
Annals of Emerging Technologies in Computing (AETiC)
Vol. 3, No. 5, 2019

Research Article

Two-tier Blockchain Timestamped
Notarization with Incremental Security

 Alessio Meneghetti1, *, Armanda O. Quintavalle2, Massimiliano Sala3, Alessandro
Tomasi4

1Department of Mathematics, University of Trento, Trento, Italy
alessio.meneghetti@unitn.it

2DLDSD, Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
aottavianoquintavalle1@sheffield.ac.uk

3Department of Mathematics, University of Trento, Trento, Italy
maxsalacodes@gmail.com

3Security and Trust, Fondazione Bruno Kessler, Trento, Italy
altomasi@fbk.eu

*Correspondence: alessio.meneghetti@unitn.it

Received: 8th November 2019; Accepted: 24th November 2019; Published: 15th December 2019

Abstract: Digital notarization is one of the most promising services offered by modern blockchain-based

solutions. We present a digital notary design with incremental security and cost reduced with respect to

current solutions. A client of the service receives evidence in three steps. In the first step, evidence is received

almost immediately, but a lot of trust is required. In the second step, less trust is required, but evidence is

received seconds later. Finally, in the third step evidence is received within minutes via a public blockchain.

Keywords: Blockchain (BC); Notarization; Provable security; Cryptography

1. Introduction

The solution here described was commissioned to provide a customer in the financial sector with
evidence to corroborate its statement of the integrity, authenticity, and existence at a given time of its
data. This is closely related to the problems known as secure timestamping and notarization. The
commission was made with the very specific requirement that it should make use of a privately run
blockchain-based service anchored to a public blockchain, but at the same time still be capable of
working without the private ledger, if it should cease to operate. We find it interesting to discuss how
this design challenge can be met, and what security guarantees it can offer.

Digital timestamping and blockchain have been linked from inception. The bitcoin whitepaper
[1] explicitly cites the linked timestamping work by Haber and Stornetta [2] with Merkle trees [3] as
efficiency improvement [4]. Indeed, digital notarization predates blockchain technology by decades,
but it is only with the advent of blockchain solutions that a widespread adoption of notarization has
become possible.

Many blockchain-based timestamping solutions have been recently proposed and here we
cannot review them all. The authors of [5] propose to commit aggregate data hashes to a bitcoin
transaction. On the other hand, the authors of [6] report on existing solutions that use the data hash
as a bitcoin address to which to spend a transaction (BTProof, now unavailable), or embed a custom

Alessio Meneghetti, Armanda O. Quintavalle, Massimiliano Sala and Alessandro Tomasi, “Two-tier Blockchain Timestamped
Notarization with Incremental Security”, Annals of Emerging Technologies in Computing (AETiC), Print ISSN: 2516-0281, Online
ISSN: 2516-029X, pp. 25-33, Vol. 3, No. 5, 15th December 2019, Published by International Association of Educators and
Researchers (IAER), DOI: 10.33166/AETiC.2019.05.004, Available: http://aetic.theiaer.org/archive/v3/v3n5/p4.html.

http://aetic.theiaer.org/
http://www.theiaer.org/index.htm
http://www.theiaer.org/index.htm
mailto:alessio.meneghetti@unitn.it
mailto:alessio.meneghetti@unitn.it
mailto:alessio.meneghetti@unitn.it
mailto:aottavianoquintavalle1@sheffield.ac.uk
mailto:massimiliano.sala@unitn.it
http://altomasi@fbk.eu
mailto:alessio.meneghetti@unitn.it

AETiC 2019, Vol. 3, No. 5 26

string and a data hash in the transaction's data field (Proof of Existence [7]); the authors themselves
extend the former by using three addresses per transaction: one encoding the name, one encoding
metadata, and one encoding the data hash itself.

As pointed out in [8], there are several layers on which blockchain provides guarantees - of
consistency, security, etc. - each with potentially different tools to check that these guarantees hold.
The present solution does not offer a programming language for smart contracts and makes no
specification as to the networking or consensus protocols.

The novel aspect of our solution is that a client of the service receives evidence in three steps. In
the first step, evidence is received almost immediately, but a lot of trust is required. In the second
step, less trust is required, but evidence is received seconds later. Finally, in the third step evidence
is received within minutes via a public blockchain. We achieve our results thanks to the interaction
between two blockchains, one of which is public.

Due to the confidentiality by our research grant, we do not provide details for our proof-of-
concept, but we may state that a normal PC generates transactions in milliseconds and blocks in less
than a second.

After some notation and preliminaries in Section 2, we give a semi-formal specification of the
solution in Section 3. Sections 4, 5 and 6 contain our security proofs. Section 7 contains a discussion
about possible DOS attacks, while Section 8 hosts our conclusions..

