Solutions with peaks for a coagulation-fragmentation equation.
Part II: aggregation in peaks®
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Abstract

The aim of this two-part paper is to investigate the stability properties of a special class
of solutions to a coagulation-fragmentation equation. We assume that the coagulation
kernel is close to the diagonal kernel, and that the fragmentation kernel is diagonal.
In a companion paper we constructed a two-parameter family of stationary solutions
concentrated in Dirac masses, and we carefully studied the asymptotic decay of the tails
of these solutions, showing that this behaviour is stable. In this paper we prove that for
initial data which are sufficiently concentrated, the corresponding solutions approach one
of these stationary solutions for large times.

1 Introduction

The aim of this two-part paper is to investigate the stability properties of a special class of
solutions to a coagulation-fragmentation model. We consider the evolution equation

Oif ;1) = C[11(&, 1) + Z[f1(E, 1), (1.1)

where the coagulation operator and the fragmentation operator are respectively defined as

3 0
Ulen) =5 [ Ke—nmiE—nofona= [ Kenfeofmnd,  (2)

2

We consider a coagulation kernel K compactly supported around the diagonal {£ = 7}, and a
diagonal fragmentation kernel " (see Section 2 for the precise assumptions). In a companion
paper [4] we started the investigation of the stability properties of a family of stationary
solutions to (1.1) with peaks concentrated in Dirac masses at the points {2"},cz; the goal

00 1 £
ZUE) = /0 P(E+ mn) f(E+ ) dy — /0 P(&n)f(E.8) di. (1.3)
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of this paper is to show, for a class of initial data, that the corresponding solutions to the
evolution equation (1.1) converge for large times to one of these stationary solutions.

Indeed, with this choice of kernels the coagulation-fragmentation equation is an example
of nonuniqueness of stationary solutions with given mass - in fact, there is a continuum of
steady states. Furthermore, we prove that all of them are stable. We remark that, even
though a detailed balance condition is satisfied, one cannot exploit a corresponding entropy
asin [1, 5, 6, 9]. The crucial property of the coagulation kernel is the tendency to promote the
aggregation of particles with comparable size, due to the fact that the kernel is concentrated
around the diagonal. This peculiarity produces a doubling mechanism which also explains
why the steady states are concentrated at the points {2"},cz.

We impose several technical assumptions in order to prove the result, but this phenomenon
seems to be quite general for kernels that favour the aggregation of particles with similar size.
This behaviour is typical of product-type kernels, used for instance in the Flory-Stockmayer
theory of polymerization [7, 10]. We are not aware of any specific model based on the particu-
lar class of kernels that we consider; however a possible mechanism of aggregation of polymer
chains, for which the coagulation rate is proportional to the product of possible attachment
sites and where the number of attachment sites of a polymer scales proportionally to a power
law of its size, would lead to coagulation kernels which are bigger close to the diagonal.

We expect that, for coagulation kernels as considered here, a similar result can be proved
for the pure coagulation equation, without fragmentation: in this case there is evidence,
based on formal stability arguments and numerical simulations, of evolution into time-periodic
solutions concentrated in peaks [8], and we expect that the techniques developed here will also
be useful for a corresponding study. We refer to the introduction of [4] for more details on the
equation, bibliographical references and related questions, and to [2, 3] for general background
on coagulation-fragmentation equations. We pass now to describe the main result proved in
this paper.

It is shown in [4] (see also Proposition 2.4 below) that, given any value of the total mass
M > 0 and a shifting parameter p € [0,1), there exists a stationary (measure) solution to
(1.1) concentrated in peaks, in the form

(& M, p) Z fa(M, p)3 (€ = 27*7), (1.4)
with total mass -
/0 Ef(EMp)de= 3 2L, (M, p) = M. (1.5)

The measure f,(-; M, p) is concentrated in the discrete set {2"7”},cz. In the main result of
this paper (Theorem 2.7) we show that, for a class of initial data compactly supported around
the points {2"},cz, a solution to (1.1) converges as t — oo to one of the discrete measures
fp(-; M, p), for some p € [0, 1), with the same mass M of the initial datum.

The class of initial data for which this stability result holds is determined in terms of the
asymptotic behaviour as £ — co. We consider an initial datum fy € M™(0,00) with total
mass M = [ & fo(€) d€ such that

supp fo C | (277, 27+%) (1.6)
nez



for some &g > 0 sufficiently small. Secondly, by introducing the quantities
ma(0)i= [ fo(6) de (17)
(2n—5072n+50)

representing the number of particles located around the point 2", we assume that the sequence
{mn(0)}nez is a small perturbation of the coefficients of one of the stationary states (1.4)
(not necessarily the one with the same mass), in the sense that

mn(o) = (1 + Eg)fn(M()?pO)’ n € Z, (1'8)

for some M? > 0, p® > 0, and for a sequence |€2| < §p. Then our main result can be stated
in the following form: there exists §p > 0 small enough, depending ultimately only on the
total mass M > 0 of the initial datum, such that if fj satisfies (1.6)—(1.8) then there exists
a (weak) solution to (1.1) with initial datum fp which converges, as t — oo, to a stationary
solution fy(-; M, p), where M is the mass of fy and p € [0,1).

This stability property results from the combination of two main effects. We introduce
the first and second moments around each peak of the solution f(&,t) at time ¢:

21490 n n
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(where my,(t) is defined as in (1.7) with fy replaced by f(-,¢)). The interpretation of these
quantities is more natural when they are expressed in logarithmic variables, see (3.2)—(3.3).
They can be understood as follows: p,(t) measures the shifting of the center of mass of the
solution f(-,t) in the interval (27~%, 27%) with respect to the center of the interval; g, (t)
measures the quadratic deviation of the solution from its center of mass in the same interval.
In particular, for a solution concentrated in peaks in the form (1.4), one has p, = p, ¢, =0
for all n € Z. We show that all the first moments p,(¢) tend to align, as ¢ — oo, to a
common value p € [0, 1), which describes the asymptotic position of the peaks. Furthermore,
the second moments gy, (t) converge exponentially to 0 as ¢t — oo, for every n € Z: this yields
concentration in peaks.

This asymptotic behaviour of the functions p,(t), ¢,(t) can be obtained by a careful
analysis of the corresponding evolution equations. In turn, this relies on a representation of
the functions m,,(t), at each time, as a perturbation of a stationary state: indeed by a fixed
point argument we show that an identity in the form (1.8) holds for every positive time ¢,
with MO replaced by a value M (t) which converges to the mass M of the solution as t — co.
We refer to the beginning of Section 3 for a more detailed discussion of the general strategy
of the proof.

We conclude by noting that the result obtained in [4] can be seen as a particular case
of the stability theorem proved in this paper: it corresponds to the case in which the initial
datum is already supported at the points {2"17}, <z, and therefore all the shifting coefficients
pn(t) are constant and equal to p, and all the variances g, (¢) vanish identically. Hence the
proof in [4] can be used also as a guide to get an insight of the main strategy, which is here
technically more involved due to the presence of a dispersion around the peaks and of a not
uniform shifting.



Structure of the paper. The paper is organized as follows. In Section 2 we formulate
the precise assumptions on the coagulation and fragmentation kernels, we recall from [4] the
construction of the family of stationary solutions in the form (1.4), and we state the main
result of the paper. In Section 3 we discuss the strategy of the proof and we introduce some
auxiliary results. In Section 4 we state the regularity result on the linearized equation, whose
proof is postponed to Appendix A. Finally, in Section 5 we give the proof of the main result
of this paper.

2 Setting and main result

2.1 Assumptions on the kernels
We assume the following: the coagulation kernel is supported near the diagonal and has the

K& = k(5e(n 1), (2.1

where k € C?((0,00)), k > 0, satisfies the growth conditions

form

k(&) ~ gott as & » oo, ac€(0,1), (2.2)
k(&) = ko + O(£%) as £ =07, a>1,

K'(&)] < k& for £>1,  |K(&)] < k&1 for £ <1, (2.4)
K"(&)] < ka&®! for £>1,  |K(€)] < ko™ for £ <1,

for some kg, k1, k2 > 0, and @ is a cut-off function such that

QeC?*R), Q@=0, QUO0)=1, suppQ C [—qo,q], Q&) =Q(-¢), (2.6)

with go € (0,3). The kernel K has been written in the form (2.1) to emphasize that it is close
to the diagonal kernel in the sense of measures. The condition on the support of () guarantees
that, for solutions concentrated in Dirac masses at points {2"},cz, the different peaks do not
interact with each other; in particular

1—gq 1+g¢
supp K (£,n) C {1+ng <n< ﬁf}- (2.7)

As for the fragmentation kernel I'(¢, ), we assume that

I'(&,m) =~(£)5(& —2n), (2.8)
where v € C2((0,00)), v(£) > 0, satisfies the growth conditions
WO =& +0(E) asg o0, Be(12), f<p (29)
Y€)= +0E") asE—=0", f>1, (2.10)
PO <& fore=1, PO <me ! fore<t, (2.11)
YOI <" fore>1, (€I < g’ forg <, (2.12)

for some g, 71,72 > 0.



2.2 Logarithmic variables

It is convenient to go over to logarithmic variables, which will be used along the rest of the
paper: we set

g(@,t) ==¢f(&t),  £=2" (2.13)
After an elementary change of variables, (1.1) takes the form

Org(x,t) = Clgl(x,t) + Flg)(x,1), (2.14)

where the coagulation operator ¥ and the fragmentation operator .# are now given by

_In2 (7 2PK(2% —2Y,2Y) /In(2% —2Y)
o (2.15)
~m2 [ R 2)ge 0g(0.1) dy.
o0 2THYT (2% 4-2¥,2Y) /In(2% 4 2Y)
a :=1In2 d ( )
Pl =m2 [ 20 ) ay -
In2 [* '
-5 | D22 dy
and mass conservation is expressed by
/ 2%g(x,t)dx = / 2%g(z,0)dz for all ¢ > 0. (2.17)
R R

2.3 Weak formulation and well-posedness

In [4] we introduced the following notion of weak solution in the space of positive Radon
measures ¢ € M, (R), that allows to consider solutions to (2.14) concentrated in Dirac
masses. In the following, with abuse of notation, we denote by [, ¢(x)g(x) dx the integral of
¢ on A C R with respect to the measure g, also in the case that ¢ is not absolutely continuous
with respect to the Lebesgue measure.

Definition 2.1 (Weak solution). A map g € C([0, T]; M4 (R; 1+203F17)) s ¢ weak solution
to (2.14) in [0, T] with initial condition go € M (R; 1+ 28+1)) if for every t € [0,T)

8t</g(a: e )dx)

ln2//K (2%, 2%)g(y, )g (2, 1) [w(ln(iyn; 2z)) (p(y)w(z)] s (218)

—4/R (2" gy + 1,0y +1) = 20(y)] dy

for every test function ¢ € C(R) such thatlim,,_ [p(x)| < 0o andlimsup,_,, ., 27%|p(x)| <
oo, and g(-,0) = go-

Notice that, in order for the fragmentation term on the right-hand side of (2.18) to be well-
defined for test functions with exponential growth at infinity, in view of the growth assumption
(2.9) we require in the definition the finiteness of the integral fR 2(1+8)z g(z)dz. In particular,



as the test function ¢(x) = 2” is admissible, this notion of weak solution guarantees the mass
conservation property (2.17).

The existence of a (global in time) weak solution for a suitable class of initial data is
proved in [4]. We report the statement here for the reader’s convenience.

Theorem 2.2 (Existence of weak solutions). Suppose that gy € M (R) satisfies

1
llgo]| := sup o go(z)dz +/ go(z)dzr < o0, / 2% go(z)dr <00 (2.19)
ZEZO [n,n+1) [0,00) R

for some 8 > 3+ 1. Then there exists a global weak solution g to (2.14) with initial datum
go, according to Definition 2.1, which satisfies for all’T > 0

sup Hg(7t)” < C(T7 90)7 sup /29Ig($7t) dz < C(T7 gO)? (220)
0<t<T 0<t<T Jr

where C(T, go) denotes a constant depending on T, go, and on the properties of the kernels.

It is convenient to introduce a notation for the right-hand side of the weak formulation
(2.18), evaluated on a given test function ¢: therefore we define the operators

Beln.givli= "y [ [ K@ 20w [o(M5 ) - o) - p0)| dnds, 22)
1

Bilg;¢] ==~ /R’V(Qy“)g(y +1)[ely+1) — 20(y)] dy. (2:22)

4

Remark 2.3. Notice that, in view of (2.7), the coagulation kernel K evaluated at the point
(2Y,2%) is supported in the region

supp K (2¥,2%) C {|y — 2| < &0}, (2.23)
with €9 := 35 In( }J_rgg) € (0,1). Furthermore, in view of the asymptotic properties (2.2)—(2.3)
we have a uniform estimate

(2Y +27)K(2Y,2%) < Ok (1 +2Y2%) for every y,z € R, |y — 2| < 1. (2.24)

2.4 Stationary solutions

In [4] we proved that the equation (2.14) admits a two-parameters family of stationary solu-
tions which are sums of Dirac masses supported at points at integer distance, of the form
o0
gp(m; Aa P) = Z an(Av p)(S(:E —-—n- p) (225)
n=—oo

The parameter p € [0,1) fixes the shifting of the peaks with respect to the integers, while
A > 0 characterizes the decay of the solution as x — oo (see (2.27)).

By plugging the expression (2.25) into the weak formulation (2.18) of the equation, we
see that g, is a stationary solution if the coefficients a,, satisfy the recurrence equation

In2 k(20
on+p ,},(2n+p+1) :

(py1 = Cn,pafl, where ¢, , 1= (2.26)

The existence of stationary solutions in the form (2.25) is guaranteed by the following propo-
sition, proved in [4].



Proposition 2.4 (Stationary peaks solutions). Let p € [0,1) and A > 0 be given. There exists
a unique family of coefficients {an(A, p)tnez solving (2.26) which are positive, bounded, and
satisfy

an = a_oo (2" + Ag27") + 0(2%") as n — —oo,

n 2.27
Uy ~ (2B A2 as n — 0o, ( )

where a_ o 1= %, oo := (In2)~120208=)(+1) " and Ay is uniquely determined by A.

In particular, the measure gp(-; A, p) defined by (2.25) is a stationary solution to (2.14).

It is also proved in [4] that the parameter A is in one-to-one correspondence with the total
mass M of the solution: in view of this remark, we give the following definition.

Definition 2.5. Given any p € [0,1) and any value of the total mass M > 0, we define Ay,
as the unique positive number such that the corresponding stationary solution gy(-; An,p, p)
satisfies the mass constraint

/ 2%gp(x; Anrp, p) do = Z 2" Pay (A, p) = M . (2.28)
R

n=—oo
In the case p = 0 we also set Apy := Aprp.

