2 := max

{
(1 + η)λmax(P ), ζ

λmax(W )

ny

}
.
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Moreover, from (12) and (14) we obtain

V̇ (e, σ) ≤ −c3(|e|2 + |σ|2), for almost all e, σ,

where

c3 = min

{
ε, λζ

λmin(W )

ny

}
.

Inequalities above imply a uniform global exponential
bound on |e|2 + |σ|2, which can then be easily extended
to σ. ♦

Remark 3 One property that is perhaps not evident
from the proof of Theorem 1 is that solutions to (3)
always reach in finite time the closed and unbounded set

E(P, σ) := {(e, σ) : e>Pe ≤ σ}, (16)

which is forward invariant. Then they asymptotically
converge to the origin. This fact can be established by fol-
lowing similar derivations to those in Case 2 of the proof
of Theorem 1 while analyzing the function

ψc(e, σ) = e>Pe− (1− c)σ,

with c selected as a sufficiently small positive scalar. Then
it can be shown that there exists a sufficiently small c
such that ψc(e, σ) ≥ 0 implies ψ̇c < 0, which means
that solutions asymptotically converge to the set where
e>Pe ≤ (1 − c)σ and, as a consequence, they converge
in finite time to the set (16). Moreover, forward invari-
ance of (16) can be easily established by the properties of
ψc with c = 0. It is useful to also emphasize that from
this property it is not completely straightforward to prove
GAS of the origin, as the set E(P, σ) is unbounded, so
that a suitable boundedness property of solutions must be
proven to obtain GAS of the origin. This is indeed the
proof technique adopted in the discrete-time version of
our results, where the analysis cannot be elegantly split
in two cases as in the proof of Theorem 1.

We state next a feasibility result showing that the pro-
posed linear matrix inequality (LMI) conditions (4) al-
ways admit a feasible solution as long as pair (C,A) is
detectable (which is a necessary assumption for the ex-
istence of an asymptotic observer).

Proposition 1 Given plant (1), conditions (4) are fea-
sible if and only if pair (C,A) is detectable.

Proof. Necessity follows from standard detectability re-
sults. Indeed, if pair (C,A) is not detectable, no asymp-
totic observer exists for the plant state and therefore
from Theorem 1, conditions (4) must be infeasible.

To prove sufficiency, we first use [11, Theorem 16.6] to get
that detectability implies the existence of P = P> > 0

satisfying

A>P + PA− C>C < 0. (17)

Then we pre- and post-multiply (4a) and (4b) by
[
I C>

0 I

]
and its transpose, respectively, to get the equivalent con-
ditions:

He

PA− C>RC

2
+
λ

2
P X

−UC −U

 < 0

He

[
PA+ C>Y X

−WC + Y −W

]
< 0.

(18)

Now consider the selection

Y = −C
2
, U = W , R = I , X = C>W +

C>

2

and note that (18) and (4c) simplify to:

[
A>P + PA− C>C + λP C>/2

C/2 −2W

]
< 0[

A>P + PA− C>C 0

0 −2W

]
< 0[

P C>i /2

Ci/2 wi

]
≥ 0, i = 1, . . . , ny,

(19)

which are clearly satisfied if one selects P satisfying
(17), λ sufficiently small, and W sufficiently large. ♦

Remark 4 Theorem 1 ensures that the observer state σ
converges exponentially to the origin. In the presence of
noise and modeling uncertainty, this property does not
hold anymore and one expects σ to not converge to zero,
or even diverge. This property may be exploited in mode
estimation for switching systems, where a pool of ob-
servers, one for each mode, is put in place [6]. In practice,
one may regard σ as a monitoring signal that provides
a measure of how good the estimator tracks the state of
the system and possibly acts on the system by tuning the
control.