2. Notation and preliminaries

Let time be measured in intervals [𝑎𝑎, 𝑏𝑏) = {𝑡𝑡 ∈ ℝ |𝑎𝑎 ≤ 𝑡𝑡 < 𝑏𝑏}, for any 𝑎𝑎 < 𝑏𝑏 ∈ ℝ. Let 𝜎𝜎𝐴𝐴() be a
digital signature algorithm using the private key of data owner 𝐴𝐴; if the owner can be determined
unambiguously, we may sometimes omit 𝐴𝐴 for clarity. We assume 𝜎𝜎 to be resistant to impersonation
attacks: an attacker 𝐷𝐷 cannot obtain 𝜎𝜎𝐷𝐷(𝑚𝑚) from 𝜎𝜎𝐴𝐴(𝑚𝑚). We also assume 𝜎𝜎 to be unforgeable. For
example, ECDSA satisfies both security properties under the usually-assumed hardness of the DLOG
problem in (strong) elliptic curves.

Let ∥ denote string concatenation. As a shorthand when dealing with containers of data with
attached a signature of the contents, e.g. block headers, we will commonly employ expressions such
as

 𝑠𝑠 = 𝑇𝑇 ∥ 𝜎𝜎(𝑠𝑠), (1)

 where 𝑇𝑇 are the contents, the signature is computed as 𝜎𝜎(𝑇𝑇 ∥ 0) with 0 a string of zeroes of the
same length as 𝜎𝜎(𝑇𝑇 ∥ 0) , and finally the container 𝑠𝑠 is composed by replacing 0 by 𝜎𝜎(𝑇𝑇 ∥ 0). The
shorthand 𝜎𝜎(𝑠𝑠) is employed to indicate that the signature refers to the entire contents, without
writing them explicitly at length.

Throughout this paper we denote with 𝜂𝜂𝐴𝐴(𝑚𝑚) a public-key encryption of message 𝑚𝑚 with public
key of actor 𝐴𝐴 with 𝐹𝐹 { 𝑗𝑗 } a Merkle tree of a list of items 𝑗𝑗; and with ℎ(𝑚𝑚) a cryptographic hash
function, in the sense of [9], of message 𝑚𝑚. In particular, the collision resistance of ℎ() is required in
order to deduce that the forgery of a path in the Merkle tree would imply a collision.

The seminal work on digital timestamping is due to Haber and Stornetta [2], on which widely
used standards for trusted timestamping today are based, such as RFC 3161 [10], ANSI X9.95, and
ISO 18014 [11].

We present the following two algorithms to recall these important methods and establish a
common notation, though we do not make use of them directly in our solution.

Algorithm 1 (Trusted authority timestamping). In [2], the client holding data 𝑑𝑑 sends its hash ℎ(𝑑𝑑) to
a trusted timestamping authority 𝒜𝒜, which returns a signed statement 𝜏𝜏 of the time of receipt, 𝑡𝑡:

 𝜏𝜏 = ℎ(𝑑𝑑) ∥ 𝑡𝑡 ∥ 𝜎𝜎𝒜𝒜(𝜏𝜏). (2)

RFC 3161 is substantially the same scheme, but an additional hashing step is introduced:
 𝜏𝜏 = ℎ(ℎ(𝑑𝑑) ∥ 𝑡𝑡) ∥ 𝜎𝜎𝒜𝒜(𝜏𝜏). (3)

These schemes place all trust in the hands of the authority 𝒜𝒜, but in practice trust is distributed
among several stakeholders with successive timestamps.

 www.aetic.theiaer.org

AETiC 2019, Vol. 3, No. 5 27

By using hash trees, more sophisticated timestamping algorithms have been developed (see e.g.
[4],[12]).

Algorithm 2 (Tree-linked timestamping). At step 𝑘𝑘, define a time interval [𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘). The server 𝒜𝒜
collects all requests 𝛩𝛩𝑘𝑘 = {𝜃𝜃𝑘𝑘.𝑖𝑖}𝑖𝑖 received in the time interval, and builds the Merkle tree 𝐹𝐹 (𝛩𝛩𝑘𝑘). We
denote its root with 𝑟𝑟𝑘𝑘 and we call it interval root.

The interval roots are linked together by the following rule, thus forming a chain of hashes
{𝑅𝑅ℓ}0≤ℓ≤𝑘𝑘 :

𝑅𝑅0 = 0
𝑅𝑅ℓ = ℎ(𝑅𝑅ℓ−1 ∥ 𝑟𝑟ℓ)

The values {𝑅𝑅ℓ}0≤ℓ≤𝑘𝑘 are placed in a widely available repository. The server then returns to each
requester a receipt with the time 𝑡𝑡𝑘𝑘, along with the path in the Merkle tree from the requester’s leaf
up to the value 𝑅𝑅𝑘𝑘.

The authors of [12] themselves point out that the integrity of the public repository of root hashes
is the only requirement on which the authenticity of a document with receipt relies.

3. Solution description

We now describe our solution. We do not require that blocks are created at fixed-time intervals,
but we require a time division in intervals. To be more precise, since each block hosts the time of its
creation, we can consider time intervals using the index 𝑘𝑘 (𝑘𝑘 ≥ 0), so that interval 𝑘𝑘 corresponds to
[𝑡𝑡𝑘𝑘−1, 𝑡𝑡�𝑘𝑘) for 𝑘𝑘 ≥ 1 and interval 0 corresponds to time 𝑡𝑡 < 𝑡𝑡0.