In the proof of the main result of this paper we will not directly work with the solutions
to the stationary equation (2.26) constructed in Proposition 2.4, as we did in [4], but we will
need to consider the more general case in which the parameter p in (2.26) actually depends
on n. More precisely, we assume that p = {p, }nez is a given sequence such that |p,| < & for
some given dp € (0,1), and we consider the recurrence equation

In2 k(2P

= e ST (2.29)

Mp41 = Cn(p)m?w where  (,(p) :

The values m,, represent the coefficients of a stationary solution > > m,d(x —n — py)
with peaks at the points n + p,, n € Z (compare with (2.25)). The quantities p,, have here
the same meaning as in (1.9) for these very specific solutions and in the new logarithmic
variables, measuring the shifting of each peak with respect to the integers. We generalize
Proposition 2.4 to the case of a nonconstant shifting p in Lemma 2.6 below.

It will be sometimes convenient to switch to new variables

1
Up = ign(p)mny (2'30)
solving
. 2¢y,
fins1 = On(p)i2 with  6,(p) :== C+71(p) (2.31)
Cn(p)

We also have the relation -

mL“ = 2. (2.32)

In view of assumptions (2.2)-(2.3) and (2.9)—(2.10) on the kernels, one can show the following
asymptotic behaviour of the coefficients:

|
Cn(p) = (k()’y:]ﬂ

Cn(p) ~ (In2)20(HPn) 9= Bnt14pnta) as n — oo,

)2_(”+p”) + 02 as n — —oo,
(2.33)



and
On(p) = 2P ~Pntl 4 O(27) as n — —oo,

On(p) ~ 9a=B+190(Pnt1-pn)—B(Pn+2—Pn+1) as 1 — 00, (2.34)

where ¢ := min{a, 3} > 1.

Lemma 2.6. Let A > 0 and p = {pn}nez, with |p,| < do, be given. Then there ezists a
family of positive and bounded coefficients {m, (A, p)}nez solving (2.29) which satisfy

m, =0(2") asn — —o0, My = 0(2(5_0‘)"6_A2n) asn — oo. (2.35)
Furthermore o1 91
(;74" = —-2"m,, an;; < 2", for € >n, (2.36)

d 20 — () for £ < n, for some constant ¢ > 0 depending only on the kernels.

Proof. For given A and p, it is easily checked that the sequence {ji,, }nez defined by

fin =€ exp< " Z 277 In(0;_1(p ))) (2.37)

j=n+1

is a solution to (2.31). In turn, defining m,, by the relation (2.30), and recalling the asymptotic
behaviour (2.33)—(2.34), we obtain a positive and bounded solution to (2.29) with the decay
(2.35). The first identity in (2.36) follows directly from (2.30) and (2.37). Finally by (2.30)
and the definitions (2.29), (2.31) of (,(p), 0,(p) we have with straightforward computations

1 9m, _ Olnm, _ Olp, 9lng, _ g i 2_j81n9j,1 dIn¢,

mn Ope — Opy Ipy Ipe Pt Opy Ipy
_ _on i o ]<alngj B alngj_1> _O0lng, _ _izn,j,lalngj'
Pt Ipe I Iy = Iy
Observing that
K (254Pe)2ttre ) e
alnc 1n2<w 1 lfj—€7
J o ) A5 Pe)2tPen2 fi—r—1
Ope 7(2"FPe) = ’
0 otherwise,
we finally obtain
_on—t=119 k’(f;ii):j-‘_pe —1)+ on—{ "/,(22"’;1(’23_?[;? In 2 if 0> n,
1 omy, I
0 if ¢ <n.
Thanks to the assumptions (2.2)—(2.4) and (2.9)—(2.11) we have
/ /
Rk, Ik
k(€) Y(6)
Together with (2.38), this gives the second condition in (2.36). O



2.5 Main result

We are now in the position to state the main result of the paper. It is first convenient to
introduce a notation for the following space of sequences: for 8 € R, we set

Vo= {y ={yYntnez : |yllo < OO}, with  ||y[lg := sup 2"|ya| + sup 27"|y,|.  (2.39)
n<0 n>0

Given an initial datum gg € M4 (R), we also introduce the following quantities:

mo ::/ go(z)dx, (2.40)
[n—1/2,n41/2)
1
0
Dp = —= x)(x —n)dx, 2.41
) NP go(z)(z —n) (2.41)
1
Gy = go(x)(x —n—py)*dz, (2.42)

my [n—1/2,n+1/2)
and m® := {m} ez, P = {P2}nez, ¢° = {¢®}nez. Our main result reads as follows.

Theorem 2.7 (Stability of stationary peaks solutions). Given M > 0, there exists 0y €
(0,1), depending only on M and on the kernels K and ', with the following property. Let
go € M (R; 1+ 20+D2) be an initial datum with total mass

/ 2°go(x) dz = M, (2.43)
R
and support
supp go C | J (n — do,n + do). (2.44)
nez
Assume further that
ml = (A%, p0)(1 + 290), (2.45)

for some A° > 0 and y° = {y°}nez € V1 satisfying
A% — An| < 8o, 9%l < b, (2.46)
Then there exists a weak solution g to (2.14) with initial datum go, and p € [0,1), such that
g(-st) = gp(-5 Anr s p) in the sense of measures as t — oo,

where gp(-; Anr,p, p) is the stationary solution with total mass M concentrated in peaks at the
points {n + plnez, see (2.25)(2.28).

In the statement of the theorem, m,, are the coefficients introduced in Lemma 2.6, and
Anr = Apro > 0 is the unique value such that the stationary solution gp(-; A, 0) has total
mass M (see Definition 2.5). The full argument for the proof of Theorem 2.7 will be given in
Section 5.

Remark 2.8. The proof of Theorem 2.7 shows that a much stronger convergence result holds:
indeed we also obtain a uniform exponential decay in time of the 2-Wasserstein distance



between the (normalized) restriction of the measure g(-,t) to each interval (n — %,n + %),
n € Z, and the corresponding Dirac delta centered at the point n + p:

sup Wa(gn(t),6,) < C’e*%t, where  gn(t) = ! g(- —i—n,t)x(_
nez mn(t)

) (2.47)

NI
NI

(see (3.1) for the definition of my(t)), where Wy denotes the 2-Wasserstein distance
%
Waln) = (it [ oy anten))
mell(p.v) JRxR

Indeed denoting by py(t) and q,(t) the first and second moment of g(-,t) around each peak
(see (3.2) and (3.3)), from the definition of Wa one finds

W2(gn(t), 6,) = — /

My (1) : |z —n — p|?g(x, t) de < 2q,(t) + 2|pn(t) — p|> < Ce™,

(n7%7n+%
where the uniform exponential convergence of qn(t) — 0 and p,(t) — p is obtained in the
proof (see for instance (5.7)—(5.9)).

3 Strategy of the proof and auxiliary results

In the following we assume that g9 € M (R) is a given initial datum satisfying the as-
sumptions of Theorem 2.7: in particular, M > 0 is a fixed quantity denoting the total mass
of the solution (see (2.43)), and go is supported in the union of intervals (J, ., I,,, where
I, := (n—0p,n+ dp) (see (2.44)), for some dp € (0,1) to be chosen later. We now present the
general strategy for the proof of Theorem 2.7.

We will first show in Lemma 3.1 that the structure of the support of the solution is pre-
served by the evolution, that is, every weak solution g(-,t) starting from g remains supported
for all positive times in the union of the intervals I,,. In view of this property, we define for
n € Z the following quantities:

mp(t) ::/I g(z,t) dz, (3.1)

n

1

pn(t) := @) /In g(z,t)(z —n)dex, (3.2)
1

0lt) = s /I 9@ 1)z — 1 — pu()? da. (3.3)

Notice in particular that p,(t) € [—dp, do] is chosen so that

/ g(z,t)(z —n—pyp(t)) dz =0, (3.4)
In

and that 0 < g,(t) < 462. The proof of Theorem 2.7 will be achieved by showing that g, (t)
decays exponentially to zero as t — oo (this gives concentration in peaks), and that each py,(t)
aligns to a constant value p independent of n (which determines the asymptotic position of
the peaks as t — 00).

10



The evolution equation for my,(t), which we derive below in Lemma 3.3 starting from the
weak formulation of the equation, can be seen as a perturbation of the equation
dmn ,V(Qn—s-p) (2n+1+p)

a4 (C"_l’”(m"_l(t))Q B m"(t)> - 2 (Cw(mn(t))Q - mn+1(t)> '

We studied this equation in detail in the companion paper [4]: it corresponds to the particular
case in which all the variances g, (t) are identically equal to zero, and all the first moments
pn(t) are equal to a constant value p. In this case, the functions m,(t) would represent the
coefficients of a solution which remains concentrated for all times at the points {n + p}necz.
In the main result of [4] we showed that, if this solution is initially a small perturbation
of one of the stationary states given by Proposition 2.4, then this property is preserved for
later times. The approach is then to reproduce the argument of [4] adapting it to this more
general setting: that is, we try to construct a solution such that m,(¢) is at each time a
perturbation of a stationary state. More precisely, we will show that the quantities my,(t) can
be represented in the form

M (t) = mn(A(t), p(t) (1 + 2"yn (), (3.5)

where m, are given by Lemma 2.6, for suitable functions A(t) and y(t) = {yn(t)}nez to be
determined via a fixed point argument (Proposition 5.2).

The structure (3.5) allows us to write the evolution equations for the first and second
moments py,(t), ¢,(t) in a handier way, and to prove the desired decay of these quantities.

The key idea is that the structure of all the evolution equations for m,, p,, ¢, can be
seen as a perturbation of the same linearized problem, for which we provide a full regularity
theory in Section 4 (whose proof is postponed to Appendix A). The most technical part of
the proof consists then in proving uniform estimates on the remainder terms.

A drawback in this approach is that in order to prove the representation (3.5) we would
need to assume a priori that the expected decay of p,(t) and ¢, (¢) holds, which on the other
hand we can prove only by exploiting (3.5) itself. To avoid the circularity of the argument,
we first need to consider a truncated problem, in which we cut-off the tail of the solution at
large distance n > N >> 1. The advantage is that for the truncated problem we can assume
that p, and ¢, have the expected decay for a short interval of time, which allows us to start
the process and to show that (3.5) holds for small times. Then by a continuation argument
we can extend all the estimates globally in time. In a final step we will complete the proof
by sending the truncation parameter N to infinity.

In the rest of this section we prove some auxiliary results: we show the property of
preservation of the support, already mentioned, and we compute the evolution equations for
the quantities my,(t), pn(t), gn(t).

3.1 Preservation of the support

We start by showing that any weak solution g remains concentrated on the support of the
initial datum for all positive times.

Lemma 3.1. Assume that g is a weak solution to (2.14) with initial datum go, according to
Definition 2.1. Suppose that the measure gg is supported in a union of intervals of the form
Unez(n — do,n + o), for a given 69 > 0 such that

1—50

oo < 5 s

(3.6)
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where € is defined in Remark 2.3. Then this condition is preserved for later times.

Proof. We write I := [—dp, dp] and we consider the test function
oo
P = Z xr(-—mn).
n—=——oo

Let us split the total mass M = [, 2%g(x,t) dz of the solution, which is preserved along the
evolution, as

M = Ming(t) + Mexi(t) where Min(t) := / 2%g(x,t)p(x) dz. (3.7)
R
We obtain an evolution equation for M (t) by using a sequence of continuous test functions
approximating ¢ (z) := 2%p(z) in the weak formulation (2.18). Recall that the right-hand
side of (2.18) is the difference of the two operators B. and By introduced in (2.21)—(2.22); in
particular, as B, is a quadratic form we have

Belg, g;¢] = Belgp, 93] + 2Bc[gp, g(1 — ); 9] + Be[g(1 — ), g(1 — ¢); ¥] . (3.8)

The measure gy is supported on the union of intervals (J,,cz(n + I). To compute the term
Bclgp, gp; 9] it is then sufficient to consider values y,z € |J,cz(n + I), since otherwise the
corresponding contribution would vanish. By (2.23) we integrate on the region {|y —z| < o},
otherwise K (2Y,2%) would vanish; then the assumption (3.6) gives that different intervals
(n+I) and (m + I) do not interact, and we can assume that y, z always belong to the same
interval (n + I):

In2
BC[Q(P, ge; 77/}] = 5 /+I o K(2y7 2Z)g(y7 t)g(zv t)
n n

2
neZ
In(2¥ + 2°)

x [(2y+2z)<p< — )-2%@)-2290(2) dydz. (3.9)

For y,z € (n+ I) we have ¢(y) = ¢(z) = 1. We now claim that the following implication
holds: 1(2¥ 4 9%
y,z€ (n+1) = n(l—g)e(n—i-l—i-l). (3.10)
n
Indeed by elementary computations

In(2¢Y +2°)  In(2(2v"' +2°71)) . In(2v-1 4 25-1)

In 2 - In?2 In?2 ’

and by monotonicity it is easily seen that % € (n+ I) whenever y,z € (n+ I).

From the previous considerations it follows that the term in brackets in the integral (3.9)
vanishes identically. Therefore Bc[gp, gp; 1] = 0. Similarly for the fragmentation term

1
Bilg; ¢] = 2/R 7(2?)9(?; +1,4)2Y [p(y +1) — ¢(y)] dy = 0.
Therefore by (3.8) we have
%Mext(t) = _%Mint(t) = _QBc[QCPag(l - @)/‘M - Bc[g(l - w)ag(l - QO); ¢] : (311)
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We now bound the right-hand side of (3.11) in terms of My (t): using (2.24),

—2B.[gp,g(1 — ¢); Y]
<m2y’ /[ Ly A2 00 (o) [ K2 2y

nez {ly—=2|<1}
<Cemm2y" [ degle-p) [ (22t dy
nez Y mn+1) {ly—=|<1}
<Y / dzg(zt)(1 — p(2) / oy, 1) dy
n<0 [n,n+1) (n—1,n+2)
e / dz2°g(z 1)(1 — o(2) / Wy(y,t) dy
n>0 Y [nnt1) (n—1,n+2)
< CLllg(t) HZ/ (1 — p(2)) dz
n<0 nn+1
+CEM Z 2%g(z,t)(1 — p(2)) dz
n>0 [n,n+1)

< CR (gl + M ) Moo (1

(where the norm ||| is defined in (2.19)). The term —B.[g(1—¢), g(1 —¢); 1] can be bounded
in a similar way. We then deduce, from (3.11) and from the uniform bound (2.20) on the
solution, that %Mext (t) < CMext(t). Now the assumption on the support of gg implies that
Mext(0) = 0. It then follows by Gronwall’s Lemma that My () = 0 for all ¢ > 0, that is, g(¢)
remains supported in (J,,c5(n + I). O

3.2 Derivation of the moment equations

We now assume that g is a weak solution to (2.14) with initial datum go, and we derive three
evolution equations for the quantities my,(t), pn(t), gn(t), introduced in (3.1), (3.2), (3.3), by
using the test functions

on(@) = x5, (x), () = (@ —n)xr,(2), @n(z;t) = (x —n—pa(t)*xr, (2)

in the weak formulation (2.18) of the equation. In the first case, by using the condition (2.23)
and the implication (3.10) we find

dm,,

20— Belg(1), 90 1); %] = Bilg(-,£): )

11“2/ / K(2Y,2%)g(y)g (Z)dydzln2/ K(27,2%)g(y)g(2) dydz (3.12)

In JIn

—4/1 v(2¥)g(y )dy+; v(2¥)g(y) dy .

