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ABSTRACT

Aims. We introduce the multidimensional optical depth algorithm (MODA) for the calculation of optical depths in approximate mul-
tidimensional radiative transport schemes, equally applicable to neutrinos and photons. Motivated by (but not limited to) neutrino
transport in three-dimensional simulations of core-collapse supernovae and neutron star mergers, our method makes no assumptions
about the geometry of the matter distribution, apart from expecting optically transparent boundaries.
Methods. Based on local information about opacities, the algorithm figures out an escape route that tends to minimize the optical
depth without assuming any predefined paths for radiation. Its adaptivity makes it suitable for a variety of astrophysical settings with
complicated geometry (e.g., core-collapse supernovae, compact binary mergers, tidal disruptions, star formation, etc.). We implement
the MODA algorithm into both a Eulerian hydrodynamics code with a fixed, uniform grid and into an SPH code where we use a tree
structure that is otherwise used for searching neighbors and calculating gravity.
Results. In a series of numerical experiments, we compare the MODA results with analytically known solutions. We also use snap-
shots from actual 3D simulations and compare the results of MODA with those obtained with other methods, such as the global and
local ray-by-ray method. It turns out that MODA achieves excellent accuracy at a moderate computational cost. In appendix we also
discuss implementation details and parallelization strategies.
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1. Introduction

Recent years have seen an enormous increase in the phys-
ical complexity of multidimensional, astrophysical simula-
tions. This is particularly true for three-dimensional radiation-
hydrodynamic simulations as exemplified by recent advances
in, say, star formation (e.g., Bate 2012) and core-collapse su-
pernovae (e.g., Janka 2012; Burrows 2013; Ott et al. 2013, and
references therein). In the context of radiative transfer problems,
the optical depth (τ) is central. When it is calculated from the ra-
diation production site up to the transparent edges of the system,
it counts the average number of interactions experienced by a ra-
diation particle before it can finally escape. The optical depth al-
lows the distinction between diffusive (τ� 1), semi-transparent
(τ ∼ 1), and transparent (τ � 1) regimes. The surface where
τ = 2/3 represents the last interaction surface and is often called
neutrinosphere in the case of neutrino radiation (or photosphere
in the case of photons).

Codes that solve the Boltzmann equations, through ei-
ther finite difference (e.g., the discrete ordinate method, see
Liebendörfer et al. 2004 in 1D; Ott et al. 2008 in 2D; Sumiyoshi
& Yamada 2012 in 3D) or spectral methods (e.g., the spher-
ical harmonic method, see Peres et al. 2014), Monte-Carlo
codes (e.g., Abdikamalov et al. 2012), and most approximative
schemes, such as flux-limited diffusion (e.g., Whitehouse et al.
2005; Swesty & Myra 2009) or M1 schemes (e.g., Shibata &
Taniguchi 2011; O’Connor & Ott 2013), do not need to com-
pute τ separately, since it is a physical quantity that results from
the algorithm itself. Other codes, such as that of Kuroda et al.
(2012), which also employs the M1 closure of the transport

equations using a variable Eddington factor, calculate τ assum-
ing that radiation moves along radial paths.

Some approximated radiation transport schemes, like the
isotropic diffusion source approximation (Liebendörfer et al.
2009), require the calculation of τ to determine the location of
the neutrinospheres. Also, light-bulb methods (e.g., Nordhaus
et al. 2010; Hanke et al. 2012; Couch 2013) and ray-tracing
methods (e.g., Kotake et al. 2003; Caballero et al. 2009; Surman
et al. 2014), in which the neutrino flux intensity in the free-
streaming region is computed from the inner-boundary lumi-
nosities or by assuming black body emission at the neutrino de-
coupling surface, often demand the computation of τ, at least
where τ <∼ 1.

Codes that treat radiation with leakage schemes (going back
to van Riper & Lattimer 1981; Bludman et al. 1982; Cooperstein
et al. 1986) need to calculate the optical depth explicitly ev-
erywhere inside the computational domain, since it is directly
related to the diffusion time scale. In grid-based codes, this
is traditionally achieved using either a global or a local ray-
by-ray (RbR) approach, while in meshless codes like SPH,
one often interpolates the mean free path to a grid, calculates
τ just like in the grid-based approach, and then interpolates it
back to the SPH particles. The global RbR method employs
a number of predefined radial rays, centered on one element
of the domain, to calculate the optical depth, and is most ef-
fective in geometries with spherical symmetry, such as core-
collapse supernovae (CCSNe; Peres et al. 2013; Ott et al. 2013)
and isolated (relativistic) stars (Galeazzi et al. 2013). The lo-
cal RbR method, on the other hand, integrates the optical depth
equation along predefined rays starting at each point of the grid.
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This approach is computationally more expensive, but it is able
to handle more complex geometries, and has been used for in-
stance in Newtonian neutron star mergers (Ruffert et al. 1996;
Rosswog & Liebendörfer 2003) and neutron star–black hole
mergers (Deaton et al. 2013). More recently, neutrino leakage
schemes have been adapted to the formalism of general relativity
(Sekiguchi 2010; Galeazzi et al. 2013) and used in simulations
of neutron star mergers (Sekiguchi et al. 2011).

Our work is motivated by questions related to core-collapse
supernovae and neutron star mergers, but our algorithm makes
no assumption about the geometry, radiation path, or the astro-
physical scenario, and could therefore be readily used in other
contexts (e.g., photons in stellar atmospheres).

This paper is organized as follows. Sect. 2 is devoted to a
brief review of the concept of optical depth and an outline of our
main hypotheses (Sect. 2.1), together with a general description
of our new algorithm (Sect. 2.2). In Sect. 3 we describe its imple-
mentation in grid-based (Sect. 3.1) and SPH schemes (Sect. 3.2).
Section 4.1 presents a number of tests with analytically known
solutions, while Sect. 4.2 compares the results of various numer-
ical methods applied to snapshots from grid-based (Sect. 4.2.1)
and SPH (Sect. 4.2.2) simulations. Performance and scaling
of the multidimensional optical depth algorithm (MODA) are
discussed in Sect. 4.3. Finally, our results are summarized in
Sect. 5, while technical details about the implementation and the
parallelization are presented in Appendix A, and in Appendix B.