3.1 Architecture

The service handles interactions among the following participants:
• The clients of the service wish to provably record the existence of data 𝑑𝑑 at a given time.

𝐶𝐶 denotes an arbitrary client.
• Some service nodes check proposed transactions for validity, provide evidence of record

to clients, and maintain a blockchain, which we will call proxy blockchain. 𝑁𝑁 and 𝑀𝑀 denote
nodes. At block creation time, one of the service nodes acts as committing node and thus
prepares a block, which is submitted to the other service nodes for acceptance.

• One auxiliary node 𝐴𝐴 commits further evidence to a public ledger 𝐿𝐿, used as a reference
clock and trusted timestamping service, and monitors client transaction activity. 𝐴𝐴 never
acts as a service node.

The service relies on a trusted certificate authority to provide the public key infrastructure
necessary to both identify the nodes with permission to participate in the service and provide the
ability to digitally sign documents. We assume that the proxy blockchain is at least permissioned if
not private, and that it is a robust ledger in the sense of [13], i.e. guaranteeing persistence and liveness.
We do not address the backbone protocol and the consensus algorithm, in particular we make no
specification as to how the information of transactions propagates, or how the node that shall create
the next block is chosen, or how the other service nodes accept its proposed block.

The main function of our service is delivered by enabling a client 𝐶𝐶 to prove existence of some
data at commit time 𝑡𝑡, based on some evidence. We provide evidence in the form of digitally signed
receipts and blockchain and 𝐶𝐶 receives evidence with incremental trust, in three successive steps, as
sketched below:

1. Evidence issued by the service node receiving data.
2. Evidence issued by the service node that create blocks in the proxy blockchain.
3. Evidence issued by the auxiliary node 𝐴𝐴 and hosted by public blockchain 𝐿𝐿: 𝐴𝐴 issues some

evidence, which is partially stored in a public repository 𝐿𝐿, such as the bitcoin network.
In the first step, 𝐶𝐶 receives a first signed receipt. In the second step, 𝐶𝐶 receives a second receipt

and is able to access some evidence on the proxy blockchain. In the last step, 𝐶𝐶 receives a final receipt
and is able to access some evidence on a public blockchain. We speak of incremental trust because the
probability of 𝐶𝐶 colluding with the other actors decreases significantly from one step to the next.

 www.aetic.theiaer.org

AETiC 2019, Vol. 3, No. 5 28

3.2 Block creation and Node receipt issuance

We now describe in detail the first phases of our system. We assume that all clients are operating
in time interval 𝑘𝑘.

Transactions
Each client 𝐶𝐶, identified by a digital identity 𝜄𝜄𝐶𝐶, creates a self-signed statement 𝜏𝜏 and sends it to

one of the nodes 𝑀𝑀 for validation, which becomes in notation (1)
 𝜏𝜏 = 𝜎𝜎𝐶𝐶(𝑑𝑑) ∥ 𝑡𝑡 ∥ 𝜄𝜄𝐶𝐶 ∥ 𝜎𝜎𝐶𝐶(𝜏𝜏). (4)

This statement 𝜏𝜏 is analogous to a transaction in popular blockchain solutions, so we will call it
transaction. 𝑀𝑀 checks the signature in 𝜏𝜏 for validity and the claimed time 𝑡𝑡 (i.e. 𝑡𝑡 > 𝑡𝑡𝑘𝑘−1). If the check
is successful, 𝑀𝑀 broadcasts 𝜏𝜏 to the other nodes and sends 𝜎𝜎𝑀𝑀(𝜏𝜏) back to 𝐶𝐶, which acts as the first
receipt. We call 𝑀𝑀 the validator of transaction 𝜏𝜏.

Block creation
The next committing Node 𝑁𝑁 then constructs a block by the following procedure. We assume

that 𝑘𝑘 blocks have already been created, with block 𝑘𝑘 − 1 being the last created (block zero is specified
at the end of this subsection), meaning that all the following actions by 𝑁𝑁 are implicitly related to
time interval [𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘).

Let 𝑇𝑇𝐶𝐶 be the set of valid transactions originated by 𝐶𝐶 and received1 by 𝑁𝑁 (via validator nodes),
ordered according to a predefined rule2. Let 𝐹𝐹 (𝑇𝑇𝐶𝐶) be the Merkle tree of 𝑇𝑇𝐶𝐶 , and let 𝑅𝑅𝐶𝐶 be its root.
Let 𝒞𝒞 be the set of all Clients that originated transactions received by 𝑁𝑁, which we call transacting
Clients. Node 𝑁𝑁 calculates the Merkle tree 𝐹𝐹 ({𝑅𝑅𝐶𝐶}𝐶𝐶∈𝒞𝒞), whose root is called 𝑃𝑃. We refer to 𝑅𝑅𝐶𝐶 as the
Client root and 𝑃𝑃 as the block root.