In+1
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Similarly for p,(t) we have

L npa) = Belg(o 1), 9, 0): 0] — Bilg(-.1): 0]

dt
12 In(2Y 4 2%
- / / K(2Y,2%)g )()(n( +2) n>dydz
In—1 J1In-1 1n2

- 1n2/ K(2%,2%)g(y)g(2)(y — n) dy dz
I, J1In

- i / ¥(2%)g(y)(y —n) dy + ;/ ¥(2%)g(y)(y — (n+1))dy .

In In+1

By writing the right-hand side as m! p, + myp), and using the equation (3.12) for m, we
therefore have

dpn 1 [In2 In(2Y + 27)
= K(2Y,2%)g —n—pp
o mn{ /nl/n1 )()( 0o n p>dydz

—In 2/ K(2,2%)9(y)g(2)(y —n — pn) dy dz (3.13)
In JI,

1

-3 /1 v(2)g(y) (v —n —pn) dy + ;/z

Finally we compute the evolution equation for gy, (t):

(2%)g9(y) (y — (R + 1) — py) dy] :

+1

(i(mnqn)zB[ ()95t 0n (5] = Belg (-, ) (5 1)]

Y 4 9% 2
ln2/ / K(2Y,2%)g(y)g(z )<ln(2ln—|2—2 ) npn) dydz
2 /I [ K@ 2900)) (0= =) dy
- % /In ¥(2)g(y) (y —n — pa)* dy + % /1n+1 ¥(2)9(y) (y — (n+1) — pn)* dy,

which gives, after using the equation (3.12) for m/,(¢),

dg, 1 [In2 In(2Y + 27 2
dgn _ 1 [“ / K(2¥,27)g(y)9(2) ((n(“ —n —pn) - qn) dydz
dt 2 I'n. 1 In 1

My, In2

2 [ [ K)o (=0 - )~ an) dyds

1 2 (3.14)
-1 /In 7(2%)9(y) ((y —n—pa) - qn) dy
+ % /In+1 7(2)9(y) ((y —(n+1)—pa) - qn) dy} :

3.3 Approximate equations

We next identify the leading order terms in the equations (3.12), (3.13), (3.14). In the
following computations we will omit the dependence on the variable ¢.

14



Lemma 3.2. For all h € Z the following identities hold:

/l ) K(2Y,2%)g(y)g(2) dy dz = wm%(l +O(qn)), (3.15)

/1 ) v(29)g(y) dy = (2" Ymy (1 + O(qn)), (3.16)

[ [ K- par: = 520w, @

/Ih Y(2")g(y)(y — h — pp) dy = ¥ (2" )m;,O(qn), (3.18)

[ e ee - - - ) dpas - K o), Ga9)
/1 ) Y2 g(y) ((y — h — pr)? — qn) dy = 7(2"1P%)59mpO(an), (3.20)

where the notation fi = O(f2) means that there exists a constant C' (depending only on the
kernels) such that | f1| < C'fa.

Proof. Notice that, by Lemma 3.1, we have h + py, € I, = (h — dp, h + do) for all h € Z. This
suggests to use a Taylor expansion of K(2Y,2%) at the point (y,z) = (h + pp, h + pr): we
obtain, for all y, z € I,

0K
3

+ 0(K(2h+ph, ) [(y — h— p)? + (2 — h — ph)2]). (3.21)

K(2Y,2°) = K(27r, 270y 4 S8 (@87 o7 gh 2 102 (y — b — pr) + (= — h — py)]

In the previous equality, to control the quadratic remainder in terms of the function K itself
we made use of the growth assumptions (2.4)—(2.5) on the derivatives of the kernel. Indeed,
the second order term in the Taylor expansion of K (2Y,2%) contains terms of the form

(2) {6(;2;2(

OK - 5o
(29,27)2% + 8—{( 2Y 2Z)2y] (y —h — pn)? for some g,z € I,

(and similar terms with the mixed second derivative and the second derivative with respect
to n of K); such quantities can be controlled by using the estimates

0?°K
&2

(e, >5\ < OK (). e < cxiem),

5

which follow by the assumptions on the kernel.
Now, inserting (3.21) into the integral (3.15), and observing that in view of (3.4) the linear
term vanishes, we obtain

z e 5 = h+pn 9h+pn z
/Ih [ Ker 2)g)g(e) dyde = K (2072 >/ <>dy/ g(2)d

+O< (2h+ph 2h+p” // )y —h— ph) dydz),
Iy
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from which (3.15) follows by using the expression of the coagulation kernel in (2.1). The
equalities (3.17) and (3.19) are obtained similarly by inserting the Taylor expansion (3.21)
into the integrals, and recalling (3.4).

The identities (3.16), (3.18), (3.20) can be proved by analogous arguments, using the
Taylor expansion of the fragmentation kernel, for y € I,

1) = A(2HP) + o/ (@2 2y — )

In 2)2 P20 -
U2 (3 (amy220 45127127 ) 3y — (322)
= y(2"Pr) o/ (2P 2P In 2 (y — h — py) + O (v(2"FP%) (y — b — pr)?)

for some gy € I, (also in this case the quadratic term is controlled in terms of the function ~y
itself thanks to the growth assumptions (2.11)—(2.12) on the derivatives fo ). O

Lemma 3.3. The functions mu(t), pn(t), gn(t), introduced in (3.1), (3.2), and (3.3) respec-
tively, obey the following equations:

dmy, _ ~y(2"Pn)

= T (G mm? (14 0lga1)) = ma(1 + Oaw))

2n+1+pn+1 (3.23)
_ (g‘n 214 0(qn)) — mps1 (1 + O(qn+1)))~
dp, 2k 1Pa-1ym? R(2MPn)
TR S T — (-1 = pa) + Olan-)) = 02 P Ola) (3.24)
2n+pn 0% 2n+1+pn+1 Mp1 .
_ @) i ) O(qn) + ( ) m+ ((pn+1 —Pn) + 0(qn+1)>7
dg, In2 k(2n—Hpe-1) m2 /1 2
E o T 2"+Pn—1 mn |:(§qn_1 a qn) + 500((]”_1) + (pn—l - pN) i|
fe(2ntPn) y(2"FPn)
—1In QWWM%O(%) - T(SOO(%) (3'25)
on+1+pnt1 my,
+ ’7( 5 ) m+1 [(qn_ﬂ — qn) + 500(Qn+1) + (pn—i-l _pn)Z] .

Proof. By inserting (3.15) and (3.16) into (3.12) we obtain the equation
dm,  In2 k(@ 1Hem-1) fo(27+Pn)

= g (1 O(gn) — 25t (14 Olgn)
on+pn on+14pni1
— ’Y(Zl)mn(l + O(qn)) + V(Q)mn—&-l(l + O(gn+1));

which can be rewritten in the form (3.23) by using the coefficients ¢, (p) introduced in (2.29).
To prove (3.24), we first observe that by Taylor expansion, for all h € Z and y, z € I,

In(2” +2°) h+ph,
T W2 I 21 (2 [2+1n2(y h—pn) +In2(z —h—pp)
+O0((y—h—pn)*+ (z—h—ph)Z)D

1
=htpn 145y —h—pntz—h=p)+0((y—h—pn)*+(~h—p)°)

_1+%—I—O((y—h—ph)2+(z—h—ph)2). (3.26)
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The first term in (3.13) becomes, using the symmetry of the kernel, (3.26), (3.15), and (3.17),

. In(2¥ + 2°
/ K@, 2)t)a(e) (P ) ayt
In 1 In 1 n

~[ ] K200 (5= (0= 1) = pa+ Oty = (1= 1) o)) dyds

k(2n_1+pn71)
2N+Pn—1

2n 1+pn— 1)

—1(Pn-1 = pn)(1 + O(¢n-1)) + My 10 (gn-1)-

AN+Pn—1
For the other terms in (3.13) we can use directly (3.16), (3.17), and (3.18): we obtain

dp, In2k(2n1ten-1)
& - 2 ot Mt ((Pn—l —pn)(1+O(gn-1)) + O(Qn—l))
2mP) y(27P)

7<2n+1+pn+1 )

+ B (ot = Pu) (1 + O(gas1)) + Oansn) ).

Mn

mnO(Qn)

from which (3.24) follows.
It remains to prove the equation (3.25) for g, starting from (3.14). The first term in
(3.14) becomes, using (3.26), the symmetry of the kernel, (3.19), (3.17), and (3.15),

[ we e (MG ) —a) v
[ ] keeen|(E - -0 -m

2
+ O((y —(n—1) —pn_1)2 +(z—(n—-1) —pn_1)2)> — qn] dydz

= (%anl - qn) /1 7 /1 7 K(2Y,2%)g(y)g(2) dydz
N ;/1 - K(2%,2%)g(y)g(2) ((y —(n=1) =pp1)’ - q"—1> dy dz

+ ;/ K(2Y,2)9(9)9(2)(y — (n = 1) =pp-1) (2 = (n = 1) = pp—1) dy dz
In_1J1In_1
T 2puet — pa) / / K(2,29)9(0)9(=)(y — (0 — 1) — pn_1) dy dz

: bt
+ (Pr—1—pn) / / K(2Y,2%)g(y)g(2) dydz + On+pn_1 m;,_1600(gn-1)
n 1 n 1

n—1+pn_1
e (e 1—qn)< +0(gu1)) + 800(a-1)
+ (pnfl _pn)O(anl) + (pnfl _pn)2(1 + O(anl)) .

For the second and third term in (3.14) we can use directly (3.19) and (3.20), while for the
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last term in (3.14) we have, by using (3.20), (3.16) and (3.18),

: / 7(2%)g(y) ((y —(n+1)—p) - qn) dy

2 Int1

5 [ @) (= (4D = pl = 0+ 1) = ) dy

2 I’n,+1

1 1
+ 5 (1 — an) /1 Y(2)g(y) dy + (2" ) domn110(gn 1)
n+1

= (Pn+1 — pn) / Y(2%)g(y)(y — (n+1) — pnt1) dy + %(pn-i-l — pn)2/1 7(2%)g(y) dy

7(2”+1+pn+1 )

+ B (41 = 4) (L4 Ogns) + 800(gas1))

on+14pni1
= ’Y(Q)mn—kl <(pn+1 - pn)O(Qn-i-l) + (pn-‘rl - pn)2(1 + O(qn+1))

+ (@n+1 — ¢n) (1 + O(gn+1)) + 500((171—1—1))'

The equality (3.25) follows. O

Suppose now that the coefficients m,,(t) can be represented as perturbations of the func-
tions m,,, according to (3.5). By plugging the expression (3.5) into (3.23), and using (2.29),
(2.32), and (2.36), we find

oo

dyn, 1 om, dA n 1 1 Om, dpg n
dt ~  2"m, 0A dt a2 m) = on :Z_: my Opr dt a2
y(2m ) My n—1 2 n
+ 2 (G )21 2 10+ 0la1)) = (12 (14 Oan)))
ol 2n+1+Pn+1 3 n n n
N (2n+1)(Cn(p)mn(1 +2"yn)*(1+ O(gn)) — m:l (142" ynpa) (1 + O(qﬂ-i-l)))
n L dA N Rt o T dpg
= (142 y”)ﬂ (1+2 yn)Q"Zmn ope dt
Qn+tpn _ .
- 7(2n+2) [(1 + 2"y 1) (1 + O(gn-1)) — (1 +2"y) (1 + O(qn))
7<2n+1+pn+1>

4y (4 270 (1 Oan) = (12" )1+ 0<qn+1>>)], (3.27)

where fi,, = fin(A(t),p(t)). Similarly, under the assumption (3.5) we can write the approxi-
mate equations (3.24), (3.25) for p,(t) and g,(t) in the following form:

N+pn n—1 2
dé?tn 12 : ) [(1 -(|‘12+ 2nyyz_)1) ((pnfl )+ o(qn,l)) + O(qn)

g, YT (A4 2 )
T2t (1+2"n)

(0 = ) + Olanen)) + (1 + 2'9)0(an) )|
(3.28)
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dg,  v(2"FPr) [(14 2" 1yp_q)? (Qn—l

= Gz (5~ 0t 800Wn1) + (ot = 0)*) +300(an)

e 7(2n+1+pn+1) (1 + 2n+1yn+1) - ) ) ;
A, ~y(2n+Pn) (14 27y,) ((Qn Gn+1) + 900 (qn+1) — (Pnt1 — Pn) )
_ 4ﬂnw(l + Q"yn)%O(qn) (3.29)
y(2ntpn) ’

with fi, = fin(A(t),p(t)). This is the most convenient form of the equations for p,, g, to
prove their desired decay properties.

4 The linearized equation

The main evolution equations that we are going to investigate in the paper, namely (3.27),
(3.28), (3.29), can be seen as perturbation of the same linearized problem. The proof of the
main result relies therefore on the properties of solutions to the linearized equation, which in
its simplest form is

dyn e
i = 7( 4 ) [ynfl —Yn — Un(yn - ynJrl)}a (4'1)

for given p € [0,1) and coefficients o,, with suitable asymptotic properties as n — +oo. We
studied this linear equation in full details in [4, Section 5], with o, given by
),Y(Qn—l-l-i-p)

@) (4.2)

On 1= 4Cn,pan(AM,pa p

(here ¢, are defined in (2.26) and a,(Anr,p,p) are the coefficients of a stationary solution
with total mass M, see Proposition 2.4). We remark that for this analysis the particular form
of o, is not relevant, but what matters is only their asymptotic behaviour, namely o, — 8
as n — —oo and o, = O(e~4M.r2") as n — oo.

The goal of this section is to extend the linear theory in order to treat the more general
case of small time-dependent perturbations of the coefficients in (4.1), which appears in the
context of this paper.

4.1 The constant coefficients case

We start by recalling the result proved in [4] for (4.1). We will use in the following the notation
introduced in (2.39) for the space of sequences Yy and the norm || - |lg. It is convenient to
denote the linear operator on the right-hand side of (4.1), acting on a sequence y = {yn }nez,

Zly) = 12) Yn—1 = Yn — On (yn - yn—&-l)}, ZL(y) == {Zn(y) tnez (4.3)

(we assume here for simplicity p = 0). We also introduce a symbol for the discrete derivatives

D5 (Y) = Ynt1 — Yn, D, (y) == Yn — Yn—1, DE(y) == {DEF(y) }nez - (4.4)

The following result was proved in [4, Theorem 5.1].
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Theorem 4.1. Let oy, be as in (4.2), for a fized value of M (and p =0). Let also
Oe(-1,8), 0el0,8], withf—0<0p,

be fived parameters, and let y° = {y2}nez € Vo be a given initial datum. Then there exists a
unique solution t +— S(t)(y°) = {Sn(t)(¥°) }nez € Vo to the linear problem (4.1) with initial
datum y°. Furthermore there exist constants v > 0 (depending only on M ), C1 = C1(M, 0, é),
and Cy = Co(M, 0,0) such that for all t > 0

IDH(SB )5 < Crllsllot™ 7 e, (4.5)

—9 ~

IS®)(4°) — Sa () (y°)llg < Collyllot™ T e i >0, (4.6)
where Soo(t)(y°) 1= limy, 00 S (£) (1°).