2. Method

2.1. Definitions and assumptions

The optical depth is a quantitative measure of the interaction be-
tween radiation and matter between two points, related on in-
finitesimal scales to the mean free path λ. Along a path γ con-
necting two points A and B, the optical depth is defined as

τγ(A→ B) =
∫
γ:A→B

ds
λ(s)
, (1)

where λ(s) is the local mean free path, and ds is an infinitesimal
displacement along the chosen path, γ. Equation (1) already con-
tains the physical interpretation of τ: being related to the inverse
mean free path, it counts the average number of interactions be-
tween radiation and matter along the path γ.

Even though each radiation particle travels and interacts in
its own way and along its own path, for radiation transport prob-
lems involving astrophysical (i.e., macroscopic) objects, we are
interested in a statistical description of the radiation and in its
global behavior (i.e., from the site of production up to the point
where radiation can escape). We first notice that from a micro-
scopic point of view1, the production can occur either isotropi-
cally (i.e., with equal probabilities in any direction) or anisotrop-
ically (for example, in the case of scattering with a non-isotropic
phase function and an anisotropic radiation field). On the macro-
scopic scale, however, the properties of matter influence the be-
havior of radiation and a traveling particle can lose memory of
its emission process: if a radiation particle is emitted toward a
region of decreasing mean free path, it will likely interact again
with matter, changing its original propagation direction; on the
other hand, if it is emitted toward a direction of increasing mean
free path, it will probably move away freely from the produc-
tion site. This simple consideration suggests that, irrespective of

1 By macro-/microscopic we mean large/small in comparison to the
local mean free path λ.

the local properties of the emission process, macroscopically ra-
diation moves preferentially toward regions of larger mean free
path. Second, the path followed by radiation particles between
two points is not therefore necessarily straight: if the two points
are separated by a relatively opaque region, radiation emitted in
that direction will be likely scattered or absorbed (and, eventu-
ally, re-emitted in another direction). Thus, the global, statistical
behavior of the radiation moving between those two points will
be to bypass that opaque region along a non straight path, char-
acterized by larger mean free paths.

Ultimately, when radiation particles have reached locations
where the local mean free path is much larger than the size of
the considered domain, they will stream out of the system, prac-
tically without further interactions.

The global behavior of the radiation we are interested in
requires that, when computing the optical depth according to
Eq. (1), a) we can start the path from any point inside the do-
main; and b) the final point can be any point on the boundary
of the computational domain (or possibly in a region transparent
to radiation at that wavelength, where boundary conditions also
apply). Among all the possible paths connecting A to the bound-
ary, the statistical interpretation suggests to consider the paths
that tend to minimize the optical depth (i.e., the paths with the
least number of interactions) as the most likely ways for radia-
tion to escape.

Following these prescriptions, we define the optical depth of
a point x as

τ(x) = min
{γ|γ:x→xe}

∫
γ

ds
λ(s)
, (2)

where xe is one point from which radiation can escape freely.
The calculation of the optical depth, therefore, implies finding a
point xe and a path γ that together tend to minimize the value of τ
as given by Eq. (1). In what follows, we present our prescription
for finding γ and xe in MODA. Strictly speaking, the solution
provided by the algorithm is not necessarily the one that mini-
mizes Eq. (1). However, the search for a global minimum is the
guiding principle in constructing, step by step, the path γ toward
the boundary of the domain2.

The main algorithm, presented in the next section, is based
on the following assumptions:

(a) λ is the only quantity that determines τ, see Eq. (2); the in-
put for our algorithm is therefore a certain spatial distribu-
tion λ(x), which can be either analytically known or obtained
from a simulation;

(b) λ is a smooth function of position;
(c) the boundaries of the computational domain are completely

transparent regions, and on large scales λ increases with
the distance from the center of the computational domain.
However, there can be local variations, and local maxima and
minima.

Note that depending on the context one may wish to either com-
pute a spectral or an average (gray) mean free path. Moreover,
depending on the radiation–matter interaction processes in-
volved, λ may be either a scattering or an effective total mean
free path (see, for example, Raffelt 2001; Shapiro & Teukolsky
1983, Eq. (14.5.57)).

2 We note that a slight overestimation of the minimum optical depth
is not necessarily incorrect, even considering the assumptions of our
method. The (theoretical) minimum is the smallest value that τ could
possibly take (anything below that is nonphysical), but (slightly) larger
values are of course possible and perhaps to be expected in nature.
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Fig. 1. Flow chart of the MODA algorithm. This schematic representation of MODA reveals two distinct steps (the choice of successors and the
integration of τ), each of which involves a loop over all grid points (or cells). The algorithm is completely described by this chart, and all specific
decisions that are not included in the figure (e.g., how to pick the initial r and how much to successively increase it afterwards) are parametrizations
that depend on the underlying implementation (i.e., grid-based or tree-based).

2.2. Algorithm

From the form of Eq. (2) we see that the path that minimizes
the optical depth favors regions where the mean free path λ is
larger. If λ were a monotonic function of the radial position, ever
increasing toward the edges of the computational domain, the
algorithm would be trivial: each cell would “pick” its neighbor
with the largest λ as the direction of integration, which would
guarantee that the optimal solution is achieved.

In practice, however, λ is not always monotonic: non-trivial
astrophysical scenarios often contain discontinuities, shocks,
clumps of hot dense matter, all of which yield a highly
anisotropic and non-homogeneous profile of λ. In such situa-
tions, always choosing the local maximum of λ leads to getting
“trapped” in regions that are local maxima. On a larger scale,
however, the assumption that λ increases toward the edge of the
computational domain is still expected to hold. The MODA algo-
rithm makes use of this assumption by searching for sufficiently
larger mean free paths, first locally, and if such λ’s are not found
then at increasingly larger radii. By parameterizing what “suffi-
ciently larger” means, one is able to obtain a balance between
accuracy and speed.

For convenience, since Eq. (2) contains λ in the denominator,
we introduce the opacity κ

κ(x) = 1/λ(x), (3)

which is the quantity we use in the code instead of λ (since λ→
∞ while κ→ 0 toward the edges of the computational domain).