We now define block 𝐵𝐵𝑘𝑘 constructed by Node 𝑁𝑁. The block will contain a header, a list of summary
transactions (one per transacting Client), and a phantom part.
The summary transaction for 𝐶𝐶 contains a public encryption and it is as follows:

𝜂𝜂𝐴𝐴(𝜄𝜄𝐶𝐶) ∥ 𝑅𝑅𝐶𝐶.
The header ℋ𝑘𝑘 of 𝐵𝐵𝑘𝑘 is, in notation (1),

 ℋ𝑘𝑘 = ℎ(ℋ𝑘𝑘−1) ∥ 𝑘𝑘 ∥ 𝑡𝑡𝑘𝑘 ∥ 𝑃𝑃 ∥ 𝜄𝜄𝑁𝑁 ∥ 𝜎𝜎𝑁𝑁(ℋ𝑘𝑘), (5)

 where 𝑡𝑡𝑘𝑘 is stated by 𝑁𝑁 as the creation time of 𝐵𝐵𝑘𝑘.
The phantom part is the list of all transactions referred by the summary transactions, that is

∪𝐶𝐶∈𝒞𝒞 𝑇𝑇𝐶𝐶 . This transaction list is called phantom part because it is a part of the block which is visible
only to the Nodes, and so invisible to the Clients.

Receipts
Once 𝑁𝑁 creates the block 𝐵𝐵𝑘𝑘, 𝑁𝑁 issues a receipt 𝜌𝜌𝐶𝐶 to each transacting Client 𝐶𝐶, which in notation

(1) is written
 𝜌𝜌𝐶𝐶 = 𝑇𝑇𝐶𝐶 ∥ 𝑅𝑅𝐶𝐶 ∥ 𝜋𝜋𝐶𝐶 ∥ 𝜎𝜎𝑁𝑁(𝜌𝜌𝐶𝐶), (6)

 where 𝜋𝜋𝐶𝐶 is the shortest path in the Merkle tree from 𝑅𝑅𝐶𝐶 to 𝑃𝑃.

Block zero
 𝐵𝐵0 is identical to any block k ≥ 1 with the only difference that the block header is computed as
(5) with ℎ(ℋ𝑘𝑘−1) replaced by the hash of the public key of 𝑁𝑁 (the key used to verify its signature).

3.3 Public ledger and Auxiliary receipt issuance
Let 𝑚𝑚 be a fixed number 𝑚𝑚 ≥ 2. Every 𝑚𝑚 blocks, node 𝐴𝐴 interacts with the public blockchain. Let

𝑘𝑘0 be the last time interval in which this happened, and call anchorage block a block corresponding to
one of these interactions. At the end of time interval 𝑘𝑘0 + 𝑚𝑚, another anchorage block is created,

1 This set might be smaller than the set of all transactions issued by 𝐶𝐶.
2 For example, according to the order defined by the integer representation of 𝜎𝜎𝐶𝐶(𝑑𝑑).
 www.aetic.theiaer.org

AETiC 2019, Vol. 3, No. 5 29

therefore 𝐴𝐴 collects the ordered list of Merkle roots and block hashes of blocks 𝑘𝑘0 + 1, … , 𝑘𝑘0 + 𝑚𝑚 and
uses these as 2𝑚𝑚 leaves of an auxiliary Merkle tree 𝐹𝐹𝐴𝐴,

 𝐹𝐹𝐴𝐴 = 𝐹𝐹 ({P, ℎ(ℋ𝑘𝑘)}𝑘𝑘0+1≤𝑘𝑘≤𝑘𝑘0+𝑚𝑚) (7)

with root ℛ𝑘𝑘0+𝑚𝑚, referred to as the auxiliary root.

The data committed to the public ledger3 will be
 𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜄𝜄𝐴𝐴 ∥ 𝑘𝑘0 ∥ 𝑚𝑚 ∥ ℛ𝑘𝑘0+𝑚𝑚 (8)

Finally, the auxiliary node issues an auxiliary receipt 𝜌𝜌𝐶𝐶 to every client transacting in the
intervals 𝑘𝑘0 + 1 ≤ 𝑘𝑘 ≤ 𝑘𝑘0 + 𝑚𝑚. Each such Client will already be in possession of a set of receipts (6),
which contains a set of blocks roots inside the paths 𝜋𝜋𝐶𝐶’s. This set of block roots is a subset of the
leaves of the tree with root ℛ𝑘𝑘0+𝑚𝑚. Therefore, 𝜌𝜌𝐶𝐶 will contain the shortest path 𝜋𝜋𝐶𝐶 in 𝐹𝐹𝐴𝐴 required for 𝐶𝐶
to recompute ℛ𝑘𝑘0+𝑚𝑚:

 𝜌𝜌𝐶𝐶 = 𝑘𝑘0 + 1 ∥ 𝑘𝑘0 + 𝑚𝑚 ∥ 𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∥ 𝑣𝑣 ∥ 𝜋𝜋𝐶𝐶 ∥ 𝜎𝜎𝐴𝐴(𝜌𝜌𝐶𝐶) (9)

where 𝑣𝑣 is the address in the public blockchain of the transaction containing 𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.