Notice that by (4.5) and the definition of Yy the difference |S,11(¢)(y°) — Sn(t)(y°)| de-
cays exponentially to zero as n — 4o00; this in particular justifies the existence of the limit
limy, 00 Sy () (¥°).

All the constants in the statement above (and in the rest of this section) depend also on
the properties of the coagulation and fragmentation kernels; however we will not mention
this dependence explicitly, as the kernels are fixed throughout the paper. As observed in [4,
Remark A.5], the constant Cy in (4.5) blows up if § — 8 or 6 — 0 — 3, while the constant Cs
in (4.6) explodes also if § — 0.

4.2 The case of time-dependent coefficients

We now extend the analysis of the linearized problem (4.1) to the case of time-dependent
coefficients, which appears in the context of this paper. More precisely, we assume that a
sequence p(t) = {pn(t) }nez is given, with the following decay properties: for all ¢ > 0

pa()] <m0, [|DT (1)), < Mot~ Pe3", leisf)

<no(1+t0/0)e 5t (4.7)
01-3

Here np € (0,1) and v > 0 are constants to be determined later, depending only on the given
value of the mass M > 0, and f; € (3 — 1,1) is a parameter which will be fixed later (see
(5.6)). The bounds (4.7) are the expected decay behaviour of the sequence of first moments
introduced in (3.2), that will be recovered a posteriori.

We study the equation

dyn ,Y(Qn—&-Pn(t))

at 1 (yn—l —Yn = on()(yn — yn+1)), (4.8)

where the coefficients o,,(t) are given by

~(2n 1 Pat1(2)

on(t) = 8pn(Apr, p(t)) ~ (@) (4.9)
(recall here that fi,, are the coefficients explicitly defined in (2.37), depending on the positive
parameter Ay = Apro defined in Definition 2.5 and on the sequence p(t)). The value of the

mass M > 0 is fixed throughout this section, and consequently also the value of the constant
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Aps. The equation (4.8) can be seen as a perturbation of (4.1), when the shifting parameter p
is not constant but depends on the peak n, and on time. It is convenient to introduce a symbol
for the linear operator on the right-hand side of (4.8), acting on a sequence y = {yn }nez at
time t:

7(2n+Pn(t))
Zayst) = T (gt =0 = o) yn = 01 )s L (W5) = { Ly )bnez. (4.10)
We remark that, in view of (2.9), (2.10), (2.34), (2.37), and (4.7) we have
lim sup |0y, (t) — 8| < eno, lim sup o, (t) < ce”Am2" (4.11)
n——oo n—oo

(for a uniform constant ¢ > 0, depending only on the kernels). The following result extends
Theorem 4.1 to this situation, and its technical proof is postponed to the Appendix A.

Theorem 4.2. There exist ny € (0,1) and v > 0, depending only on M, with the following
property. Let p(t) be a given sequence satisfying (4.7). Let also

6e(-1,8), 6elb,p], with § — 0 < 3,

be fized parameters, and let y° = {y0l ez € Vo be a given initial datum. Then, for every
to > 0, there exists a unique solution

t = T(tito)(y”) = {Tu(t:t0) (y°) bnez € Vo (4.12)
to (4.8) in t € (tg,00), with T(to;t0)(y°) = 3°. . .
Furthermore, there exist constants C1 = C1(M,0,0) and Co = Co(M,0,0) such that
Lo
IDH(T (5 t0) ()5 < Cally®llo(t — to) ™ 7 e (), (4.13)

. 0 . 0 0 028 (i—ty) 5
IT(t:20)(y") = Too(t520)(y7)llg < Cally”llo(t —to) 7 e if 0 >0 (4.14)
for all t > to, where T (t;t0)(y°) := limp 00 T (t;t0) (¥°).

4.3 The truncated problem

We eventually consider the equivalent of Theorem 4.2 when we truncate the operator ., for
large values of n. More precisely, we fix a (large) N € N and we study the equation

dyn 7(2n+p7]¥ (t))

T = 1 (ynfl —Yn — O'qqu(t)(yn - yn+1)> forn < N, (4_15)

yn(t) = 0 for n > N, where we assume that p™ (t) = {pN (t)},.ez is a given sequence satisfying
(4.7), and the coefficients o (¢) are given by

2n+1+p7]¥+1<t))

8/171(AM7pN(t))’Y(,y(QnJrP'{y(t)) if n < N’
0 ifn=N.

oN(t) := (4.16)

As in (4.10), we introduce a symbol for the linear operator on the right-hand side of (4.15),
acting on a sequence y = {y, }nez at time t:

ont+py (1)
% (y"—l —Yn =00 (D(yn — yn+1)), (4.17)

(y;t)}nez. We then have the following result, equivalent to Theo-

LYV (yit) o=

n

and ZN(y;t) = {LN

n
rem 4.2.
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Theorem 4.3. There exist ng € (0,1) and v > 0, depending only on M, with the following
property. Let p™(t) be a given sequence satisfying (4.7), and let o (t) be defined by (4.16).
Let also

0e(-1,8), 6e€l0,p8, withf—0<}p,

be fized parameters, and let y° = {y2} ez € Vo be a given initial datum with y° = 0 for
n > N. Then, for every ty > 0, there exists a unique solution

t = TN (t510) (4°) = {T;) (t:0)(¥°) bnez € Vo (4.18)

to (4.15) in t € (to,00), with TN (to;t0)(y°) = 3°. . .
Furthermore, there exist constants C1 = C1(M,0,0) and Co = Co(M,0,0) such that

i
IDT(TN (t540) ()5 < Cully®llo(t — to) ™ 7 e 710, (4.19)
_6=-6 L~
TN (t:t0) (%) — T (5 t0) (1°) |5 < Cally®llo(t —to) ™ 7 el if 6 >0, (4.20)
| LT (5 t0) (y°), 1)] < Cally°|lo(t — to)f%eeﬂ’(t*t‘)) if > 0. (4.21)

The proof of the theorem can be obtained by a slight refinement of the argument given
for Theorem 4.2.

5 Proof of the main result

Along this section we assume that go € M (R) is a given initial datum, with total mass
M > 0, satisfying the assumptions of Theorem 2.7, for some Jg > 0 that will be chosen at
the end of the proof. For the moment we assume that dp € (0, 1) satisfies the condition (3.6),
which guarantees the conservation of the support. We also let v > 0 be the constant given
by Theorem 4.3, determined solely by M.

5.1 Truncation

The first step in the proof is to obtain a truncated solution by a cut-off of the tail for large
n. More precisely, we fix a parameter N € N (N >> 1) and we truncate the kernels and the
initial datum by setting

g0 () = 90(Z)X (~ oo N4 1)(2); (5.1)
KN(297 22) = K(Qy’ 2Z)X(—oo,N—% (y)7 7N(2y) = 7(2y)X(—oo,N+%)(y)' (52)

We are in the position to apply the well-posedness Theorem 2.2 (replacing the original kernels
by the truncated ones), with the initial datum g(])V : indeed the assumption (2.45) guarantees
that the integrability conditions (2.19) are satisfied. This yields the existence of a global-in-
time weak solution ¢ — g™V (t) € M, (R), in the sense of Definition 2.1, with conserved mass;
the estimates (2.20) hold uniformly with respect to N.

Furthermore, by Lemma 3.1 (which continues to hold in this truncated setting) we have
that supp g™V (t) C Unez In for all positive times, where I,, = (n — dg,n + dg). By using this
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information and bearing in mind that by (2.23) and (3.6) different intervals do not interact
in the coagulation term, we can write the weak formulation (2.18) of the equation as follows:

ol [ .00t a0)

ln2 Z /I Kn(2Y QZ)gN(y’t)gN(z,t) [g@(W) —oly) — (p(z)} dy dz

k<N-1

- i > /1 (2 g (Y + 1,0 [e(y +1) — 20(y)] dy

for every test function ¢ € C.(R). It is then clear (recall the implication (3.10)) that

supp g™ () C U I, for all t > 0. (5.3)
n<N

We define the quantltles mN (t), pN(t), ¢ (t), according to (3.1), (3.2), (3.3), respectively,
with g replaced by g%V. The evolution equations for these quantities (for a non-truncated weak
solution) have been obtained in Lemma 3.3; since we are now Working with the truncated
kernels, we have that those equations continue to hold for m2 (¢), pX¥ (), ¢% (t) for alln < N—1,
while they have to be slightly modified for n = N. For larger values n > N all the quantities
vanish identically by (5.3). For instance, the equation for mX () for n = N becomes

m N+p¥
TN YT (e ) om0+ OlaN-) —m§ (4 0. (5.4)

5.2 Decay of the first and second moments

We remark that by (5.3)
PN ()] <60,  0<gN(t) <462  forallt>0. (5.5)
We now fix two auxiliary parameters ; and 6, satisfying
B—1<0; <0y <1. (5.6)

These parameters are fixed throughout the paper, therefore in the following we will not
mention explicitly the dependence of all the constants on 0y, 6. We let also L1, Ly, L3 be
positive constants, that will be chosen later depending only on M.

Thanks to the fact that we are considering a truncated problem, we can assume that there
exists a small time interval [0, "], with t¥ > 0 (depending on N) such that for all ¢ € (0,tV)

DT (N (#)llo < 2L1dge™ 2", ||D+(pN(t))||51 <2Lidot "/Pem 8, (5.7)
d N v N v
Hi t)H 5 < 2Lybpe” 2", H .- 2L900 (1 +t~0/8)e 2t (5.8)
B s
sup g (1)] < 88y %e” sup 2% (1)] < 2Ls0)/ > t702/Pe v, (5.9)
nez n>0

where DT denotes the discrete derivative (see (4.4)). This is the expected decay for the
functions p, ¢V as suggested by the natural scaling in the corresponding evolution equations.
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For technical reasons we can not obtain the optimal decay, namely for ; = 0 = 1, and we
have to introduce the two additional parameters satisfying (5.6).
In addition to (3.6), we make now a second assumption on dp, namely

o0 <m0,  2L100 <mo,  2L2d0 < no, (5.10)

where 19 > 0 is the fixed constant given by Theorem 4.3, determined by M; with this
assumption the sequence p” satisfies the condition (4.7) in the interval (0,#"), and allows us
to apply the linear theory developed in Section 4.

5.3 Fixed point

The next goal is to represent the functions m2 (¢), in the time interval [0, #V], as perturbations

of stationary states, as in (3.5). In order to do this, we first need to rewrite the starting
assumption (2.45) in an equivalent form for the functions m™ (0).

Lemma 5.1. For all sufficiently large N there exists AN (0) > 0, y™V(0) = {yY(0)}nez such
that
m™ (0) = mn (AN (0), p™ (0))(1 + 2"yYN (0))  for alln < N, (5.11)

with y§(0) = 0 and
1AN(0) — A°| < co27 N6y, 1™ (0) — y°|l1 < codo (5.12)

for a uniform constant cqg > 0, independent of N.

Proof. We use the explicit representation of m,, that can be obtained by combining (2.30)
and (2.37):

_ _ 2e—A2" on > i (0,
(A, p) = ) exp( 2 j:;lz 7 (0]_1(1?))), (5.13)

where the coefficients (,(p), 6, (p) are defined in (2.29) and (2.31) respectively. By observing
that m2 (0) = m,,(0) for all n < N, recalling the assumption (2.45) and imposing that (5.11)
holds at n = N with ¥ (0) = 0, we obtain the condition that defines A (0):

mn (AY(0),p" (0)) = mu (A%, p%) (1 +2VyR),

which yields, using (5.13),

AT O=ANT Lpo)ex S —J1n M N, 0 -1
v (N (0) p<2 j%f 1(9j_1(pN(0))) (1+2Y9%) 7,

or equivalently

N)— A" =9V (v (@°) = ~in 9]'*1(190) _9o- N, N, 0
470 -4 =2 1(<N<pN<o>>>+j;j (2 o ay) ~2 I+ 2V,
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This equation selects the value AV (0), and moreover implies the first estimate in (5.12). We
further define y¥ (0), for n < N, by imposing that (5.11) holds: this gives for n < N

N Ty, AO 0 1 2n
2ny1];/(0) = — T]\r[Ln (O)N _1:m_( 7]]\? )( + ) -1
i (AY(0), p(0)) M (A (0) V(0))
(5.13) (4N (0)—a0)2r $n (PN (0)) n j 0-1(p°) n, 0
="e - exp| —2 277 1n 1+4+2"%y,)—1.
) Z; (72 va) )+ k)
From this expression also the second estimate in (5.12) follows. t

We now look for functions AN (¢), y~ (t) = {yX (t)}nez such that
m¥ (t) = ma (AN (¢),p™ () (1 + 2"y (¢)) for all n < N. (5.14)

By plugging this expression into (3.23), as in (3.27), we find for all n < N

[e.e]

dyy dAN Ny 1 1 omy dpk
no— (142N (14 2y
a 0T y)dt (I+ )Q"Zmnapk at
Y2t n—1, N \2 N n, N N
t o (1427 1) (14 O(g,1)) = (14 2%,) (1 + O(g))
N
(27 P n, N\2 N n+1, N N
oy (L 2P+ 0)) = (1 + 2 ) (14 00 ) |

where 1M, = M, (AN (1), p™N (1)), fin = (AN (), pN (1)) (see (2.30)). For n = N, using instead
(5.4), we have

dy N N, dAY Ny 1 = 1 9my dpy

—N — (142 - (142

o - 02w -0+ yN)2N]§VmN Opr  dt
7 (2NN

n [(1 VY 24 0N )) — (1 2V + o))

9N+2

The previous equations for the sequence y” () can be written in a more compact form, where
we highlight the leading order linear operator:

dyy _ (@)
Y= T (= = o O — )

N .
F a2y ) L LS O (1), AV (1), ) forn <N (5.15)

and y2 (t) = 0 for n > N, where we introduced the coefficients

. N (@)
N (t) 1=  Sn(Ar PP (0) o= i <Y, (5.16)

0 ifn=N.
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The remainders ) in (5.15) are explicitly given (for n < N) by

onA (2n PR ) 1] on+1+p)y
7’1(11)(3/7147& = ’Y()[ . )3/721]

= Ny

+ 29 (2" P (i (At ) = (A, DY) (Yn = Ynt),  (5.17)

on+py
1248 = 28T (1 20y, 0 ) - (L4 2')0())

2n+1+pn+l
(™) (4 2 20Y) - (14 27 )0 ). (518
1 & 1 om dp
(3) — n - n N k
iy, Ast) = —(1+2 yn>2n2mn( A0 op AP =g (519)

(1)

(for n = N, the terms containing fi,, in ry’ and 7"( ) are not present).