To illustrate the algorithm, let us assume we are interested in
the optical depth at a point x. We first define a sphere of radius r1
centered around x, and on its surface S(x, r1) we search for a
point z that satisfies

κ(z) < fdecκ(x), (4)

where fdec � 1 is a parameter3. If such a point is found then the
vector êu = u/|u|, with u ≡ z−x, gives the direction of integration.
Otherwise, we keep extending our search to spheres of increas-
ing radii ri, with i = 2, 3, ... until a point z that satisfies Eq. (4)
is found. The choice of transparent boundary conditions ensures
that this always happens. Once the direction of integration u is
found, we simply select – from all the direct neighbors of x –
the cell x′ that is in the direction of u, which we call the “suc-
cessor” of x. Once x′ is known, the search for its own successor

3 Typical values of fdec that we have tested (see Sect. 4 for more de-
tails) lie in the interval 0.1−0.8. Larger values, closer to unity, can be
less effective in avoiding local extrema, while smaller values require
more computational effort, and are prone to push the decreasing length
scale search too early toward the edge of the computational domain,
introducing boundary conditions effects. In any case, we recommend a
careful examination of κ(x), and its typical spatial and temporal varia-
tions, in order to choose an adequate value for fdec.
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can be performed and so on until a point xe on the boundary
is reached. The sequence of n intermediate points connecting x
and xe, {x(0) ≡ x, x(1) ≡ x′(0), . . . , x(i) ≡ x′(i−1), . . . , x(n+1) ≡ xe},
provides the needed path, γ. Along this path, the optical depth
τ(x) is calculated as:

τ(x) =
∑

i=1,n+1

(∫
γ(i):x(i−1)→x(i)

κ ds

)
. (5)

3. Implementation

In the following, we describe a possible implementation of the
MODA algorithm on a static grid and in a tree structure. The dis-
cussion is accompanied by a flow chart that summarizes all the
steps of the algorithm (Fig. 1). In order to keep this description
as general as possible, we collect the more technical details in
Appendix A.

In the previous section, we presented the basic concepts fo-
cusing on a single starting point. A straightforward implementa-
tion would be to successively apply that procedure to each point
inside the computational domain. However, this approach is not
computationally efficient, since it does not employ a relevant as-
pect of the problem: given two points, there is a non negligible
probability that, depending on the spatial distribution of κ, their
two paths toward the edge of the domain merge at a certain point.
Given the unambiguous character of the prescription to find the
successor, the optical depth of the common part will be the same,
and it will be equal to the optical depth of the intersection point.
In order to take advantage of this, we divide the implementa-
tion of the algorithm into two distinct steps (apart from prelim-
inary operations, such as setting boundary conditions), each ap-
plied to the whole domain: 1) finding the relevant distances for
the decrease of κ, the integration directions, and the successors;
2) performing the integration. Keeping these steps separate en-
sures that common paths are not computed multiple times.

3.1. Implementation into a grid code (“grid MODA”)

As an example, we implement the algorithm into the Eulerian,
uniform mesh MHD code FISH (Käppeli et al. 2011). The imple-
mentation into different types of grid codes (non-uniform and/or
non-Cartesian) is straightforward and requires only a moderate
amount of changes.

3.1.1. Setting boundary conditions

Setting boundary conditions implies, first of all, providing a pre-
defined value for τ at the edges of the grid:

τ(xe) = τboundary. (6)

Safe values for the boundary condition are τboundary � h/λboundary,
where h is the local resolution length (cell size) and λboundary is
the typical value of the mean free path at the boundary. Since
the method requires exploration of neighboring areas, special at-
tention must be given to cells located close to the boundary, for
which the spherical surface S may extend beyond the edges of
the domain. There are several possible solutions to this problem;
one would be to modify Eq. (4) to search for a direction z that
satisfies the opposite condition,

κ(z) > f −1
decκ(x), (7)

and then to choose the direction eu by setting u = −(z − x);
Another solution would be to set a boundary layer thick enough
to prevent one from accessing cells that do not exist.

3.1.2. Finding distances, directions, and successors

We begin searching for points that satisfy Eq. (4) at a distance
r1 ∼ h, i.e., comparable to the local resolution length h. Instead
of calculating the intersection of the grid with the spherical sur-
face S(x, ri) of center x and radius ri (which would become
increasingly expensive for high i’s), we sample the surface in
a predefined set of m “equidistant” points, S m(x, ri) = {z j =

x + riy j} j=1,m, where
∣∣∣y j

∣∣∣ 
 1. Once a point zmin that satisfies
Eq. (4) is found inside S m(x, ri), the radius ri becomes the length
scale over which κ decreases down to the chosen limit fdecκ(x).

One could already select umin = zmin − x as the direction
of integration, but this was found to sometimes lead to abrupt
discontinuities in the optical depth. To avoid this effect, it is pos-
sible to devise a smoothed direction of integration uavg, by us-
ing all sampling points inside S m(x, ri) (or even a subset) and
weighting each respective unit direction vector, y j, with a suit-
able monotonically decreasing function of κ, w(κ):

uavg(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
∑

S (x,ri)

y j w(κ(y j))

⎞⎟⎟⎟⎟⎟⎟⎠ /
∣∣∣∣∣∣∣∣
∑

S (x,ri)

y j w(κ(y j))

∣∣∣∣∣∣∣∣ . (8)

This average favors the directions where κ is minimum on the
spherical surface, but it also takes into account the behavior of κ
at the scale of ri, smoothing the evolution of the direction in
case of sharp, local variations. In order to avoid compensation
effects due to the averaging itself (which would for instance be
the case along the axis of symmetry in highly symmetrical con-
figurations, where the average may cancel out the contributions
from symmetrical points with the same κdec(x)), we calculate the
cosine of the angle between uavg and umin. If the two directions
are too different (i.e., if the cosine is below a threshold, for exam-
ple cos θlim = 0.9) we reject uavg(x), calculated with Eq. (8), and
use umin(x) instead. The definition of cos θlim sets the maximum
allowed discrepancy between the two directions.

Once the direction of integration u (given by either uavg
or umin) has been found, we select the closest cell to x in the
direction given by u, from an appropriate set of neighbors, and
denote it by x′. It is noteworthy that, although the search for
the integration direction udec(x) is made by “looking ahead” to
whatever distance is necessary in order to find an acceptable κ,
the integration itself is done in small increments, comparable to
the local resolution. The choice of the appropriate set of neigh-
bors, among which x′ has to be searched, has to balance two op-
posing tendencies: including cells more distant from x increases
the angular resolution in searching for x′, but at the same time
decreases the accuracy in the path discretization.