The design of the proposed observer can be done by ex-
ploiting the effectiveness of popular convex optimization
tools for LMIs. Some naive ideas are reported in [3]. The
reader is referred to Section 3.3 in the next section for an
overview on the possible approaches to construct stub-
born observers since they can be adopted in both the
continuous-time and the discrete-time cases.
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3 Main results for discrete-time LTI systems

3.1 Observer architecture

In this section, we follow parallel discrete-time deriva-
tions to those of Section 2.1. For describing discrete-time
dynamics we simplify notation using the push-forward
operator x+ := x(k + 1) that allows omitting time “k”

from our equations (parallel to notation ẋ := dx(t)
dt ),

thereby simplifying the following derivations. We start
from the discrete-time plant

x+ = Ax+Buu+Bdd

y = Cx+Duu+Ddd,
(20)

and use the observer

x̂+ =Ax̂+Buu+ L satσ(y − ŷ) (21a)

σ+ = λσ + (y − ŷ)>R(y − ŷ), σ ∈ R≥0 (21b)

ŷ =Cx̂+Duu, (21c)

σi =
√
σ/wi, i = 1, . . . , ny, (21d)

where λ ∈ [0, 1) scalar, R = R> > 0 and wi > 0,
i = 1, . . . , ny are suitable parameters. Once again we in-
troduce W := diag(w1, . . . , wny

).

3.2 Stability

For the discrete-time observer (21) we can study the sta-
bility of the estimation error e = x− x̂, having dynamics
whose right-hand side coincides with the corresponding
continuous-time one in (3) under the absence of distur-
bances, i.e., with d = 0 in (20). Such a dynamics of the
estimation error is repeated here for simplified referenc-
ing:

e+ = (A− LC)e+ Lq

σ+ = λσ + e>C>RCe, σ ∈ R≥0,
(22)

with q defined as in (3).

We can now formulate parallel conditions to those in (4)
to ensure GAS of the origin for the error dynamics (22).
In particular, (4a) and (4b) transform into

He


− 1

2 (λP + C>RC) 0 0

UC −U 0

PA−XC X − 1
2P

 < 0 (23)

and

He


− 1

2P 0 0

WC + Y −W 0

PA−XC X − 1
2P

 < 0, (24)

respectively, while equation (4c) remains unchanged.
The following theorem is the discrete-time version of
Theorem 1.

Theorem 2 Consider any feasible solution to the matrix
inequalities (4c), (23), and (24) in the variables X, Y ,
λ ∈ [0, 1), P = P> > 0, R = R> > 0, U > 0 diagonal,
W > 0 diagonal, and use them as parametersR,W , λ for
observer (21), together with the gain selection (5). Then
the error dynamics (22) associated with the observer-
plant interconnection (20)-(21) is globally asymptotically
stable to the origin.

Proof. The proof relies on discrete-time matrix manip-
ulations parallel to the continuous-time ones adopted in
the proof of Theorem 1. However, for the discrete-time
case it is not possible to obtain such an elegant bound on
the variation of the Lyapunov function V in (8). There-
fore, we resort to a different type of proof where we use
the discrete-time version of the forward invariance prop-
erty commented in Remark 3 and apply a suitable sta-
bility result for cascaded systems. More specifically, the
proof is carried out in three steps:

• In step A) we show that the closed (but unbounded)
setM := E(P, σ) defined in (16) is forward invariant
and that the origin is globally asymptotically stable
(GAS) for the dynamics restricted to this set.

• In step B) we show that the setM is stable and (not
necessarily uniformly) attractive from the whole state
space.

• In step C) we show that all solutions are bounded.

Applying the following corollary of [21, Lemma 1 and
Remark 8], 1 we then obtain GAS of the origin. The
different proof technique and, in particular, the use of
Lemma 1 has the consequence that for our discrete-time
result we do not establish GES but only GAS of the ori-
gin. This is because the discrete-time bounds that we ob-
tain do not lead to a single Lyapunov function with nice
homogeneous bounds (as in Theorem 1). Whether the
established GAS can be strengthened to GES remains
an open question.

Lemma 1 [21] Consider a nonlinear system ξ+ = f(ξ),
where f : Rn → Rn is continuous, and assume that

(1) a closed setM⊂ Rn is stable and globally attractive
(therefore forward invariant);

1 Note that [21, Lemma 1] is stated for continuous-time sys-
tems but [21, Remark 8] emphasizes that the related con-
struction applies to hybrid systems satisfying certain hy-
brid basic conditions. Discrete-time systems with continu-
ous right hand side fall into this family of hybrid systems
and this is why Lemma 1 is a corollary of [21, Lemma 1 and
Remark 8].
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(2) the compact set M◦ ⊂ M is stable and globally
attractive relative to M (namely, relative to initial
conditions inM).