At this point it is important to recall that p ( ) = {pN () }nez and ¢V (t) = {¢Y (V) }nez
are given sequences, satisfying the estimates (5.7)(5.9) in the small time interval (0, V). The
goal is to show the existence of a pair (y™¥(t), AV (t)) solving (5.15). The linearized operator
in (5.15) has exactly the form (4.17), with the sequence p' (t) satisfying the assumption (4.7)
in (0,tY) in view of (5.10); we then denote by 7™V (t; s) the corresponding resolvent operator,
according to (4.18).

By Duhamel’s formula, the solution to (5.15) with a given initial datum yV(0) can be
represented in terms of the solution to the linearized problem as

tdAN

)T () (P () ds

yn (t) = T (£ 0)(y™ (0)) + AN () — A° +/
0

3 t
s / T (1;.5) (P (™ (s), AN (s), 8)) ds (5.20)
i=1 70

for n < N, where for notational convenience we introduced the operator

Po(y) :==2"yn,  P(y) :=A{Pu(y)}tnez- (5.21)
We select the function AN (¢) by imposing that y&(¢) = 0 for all ¢ > 0 (notice that this
condition is satisfied at time t = 0, see Lemma 5.1): this gives the equation
t dAN
ds

AN(t) = A% = ~T¥ (£0)(y™(0)) —/0 (5)TN (5 5)(P(y™ () ds

3 t

-3 [ @000 6,4V 6 ) ds. (522
i=1 70

and by differentiating with respect to ¢

N t N
Ll —{jj{,V(TN(t;O)(yN(O)),t) T /O djs ()N [TV (1) (P(y™ (5))).1] ds

3. ot
+Zl/0 LTV (8;5) (D (yN (5), AN (s), ds+ZrN AN, )], (5.23)

26



where .V denotes the linear operator on the right-hand side of (5.15), see (4.17). In turn,
by inserting (5.22) into (5.20) we have for n < N

N N N N ! dAN N N N
uN () = [TV (t:0) — TN (1:0)] (5 (0)) + /0 ST (1) ~ TN ()] (P () ds
3 t
£y /0 TN (t:5) — TN (8:9)] (rD (4 (), AV (5), ) ds. (5.24)
=1

The pair (yV(t), AN(t)) will be determined by applying a fixed point argument to the two
equations (5.23)—(5.24). This is the content of the following proposition.

Proposition 5.2. There exists g > 0, depending on M, Ly, Lo, L3, with the following
property. Let go be an initial datum satisfying the assumptions of Theorem 2.7 and let gV be
the corresponding weak solution to the truncated problem, obtained in Section 5.1. Assume
further that the maps t — p™(t), t — ¢V (t) satisfy the estimates (5.7), (5.8), (5.9) for all
t € (0,tV), for some tN > 0.

Then there exist functions t — (y™ (t), AN (t)), for t € (0,¢Y), such that yN(t) = 0 and

mb (t) = mn(AN(t),pN(t))(l + Z”yé\](t)) for alln < N and t € (0,tV). (5.25)
Moreover the following estimates hold:

ly™ @)l < Codo, — Nly™(B)lg < Codo(L+1~
dAN
dt

B—1
B

- (5.26)
B

AN () = | < Codo, (t)] < Codo(1+1

for a constant Cy depending only on M, Ly, Lo, and Ls.

We premise to the proof of the proposition a technical lemma containing the main esti-
mates on the remainder terms 79, i = 1,2, 3. The proof of Proposition 5.2 is given after the
lemma.

Lemma 5.3. Let y € Y3, A > 0, and let r@O(y, A,t), i = 1,2,3, be the sequences defined by
5.17), (5.18), and (5.19). Assume also that 1 <1 and A > LA, Then there exists a
( ’ Y 2
constant Cs, depending on M, L1, Lo, Ls, such that
IrM (y, A, t)|5-1 < Csllylls + CslAnr — Alllylls,
I (y, A,8) 5,41 < Cady/ 2t %/Pe51, (5.27)
17 (. A, 0)llg, _y1 < Cadot™"/Pe 31,

and

Py, 4,0) < Calyllslyls
P, A, 0)] < Coi e (5.25)

Dy, A,1)] < Cydot™ 7 e8¢,
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Furthermore, for every y',y* € Vg with ||y*[1 <1 and A, A% > %AM we have

IrD(yt, AL t) — rW (2, A2 1) |51 < Cslly* — yQHg(maX{Hylllm ly*lls} + [Anr — A1|)
+ Calat = 4% (1?13 + 1yl )
Ir® A% 1) = 12 A%, 1), 5.0 < s3> (Ily" = 9?1 + 14" = A7) %/Pe75" | (5.20)
[Pt AL ) O, A% D)llg, 541 < Cadolly' — o[t~/ e 3",

and

P (" AL 8) =P (42, A%, 1)) < Csallyt — 115, (5.30)
Dt ALY — P (2, A2 1) < Cadollyt — 125 -

Proof. Along the proof, the symbol < will be used for inequalities up to constants which
can depend only on the properties of the kernels, on M, Ly, Lo, Ls. We first consider the
remainder (1. The estimates (5.27) and (5.29) are proved in [4, Lemma 6.3] (with minor
modifications). For (5.28) and (5.30), it is sufficient to observe that for n = N the expression

of r%) simplifies and yields (using (2.9))

V' AL =7 A% 0] < Gl + ) I~ o s

N A, (9N+pN(t)
1 2%y (27 PN )
I (0. A 0] = =0k S 20V S Dllsllylh,

1 1
Oyt A1) — rP (2, A%, 8] S 20Nk 2 lyho + vl
S (' + 12 1yt = v2(ls -

We next consider the term 7(2). We have for n < 0, using the bound ||y||; < 1, (2.10), the
asymptotics of fi,, as n — —oo, and the estimate (5.9),

[ (y, A 6] S 27" (lan 1 (8)] + 14 (1) + 27" (A, 2™ (1)) (Jan (O] + a1 (8)])
< 53/22—n6—ut'
Similarly, for n > 0 we have, using (2.9) and (5.9),

PP (y, A t)] S 2070l (O] + i’ (0)]) + 20797 (A, pN (1) (g ()] + ans1 ()])
S, 63/22(,8—1—52)nt—52/ﬁ6—vt.

Then the estimate (5.27) for r?) follows. For n = N, we first observe that by interpolating
between the two estimates in (5.9) we have for all n > 0

_ -1 g1 5.1
2070 g (0] = (2%"1aY (0])  laY (D% 8T e,

which yields, using also |ly|[; < 1,

Y(@N+PR )

2
¥ (A )] = S

|1+ 2V w1 20(aN s (1) — (1 +2Vyn)OlaN (1)
<2070V (1N ()] + ¥ (0)]) S 87 e,
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which is the second estimate in (5.28). To prove the Lipschitz continuity of 7(?) (estimate
(5.29)), we first observe that in view of the explicit expression of fi, in (2.37) and of the
assumption A!, A% > %A M one can show that

1 n
i (A, pY) — i (A%, pN)| S 22 A A — A7), (5.31)

Then the bound in (5.29) can be obtained straightforwardly, using this estimate and (5.9).
We obtain the estimate in (5.30) for 7(?) by using the trivial bound |¢Y (t)| < 63:

Dyt AL 1) — e (g2, A%, )] S 28DV |(1 4 2V 1k )2 — (1428 )2 laN_ ()]
+ 2N |y — yX|laN (@)
<&yt —vls-

We eventually consider the remainder 7(®): by (2.36), (5.8), and the assumption ||y < 1,

0 N
\rff’ky,A,tns<1+uyméotWe5t< Sk S 2’“2”9_1)k>

k=nAl k=nV1
. 602 "t~ /Be 3t for n <0,
~ 502(5_1_91)"75_91/567? for n > 0,

from which the last estimate in (5.27) follows. We next observe that by interpolating between
the two estimates in (5.8) we have for n > 0

)"

hence for n = N we obtain the third estimate in (5.28) (using also (2.36)):

N

Ion )] < (2@=Hm a
a V| =

o)

B—1

g < oot et

dpy _B-1
A 5 (0 2| )| < o e

Observe that, in view of (2.38), the quantity m%%(/l, pV(t)) is actually independent
of A: then using (2.36) and (5.8) we find

o0 - N
O, AL )~ O, 42 0] = (o~ 92) 30 - O e
n " " " P My, 3Pk di
< 80272yl — 2|t~ 01/Be 5t for n <0,
~ ) 828 1=0ngn 9 214=01/Be=5t  for n > 0,

so that also the third estimate in (5.29) holds. For n = N, arguing similarly we obtain the
last estimate in (5.30). O

Proof of Proposition 5.2. Along the proof, we will denote by C' a generic constant, possibly
depending on the properties of the kernels, on M, Ly, Lo, and L3, which might change from
line to line. Let § > 0 be a small parameter, to be chosen later, and let wg : (0,00) = R be
the function

_b-1
B

wg(t) = (1+t" 7 )e 2. (5.32)
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Since we always deal with truncated sequences, it is convenient to denote by yéV the space
of sequences y € Vg (see (2.39)) such that y, = 0 for all n > N. We work in the space
X = X} x Xy, where

ly(®)lls
X =1y eC(0,t"; )« |lylla, <6+, Yllay, = sup (|ly@)|1 +——F—==), (5.33
V= {y e COAEY sl <3} ol = sw (Il + T8 ) (5:33)
|A(E)]
Xy =AM e CU0,t";R) : ||Allx, <O}, Allx, == sup —+~. 5.34
{Aecoi® Al <0} IAlx = swp SEE (5.3
For A € X5 we let .
An(t) = AN(0) + / A(s)ds. (5.35)
0
Notice that for every A € X
t t
1An(t) — AN (0)] = ‘/ A(s) ds| < ||A|X2/ ws(s)ds < C6. (5.36)
0 0
By combining (2.46), (5.12), and (5.36) we find
|Ax(t) — Apr| < C8 + 027N + 6o < C(6 + o) (5.37)

and in particular we can assume without loss of generality that |Ax () — Aar| < % for every
A € X;, provided that we choose &g and § sufficiently small (depending on M).

We define a map 7 : X — X by setting 7 (y,A) := (y,A), where

t

Gn(t) = [T (t;0) = TY (:0)] (4™ (0)) +/0 A(9) [Ty (t55) = TN (5 5)] (P(y(s))) ds
3

Y /0 TN (1) — T (15 )] ("9 (u(5), Aa(s), 5) ds (5.38)

=1

for n < N, gn(t) =0 for n > N, and

A(t) := —[ffvv(TN(t; 0)(yN(0))7t)+/0 A(s) 2y [T (8 5)(P(y(s))), t] ds

3 t .
+3 /0 LY TN (8 5) (D (y(s), An(s), 8)),t] ds + > (y(t), Ax(t), 1)| . (5.39)
=1

The rest of the proof amounts to showing that the map 7 is a contraction in X, provided
that § and dg are chosen small enough.

Step 1: T(y,A) € X for every (y,A) € X. Since y™(0) € Y1, by Theorem 4.3 we have (using
also (2.46), (5.12))

1™ (#:0) = T (1:0)] (0N (O))]| ; < Co(M, L Al )37 7 ™" < Clyug(t), 5.10)
LY (TN (10)(™ (0)), )] < Co(M, 1, B) [y (O)]]at™ T ™" < Cops(t).
Similarly, since y(s) € Vg we have P(y(s)) € Vg_; for every positive s, with
1)1 < llus)]ls, (5.41)
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and it follows, again by Theorem 4.3, that
[T (t9) = T (8:9)] (Py(s))]] 5 < C2(M B = 1 B)ly(s) (2t — ) Fe™ )
< Cowg(s)(t — s) Fe V=9, (5.42)
LY [TV (8 5) (P(y(s)), 1] | < Cows(s)(t — s) Fe 09,

In the same way, we can use the bounds (5.27) on the remainders (") proved in Lemma 5.3
(the assumptions of the lemma are satisfied in view of (5.37) and ||y(¢)||1 < ), together with
Theorem 4.3, to obtain the following estimates:

I[N (5 9) =T (5:9)] (D (y(s), An(s), )|
< Co(M, 8 —1,3)[1rP(y(s), Ar(s), 8)|lg_1(t — 3)_%6—1/(15—8)

< C (I3 + 14a() ~ Antlly(s)l5) (2 = )7 Fe ¢ (64
< (8 (ws(s)* + (0 + 50)5%(5)) (t = 5) B,
[T (55) = TR (£:5)] (P (y(s), An(s),9)) | 5
< Co(M,0~ B +1, mur@)(y(s), AN gypralt =) 7 e (54)
< Coos PPt —s) 7 e_%se_”(t—5)7
TN (5 9) = TR (8:9)] (P (y(s), An(5),9)) | 5

7] (3) _ 2071 —v(t—s) 5.45
< Co(M, 01 — B+ 1,8)[Ir" (y(s), An(s), 8)llg,_pra(t —5)" 7 e (5.45)
28—601—1 v

< Coos /Bt —5)™ T B e B eV,

The same estimates hold for the terms 2 [TV (t;5)(r® (y(s), Ar(s),8)), 1], i = 1,2,3.
By plugging the bounds (5.40), (5.42), (5.43), (5.44), (5.45) into (5.38) we find

1

15(t)]lg < Cdowg(t) + 052/0 (wp(s))*(t — ) Fe =) ds

t
+ 0(5 + (50)(5/ W5(8)(t — 5)_%6_”('5_5) ds
0

(5.46)
2 t C28-0,-1
+ Cdp Z/ s0B(t — ) 7 e 2% M9 g
— Jo
< C(80 + 6%+ 806)wp(t),
where we used the elementary estimates
t
[ (wists) = ) e ds < Cuo)
0
t 1
/ wg(s)(t —s) e "9 ds < Cupgl(t), (5.47)
0

t _ 28-0;-1 v
/ s_ei/ﬁ(t _g) e 550 V(%) 4g < ng(t) (1=1,2),
0
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for C' depending only on f3, 01, 0o, v (recall the assumption (5.6)). In particular, by choosing
0 and d¢ sufficiently small, depending ultimately only on M (with Jp depending on ¢, and
§o ~ 8), (5.46) yields [|(t)[|s < Swp(t).

In order to control ||3(¢)]|1, by a similar procedure we repeatedly apply Theorem 4.3 and
we use the bounds (5.27): we find from (5.38)

¢ -1 _U(t—s
H?J(t)lhSC2(M71,1)HyN(0)H16”t+C2(M,0,1)5/0 wg(s)[ly(s) |1 (t — ) Fe ") ds

t as
+ CQ(M,ﬁ -1, 1)/ HT'(l)(y(S)7AA(S)73)H571(t — 3) T e v(t=s) 4
0

_ t s-d
FCM 8= 5+ 1) [ P50, Ar(6). 8, a6 - 9)7 7 eI ds
0

_ ¢ )
+Co(M, 0 = 5+ 1, 1)/ 1P (y(s), An(5), 9)lg—pa(t — )" 7 e 79 ds
0

¢
< Obg + 052/ wg(s)(t — s)_%e_”(t_s) ds
0

+C /Ot [52 (wg(s))2 + (0 + 50)511)5(3)} (t— s)_¥6_”(t_5) ds

B—0;

2t
+CHY [T e as,
=10

By estimates similar to (5.47) we then find ||§(¢)[|1 < C(Jp+6?) < g, provided that we choose
0 and Jp sufficiently small; this, combined with the previous estimate, gives ||7||x, < 9.