In a grid based code determining x′ is relatively simple and
efficient, since grid cells have fixed indices based on their ge-
ometrical position. We note that all operations involving a cell
refer in fact to the geometrical center of the cell. This intro-
duces discretization errors, since most of the times the condition
z − x = u cannot be fulfilled exactly (the only exception being
paths which traverse entire rows, columns of cells, or which go
exactly along diagonals). The impact of this discretization on the
resulting path will be shown and explained later on, in Fig. A.1.

Another caveat is that closed circular paths may occur, even
though “looking ahead” for the direction decreases the chances
of this to happen. Nevertheless, whenever a successor is chosen
for a given cell one must check whether it leads to a loop in
Eq. (5). If that is the case the next best cell must be picked as a
successor. In the tests we have performed, closed loops occurred
rarely and usually in presence of very symmetric local extrema
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of κ. Thus the error introduced by not choosing exactly the direc-
tion that tends to minimize the optical depth is usually small and
infrequent. The inspection of the integration paths, necessary to
discover the presence of loops, has a minor effect on the per-
formance of the algorithm, especially compared with the more
demanding searches of the distances and of the directions.

3.1.3. Performing the integration

Once the direction of integration has been found throughout the
entire computational domain, each cell falls into one of these
two categories: either it is a boundary point, in which case τ is
already known there, or it is a point inside the computational
domain, in which case one knows in what direction radiation
moves away from it. The actual integration takes the form of a
loop through all the cells: those for which τ is known are sim-
ply skipped, while for the others the integration path is recon-
structed by following the list of successors, until arriving to a
cell with known τ. The integral in Eq. (5) then becomes a sum
of partial Δτ’s,

τ(x) ≈ τ(x(l)) +
l∑

i=1

κ(i,i−1) |x(i−1) − x(i)|, (9)

where κ(i,i−1) is an average between κ(x(i)) and κ(x(i−1)), x(0) = x,
and τ(x(l)) is the first already-computed value of the optical depth
along the path γ (or, in case γ does not overlap with an already-
computed path, x(l) = xe).

3.2. Implementation using a tree structure (“tree MODA”)

Our goal is to implement the MODA algorithm into an SPH code
(for recent reviews of this method see, e.g., Monaghan 2005 and
Rosswog 2009). Most SPH codes make use of hierarchical struc-
tures (trees) to search for particle neighbors and calculate gravi-
tational forces. In what follows, we will describe the implemen-
tation of MODA into a recently developed recursive coordinate
bisection (RCB) tree (Gafton & Rosswog 2011). The implemen-
tation strategy, however, is not restricted to this type of tree and
can straightforwardly be adapted to other tree types such as oc-
tree (Barnes & Hut 1986) or other binary trees (Benz et al. 1990).

The RCB tree is not built down to the last particle, but down
to small groups of adjacent particles that are always aggregated
into what we call “lowest-level cells” (or ll-cells), also found
in the “tree literature” as “leaves” (Oxley & Woolfson 2003;
Springel 2005; Gaburov et al. 2010; Hubber et al. 2011; Clark
et al. 2012) or as “buckets” (Dikaiakos & Stadel 1996; Stadel
2001; Wadsley et al. 2004). Since the average number of par-
ticles per ll-cell (typically ∼12) is much smaller than the aver-
age neighbor number (∼100), the size of any ll-cell will always
be smaller than the smoothing length of its particles. Since the
smoothing length is the typical length scale over which physi-
cal quantities are resolved in SPH, one does not expect the mean
free path to exhibit large variations within any one ll-cell. It is
therefore unnecessary to calculate the optical depth τ for each
individual particle, and one expects the same results by com-
puting it per ll-cell. This idea has also been followed by Oxley
& Woolfson (2003), whose radiative transfer scheme for SPH
uses tree leaves as the radiating and absorbing elements, and by
Stamatellos & Whitworth (2005), who use cells whose linear
size is comparable to the local smoothing length.

In principle, the algorithm for a tree follows the steps
presented in Sect. 3.1: successively larger radii are used for

Table 1. Summary of all the configurations we have analyzed and the
solutions available for each of them.

Input→ Analytic κ Astrophysical κ
↓Method 1 2 3 A B C D
analytic τ x x
grid MODA x x x x x
tree MODA x x x x x
local RbR x x x x
global RbR x x x x

Notes. See the text for more details. In tests 1 and 2 the analytic and the
global RbR solutions coincide.

searching for a sufficiently larger mean free path, and once the
correct direction is found, the successor of the current cell is
chosen as the closest cell in the respective direction. In our tree-
adapted version of the MODA algorithm, “grid cell” translates
into “ll-cell”. Since cells located at a certain radius cannot be
identified by simply operating on cell indices, as in the case of
grid-based codes, we rely on the tree walk infrastructure of the
RCB tree (Gafton & Rosswog 2011, Sect. 2.2) to return a list
of ll-cells located within a certain spherical shell of radius r and
parametrized width dr. Furthermore, once the direction of in-
tegration is known, one cannot use a predetermined list of di-
rections, described by known angles, to quickly find the clos-
est cell in the necessary direction. One must instead compute
the angle between the directions to the surrounding cells (which
can in principle be pre-computed upon building the tree) and
the desired direction of integration, and then pick the best (i.e.,
the largest cosine). On the other hand, once the successors are
known for all ll-cells, the integration step is virtually identical to
that performed by grid MODA.

4. Tests, applications, and performance

In this section, we apply both versions of MODA to two types
of three dimensional configurations: first, to cases with analyt-
ically known inputs and, when possible, solutions (cases 1–3),
and, second, to practical astrophysical applications (cases A–D).
The former (Sect. 4.1) are validation tests for some simple cases
where λ and κ are analytic functions of the Cartesian coordinates,
while the latter (Sect. 4.2) are based on snapshots from real as-
trophysical simulations. The solutions compared in each case
were obtained with some of the following methods: (a) analytic
solution, if available; (b) grid MODA; (c) tree MODA; (d) local
RbR method; (e) global RbR method. In Table 1 we summarize
the cases we have explored and the available solutions.