Then the set M◦ is asymptotically stable for ξ+ = f(ξ)
with basin of attraction coinciding with the largest set of
initial conditions from which all solutions are bounded.
In particular, if all solutions are bounded, then the set
M◦ is globally asymptotically stable for ξ+ = f(ξ).

Step (A). We first apply a Schur complement to (23) and
(24), corresponding to inverting the (3,3) block entry of
both inequalities, and introduce strengthened versions
of them, parallel to (6), (7), which hold for a sufficiently
small ε > 0. Below, we use relation X = PL (from (5))
and we use the shortcut notation AL := A− LC:

[
A>LPAL − λP − C>RC ?

L>PAL + UC −2U + L>PL

]
<−2εI, (25)

[
A>LPAL − P ?

L>PAL +WC + Y −2W + L>PL

]
<−2εI, (26)

where ? denotes symmetric entries from now on. Then
we consider the Lyapunov function V in (8), used in the
continuous-time case, and choose its parameter ζ. De-
noting again H = W−1Y , we may apply a Schur com-
plement to (4c) to obtain e>Pe− wie>H>i Hie ≥ 0 and
following the same derivations as in the proof of Theo-
rem 1, we get dz(He) = 0, which implies that the local
sector condition (9) holds.

Let us now use inequality (26), which can be pre- and
post-multiplied by (e, q) and its transpose, to get:

e>
(
A>LPAL − P

)
e+ q>L>P (2ALe+ Lq)

+2q>W (Ce+He− q) < −2ε|e|2,
(27)

where we used Y = WH from the definition above. To
show that the setM = E(P, σ) in (16) is forward invari-
ant, consider using −σ ≤ −e>Pe below, to get

(e+)>Pe+ − σ+

= (ALe+ Lq)>P (ALe+ Lq)− (λσ + e>C>RCe)

≤ (ALe+ Lq)>P (ALe+ Lq)− e>(λP + C>RC)e

+2q>U(Ce− q) ≤ 0,

(28)
where we used the global sector condition 2q>U(Ce −
q) ≥ 0 and where the last inequality is straightforward
from hitting (25) on both sides by (e, q) and its trans-
pose.

Finally, let us select

ζ =
ε

|C>RC|
(29)

and compute the variation of V in (8) along dynamics
(22). To this aim, we note that V2(e, σ) = 0 because
we are restricting the dynamics to M. and that also
V2(e+, σ+) = 0 due to the forward invariance of M es-
tablished in (28). Then we obtain:

∆V (e, σ) := V1(e+, σ+)− V1(e, σ) = e>(A>LPAL

− P )e+ q>L>P (2ALe+ Lq) + ζ(σ+ − σ)

< −2q>W (Ce+He− q)− 2ε|e|2 + ζ(σ+ − σ)

≤ (−2ε+ ζ|C>RC|)|e|2 − (1− λ)ζσ

≤ −ε|e|2 − (1− λ)ζσ, if (e, σ) ∈M, (30)

where we have used (27) and (9). This last inequality
implies the negative definiteness of ∆V with respect to
the origin for all states inM, which implies GES, there-
fore also GAS, of the origin for the dynamics restricted
toM.

Step (B). To show that the setM is stable and globally
attractive, we rely once again on function V in (8), and
choose its parameter η. Since we are studying stability
properties of the forward invariant set M, we are only
interested in points of the state space where σ < e>Pe
(namely, points outsideM) and where σ+ < (e+)>Pe+

(namely, points mapped outside M, indeed any point
mapped inside M clearly leads to solutions converging
toM).

For this special case, the maximum term in the expres-
sion of V2 in (8) is the first one both before and after the
jump, therefore, by also using σ ≤ e>Pe, we get

∆V2(e, σ) = (e+)>Pe+ − σ+ − (e>Pe− σ)

= e>(A>LPAL − P − C>RC)e+ q>L>P (2ALe

+ Lq) + (1− λ)σ

≤ e>(A>LPAL − λP − C>RC)e+ q>L>P (2ALe

+ Lq).

The above equation can be combined with inequality
(25) multiplied on both sides by (e, q) and its transpose,
to obtain

∆V2(e, σ) ≤ −2q>U(Ce− q)− 2ε(|e|2 + |q|2)

≤ −2ε(|e|2 + |q|2),
(31)

where we have used (9) withH = 0, which holds globally
(because dz(0) = 0).