We proceed similarly for A: the first three terms on the right-hand side of (5.39) can be
estimated exactly in the same way, by using (5.40), (5.42), and the equivalent of (5.43)—(5.45)
for L [TV (t;5)(r (y(s), An(s), 5)),t]. The only novelty is the last term in (5.39), which can
be controlled thanks to (5.28). In this way one obtains an estimate of the form

|/~\(t)| < 0(50 + 6% + 505)1115(15)
and in turn ||A|x, < 6. Hence we can conclude that 7 maps X into itself.
Step 2: contractivity. Let (y', AY), (v, A?) € X and set (§°, A?) := T(y*,A?), i = 1,2. In view
of the definition (5.38) of 7 we have
t
|9 (1) = 7 (1)] S/O [AL(s) = A (s)[| T (t55) — TN (t:9)[(P(y' (5))) ds
t
+ [T (65) = T (69)| (PO () = (51 (5.43)

3 t
+ Z/O T (t:5) = T (1) (D (4 (5), Ani (5),8) = 7O (47(5), Ap2(s), 9)) ds.
i=1

The first two integrals can be estimated using (5.42); for the last integral containing the

32



remainders, similarly to (5.43)—(5.45) we find, using (5.29) in Lemma 5.3,
(TN (8 5) = T (8:5)) (rO (' (5), Ani (), 8) = 1D (52 (5), Ape(s),9)) || 5
< Co(M, =1, 8)[rD(y(s), Api (5), 5) — rD (52 (s), Apa(s), )l|g_1(t — )" Fe0=)
< C|lly" = ol ws(s) (dws(s) + (3 + 60))
+ [|AY = A?| x, (52 (wﬁ(s))2 + 5w5(s))] (t— s)_%e_”(t_s) ,
where we used the bound |A,1(s) — Ap2(s)] < C||A! — A?||x,, which follows from (5.35); and
(TNt 5) = TR (£:5)) (FP (' (5), Ani (5), 8) = 1@ (12(5), Apa(5),9)) || 5

_ 2B—65—1 (s
SC2|’r(2)(yl(5)7AA1(s)>3)_T(Q)(?ﬂ(s)aAA2(3)75)||0_275+1(75_5) 7o)
26—05—1

< Coo(Ily = Plla, + AT = A%, ) s~/ PeBs (b — )7 A )

(the same estimate holds for ), with #; in place of 3). Hence from (5.48) it is straightfor-
ward to obtain an estimate of the form

15 ) = 7@, < €6 +00) (" =yl + A = A% x;)

t 2 t y 28—-6,—1
</ [(wﬁ(s))2+w5(s)} (t—s) Fe v (t=9) ds+2/ sTVBem25(t—s)" B V() ds>,
0 =170

which in turn yields, recalling (5.47),
15®) = 7Ol < 6 +60) (Ily' = ¥l + A" = A2, Jwi(t).

In a similar way we obtain an estimate for ||§*(t) — %2(t)||1, which combined with the previous
one gives

15 = 71, < €O +d0) (g = g2lla, + A" = A2l ). (5.49)

Starting from the inequality
|AL(t) — A2()) S/O |AY(s) = A2(s)||-LR [TV (85 5)(P(y' (9))), t] | ds
o [ IR [TV ()P 6) = 2 5). ] s

3 t
+3 [T G000 6 A (9,9) =006 Axe(s) )] s

+Z\m £), A (), 8) — 0 (53(2), A (2), 1)

the same argument (using also (5.30) in Lemma 5.3) shows that

|2 = 82|, < C@+80) (g = vl + A = A%z, ) (5.50)
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Therefore by (5.49)—(5.50) it follows that the map 7T is a contraction in the space X', provided
that § and g are small enough.

Step 3: conclusion. In view of the previous steps, Banach’s fixed point theorem yields the
existence of a unique pair (y", AV) in the space X’ such that ( NOANY = T (yN, AN); that is,
denoting by AN(t) := AN(0) + fo AN (s)ds, the maps t = yN(t), t = AN(t) satisfy the two
equations (5.23)—(5.24). Moreover by constructlon yN(t) =0 for all n > N.

Now, by integrating (5.23) in (0,¢) we have

AN () — AN(0) = — / f [TV (53 0)(y™(0))] ds
N
/ ds / (O (TN (P ()] de

Recalling that y% (t) = 0 for all t > 0, we see that the previous equation is exactly the identity
(5.22). Finally, combining (5.22) and (5.24), we conclude that the pair t — (y™(t), AN (t))
satisfies (5.20), and, in turn, (5.15).
Finally, if we define the quantities
md () = mn (AN (), p" (£)) (1 + 2"y2 (1)) for all n < N,

n

we see that (5.15) implies that the functions Y () satisfy the same evolution equation
as ml (t), with the same initial datum m2 (0) = m (0) (see Lemma 5.1). Therefore by
uniqueness of the solution to this system of ODEs (which follows from the fact that we are
considering a truncated problem) we conclude that m® (t) = m™ (¢), that is the property in

the statement holds. O

5.4 Continuation argument

The next goal is to extend the representation (5.25) of the functions m2 (¢), obtained in
Proposition 5.2, for all positive times. This will be achieved by a continuation argument.
Indeed, recall that the fundamental assumption in Proposition 5.2 is that the maps p” (¢),
gV (t) satisfy the estimates (5.7)-(5.9) in the time interval [0,#V]. The idea is now to show
that at the time tV the same estimates (5.7)-(5.9) hold with strict inequality, and therefore
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they can be extended for larger times t € [tN SV + g]; in turn, this condition allows to repeat
the proof of Proposition 5.2 and to extend also the representation (5.25) in [tV ¢V +¢].

In order to prove the claim, we take advantage of the representation (5.25) in order to
write the evolution equations for p’¥ and ¢~ in a handier form. In Lemma 3.3 we computed
the equations (3.24)—(3.25) for the (not truncated) functions p,(t), ¢,(t); then, at the end of
Section 3 we have seen that those equations can be written in the form (3.28)—(3.29) under
the assumption that m,(¢) can be represented as in (3.5). Now, since the truncated functions
mN (t) satisfy (5.25) for ¢t € [0,t"], the very same equations hold for p(t), ¢X(t) for all

n

t €10,¢"] and for all n < N:

dpy _ y(2me) [(L+ 2" My y)?
Tl ( I ) Tz (-1 =)+ 0la))) + Olal)

Cy(@mtrne (14 2m N )
Tyt (1+27y))

(02 =)+ 0a)) + (1 2 y0la) )|
(5.51)

quJ«LV _ ’Y(Qnﬂ)ilv) (1+ 2n—1y71;/_1)2 (C.I?]‘Lv—l
dt 4 (14 2nyN) 2

N 1, N
oy P (142N )y N N N\2
n 7(2n+pg) (1 + 2ny7]l\[) ((qn - qn+1) + 600(%1—',—1) - (pn+1 — Dn ) )

ont+14p7
3 4%7( . )
y(2n )

— ¢ +600(a)" 1) + (PY1 —szV)Z) +600(g))

1+ 250 (gY ﬂ , (5.52)

where fi, = fin (AN (t),pN (t)). For n = N, recalling also that y% = 0,

dpN 2N+p% _
R S R A (PSR RACCI) RS RS
dgN (2N *PN _ an_
0y T gy )2 (B g a0+ Y- p)?) + 0.
(5.54)

and pN(t) = ¢X'(t) = 0 for n > N.

To highlight the structure of the equation for p" (t) and recognize the linearized operator
considered in Section 4.3, we isolate the leading order linear operator in the equations (5.51),
(5.53) for p™ (¢): for n < N we have

dpy 7(2n+p’]¥)( N
dt 4

P = o = oM N —pYa)) + RAO) + R + B (559)
where we introduced the following quantities:

N
N 7(2n+1+pn+1(t)) .
(t) ey if n <N,

0 ifn=0N,

N (1) i { Hin(Arop (5.56)
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y(@mten) (L4 2yl )2
R = T (RS )l )

n+1, N
~ Rl AN 0V 2 e (L)

- 1) W) — PNy, (557)

n+pl n—1, N \2
Ry = WX O o ) + o)
n+1, N
= AN O O B2 o) 1 1 o)), (559
R (1) = (2 0) [ (Anr, 2 () = in(AV (8), 0V (6)| (0 = D) (5.59)

(for n = N the terms containing fi,, are not present in R!, R%, R3).

Proposition 5.4. There exist positive constants L1, Lo, L3, depending only on M, and
0o > 0 sufficiently small, such that the estimates (5.7), (5.8), (5.9) and the conclusion of
Proposition 5.2 hold for all t > 0.

We premise to the proof of the proposition two technical lemmas. The first contains the
main estimates on the remainder terms R®, i = 1,2,3. The proof of Proposition 5.4 is given
after the lemmas, at the end of this subsection.

Lemma 5.5. Let R', R%, R? be the sequences defined in (5.57), (5.58), (5.59) respectively.
Then there exists a constant Cy, depending on M, L1, Lo, L3, such that for all t € (0,T)

IR (t)|lo—p < Cud3(1+t"F)e 2t for all 6 € [0,04], (5.60)
IR2(t)lo—p < Cadi* (1 +¢708Ye ™ for all 6 € [0,6), (5.61)
IR (t)lo—p < Cadge™2",  for all 6 € [0,8], (5.62)
ROy < Cab2 (147 )t 01/Be 51, 5.63

61—1 0

Proof. Along the proof, the symbol < will be used for inequalities up to constants which can
depend only on M, Ly, Lo, L. We remark that, in view of the explicit expression (2.37) of
fin, and of the fact that, by construction, AN (t) > ATM, we have

limsup [fin (AY (1), 9V (8) = 11 S 80, in(AN (1), 9V (8)) = O 342") a5 — 0o, (5.64)
n——oo
The estimates below follow essentially by using the assumptions (2.9)—(2.10) on +, the asymp-
totics (5.64) of i, the bounds (5.26) on y» and AV, and the estimates (5.7)-(5.9) on p¥,
q" (which by assumption hold for ¢ € (0,T)).
We first consider R!. Observe that by interpolating between the two estimates in (5.7)
we have for 6 € [0, 6]

I @ W)l < (1Y O)la) 5 (1Y O)l)' ™ < dot=*17e 5
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For n < 0 we then find

N N N N N NN N

‘Rfll(t)’ S, <2n‘y711\771 —Yn | + 22n|yn71‘2) |pn71 — Dn | + ‘2n+1yn+1 - 2nyn Hpn - pn+1|
S27MyN @D N (0)llo S 27" e 2,
whereas for n > 0
RAM] S 27 (275hly — o + 22|y )a ) Iphly — o
_1 n
+ 2Prem A gn ity L — 2y I — pi |

S 207l O IDT N (1)l 5 2077 a0 e

The previous estimates combined yield (5.60).
For the proof of (5.63) we estimate as before (n > 0)

[RL(#)] < 207007 lyN (@) 5| DT (PN (£)) |15,
< 2(1—é1)n58 (1 + t_%)e_%tt_él/ﬁe_gt.

We next consider R?: we first observe that by interpolating between the two estimates in
(5.9) we have for all n > 0 and 6 € [0, 62]

w‘m

7 1-£ 3/2,-0/8 —
2gN (1)) = (2%"1a (1)]) g ()] 5 032 Pe .

Hence

IR2(0)] S 16 (0] + Y ()] + N1 ()] S 6 %e for n < 0,
IR2(t)] S 25"(\(155_1@)! + 1 ()] + \qé&l(t)\) < 2B-0nga2=0/Be=vt for n >0,

and the two estimates combined yield (5.61).
Finally, to prove the estimate (5.62) for R?, we recall (5.31) and we obtain

2"]Ri(t)\ S 50271‘297{7 _Pg-kl’ S 586_%t for n < 0,

20-Pm B3 (1)] < 6202~ 32 |pN — pN 1| < Golpl —p| S 63e7E for n >0,
The conclusion follows. O

Lemma 5.6. There exist 51 > 0, ng € N, and ca > ¢; > 0 such that if ¢(t) = {Gn(t) }nez
solves

% = @(%(1 +61)Gn—1 — (1 — 51)%) for n > nyg,

Gn(0) = 485 for n > ng, (5.65)
o () = 453/26_Vt fort >0,
then
01(53/26_Vt < 292”%(15) < czég/Qt_§2/5e_”t for all n. > ny. (5.66)
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Proof. Let 0 > 0 satisfy 277 = %—21
the equation (5.65) becomes

dw 2n

dt" = 7(4)(%_1 — wp). (5.67)
We can then express w, in terms of the fundamental solution to (5.67), which has been
computed in [4, Lemma A.3]:

2n0+1 t
wy(t) = M/ W0t (1 — sYwp, (s)ds + Z w0t n>ng+ 1.
0 = no+1

From the explicit expression of ¥ provided by [4, Lemma A.3] one can obtain an estimate of
the form

25 (24
cle_th < \I/g) (t) < @e‘th (n>1¢>ngp)

for co > ¢1 > 0 depending only on the fragmentation kernel 7y; then, combining the previous
estimate with the assumptions on wy(0), wy,(t), we find for all n > ng + 1

t no+1 n £
(2077 __vs_ (29
wp(t) < Cno5g/2/0 e 1 9T Toa g 402(53/2 g g(l-o)e— 5t
l=np+1

_ vt

_1l-0o
< 05 e T

—U _ y(2notl
e

< Oy T8 4 082
(the sum can be bounded by arguing as in [4, equation (A.43)]), and similarly

< __vt
w(t) > Cl 53/ %e T

Going back to the function g, with the change of variables, and choosing d; > 0 such that
1 — 0 = 05, we obtain the estimate in the statement. ]

Proof of Proposition 5.4. We let T be the supremum of the times 7' > 0 such that the esti-
mates (5.7), (5.8), (5.9) hold for every t € (0,T). Notice that T > 0, as the estimates are
satisfied in (O,tN ). The proof amounts to show that T = oo: indeed, this allows to repeat
the proof of Proposition 5.2 in the time interval (0,00). We assume by contradiction that
T < oo, and we will show that (5.7)-(5.9) hold at t = T with strict inequality: this would
allow to extend the estimates for larger times, leading to a contradiction.

In view of the fact, already observed, that the proof of Proposition 5.2 can be repeated in
the time interval (0, T), the sequences p~ (t), ¢’V (t) obey the evolution equations (5.51)—(5.54)
for t € (0,T). As usual, we denote by C a constant which can depend only on the properties
of the kernels and on M, and might change from line to line.

Step 1: decay of p”. We first show that (5.7) holds at t = T with strict inequality, with the
choice

Ly > maX{Cl(M,O,O), C1(M, 0, él)} (5.68)

(where (1 is the constant given by Theorem 4.3).