In the local RbR method, we integrate κ along a set of pre-
defined straight paths (rays) from each point of the grid, and
choose the optical depth at that point to be the minimum amongst
these integrals. To obtain a local directional resolution compa-
rable with the one provided by MODA, we choose 98 direc-
tions, passing by the centers of the neighboring cells satisfying
Eq. (A.1). In the global RbR method, we interpolate κ from the
Cartesian mesh to a spherical one, calculate the local τ by in-
tegrating κ along the radial path, and interpolate τ back on the
Cartesian mesh. The spherical mesh is characterized by 30 polar
and 60 azimuth angles.

4.1. Analytic tests

The simplest possible tests for MODA involve analytic, spher-
ically symmetric distributions κ(r), see Eq. (3). For such tests,
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Fig. 2. Analytic κ and τ for tests 1 and 2. This plot shows the spheri-
cally symmetric initial conditions κ(r) and optimal results τ(r) for the
first two analytic tests: a) monotonic κ(r) as given by Eq. (10); b) non-
monotonic κ(r) as given by Eq. (12); c) τ(r) as given by Eq. (11); d) τ(r)
as given by Eq. (13).

the direction of integration is known (it can only be the out-
ward radial direction, by symmetry), and the optical depth τ can
therefore be computed analytically. These are also the most in-
sightful tests since the error can be computed for each individual
cell or particle, and the reason for each deviation can usually
be pin-pointed and understood, allowing us to acknowledge the
inherent limitations of MODA. Tests 1 and 2 below are based
on two such configurations, while test 3 involves a more com-
plex (non-spherically symmetric, though still analytic) spatial
configuration.

For grid MODA, the computational domain is an equally-
spaced Cartesian grid of 6003 cells, with each cell having unitary
width.

For tree MODA, we represent the κ profile by ∼105 (in tests 1
and 2) or 2×106 (in test 3) particles. As a conservative precaution
we use ∼1 particle per ll-cell. Where this is not possible due to
the tessellation algorithm, we prescribe the λ of an ll-cell to be
the average of the λ’s of all its particles.

Test 1: monotonic, spherically symmetric.
For the first and simplest test we define a monotonically de-

creasing spherically symmetric inverse mean free path

κ(r) = κ0 exp

(
− r

d0

)
, (10)

where r is the radial distance from the center of the computa-
tional domain, which is (0, 0, 0) in our Cartesian coordinate sys-
tem. For our tests we use κ0 = 5, d0 = 30, which leads to the
distribution shown in Fig. 2a, with the solution being the ana-
lytic function

τ(r) =

⎧⎪⎪⎨⎪⎪⎩
κ0 d0

(
e−r/d0 − e−rout/d0

)
+ τboundary , r < rout

τboundary , r ≥ rout
(11)

as shown in Fig. 2c. The boundary conditions are defined by the
cutoff radius rout = 249 and the optical depth of the transparent
regime, τ(r > rout) = 10−2. We use a parameter fdec = 0.8, see
Eq. (4).

In Fig. 3 we present the resulting optical depth calculated
with different methods. The fact that contours of τ are concen-
tric circles shows that all algorithms accurately reproduce the
original spherical symmetry of the input data. While spherical
symmetry is directly encoded in the analytic solution and in the
global RbR method, Fig. 3a, it is less obvious for MODA, where
no symmetry and no predefined path is assumed.

The larger error of tree MODA (especially near the bound-
ary rout, where τ is very low) is both due to the lower resolution
compared to the grid code (6003 vs. 105) and due to the inter-
polation on the regular grid used for plotting. In astrophysical
simulations, the former issue can be considerably attenuated by
sampling the fluid well enough, i.e., by making sure that all par-
ticles have a sufficiently large number of neighbors and that the
smoothing lengths are well below the relevant physical scales.

Test 2: non-monotonic, spherically symmetric.
The second test is also spherically symmetric, but has a non-

monotonic feature (a local maximum) halfway through the com-
putational domain, which simulates non-monotonic profiles that
often appear in real simulations, as discussed in Sect. 2.2 and as
will be clearly seen in the astrophysical tests (Sect. 4.2). This dis-
tribution is defined as the superposition of a Gaussian centered
in the origin and an off-centered Gaussian,

κ(r) = κ0 exp

(
− r2

d0

)
+ κ1 exp

(
− (r − r1)2

d1

)
. (12)

For our tests we use the parameters κ0 = 5, κ1=2, d0 = 8000,
d1 = 1000, r1 = 150 in order to get the distribution shown in
Fig. 2b. The integration of Eq. (12) can be performed analyti-
cally, with the result being

τ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
π

2

{√
d0κ0

[
−erf

(
r√
d0

)
+ erf

(
rout√

d0

)]

+
√

d1κ1

[
−erf

(
r−r1√

d1

)
+ erf

(
rout−r1√

d1

)]}
+ τboundary, r < rout

τboundary, r ≥ rout

(13)

where erf(x) is the Gauss error function. This leads to the pro-
file τ(r) shown in Fig. 2d. The same boundary conditions apply
as before, i.e., rout = 249, τ(r > rout) = 10−2, and fdec = 0.8.

The results are presented in Fig. 4 and are consistent with
those in the previous section, with all three methods yielding
excellent results, even though tree MODA is slightly worse near
the boundaries, where the SPH resolution is poorest.

Test 3: asymmetric.
For the third model we define a superposition of two off-

centered, elliptical Gaussian distributions

κ(x1, x2, x3) =
∑

n= 1,2

κn exp

⎡⎢⎢⎢⎢⎢⎣−
(

x1 − x̃1,n

s1,n

)2

−
(

x2 − x̃2,n

s2,n

)2

−
(

x3 − x̃3,n

s3,n

)2⎤⎥⎥⎥⎥⎥⎦ , (14)

with κ1 = 120, κ2 = 80, s1,1 = 35, s2,1 = 30, s3,1 = 25, s1,2 = 45,
s2,2 = 15, s3,2 = 30, x̃1,1 = x̃2,1 = x̃3,1 = 40, and x̃1,2 = x̃2,2 =
x̃3,2 = −40. The same boundary conditions apply, i.e., rout = 249
and τ(r > rout) = 10−2. This time we use fdec = 0.5, since the
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Fig. 3. Results of test 1. Logarithm of optical depth τ for the
first (monotonic, spherically symmetric) analytic test, as ob-
tained with four methods: a) analytic solution (see Eq. (11) and
Fig. 2c); b) tree MODA; c) grid MODA; d) local RbR. Contour
lines correspond to log τ = −1, 0, 1. Qualitatively, the plots are
in agreement. The small deviations from spherical symmetry ap-
pearing at the edges in the tree MODA plot are largely due to
interpolation to the grid used for plotting.