4. Proof of notarization

The system that we have described in the previous section may appear unnecessarily
complicated. After all, if there exists a “good” timestamping server, people could just use it and get
its signature in return. But herein lies the problem, because for a timestamping server to be “good” it
needs to be secure, reliable, approachable - in the sense that it is easy to communicate with it, both in
bandwidth and in permissions - and cheap to use. While features like reliability, connectivity, and
cost can be relatively easy to estimate, security remains much more difficult to evaluate. Indeed, we
are not aware of any timestamping service on the Internet that presently satisfies all these properties,
especially security.

The only system that might provide reasonable security is a public blockchain, such as the
Bitcoin, and it would easily provide also approachability and reliability (in particular, avoiding the
risk of a single point of failure). However, at present, the cost of transactions on a public blockchain
is very high, making its direct use for storing proofs of documents infeasible. Therefore, many
competing solutions have been proposed, whose general aim is to collect information on many
documents - typically in hash form - and create paths of hashes linking each document to the final
digest released on the public blockchain, e.g., Eternity Wall [14], Factom [15], and Guardtime [16].
These solutions must give their users some sort of receipt, allowing them to reconstruct the hash path
and prove the existence of their documents.

Although our solution may appear similar, we aim at something more: we want to give our
users incremental security. In the next sections we will describe our security claims and provide
proofs.

5. Security claims

The solution in Section 3 builds on the basic premise of digital notarization of a document. Each
client correctly interacting with our previous system (in a correct implementation) may be seen as a
notary making a statement of the existence of data 𝑑𝑑 by adding its digital signature, 𝜎𝜎𝐶𝐶(ℎ(𝑑𝑑) ∥ 𝑡𝑡). We
are not concerned with the kind of information carried by 𝑑𝑑. Indeed, the data may or may not be a
document signed by parties entering a contract, and their handwritten signatures may have been
added on a paper or digital copy; we here emphasize that the only digital statement of authenticity by
digital signature is the Client's.

We assume throughout that the blockchain is a robust ledger in the sense of [13], i.e. guaranteeing
persistence and liveness. Since no specification of consensus mechanism is made here by design, we

3The commitment of these data to the public ledger may require more than one transaction, according

to the public-blockchain transaction format.
 www.aetic.theiaer.org

AETiC 2019, Vol. 3, No. 5 30

do not consider the question of whether the blockchain offers sufficient guarantees of consistency,
crash fault tolerance, or security against collusion.

Let us consider the first step of our incremental security, which is the first interaction of a client
𝐶𝐶 with our system. Let us call “Tom” someone who will come and will not believe in 𝐶𝐶's claims about
the existence of its claimed documents at the claimed time. 𝐶𝐶 hopes to be able to convince Tom by
using our protocol.

At the start, 𝐶𝐶 sends the signature of a document to the node network, encapsulated in the
transaction 𝜏𝜏 (4), and a node 𝑀𝑀 receives it. When 𝑀𝑀 sends back to 𝐶𝐶 the signature 𝜎𝜎𝑀𝑀(𝜏𝜏), 𝑀𝑀 is actually
giving 𝐶𝐶 the first evidence that 𝐶𝐶 can show to Tom about its good faith. 𝐶𝐶 is therefore immediately -
say, in a few seconds - in possession of a receipt claiming the existence of its documents at the claimed
time.

Whether Tom trusts this claim depends on whether Tom trusts 𝑀𝑀, specifically. This is equivalent
to trusting a single timestamping server and can be modelled simply as follows.

Theorem 5.1. If 𝑀𝑀 is trusted, then the data claimed by 𝐶𝐶 existed at the claimed time and were
known to 𝐶𝐶.

Proof. This comes from the unforgeability property of the signatures 𝜎𝜎𝐶𝐶 and 𝜎𝜎𝑀𝑀. ◻
In the second step, to increase trust we need to increase the number of entities working for the

system, but making sure they arrive at an agreement on the documents. Nowadays, this can be
achieved with a private blockchain. We require it to be private so that Tom knows all service nodes
and can decide whether he trusts them.

Observe that we have not specified how consensus is reached in the proxy blockchain. It could
be that a majority of nodes is needed, or that all nodes must confirm 𝑁𝑁's proposed block, or some
other more complex strategy. It does not matter, as long as Tom agrees that the consensus algorithm
is trustworthy. What matters is that 𝐶𝐶 has collected the new block header and that he has received a
receipt 𝜌𝜌𝐶𝐶 (6) from 𝑁𝑁. With this second evidence, Tom will agree on the following

Theorem 5.2. If the new block has been generated with a trusted consensus algorithm, then (at
least at time 𝑡𝑡𝑘𝑘) the data claimed by 𝐶𝐶 existed and were known to 𝐶𝐶.