The linearized operator in (5.55) is of the form considered in Section 4.3, see (4.15); since
also the assumption (4.7) is satisfied, we are in the position to apply Theorem 4.3. We can
write the solution to (5.55) in terms of the solution to the linearized problem as

3 t
p (1) = T, (£;0)(pV (0)) + Z/O T (t;5)(R'(s)) ds (5.69)
i=1
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(see (4.18) for the definition of the operator TV). By applying Theorem 4.3 and using the
estimates (5.60)—(5.62) proved in Lemma 5.5 we then find

D% (¥ @), < 1D (¥ (o) HO+Z [ 19 (o) o

< C1(M,0,0)[p" (0)floe™

B—0

3 . -
£ 3 CMA = 5.0) [ Ryl =57 e ds
=1

—ut 3/2 t _él/ﬁ —Zsiy _B-61
< Lidoe™ " + C4 (1+s Je 2 (t—s)" P
0

e v(t=5) g5 .

It can be checked by elementary arguments that the integral on the right-hand side of the
previous inequality is bounded by Ce™2¢. Then

< Lidoe™” Pem3t < ZLydpe” 3
D (N (@) ||, < Lidoe™ + Cy e L16ge 5"

for all t € (0,T), by choosing dp small enough. Therefore the first estimate in (5.7) holds with
strict inequality at ¢ = T. By the same argument, using also (5.63), we have

[D* 6™ )5, < |10+ (¥ 0 ) +z [ 19 (o) 0
< C1(M,0,61)|[p" (0)[|ot 91/667”

_ B t )
+Ci (M, 60, — 1’01)/ HRl(S)H§1_1(t - 3)_36_1'('5_8) ds
0

_ _ t _B—(2-07)
+C(M, Gy — B, 91)/ |R2) |, ot — ) = F et dg
0

t —
+ Cl(Ma 07 9_1)/ ||R3(8)||0(‘t — 3)_91/5€—V(t—8) ds
0

< Lléotio_l/ﬁefyt

1

t ﬁ— 0 v
+ 6} / (1+ S_Tl)s_el/ﬁe_fs(t — ) e V) g
0
t 7 B—(3—01)
+ 0(53/2/ (1+ S_GQ/ﬁ)e_VS(t —s) o ev(t9) g
0

w

v

< Lybot=01/Bevt 4 063/ H=01/Be=5t < 2 5t=01/Bet

\V)

for all t € (0,T), by choosing &y small enough. Therefore also the second estimate in (5.7)
holds with strict inequality att=T.

Step 2: decay of ~q- We next choose Lo such that

Ly > 2L, <supv(§) ¥ sups—%(s)) (1+supa1)). (5.70)
§<2 &1 n,t
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Going back to the equation (5.55), we see that we can bound, using the estimates (5.60)—(5.62)
in Lemma 5.5 and the definition of Lo,

dp™ Ly +/. N 1 2 3

e < 2=

[0, < 210" Y@l + IR DI s + 105 + 1RO
< L25067%t + 504(53/267%7§ < ;Lgéoeigt

by choosing dp small enough, and similarly

Lo

< 2=
6—8 — 2Ly
< Lydot~0/Pe= 5t 4 304632 (1 + ¢ 01/F)e 5

|5

1D* ™ (@)llg, + 1R (t)llg,—p + [ R* ()5, + IR (2)ll5, s

3 7 v
< §L250(1 + t_el/ﬁ)e_it.

These two estimates imply that (5.8) holds with strict inequality at ¢t = T, as claimed.

Step 3: decay of ¢~. It remains to prove the decay (5.9) of ¢". This will be obtained by

comparison with an explicit supersolution for the equation (5.52), (5.54) satisfied by ¢ .
We first consider the sequence §,(t) = 458/26’_th thanks to the bounds (5.7), (5.9) and
(5.26), one can see that, possibly taking a smaller v > 0 (depending only on the kernels), the

sequence ¢, is a supersolution for the equation (5.52), namely for ¢ € [0,7] and n < N

dQn > 7(2n+p7]y) (1 =+ 2n—1y7]":f_1)2 (CYnfl

dt — 4 (1 + Q"yflv) 2

(1+ 2n+1yrjy+1)
(14 27yh)

— oY1+ 25000 >] |

— Gn + 600(gh 1) + (PN 4 — pﬁf) +800(gY)

o (1) (@0 = Gus1) +800(@Y1) = (N1 = p)?)

It follows that wy,(t) == G, (t) + 27" — X (t) satisfies, for ¢ € [0,T] and n < N,

dw, S 7(2n+p5) (1+ 21yl )2 (wn—l w ) N (4) (1+ 2yl )
_ _ Nt It
dt — 4 (1 + 2nylV) 2 " " (14 279 V)

with w,(0) > 0 by (5.5), wn41(t) > 0, w_n, () > 0 for Ny large enough, depending on &;

hence by applying the maximum principle in the region n € [N, N|, t € [0,T] we obtain
wy(t) > 0, which yields (by passing to the limit first as Ny — oo, then as e — 0)

(0, = )]

Gn(t) > ¢ (1) for all n < N and t € [0, 7).

Hence the first estimate in (5.9) holds with strict inequality at t = T.
Next, we let ng be given by Lemma 5.6. Notice that the first estimate in (5.9) yields

sup 29_2”\q7]l\7(t)\ < 29_2”0”58/26*”. (5.71)
0<n<ng

We then let ¢, be the solution to the initial/boundary value problem (5.65). If §p is small
enough, one can show that ¢, is a supersolution for the equation (5.52) solved by q,ﬁv , in the
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sense that for n > ng and ¢ € [0, 7]

ddn _ 2(2") (1 ; :
dt - 4 <2(1 + 51)(]71—1 - (1 - 51)(]71)

> (2P [ (14 2n 1yl )2 (dn_l

— Gn + 600(gh 1) + (ph_1 — pflV)Q) +600(gl)

- (T+2mg)) \ 2
(1+2n+1yN )
- Uﬁ(ﬂﬁ((qﬁ - Q7]L\[+1) + 5OO(Q£1V+1) - (pr]yﬂ - p'r]:[)2>
(14 27y;)

— N ()1 + 2% )00 >] .

Indeed, by using the decay estimates (5.7) and (5.9) for D*(p") and ¢”, the estimate (5.26)
on y", the fast decay (5.64) of ¢, and the estimate from below (5.66) on §,, one can show
that all the terms on the right-hand side can be bounded in terms of C(d¢)g,, where C(do)
can be made arbitrarily small by choosing dy small enough.

Hence the function wy, () = §,(t) — ¢2 (t) satisfies for ¢ € [0,T] and n > ng

dwn > 7(2n+p£}’) (1 + 2n71y7];/'_1)2 (wnfl )
—w
dt — 4 (14 2nyl) 2 ")

with wy(0) > 0, wp,(t) > 0 (by (5.71)). The maximum principle gives w,(t) > 0 for all
t € [0,T] and n > ny, that is, in view of (5.66),

sup 252"|qflv(t)| < 0258’/%*9_2/%*”.

n>ngo

By combining this estimate with (5.71), we eventually find that also the second estimate in
(5.9) holds at t = T with strict inequality, as claimed, choosing L3 = max{cg,2%270%2}, [

5.5 Conclusion

We are now in a position to conclude the proof of the main result of the paper, by passing to
the limit in the truncation parameter N — oc.

Proof of Theorem 2.7. For every sufficiently large N € N we constructed in Section 5.1 a weak
solution corresponding to the truncated initial datum and the truncated kernels, see (5.1) and
(5.2). These solutions exist for all positive times, remain supported in small intervals around
the integers (5.3), and the corresponding sequence of masses m'¥ (t) can be represented as in
(5.25) for all t > 0, for suitable functions ¢ +— (y~(¢), AN (t)). Moreover, the sequences of
first and second moments p™(t), ¢™ (t) obey the estimates (5.7)(5.9) for t € (0,00). All the
constants in the estimates are in particular independent of V.
For every r > 0 we have the uniform bound

/ 2mgN($, t)dx < 2rdo Z 2mm,]¥(t)
R nez
(5.72)

(5.25)
< 20+ N O)h) 2 ma (AN @), PV (1) < €
neZ
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for C, independent of N, in view of the asymptotics (2.35) of m, and of (5.26). This in
particular implies that, for every fixed ¢, the sequence of measures {g" (-,t)}x is tight, and
hence relatively compact with respect to narrow convergence. Moreover, the family {g™V} v is
equicontinuous, in the sense that for every 0 < s <t < T and ¢ € C,(R) we have, by using
the weak formulation of the equation and the assumptions on the kernels,

pla)g" (@,t) de — | p(x)g" (z,s)de
/R J

1n2 ; In(2Y + 2%)
vl 1/3 /zk I Kn(2%,2°)g" (y, 7)g" (2, )SO(T) —¢(y) — p(2)|dydzdr
T g N (y +1,7) |0y + 1) — 20(y)| dydr
,gN:l/ / g g \soy ey \ y
SQMM/(ZP*W$WV+§pwwgmf+§yﬁﬁﬁizﬁ%$m>m
T k=0 k>0 k<0 k>0

< Cllgloolt — s,

with C independent of N. Hence by Ascoli-Arzela Theorem we can find a subsequence
N; — oo such that the measures ¢™Vi (-, t) narrowly converge to some limit measure g(-,t) for
every t > 0, in the sense

/ o(x)gNi (z,t) dz — / o(x)g(x,t)dx for every ¢ € Cp(R). (5.73)
R R

Next, thanks to (5.73) we can pass to the limit in the weak formulation (2.18) of the
equation and obtain that g is a weak solution, in the sense of Definition 2.1, with initial
datum go. Moreover supp g(-,t) C U,z In- By defining my,(t), p,(t), ¢.(t) as in (3.1), (3.2),
(3.3) respectively, the convergence (5.73) implies

ma? (£) = ma(t), pa’(t) = pu(t), qni(t) = qn(t)  as j — oo, for every n € Z. (5.74)

In particular the sequences p(t), ¢(t) obey the bounds (5.7)—(5.9) (which are uniform in N),
and in turn there exists p € [—dp, dg] such that

pn(t) = p, qn(t) = 0 as t — oo, for all n € Z. (5.75)

We next show that also the limit sequence m,(t) can be represented in terms of the

coefficients m,,. Indeed, by (5.26) we have that (up to further subsequences) yév T(t) = yn(t)
and ANi(t) — A(t) as j — oo, for some limit functions y,(t), A(t). We deduce that

(5.25) Ny gy N 0, Ni
malt) = i () °2 o, (A0 @0,V 2000)

= mn(A(t), p(t)) (1 + 2"yn(t)).
We eventually pass to the limit as ¢ — co. We extract a subsequence ¢; — oo such that
g(-,tj) = p in the sense of measures as j — oo, for some limit measure p. As the sequence

yn () satisfies the bound (5.26), we have 2"y, (t;) — 0 as j — oo, and we can further assume
that there exists the limit Ay := lim;j_, A(t;). Hence by (5.76) we have for every n € Z

tim (1) = Jim 7 (A(t), p(t5) (1 + 200 (£7)) = an(Anc. ) (5.77)

J—00
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We claim that A, = A ,: indeed we have in view of the conservation of mass of the solution
g(z,t) and by a Taylor expansion
o0

M= 3 /I 2gla.tj)dr= (2"+p”‘tf’mn<tj>+0<2”mn<tj>qn<tj>>),

n=—oo n=—oo

so that by passing to the limit as 7 — oo and using (5.75), (5.77) we find

M= Z 2n+pan(AOOap)a

n=—oo

which implies Ao, = Apr, (see (2.28)).
Thanks to (5.75) we have for every n € Z

/I (0= n—pPdp(a) = im [ (=0 palts) gl t;) e = im mn(t5)an(t5) = 0.

j—00 In —00

therefore supp o C |, cz{n +p}, and p = 3" 7 bpdny, for suitable coefficients b,. Moreover
by (5.77)

b, = hm mn(t]) = an(AM,pap)v
j—00

and we conclude that the limit measure u coincides with the stationary solution g,(Aa,p, p).
Finally, by uniqueness of the limit we also have that the full family of measures g(+, t) converges
to gp(Anr,p, p) as t — oo. O

A Proof of the regularity result for the linearized problem

We provide in this section the proof of the regularity result for the linearized problem (4.8),
Theorem 4.2. The proof follows the same strategy as that of Theorem 4.1, given in [4,
Appendix A], which can be seen as a particular case of Theorem 4.2.

Proof of Theorem 4.2. Along the proof, we will denote by C' a generic constant, possibly
depending on the properties of the kernels, on M, and on 67, which might change from line
to line. The estimate in the statement will be proved for the exponent v > 0 given by

1

V= TCO, (Al)

where ¢q is the constant given by Lemma A.1 below. We divide the proof into several steps.
Step 1. A maximum principle argument as in the first step of the proof of [4, Lemma A.1]
can be applied also in this case, with minor changes, and shows, for a given initial datum
y® € )y, the existence and uniqueness of a solution ¢ — y(t) with y(0) = 3° in the space Yy
for > 0 and in the space )y if 8 < 0, satisfying in addition

ly@)llo < 2[ly° o (if § > 0),

, ] (A.2)
ly@®llo < 2lly°llge**  (if 6 < 0),

for some p > 0 (we omit the details here).
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The maximum principle also yields a uniform estimate on y,,(t) in the region n > N, for a
fixed N sufficiently large, in terms of the initial values ° and on the boundary values yy ().
In order to obtain such an estimate, we again distinguish between the two cases § > 0 and
6 < 0. In the first case (6 > 0), the initial datum y° is bounded as n — oo, and we can
directly use a comparison principle with the constant sup,,sy [y9| + supg<s<; |yn(s)| (since
the constants are solutions to (4.8)). In the other case (§ < 0), we can compare with the
sequence 279 which is a supersolution to (4.8) in the region n > N for N large enough
(exploiting the fact that o, — 0 as n — 00). In conclusion, we find for every ¢ > 0

sup [y, (t)] < sup |yn| + sup [yn(s)| < ly°llo + sup [yn(s)|  (if 6 > 0),
n>N n>N 0<s<t 0<s<t A
on On), 0 0 : ( 3)
sup 27" |yn ()| < sup 27"[y, [ + sup [yn(s)| < [ly"llo + sup |yn(s)]  (if 6 <0).
n>N n>N 0<s<t 0<s<t

Step 2. We will now prove a uniform decay estimate in bounded regions n € [—ng, ng|, for
ng € N sufficiently large. To this aim, we introduce the quantities

ZZO:_OO 22nmn(AMa p(t))yn (t)
D o0 221 (A, (1))

I(t) == 27" (Ay,p)(yn — M), (A4)

n=—oo

m(t) =

where the coefficients m,, are defined in Lemma 2.6. In view of the rough bound (A.2), and
of the decay (2.35) of the sequence m,,, we easily obtain a uniform estimate for small times:

()] < Clly’lle,  HOI<Cly°IF  forallt <1, (A.5)

for a uniform constant C. We now compute the evolution equations for m(t) and I(¢) and
show that these quantities decay exponentially to 0, by a Gronwall-type argument. In view
of (A.5) we can restrict to times ¢t > 1, so that we do not have to take into account the time
singularity t=%/8 in (4.7). We preliminary notice that, by using the estimates (2.36) and
(4.7), we find

[e.e]

a0 <

omy,
Opy,

(Ane (1)) 2

5 : S . A6
SCT?OHtmn(AM,p(t))< PRAEY 2”’f2<ﬁ01)k> o

k=nAl k=nVv1
S Cnoe_%tmn(AM,P(t)) max{l’ 2(5—91)n}‘

By elementary computations using the equation (4.8), the definition (4.9) of ¢,(t), and the
relation (2.32), one can check that

dn;t(t) DY 22%; (Anr, p( Z 2" [ (Aar,p(8))| (9 (®) = (1),

n=—oo

hence in view of (A.6), for all ¢t > 1,

_ 0 © )

n=—00 n=1

(A.7)
< Cnoe”28/1(¢)
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(where the last passage follows by Holder inequality). In order to obtain an evolution equation
for I(t), we observe that, recalling the notation (4.4) for the discrete derivatives, the equation
(4.8) can be written in the form

dyn
dt

927, (Ang, p(t))—22 = D ({22’“7(2’”1“"f+1(”)m+1(AM,p(t))D;? (y(t)>}k);

from this identity, by subtracting m(t), multiplying by (y,(t) — m(t)), and summing over 7,
a straightforward computation yields

dI(t) 2, (on+1+p, 2n )2
e _ _2;_002 Y@ i (D +nz_oo2 = [ (A, p(0)] (=m0
Then, by using the Poincaré-type inequality in Lemma A.1, (A.6), and (A.3), we find
dI(t 2 TS g
’ dE% ) ‘ < — (8 + Cme™? > 22 max{1, 207" ym, (Ang, p) (g — m)?

n=—00
2 - >
< —(% - 07706_5t) I(t) + Cpoem 2" Y 20=00m92mm (Apr, p)(yn — m)?
n=N-+1

1 —v (=
< ——1(t) + Cnoe™ 5 (Im() 2 + Iy° 3 + sup [yw(s)?) (A8)
Co 0<s<t

provided that we choose 7y sufficiently small. Hence, recalling the choice (A.1),

R

L ‘g —avI () + Cnoe 5 (1503 + sup [m(s)2+ sup |1(s)]). (A.9)
0<s<t

0<s<t

Setting

Fe=sup{t > 1+ [m(s)] < 20y lo, |1(5)] < 2CYy° |3 for all s € [1,1]},

we find that ¢ = oo by a standard continuation argument, using (A.5) and the two estimates
(A.7)—(A.9) (which hold for ¢ > 1), and choosing 79 small enough; hence

()| <201 lo, 18] < 2C|y°13  forall t > 0. (A.10)
By inserting (A.10) into (A.9) we find by Gronwall’s inequality
[I1(t)] < C|ly°|2e~7t  forall t > 0, (A.11)

which in turn implies that for every ng € N there exists a constant C,,,, depending on ng, on
the kernels, and on the fixed parameter M, such that

sup  |yn(t) — m(t)| < Cpolly°llge™ 5t for every t > 0. (A.12)
—no<n<ng
Moreover, by (A.7) we have | < Colly®lloe™ 2! for all t > 1, which yields the existence

of the limit Moo := limy_,oo Mm(t) and the estimate

[m(ts) — m(t1)] < Clly°llge 2" for all to > ¢1 > 1. (A.13)
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In the rest of the proof, C),, always denotes a constant depending on ng, on the kernels, and
on the fixed parameter M, possibly changing from line to line.

Step 3. We now want to extend the estimate (A.12) in the region n < —ng. We first notice
that, thanks to (A.2) and (A.10), we have for all n < —nyg

yn(t) — oe| < C273%l9  forall t < 1. (A.14)

We next extend (A.14) for times ¢ > 1. This can be achieved by a comparison argument,
similar to the third step in the proof of [4, Lemma A.1]. For fixed T > 1 and € > 0 we

consider the sequence
2n(t) := N2 e~ st 4 e47"

where IV > 0 is a constant to be fixed later. We first observe that

dz, N T v 7(2n+pn(t)) 7(2n+pn(t)) 3

Recalling the asymptotics (2.10) and (4.11) as n — —oo and taking 7y sufficiently small,
assuming without loss of generality that v < 27y, we obtain that z, is a supersolution for
(4.8) in the region n € (—oo, —ng), for every sufficiently large ng. Furthermore, for ¢ = 1

’yn(l) - moo| < CQ_nHyOHG <N27T" < Zn(o) for all n < —ny,
provided that we choose N > C||3°|lg. By (A.12) and (A.13), for n = —ng we have
Yo (8) — Moo < (Cry + C)15°]lge ™5 < 2y (£) for every t > 1,

if we choose N > 27"0(C,,, + O)||y°||¢- Finally, by (A.2) and (A.10) we can choose ny > ng
sufficiently large, depending on ¢ and T', such that

Yy (1) — Moo] < 2T 4+ 20)||90)g < 4™ < 2, (1) for every t € [1,T].

Therefore, with the choice N > max{C,27(C,, + C)}||3°|ly, we can apply a comparison
argument in the compact region (n,t) € [—n1, —ng] x [1,T7:

[Yn () — Moo| < 25(2) for all n € [—ny, —np] and t € [1,T].
Letting firstly ny — oo, and then € — 0, T' — 0o, the previous argument shows that
lyn(t) — Mos| < N2 e 51 for all n < —ng and ¢ > 1. (A.15)

By combining the estimates (A.12), (A.13), (A.14), and (A.15), we obtain that for every
no € N sufficiently large there exists a constant Cj,, such that

lyn(t) — Mso| < Cno2 |40 |loe" 5" for all n. < ng and ¢ > 0. (A.16)

Step 4. We eventually investigate the behaviour of solutions to (4.8) as n — oo. We therefore
now restrict to the region n > ng, where ng € N is a sufficiently large constant. In particular,
we are allowed to use the asymptotics (2.9), and we will always assume without loss of
generality that

1
(27) < y(2"Th, 3 2Bn=m) < < men*m) for all n,m > ny. (A.17)



For £ € Z, 1 > ny, let \I/g) be the solution to the problem

awl _ 0 _g®
{ dt 4 (Tl = 0n), (A.18)

v (0) = 8(n — ).

The functions \I/,(f ) have been explicitly computed in [4, Lemma A.3]. As a particular case of
[4, Lemma A.3], there exists a uniform constant ¢ > 0 such that

8L
’\I’g) (t) — ‘I’q(ﬁl(t)‘ < B2t for all n > £ > nyg. (A.19)

In particular, there exists the limit gyl (t) :=limy 00 g (t), which satisfies

BL
‘\Il,(f) t)— v ) < QB0 =2t for all n > ¢ > ny. (A.20)
By means of the fundamental solutions \I'g) we can write a representation formula for the
solution to (4.8) in the region n > ng in terms of the initial values y9 and of the values of the
solution for n = ng — 1. More precisely, we denote by poo(t) := lim, o0 pp(t) (which exists
by (4.7)), and we solve the initial /boundary value problem

B(n+poo(t))
Y = %(yn—l —yn) +ra(t) n>ng,
yn(o) = yg n > no, (A.?l)
Yng—1(t) = A(t) t>0,

where r,(t) :=r . )( t) + 7"22)( t),

1
rD(E) 1= 5 [ ©) = 2O (5, — ),
2n+pn(t)
k2(0) = = 0 1) () — e ().

By rescaling the time variable, that is by introducing 7 := fg 20P>(5) ds and G, (7) == yn(t)
(and defining similarly p,(7), A(T), 7(7)), the problem (A.21) takes the form

7 Bn .
= 2 s = 0) 2R () g

In(0) = yn ) n > nyg, (A.22)
Uno—1(7) = A(T) 7> 0.

Notice that c1t < 7 < ¢ot for positive constants co > ¢; > 0. By Duhamel’s Principle we can
write the solution to (A.22), for all n > ng, as

~ 9Bno T 0
In(T) = I /O\Il( )(T—S ds—l—z\ll(

{=ng

/quz r = 8)2 B, (s) ds

l=ng

(A.23)
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Using the representation formula (A.23), together with the fact that 26 v O (s)ds =1 for
every n > £ (see [4, (A.26)]), we can write the difference between g, (7 ) and yn+1( ), m > no,
as follows:

Brno T .
i) = Gnea() = 2 [ (@) B (7 = 5)(3(s) — ) s

4
_gfno oo ek
— Moo 4 / (\Ij7(1 ) - n+1 dS + Z \II(Z n}-l( ))yg
T {=ng
T n+1 }
/ =0 V(1 — 5)27 POy (s) ds =: I + Lo + I3 + I (A.24)
0 {=ng

We now estimate separately each term on the right-hand side of (A.24). For a fixed 0 e [0, 5]

as in the statement, we set w(7) := sup,>,, 297G (T) = Fny1(T)]. It is also convenient to

introduce the constant A := 2ﬁgn 9

Notice that, by (A.16), we have

IA(T) = Too] = [yng—1(t) = TTcc| < Cung 19°lloe™ 57

Combining this estimate with (A.19) we obtain
2 11] < Cl Iyl 20" /O e MTeE ds < Cy [y floe 57 (A.25)
For the second term s, using again (A.19) and (A.10) we have
15| < Co 02T [ e ds < G e (A.26)

The following estimate is proved in [4, (A.44)]:

n+1 _
98¢ )
27 13) < Clly 120D S 2000257 < Ol llp (1 + 7 e (A.27)
{=ng
To bound the term /4 containing the remainder 7, we need some preliminary estimates. In
view (4.7) we have for all € (0, 6], by interpolation,

o 1—

|Pe(T 7)| < Z!pg —pin(r Z(mﬂ Orir™ 7) m "< Cyno2 %
=L

cm‘w
%1@
Q |1

Then, using also (2.9) and (4.11),
278 ()] < © Iy (2447)) — 24O 4 3128007) — 9= oy (7) — i)
< C (2% 4 2%(3((r) — foo(()]) o1 () — Gu(7)
< C§<2BK + 7702(5_9)67_%) |9e-1(7) — Ge(T)],

27 (|52 (7)| < 0282y (7) — Gy (7).
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In turn we obtain, recalling (A.19),

+ n+l

201, < C20-Hm / S ofte- 2 r—9) [zﬁuzw D575 13e-1(5) — Gels)| ds
{=nyg
7+ n+l .
+ 020=B)m / Z 926t~ =)= A2 G, (s) — Gy (s)|ds
0 f=no
< G20 [ e [1+ %hyno 1(8) = G ()] ds
"+1 Y. - 5 i
+ 020=B)mn / 0) =2 (7=5) [2/34—1—2(/6_9)53_3}11)(3) ds
0 f=no+1
n+1
+ 020=B)n / <Z 9(28-0)¢, AMQ[) A=)y (s) ds .
0 Ne= no

By using (A.16) in the first term, and an estimate similar to (A.27) in the second integral,
we end up with

2| 14] < Co "l / ehr=) [1 s B]etods
0

+ n+l

o[ Y e [264 PICEOURS: g s)ds + C/ 5)ds

< Cololoe ¥ 40 [ (147 - s)‘%)e-A<f—s>w<s> as
0

+ C/ (1+ (1 - s)_%)s_%e_A(T_s)w(s) ds + C’/ e My (s)ds.  (A.28)

0 0

By inserting (A.25), (A.26), (A.27), (A.28) into (A.24) we find

w(r) < cnonyoue(e—? ATy A) 40 [ =9 e M u(s)ds
0

|

+ C/ (1+ (1 - s)f%)sf e ATy (s) ds + C’/ e ATy (s)ds.  (A.29)
0 0

Thanks to this estimate, the exponential-in-time decay of w(t) can be obtained by means
of a Gronwall-type argument. We first consider small times 0 < 7 < 1: in this case (A.29)

becomes

+s

Tl
™|

_0-0 T _ _B=6 _9
w(T)SCnOHyOHQT 2 —|—C’/ (1—1—(7’—3) +(r—s) 7 s B)w(s)ds,
0

hence .
w(T) < Cpylly°lle7™ 7 forall 0 < 7 < 1. (A.30)

For 7 > 1, we set W(T) := sup;<,<, es*w(s). Choosing # € (0, ) such that % <1, we
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obtain from (A.29)
U(7) < Croll5°lo

1
—i—CnOHy llg sup e / [1—1—(8—7")_
0

1<s<rt

5_g

+(s—r) 7 P G P

+r

wlwe
|

+CU(7) sup / [1 +(s—7)F + (s r)*%} o (A—v/8)(s—) g
1

1<s<71

§Cno||y0|\9+0\11(r)/0 [1+t 54t P }e—( —v/8)t 4y

| ra -9 r(4)
A—v/8 " (A—v/8)1-B/B (A — 1//8)9/5> (™):

< Crollyllo + € (

2610

Recalling that A = 2%, by choosing ng sufficiently large we obtain (1) < Cy,||y°[l¢ and, in

turn, w(t) < Cplly°]lge” 5" for all 7 > 1. Combining this estimate with (A.30) we conclude

0 N
w(T) < Cno|y°llo(L+777 )e"s™  forall 7> 0.

By rescaling the time and going back to the original variables, and bearing in mind the
estimate (A.16),

_i-0, _y
1y () = gns1 (D5 < Crolly®llo (L +¢7 7 )e™s". (A.31)

Step 5. The last step of the proof consists in improving the exponent of the exponential in
(A.31), in order to get the optimal decay. In order to do this, we go back to Step 2 and we
observe that, thanks to (A.12) and (A.31), for all t > 1 and n > ng

[Yn () = M()] < |yno (t) —m(t)] + Z 195 (t) = g1 (8)] < Cng lly° loe™5".

Jj=no

Then inserting this estimate into (A.8)

ar(t v j
‘d(t)‘ < —4vI(t) + Cmoe™ 20 ) 2070022 my, (Any, p) (yn — )?
n=ng+1

< —4vI(t) + Cogolly” |G e 2",
so that Gronwall inequality yields |I(t)| < C|jy°[|2e”2¢. Hence we have improved the exponent

in the estimate (A.11), and repeating the steps 3 and 4 we obtain that (A.31) holds with %
in place of §. By iterating this argument, we eventually obtain the desired decay

= —v
19 (t) = ynr1()llg < Cully°llot™ 7 e, (A.32)

that is (4.13) This also shows the existence of the limit yoo(t) = lim, oo Yn(f) and the
estimate (4.14). ]

The following discrete Poincaré-type inequality is used in the first step of the proof of
Theorem 4.2.
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Lemma A.1. With the notation introduced in the proof of Theorem 4.2, there exists a con-
stant co > 0 (depending on M ) such that for every t >0

D2 P ma(Aarp)(yn —m)* o DT B g (A p) (D (5))

n=—oo n=—oo

Proof. The proof can be obtained by adapting the corresponding result in [4, Lemma A.2],
with minor changes. O
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