Fig. 4. Results of test 2. Logarithm of optical depth τ for
the second (non-monotonic, spherically symmetric) analytic
test, as obtained with four methods: a) analytic solution (see
Eq. (13) and Fig. 2d); b) tree MODA; c) grid MODA; d) local
RbR. Contour lines correspond to log τ = −1, 0, 1.

more complicated geometry requires more accuracy and larger
decreases in the distance determination.

Two sets of results are shown, corresponding to cross-
sections of the z = 0 plane (Fig. 5) and of the x = 0 plane
(Fig. 6). The integration of Eq. (14) is not straightforward to
perform analytically, since the direction of integration is not ra-
dial, but highly dependent on the position. For this reason, we
use the results obtained with the local RbR method as reference,
Figs. 5d and 6d. In contrast to the previous cases, the global
RbR method (Figs. 5a and 6a), shows inaccuracies and artifacts
due to the lack of spherical symmetry of κ. On the other hand,
the other tests are qualitatively consistent, and show remarkable
agreement and similar resolution.

Two important considerations, common to all the tests we
have performed, have to be pointed out. First, the optical depth

is a physical quantity that can usually span a wide range of val-
ues (five orders of magnitude in this example); therefore, large
relative errors in a limited number of zones (particularly near
the edges, where τ is essentially zero) do not imply a noticeable
effect on the overall calculation of τ. Second, MODA provides
a comparable result at a considerably lower computational cost
than the local RbR method (see Sect. 4.3).

4.2. Astrophysical applications

We now turn to real astrophysical scenarios, and we choose
snapshots of multidimensional simulations with highly asym-
metrical and non-isotropic configurations, that span orders of
magnitude in density.
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Fig. 5. Results of test 3 (z = 0 cross-section). Logarithm of
optical depth τ for the third (non-spherically symmetric) ana-
lytic test, as obtained with four methods: a) global RbR; b) tree
MODA; c) grid MODA; d) local RbR. The plots represent
a cut through the z = 0 plane. Contour lines correspond to
log τ = −1, 0, 1.

Fig. 6. Results of test 3 (x = 0 cross-section). Logarithm of
optical depth τ for the third (non-monotonic, spherically sym-
metric) analytic test, as obtained with four methods: a) global
RbR; b) tree MODA; c) grid MODA; d) local RbR. The plots
represent a cut through the x = 0 plane. Contour lines corre-
spond to log τ = −1, 0, 1.

In order to apply our algorithm, we consider thermodynam-
ical conditions extracted from 3D simulations and, based on
them, we calculate the physical λ for electron neutrinos with a
specific energy (chosen to be 54 MeV). Once the λ and hence
the κ distribution is obtained, all subsequent steps are identical
to those from the analytic tests.

4.2.1. Grid MODA

Case A: core-collapse supernova

In the first application, we take a 2D Cartesian slice of data
(density, temperature, and electron fraction), from a 3D core
collapse supernova simulation performed with the ELEPHANT

code (Whitehouse & Liebendörfer 2008), with a spatial resolu-
tion of 2 km. Considering that the system is, to a first approx-
imation, spherically symmetric, we calculate the electron neu-
trino optical depth using grid MODA and the global RbR method
(with the polar angle discretized by 64 angular bins). Both re-
sults are shown in Fig. 7. We find similar results with both meth-
ods: inside a radius of about 60 km (which includes the proto-
neutron star and the inner part of the shocked material), the
optical depth contours are spherically symmetric, as expected.
Above that radius, matter is convective and multidimensional
effects come into play. The contour lines start to show multidi-
mensional features, which are related to non-homogeneous fea-
tures in density, temperature, and electron fraction. The main
difference between both methods is the spatial resolution of the
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Fig. 7. Results of case A. Logarithm of opti-
cal depth τ for the astrophysical case A, as
obtained with two methods: a) grid MODA;
b) global RbR. Contour lines correspond to
log τ = −1, 0, 1.

Fig. 8. Results of case B. Logarithm of optical depth τ for the astrophysical case B, as obtained with two methods: a) and c) grid MODA;
b) and d) local RbR. Top (bottom) panels refer to y = 0 (z = 0) cross-sections. Contour lines correspond to log τ = −1, 0, 1.

results. While the RbR approach decreases its resolution moving
outwards, the new algorithm maintains a constant resolution. As
a result, the outer optical depth contours are smoother than those
found by the global RbR method.

Case B: neutron star merger remnant
As a second application case we take the matter distribution

(density, temperature, and electron fraction) from the remnant
of a double neutron star merger simulation (Price & Rosswog
2006), performed with the SPH code MAGMA (Rosswog &
Price 2007), and map the particles onto a 3D Cartesian, equidis-
tant grid with spatial resolution of 2 km. The calculation of
the optical depth is performed with grid MODA and the results
are shown in Fig. 8a and c, along with the results of a local
RbR method in Fig. 8b and d. The two plots are in good agree-
ment, though fine-structure differences do appear. We suspect

that these differences are mainly due to the fact that our method
is based on a purely local exploration of the suitable radiation
path, and does not invoke any special global symmetry or prede-
fined direction. In this sense, our 3D method provides an optical
depth calculation that is more general and automatically adapts
to the geometry of the matter distribution. The high resolution,
three dimensional local RbR method is, also in this case, pro-
hibitively expensive from a computational point of view, and the
resolution shown in this test is never achieved with this method
in actual hydrodynamic calculations.