Proof. All the service nodes that reached consensus have seen 𝑇𝑇𝐶𝐶 , so by signalling their
agreement to the new block they agreed that the transactions from 𝐶𝐶 were valid and, in particular,
that the transactions were sent before the creation time 𝑡𝑡𝑘𝑘 of the block. Crucially, Tom has not seen
the phantom part of the block, but he does not need it. Indeed, from ℋ𝑘𝑘 Tom can get 𝑡𝑡𝑘𝑘 and 𝑃𝑃. From
𝜌𝜌𝐶𝐶 he gets 𝑇𝑇𝐶𝐶 and 𝜋𝜋𝐶𝐶 , which shows the validity of the hash path.

𝐶𝐶 could not have forged the hash path 𝜋𝜋𝐶𝐶 due to the hash security properties. ◻
An obvious question might arise when looking at the above proof: why keep a phantom part?

This need arises from privacy reasons: we do not want any client 𝐶𝐶 to see the transactions coming
from another client 𝐶𝐶′. Of course, this goal could be reached with e.g. cryptography, but we take
advantage of the use of a private blockchain to avoid more complicated features.

Thus 𝐶𝐶 obtains within a short period of time some evidence on its documents that provides a
much higher confidence for Tom: it is one thing to compromise or collude with a single participant
𝑀𝑀, and another to organize a collusion among the service nodes, including the miner 𝑁𝑁.

In the third and last step, if Tom does not trust the proxy blockchain, we will assume that he
trusts the anchored public blockchain. Again, this trust means that, whatever consensus algorithm
employed and whatever participants involved, the anchored public block was issued at a time prior
to 𝑡𝑡̅.

Assuming that 𝐶𝐶 has collected the new public block and the receipts 𝜌𝜌𝐶𝐶 and 𝜌𝜌𝐶𝐶 (𝜌𝜌𝐶𝐶 refers to time

interval 𝑘𝑘), Tom will then agree on the following.

Theorem 5.3. If a new public block has been generated in a public blockchain by a trusted
consensus algorithm, then (at least at time 𝑡𝑡̅) the data claimed by 𝐶𝐶 existed and were known to 𝐶𝐶.

 www.aetic.theiaer.org

AETiC 2019, Vol. 3, No. 5 31

Proof. The new public block contains a public transaction containing 𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Since the public
nodes have reached consensus and Tom trusts the public blockchain, he will trust that 𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑡𝑡𝑎𝑎
existed before 𝑡𝑡̅. Indeed, from 𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Tom can get ℛ𝑘𝑘0+𝑚𝑚. From 𝜌𝜌𝐶𝐶 he gets 𝜋𝜋𝐶𝐶 , which shows the
validity of the hash path from 𝑅𝑅𝑘𝑘0+𝑚𝑚 to 𝑃𝑃𝐾𝐾 . From 𝜌𝜌𝐶𝐶 he gets 𝜋𝜋𝐶𝐶 , which shows the validity of the hash
path from 𝑃𝑃𝐾𝐾 to 𝑅𝑅𝐶𝐶. From 𝜌𝜌𝐶𝐶 he also extracts 𝑇𝑇𝐶𝐶 , which contains the transaction with the claimed data,
and can check its validity by recomputing 𝑅𝑅𝐶𝐶.

𝐶𝐶 could not have forged the hash paths 𝜋𝜋𝐶𝐶 , 𝜋𝜋𝐶𝐶 or the tree root 𝑅𝑅𝐶𝐶, without incurring in a hash

collision. ◻
Observe that in this last step Tom does not need to put any trust in the proxy blockchain, because

he can verify by himself the related hash chains.
Obviously, in this third step of incremental trust Tom does feel very sure about 𝐶𝐶's claim, but 𝐶𝐶

obtains all the needed third evidence only after the public block creation, which will probably last
some minutes and its timestamping claim can only be up to 𝑡𝑡̅ rather than its claimed 𝑡𝑡.

6. Attacks with widespread collusion

In Section 5 we showed how Tom can be convinced by 𝐶𝐶 in different trust scenarios. To convince
Tom, 𝐶𝐶 needed some valid evidence from the system. But the system might decide not to release such
evidence and try to obtain some advantage for itself. We will consider now attack scenarios where
the system does not interact correctly with 𝐶𝐶. We will assume that all node services (including miners
and auxiliary nodes) are malevolent.

The three scenarios we are considering are: “Fake Owner”', “Ghost document: proxy version”,
“Ghost document: public version”. In the “Ghost document” scenarios also the client 𝐶𝐶 is malevolent.

Fake Owner
Client 𝐶𝐶 sends a transaction 𝜏𝜏 (4) at time 𝑡𝑡. The system does not acknowledge 𝜏𝜏, and instead

provides a colluding client 𝐷𝐷 with evidence enough to claim that 𝐷𝐷 knew data 𝑑𝑑 at time 𝑡𝑡.

Theorem 6.1. The Fake Owner attack fails.

Proof. First, the malevolent nodes need to create a fake transaction 𝜏𝜏′. We do not need to model
what they will do next, because we claim it is impossible to create it. Indeed, 𝜏𝜏′ would have the form
in notation (1)

𝜏𝜏′ = 𝜎𝜎𝐷𝐷(𝑑𝑑) ∥ 𝑡𝑡 ∥ 𝜄𝜄𝐷𝐷 ∥ 𝜎𝜎𝐷𝐷(𝜏𝜏′).