Consider now the upper left component of inequality
(26), which impliesA>LPAL−P < −2εI, recall that (29)

7



holds, and select

η =
|L>PL|+ |L>PAL|

2ε

to get

∆V (e, σ) = e>(A>LPAL − P )e+ q>L>P (2ALe+ Lq)

+ ζ(σ+ − σ) + η∆V2(e, σ) (32)

≤ (−2ε+ ζ|C>RC|)|e|2 − (1− λ)ζσ

+ |L>PL||q|2 + 2|L>PAL||e||q| − 2ηε(|e|2 + |q|2)︸ ︷︷ ︸
≤0

≤ −ε|e|2 − ζ(1− λ)σ, if (e, σ) /∈M, (e+, σ+) /∈M,

thus completing the proof of Step (B).

Step (C). To show that all solutions are bounded, we use
the strong properties of function V established in (30)
and (32), in addition to bound (15) that clearly implies:

c1(|e|2 + σ) ≤ V (e, σ) ≤ c2(|e|2 + σ) (33)

for suitable positive scalars c1, c2. Then also using dy-
namics (22), we get:

V (e+, σ+) ≤ c2(|e+|2 + σ+) ≤MV V (e, σ), (34)

whereMV =
c2
c1

max{|A−LC|2+|L|2|C|2+|C>RC|, 1}.

Consider now any solution starting inM and note that
it remains inM due to forward invariance. Then equa-
tion (30) implies that the solution is bounded because V
is nonincreasing and also from the left bound in (33). If
the solution starts outsideM, then V is non-decreasing
(from (32)) as long as the solution remains outside
M. If the solution jumps to M, then (32) cannot be
applied, but (34) guarantees a uniform bound on the
possible growth of V across the corresponding jump. Af-
ter the solution enters M, V will never increase again,
thereby establishing boundedness of the solution, as to
be proven. ♦

3.3 Design

In this section we propose two design procedures for
optimizing the solution to (4c), (23), (24), and (35),
thereby obtaining the observer parameters L, W, R, λ,
based on convex optimization (SDP solvers). Such de-
sign paradigms can be easily extended to the continuous-
time case of Section 2, and their use is illustrated in the
simulation results of Section 4. The first design is called
full stubborn design, wherein all the observer parame-
ters, λ, R, W , and L are simultaneously designed. The
second design is seen as a stubborn augmentation of an

existing (pre-selected) arbitrary observer gain L ensur-
ing that matrix A − LC be Hurwitz. Such a stubborn
design consists in selecting the remaining parameters λ,
R, and W of the observer augmentation.

In principle, any choice of X, Y , λ ∈ [0, 1), P = P> > 0,
R = R> > 0, U > 0 diagonal, and W > 0 diagonal
such that the conditions (4c), (23), and (24) hold is a
solution to the design problem for setting the adaptive
observer (21) with gain (5). However, we note that all
the constraints are homogeneous (they still hold if one
scales all variables by a positive factor). Due to this fact,
in lieu of W > 0 it is preferable to set

W > I (35)

in such a way to improve the numerical efficiency of the
solver. For such reasons, this additional constraint does
not restrict the feasibility set.

Full stubborn (FS) design. Since the matrix inequal-
ity (23) is an LMI with a fixed λ and a large value of λ is
preferable as corresponding to a faster reaction to an in-
crease of the output error, a generalized eigenvalue prob-
lem (GEVP for short, see [5]) in such a way as to min-
imize λ subject to (4c), (23), (24), and (35) (note that
in the continuous-time setting it consists in maximizing
λ > 0). The optimal λ that results from the solution of
such a relaxed problem has to be regarded as an upper
bound, which can be used to restart the design proce-
dure by fixing λ to a fraction of such a bound. Thus, we
can exploit the “degree of freedom” let by this relaxation
by searching for the remaining unknowns in such a way
to construct the stubborn observer in a convenient way.