4.2.2. Tree MODA

The input for the tree MODA tests was produced with a ver-
sion of the MAGMA code (Rosswog & Price 2007). From the
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Fig. 9. Results of case C. a) Logarithm of density ρ and
b) logarithm of optical depth τ for the astrophysical ap-
plication C. The density profile is taken directly from
the simulation output, while τ is computed with tree
MODA. The SPH resolution is N ∼ 6 × 105 particles.
The plot shows a z = 0 cross section. Contour lines
correspond to log τ = −2.4,−0.3, 1.

Fig. 10. Results of case D. a) Logarithm of density ρ and b) logarithm of optical depth τ for the astrophysical application D. The density profile is
taken directly from the simulation output, while τ is computed with tree MODA. The SPH resolution is N ∼ 8 × 106 particles. The plot shows a
z = 0 cross-section, and only the inner 200 km of the disc (>∼1000 km) are shown. Contour lines correspond to log τ = 1, 2, 3.

densities and electron fractions of the SPH particles we com-
puted the mean free paths for E = 54 MeV neutrinos.

We present the results of tree MODA alone for two reasons.
First, we do not have another particle-based code that computes
optical depths for SPH simulations. Second, due to the intrinsic
resolution adaptivity that characterizes SPH codes, it would not
be straightforward to compare those results with the ones ob-
tained by grid MODA, after having remapped the SPH matter
distribution on a uniform grid.

Case C: white dwarf collision
The first astrophysical application of tree MODA uses a

snapshot from an off-center collision between a 0.6 M� and
a 0.9 M� white dwarf (Rosswog et al. 2009) from a simulation
with ∼6×105 SPH particles. The density profile and the resulting
optical depth are shown in Fig. 9 for a z = 0 cross section. At this
stage, the stars had a first close encounter and are now moving
toward their apocenter separation before they fall back toward
each other again. Some debris shed in the collision is aligned in

the form of a temporary “matter bridge” between the two stars.
Note that the secondary (near y = 6 × 109 cm) is heavily spun
up by tidal torques. Since the E = 54 MeV neutrino mean free
path is comparable to the size of the white dwarfs, one could ex-
pect the maximum optical depth (at the center of the star) to be
around 1. The results of our calculations are in agreement with
that: the contour lines of τ for the heavier star are concentric
circles and have a maximum value of ∼1; the lighter star has a
much smaller optical depth, and the tidal bridge is essentially
transparent and comparable in τ to the debris halos surrounding
the two stars.

Case D: neutron star collision
The second application for tree MODA is a snapshot from a

high resolution (∼8 × 106 particles) simulation of a collision of
two neutron stars of masses 1.4 M� and 1.3 M� (Rosswog et al.
2013). The density profile and the resulting optical depth are
shown in Fig. 10 for a z = 0 cross section. The snapshot provides
a late-stage picture of the encounter, when, after several close
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Fig. 11. Performance comparison between
MODA and the RbR algorithm. Left: computa-
tional time as a function of the effective number
of cells N, obtained with both the serial codes
and their OpenMP versions using 8 threads.
Right: computational efficiency as a function of
the number of OpenMP threads. For these par-
allelization tests, the dimension of the compu-
tational domain is fixed at N = 4003.

passages a pulsing and rapidly rotating central remnant, sur-
rounded by shocked debris from several mass shedding episodes
has formed. The entire structure has a radius of >∼500 km, but
we show just the inner 100 km, where most of the mass is con-
centrated, and the debris contains a number of fine structures
from the mass shedding and subsequent shocks. This is a highly
non-trivial, non-isotropic, and asymmetric problem. Still, the re-
sulting optical depth profile found by MODA accurately portrays
the complex debris structure.

4.3. Performance

In this section, we compare the performance of grid MODA
and of the local RbR method, the two grid-based methods that
are able to handle complex matter distributions without specific
symmetries. We focus on three-dimensional simulations, where
the computational effort is higher and, consequently, the im-
pact of the optical depth calculation cost is larger. In order to
compare the scalings with the grid size we employ a computa-
tional domain of size N = N1/3 × N1/3 × N1/3, and compare
both the serial and the OpenMP versions with Nthreads = 8. As
test case we use analytic test 1 (see Sect. 4.1). The values of
N1/3 range from 200 to 600 for all cases and the results are pre-
sented in Fig. 11a. In addition of being a more general method
that automatically adapts to the geometry of the matter distribu-
tion, MODA is usually more than one order of magnitude faster
than the local RbR method (in the serial as well as the paral-
lelized versions), and exhibits better scaling with increasing N
(tMODA ∼ N1.75 while tRbR ∼ N2.31).

In the case of MODA, we notice that most of the computa-
tional time (∼70%) is spent to find, for each point of the domain,
the relevant distance where κ decreases enough to satisfy Eq. (4).

Most loops appearing in MODA have been parallelized from
the beginning using OpenMP constructs. Its scaling with the
number of OpenMP threads, shown in Fig. 11b by the so-called
efficiency η = T1/

(
pTp

)
(where T1 is the serial computational

time and Tp is the computational time using p threads) is much
better than the efficiency of a RbR algorithm.

5. Conclusions

In this paper we presented a new, efficient algorithm for the cal-
culation of optical depths τ from any given profile of the mean
free path λ. There are no restrictions related to the symmetry
or the configuration of the computational domain. All that is
needed is that λ be globally increasing toward the edges of the
domain, which is normally a fair assumption. The algorithm was

implemented both in a grid-based and a tree-based code, and
proved to be suitable for both Eulerian and Lagrangian methods.
The three-dimensional tests we presented, starting with analytic,
spherically-symmetric configurations, and ending with highly
anisotropic and heavily shocked configurations, proved that the
algorithm provides excellent accuracy in multidimensional cal-
culations, while being less computationally expensive than more
traditional RbR methods.
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Appendix A: Technical implementation details

In this appendix, we provide more technical details about our
actual implementation of MODA in a static Cartesian grid
(Sect. A.1) and in a tree-code (Sect. A.2).

A.1. Grid code

Setting boundary conditions. Concerning the setting of the
boundary conditions, in our grid implementation of MODA the
definition of a thick boundary layer has been chosen, since it is
easier to implement and faster to execute. However it has the
small disadvantage of reducing the size of the useful compu-
tational domain: in the boundary layer, the optical depth takes
by definition a constant, predefined value τboundary, according to
Eq. (6). This may not be a problem since the choice of a constant
is based on the (generally valid) assumption that the area near
the edge of the computational domain is completely transparent
to radiation (i.e., λboundary � h). The width of the layer is as-
sumed to be 8% of the linear size of the computational box. The
standard value used in MODA for the boundary optical depth is
τboundary = 10−2.