In particular, it would contain 𝜎𝜎𝐷𝐷(𝑑𝑑). However, we assumed that our signature algorithm was

resistant to impersonation attacks, and so this cannot happen. ◻

Ghost document: proxy version
After a new proxy block ℋ𝑘𝑘 is created at time 𝑡𝑡𝑘𝑘 - but before an anchorage block, i.e. 𝑘𝑘 ≠ 𝑚𝑚𝜆𝜆 for

any 𝜆𝜆 - 𝐶𝐶 colludes with all service nodes and inserts a new transaction claiming that 𝐶𝐶 knew data 𝑑𝑑′
at time 𝑡𝑡′ < 𝑡𝑡𝑘𝑘.

This attack may work, because the nodes can decide to:
● discard block 𝑘𝑘 and all existing successive blocks in their blockchain,
● recompute 𝑇𝑇𝐶𝐶 (to include 𝜏𝜏′) and all relevant information in ℋ𝑘𝑘 ,
● recompute 𝜌𝜌𝐶𝐶 (to include the new 𝑇𝑇𝐶𝐶), recompute all receipts for the other clients (and

send them);
● recompute the headers of the successive blocks (to have valid hash pointers) and resend

them to the clients.

The other clients might complain at seeing the change in past block headers, but they may be
satisfied when they receive valid blocks and valid receipts. If this attack is performed rarely, the
clients (and Tom) may be induced into believing that the block updates are due to some software
problems rather than malice.

 www.aetic.theiaer.org

AETiC 2019, Vol. 3, No. 5 32

Ghost document: public version
After a new proxy block ℋ𝑘𝑘 is created at time 𝑡𝑡𝑘𝑘 (an anchorage block, so 𝑘𝑘 = 𝑚𝑚𝜆𝜆 for some 𝜆𝜆) and

the anchor has been created at time 𝑡𝑡′, 𝐶𝐶 colludes with all service nodes and inserts a new transaction
in ℋ𝑘𝑘 claiming that 𝐶𝐶 knew data 𝑑𝑑′ at time 𝑡𝑡′ < 𝑡𝑡𝑘𝑘.

Theorem 6.2. A ghost document in public version cannot be created.

Proof. Since the anchor has been created, 𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is in the public blockchain. To be able to
claim knowledge of data 𝑑𝑑′, 𝐶𝐶 needs a valid hash path pointing to the root corresponding to the new
𝑇𝑇𝐶𝐶 , so that it could use it to replace 𝜋𝜋𝐶𝐶. However, this path must end in ℛ𝑘𝑘, which is immutable in the
public blockchain, and so it is impossible to forge another path due to security properties of the hash

function. ◻

7. Some comments on DOS attacks

In the past section we do not investigate scenarios when malevolent actors of the system want
to mount a DOS (Denial Of Service). We now examine this situation. There are three possible
attackers: a validator node, the auxiliary node 𝐴𝐴and the PKI's CA.

Validator node If a malevolent node 𝑀𝑀 receives a transaction 𝜏𝜏 from a client, 𝑀𝑀 can decide to
ignore it. In this case, 𝐶𝐶 would notice that something went amiss and 𝐶𝐶 would try to contact another
node 𝑁𝑁. This kind of DOS is dangerous only if the client's communication with the system is limited
to a group of colluding nodes.

A malevolent 𝑀𝑀 could do worse than simply dropping 𝜏𝜏: 𝑀𝑀 could send the first receipt 𝜎𝜎𝑀𝑀(𝜏𝜏)
back to 𝐶𝐶 and avoid broadcasting it to the other service nodes. In this way, 𝐶𝐶 is tricked into thinking
that 𝑀𝑀 is behaving honestly. However, 𝐶𝐶 is expecting to receive also the second receipt 𝜌𝜌𝐶𝐶 in a while.
If this does not happen, 𝐶𝐶 will know something is wrong and it will then interact with other nodes.
On the other hand, if 𝐶𝐶 receives 𝜌𝜌𝐶𝐶 and 𝜏𝜏 has not been used to construct the relevant hashes, then
again 𝐶𝐶 will notice something is wrong.

Auxiliary node 𝐴𝐴 cannot modify the 𝐻𝐻𝑘𝑘’s to construct its Merkle tree (and thus compute a valid
𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, because 𝐴𝐴 cannot sign impersonating one of the service nodes. However, 𝐴𝐴 may avoid to
insert some of the 𝐻𝐻𝑘𝑘 's, effectively removing from the auxiliary tree all the transactions received by
the clients in the chosen intervals. This DOS attack by 𝐴𝐴 is easily spotted by all nodes (and all clients)
when the anchoring happens, because it will be impossible to reconcile the issued auxiliary receipts
and the other receipts held by the clients.