Toward this end, various solutions can be put in practice
after fixing λ. A design goal may be that of minimizing
the norm of R so that an input matched disturbance is
less amplified by the observation law. To set the matrix
R as small as possible, one can minimize the scalar α > 0
under the additional constraint[

αI R>

R αI

]
≥ 0 (36)

in such a way to get the minimum of |R| ≤ α. This
formulation makes it possible to get a convenient trade-
off between decreasing λ and suitably selecting the other
parameters. As an alternative, one may minimize the l2
gain from the disturbance d to the estimation error e
[20]. Specifically, the problem reduces to minimizing γ
under the additional LMI condition

−P 0 C> A>P − C>X>

? −γI D>d B>d P −D>d X>

? ? −γI 0

? ? ? −P

 < 0 , (37)
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where ? denotes symmetric entries. Inequality (37) cor-
responds to the discrete-time version of the bounded real
lemma, which ensures

(e>Pe)+ − (e>Pe) +
1

γ
|y − ŷ|2 − γ|d|2 ≤ 0. (38)

It is worth noting that the l2 design in (37) can be
adopted also for the standard Luenberger observer, as
it will be done in Section 4 for the selection of L in the
design of the stubborn augmentation observer.

Stubborn augmentation (SA) design. A feature
that has been barely commented so far about the pro-
posed stubborn design is that the proposed conditions
(4c), (23), (24), and (35) preserve their convexity also
when the gain L has been fixed a priori to some generic
selection. In particular, it is enough to replace X by PL
in all its occurrences in (23), (24) and all the steps of
our proofs remain valid. In particular, one can follow
exactly the same design procedure of the previous FS
construction and find the stubborn parameters λ, R, W
by first minimizing λ and then also minimizing the norm
of R using constraint (36). The FS and SA setups will be
discussed and illustrated in the next simulation section.

4 Simulation results

In the following, we will consider a passive tracking prob-
lem inspired by [9] with position measurements obtained
by global positioning system (GPS) that may be sub-
ject to outliers. Specifically, the case study is based on
the kinematic model of a mass point in two dimensions
that moves on the plane and for which we have at dis-
posal the measurements of the position along the axes,
i.e., the discrete-time autonomous system with

A =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 , C =

[
1 0 0 0

0 0 1 0

]

where T > 0 is the sampling period. Moreover, we sup-
pose that the system is affected by four external distur-
bances. Specifically, the first and second disturbances
act on the dynamics, whereas the third and fourth ones
concern the position measurements:

Bd =


0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

 , Dd =

[
0 0 1 0

0 0 0 1

]
.

Here we comparatively show the performance obtained
with a linear Luenberger observer (LLO), and compare it

to the results obtained when performing the two designs
suggested in Section 3.3, namely the FS and SA ones.
Specifically, the SA observer is constructed on top of the
gain chosen for the LLO. For the FS design, following
the guidelines in Section 3.3, after finding the minimum
λ by solving a GEVP, we fix λ as the square root of
such a minimum value and we design an observer (21)
by minimizing |R| by way of α in (36). Such an observer
will be denoted by FSO.

The LLO is constructed by minimizing the related l2 gain
that solves the convex problem in (37) with P > 0, i.e.,
by minimizing the disturbance to output error gain γ in
(38). Finally, the SA design follows the guidelines at the
end of Section 3.3 to design only parameters λ, R, W of
the stubborn estimator (21) having fixed a priori the gain
L to the value corresponding to the aforementioned l2
optimal LLO selection. We will denote such an observer
as SAO.

We obtained the following design parameters for the
FSO:

LFS =


1.9615 0

0.5473 0

0 1.9615

0 0.5473

 , WFS =

[
1 0

0 1

]
,

RFS =

[
0.3124 0

0 0.3124

]
, λFS = 0.4419 ,

(39)

while for the LLO we obtained:

LLL =

[
1.2496 0.4805 0 0

0 0 1.2496 0.4805

]>
,

which has been used as a starting point to compute the
following gains of the SAO:

LSA = LLL, WSA =

[
1 0

0 1

]
,

RSA =

[
0.3778 0

0 0.3778

]
, λSA = 0.6250 .

(40)

For the purpose of comparison, we will use boxplots,
which are well-suited for illustrating the difference of
performances among the considered estimators in quite
an intuitive, “graphically-friendly” way. Specifically, we
will show the boxplots of the root mean square error
(RMSE) for each state variable with simulation runs of
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Fig. 2. Result of a simulation run with measurements corrupted by outliers.

Table 1
Medians of the RMSEs over 1000 runs for x1 and x2.