Certification Authority We assume in our system that the CA is trusted, because if the CA were
to issue certificates to malicious peers, and if it failed to revoke them, the system would be vulnerable
to a majority attack. However, it could be that the CA itself is flooded by packets sent by DOS
attackers. In this scenario, it may be impossible for the system participants to check the validity of
new data coming into the system, depending on the public keys held by each participant. Yet,
assuming that honest peers will not validate transactions without a certificate revocation list being
available, the validity of past transactions remains perfectly checkable by anyone having the relevant
receipts (including Tom, if 𝐶𝐶 gives them to him), since they are enough to validate the data inserted
in the public blockchain.

8. Conclusions

We have shown a two-tiered system of independent blockchains for secure timestamping that
offers incremental levels of evidence to clients. We have examined under what assumptions the
system may be deemed secure; in particular, we have seen that under the assumption of an honest
certification authority, only denial of service attacks are feasible, and they are also immediately
noticeable. The two-tiered system is designed to reduce the cost and to increase efficiency of

 www.aetic.theiaer.org

AETiC 2019, Vol. 3, No. 5 33

commitments to a slow and costly public blockchain, while at the same time still enabling clients to
use their past evidence even if the intermediate blockchain solution were to cease being operational.

While we are satisfied with our finding, we notice that our results hold in a blockchain having
an indefinite but supposedly robust consensus algorithm. It would be interesting to investigate how
our system could be effectively integrated in a blockchain enjoying a specific consensus algorithm,
such as proof-of-work or proof-of-stake.

Acknowledgements

This project has been carried on within the EU-ESF activities, call "PON Ricerca e Innovazione
2014-2020", project “Distributed Ledgers for Secure Open Communities”.

References

[1] Satoshi Nakamoto, “Bitcoin: A peer-to-peer electronic cash system”, 2008, Available:
http://bitcoin.org/bitcoin.pdf

[2] Stuart Haber and W. Scott Stornetta, “How to time-stamp a digital document”. Journal of Cryptology,
3(2):99–111, 1991, presented at CRYPTO 1990.

[3] Ralph C. Merkle, “A digital signature based on a conventional encryption function”, in Carl Pomerance,
editor, CRYPTO, volume 293 of Lecture Notes in Computer Science, pages 369–378. Springer, Berlin,
Heidelberg, 1987.

[4] Dave Bayer, Stuart Haber, and W. Scott Stornetta, “Improving the efficiency and reliability of digital time-
stamping”, in Renato Capocelli, Alfredo De Santis, and Ugo Vaccaro, editors, Sequences II - Methods in
Communication, Security, and Computer Science, pages 329–334. Springer, New York, NY, 1991.

[5] Bela Gipp, Norman Meuschke, and André Gernandt, “Decentralized trusted timestamping using the crypto
currency bitcoin”, in iConference, 2015.

[6] Yuefei Gao and Hajime Nobuhara, “A decentralized trusted timestamping based on blockchains”, in IEEJ
Journal of Industry Applications, 6(4):252–257, 2017.

[7] Proof of existence, https://poex.io/.
[8] Shin’ichiro Matsuo, “How formal analysis and verification add security to blockchain-based systems”, in

Formal Methods in Computer Aided Design (FMCAD), pages 1–4, 2017.
[9] Phillip Rogaway and Thomas Shrimpton, “Cryptographic hash-function basics”, in Bimal Kumar Roy and

Willi Meier, editors, Fast Software Encryption (FSE), 11th International Workshop on, pages 371–388, 2004.
[10] IETF RFC 3161, “Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP)”, August 2001.
[11] ISO 18014-4:2015, “Time-stamping services – Part 4: Traceability of time sources”, April 2015.
[12] Stuart Haber and W. Scott Stornetta, “Secure names for bit-strings”, in 4th ACM conference on Computer

and communications security (CCS), pages 28–35. ACM New York, NY, USA, 1997.
[13] Juan Garay, Aggelos Kiayias, and Nikos Leonardos, “The bitcoin backbone protocol: Analysis and

applications”, in Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, volume 9057 of Lecture Notes in
Computer Science, pages 281–310, Springer, 2015.

[14] Eternity wall. https://acquisition.kopjra.com/
[15] Paul Snow, Brian Deery, Jack Lu, David Johnston, and Peter Kirby, “Factom white paper v1.2”, April 2018,

Available: https://www.factom.com/assets/docs/Factom_Whitepaper_v1.2.pdf
[16] Guardtime, https://guardtime.com/.
[17] Alessio Meneghetti, Armanda O. Quintavalle, Massimiliano Sala, and Alessandro Tomasi, “Two-tier

blockchain timestamped notarization with incremental security”, in CEUR Workshop Proceedings Volume
2334, Pages 32-42, 2019.

© 2019 by the author(s). Published by Annals of Emerging Technologies in Computing
(AETiC), under the terms and conditions of the Creative Commons Attribution (CC BY)
license which can be accessed at http://creativecommons.org/licenses/by/4.0.

 www.aetic.theiaer.org

http://bitcoin.org/bitcoin.pdf
https://poex.io/
https://acquisition.kopjra.com/
https://www.factom.com/assets/docs/Factom_Whitepaper_v1.2.pdf
https://guardtime.com/
http://creativecommons.org/licenses/by/4.0/