T = 0, f̄ = 0 T = 40, f̄ = 10 T = 30, f̄ = 100 T = 20, f̄ = 103 T = 10, f̄ = 104

x1 x2 x1 x2 x1 x2 x1 x2 x1 x2

FSO 1.9 1.7 2.1 1.7 2.3 1.7 2.5 1.8 106.8 34.2

SAO 1.9 1.6 1.9 1.7 1.9 1.7 2.6 1.8 272.5 116.6

LLO 1.6 1.6 2.0 1.7 15.2 6.7 186.5 79.9 2776.9 1186.8
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Fig. 4. Result of a simulation run with measurements without outliers.

length equal to N time steps:

RMSE :=

(
1

N

N−1∑
t=0

e2i,t

)1/2

where ei,t is the estimation error of the i-th state vari-
able, i = 1, 2, 3, 4.

We consider a simulation setting with T equal to 1 s and
initial states randomly chosen around the initial esti-
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Fig. 1. Boxplots of the RMSEs over 1000 simulation runs with
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Fig. 3. Boxplots of the RMSEs over 1000 simulation runs
with measurements without outliers.

mated state ( 10 , 1 , 10 , 1 ) according to a normal dis-
tribution with covariance diag ( 10 , 10 , 10 , 10 ). Zero-
mean, normal random noises with variance equal to 1
are chosen as systems noises. The measurement noises
are modeled as zero-mean, normal random noises with
variance equal to 0.5, except in the case of outliers. The
outlier occurrence is chosen to be periodic with a period
equal to T and the time of the first outlier is randomly
generated in the interval between 1 and T . The outlier
amplitudes are zero-mean, normal random noises with
dispersion factor f̄ as compared to the standard mea-
surement noise, i.e., variance 0.5 f̄2. Concerning such a
simulation framework with T = 30 and f̄ = 100, Fig-
ures 1 and 2 illustrate the distribution of the RMSEs over
L = 1000 simulation runs of length equal toN = 100 and
the time evolution of the three observers for a specific

simulation run, respectively. Instead, Figures 3 and 4
show the same results in case of no outlier (we refer to
such a setting with T = 0 and f̄ = 0 in Table 1).

Table 1 shows the loss of performances in the medians
of the RMSEs under different simulation regimes with
an increase of outliers both in terms of frequency and
amplitude. In the absence of outliers, the LLO performs
better but the performances of FSO and SAO are quite
close to that of the LLO. By contrast, an increase of
outliers in terms of occurrence and magnitude causes a
major failure of the LLO, whereas both the SAO and es-
pecially the FSO exhibit a much smoother performance
degradation. Note that the SAO and FSO start show-
ing significant differences only for large values of f̄ . The
boxplots of Figures 1 and 3 show that on average the use
of saturation in the FSO and SAO is extremely effective
in making the state estimates almost insensitive to the
measurement outliers, without sacrificing much the per-
formances in the conditions of standard noise. Moreover,
the proposed FSO design method based on the mini-
mization of |R| is more suitable than the pure l2 crite-
rion adopted for the LLO and the SAO, whenever one
witnesses frequent measurement outliers. This fact can
be explained by the higher rate of decrease λ of the sat-
uration threshold obtained from the FSO, as compared
to that of the SAO, as shown by the time behaviors of
σ1 for the FSO and the SAO in Figure 2 (compare also
the values reported in (39) and (40)).

As expected, in the absence of outliers, the LLO per-
forms slightly better, but, in general, the saturation of
the output error makes the estimates of the FSO and
SAO much more robust to outliers. The proposed ob-
servers are well-suited for estimating the state variables
in the presence of outliers, and, as compared with the
Luenberger observer, the introduction of the saturation
provides a meaningful performance improvement.

5 Conclusions

A novel approach to the design of a state estimator with
saturation on the output injection has been proposed.
Such an estimator has been called stubborn observer be-
cause of the intrinsic trend to decrease the saturation
threshold in such way to make it robust to outliers in the
measurements. The main contribution has concerned the
proof of the global asymptotic stability of the estima-
tion error dynamics in both the continuous and the dis-
crete time cases. Moreover, we have provided convenient
tools for the observer design by relying on an LMI-based
framework. Simulations have confirmed the effectiveness
of the stubborn observer in performing estimation with
measurements affected by outliers. As a perspective of
future work, we will investigate the input-to-state sta-
bility for the disturbance-to-error dynamics in the pres-
ence of measurement noise, as well as the extension of
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the proposed approach to estimate the state of nonlin-
ear uncertain plants, possibly in a high-gain observers
framework.
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