Finding the distances, the directions, and the successors. The
investigation of the inverse mean free path on a sphere of ra-
dius ri and center x is the first step in the search for x′, the local
successor point of x. As described in Sect. 3.1.2, this is done by
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sampling the spherical surface with a set of m equidistant points,
S m(x, ri) = {x + riy j} j=1,m, where |yi| 
 1. While in two dimen-
sions these would simply be m points on a circle separated by
angles of 2π/m radians; in three dimensions, we choose {y j} j=1,m
as the solutions of the Thomson problem (Thomson 1904; Wales
& Ulker 2006) on a unitary sphere. In all our tests, we adopted
m = 64.

The function w(κ), used in Eq. (8) to devise a smoothed di-
rection of integration is w(κ) = 1/κ. The maximum allowed an-
gular distance between umin and uavg is set by cos θlim = 0.9.
After the determination of the ideal integration direction u, the
successor point has to be found out of a suitable set of neighbors.
For this set, we consider all cells z(i′, j′, k′) around x(i, j, k) that
satisfy

|i − i′| ≤ 2, | j − j′| ≤ 2, |k − k′| ≤ 2 (A.1)

(here i, j, and k, eventually primed, are integers representing the
Cartesian coordinate of the cell within the grid). In the cases
where two cells have their centers aligned with x, we choose the
one closest to x. In total, the number of neighbors is 98.

Since angular operations are easier in spherical coordinates,
one begins by extracting the direction (θ, ϕ) of the vector u. Then
one loops through the neighboring cells. In this loop, one dis-
cards all the cells that are too “far” from the direction ϕ, which is
not expensive to check: since one already knows the relative po-
sition of the surrounding cells, one can easily store and retrieve
the pre-computed spherical components of z − x. Once the list
of cells is culled, the spherical distance between all normalized
direction vectors (z− x)/|z− x| and the normalized direction û is
computed, and the closest cell in the direction of u is chosen.

Performing the integration. In the calculation of Eq. (9),
λ(i,i−1) is computed as the arithmetic average between κ(x(i))
and κ(x(i−1)). For a uniform grid, this corresponds to the applica-
tion of the trapezoidal rule for the calculation of Δτ.

A.2. SPH code

We illustrate the steps of the tree MODA algorithm in Fig. A.1,
which uses a very basic, two-dimensional, spherically symmet-
ric computational domain with very low resolution, and presents
a typical path found by tree MODA. All steps discussed below
can be traced on the figure.

Setting the boundary condition. The boundary condition for
the optical depth, described by Eq. (6), is assigned in a similar
way as for the grid-based code, although tree MODA does not
need such a broad boundary (since only cells that are literally
touching the edges of the computational domain, i.e., the gray
cells in Fig. A.1, need to be assigned the boundary conditions).

Empty ll-cells. Due to the tessellation provided by the tree
code, empty cells may appear anywhere in the computational do-
main. For spatially-balanced trees, which create cells according
to a prescription independent of the particle distribution, it is ob-
vious why empty cells appear (see Fig. 1 in Barnes & Hut 1986).
In density-balanced trees, on the other hand, they appear in low-
density regions and are compensated for by “over-populated” ll-
cells in dense regions, since the RCB tree enforces by construc-
tion an “average” number of particles per ll-cell. In general, the
lower the “average” number of particles per ll-cell and the less
homogeneous the system is, the higher the chances are of empty
ll-cells being produced. As the RCB tree is built proactively, all
empty cells are effectively compressed into zero volume, and
then ignored in all tree walks and during the integration of τ,
because they do not contain useful information (i.e., particles).

Fig. A.1. Example of a path found by tree MODA. This simple test for
a two-dimensional Sobol distribution (see Press et al. 1992, Sect. 7.7)
with 104 particles (1024 ll-cells) and a spherically symmetric, mono-
tonic mean free path profile (see Sect. 4.1) reveals most of the inner
workings and the problems of the algorithm. See text in Appendix A.2
for details.

Finding the correct direction of integration. A tree walk –
similar to the neighbor search tree walk – performed for each ll-
cell A (in the figure, a fiducial cell shown in green) returns a list
of ll-cells that are closer to A than a certain value dx (the dark
blue cells). By setting dx to an infinitesimally small value we
obtain the simplest possible test, in which the cells must touch
(dx should not be exactly zero due to the imprecise nature of
floating point arithmetic, see, e.g., Knuth 1973, Sect. 4.2 of the
second volume; or Goldberg 1991). In practice we allow dx to be
a little larger, a fraction of the typical size of the cell, since the
tessellation may, in rare cases, produce cells which are extremely
close to each other but do not quite touch.

Once the list of neighboring cells is obtained, one loops
through them and checks whether Eq. (4) holds for any of them.
If it does, the one with the largest mean free path is picked as
successor. Otherwise, the search radius is extended and another
tree walk is performed, which returns a list of ll-cells (in the
figure, the light blue cells) whose centers of mass fall within a
spherical shell of radius r2 and width dr (marked by the two
black circles). The operation continues until a suitable cell is
found. Since all boundary cells count as “suitable”, this will al-
ways happen eventually.

We note that the search radius and its increments are not
fixed throughout the computational domain, like in grid MODA,
but are functions of the local smoothing length. This is neces-
sary because of the adaptive resolution of SPH: in dense regions
smoothing lengths are small and we only need to slightly extend
the search radius in order to sample more ll-cells – and implic-
itly particles, while in less dense regions smoothing lengths are
large and we need to look further away in order to sample the
same number of cells.

The algorithm returns a (correct) straight path for as long
as the cells are aligned just like in a grid, but it cannot do so
once the underlying cell structure becomes irregular. When that
happens, the path deviates from the expected radial path and the
(minimum) optical depth is over-estimated.

A more subtle error of the algorithm (which can be only alle-
viated by increasing the resolution) can be observed as follows.
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If one draws the radial line from the center of the computational
domain (black cross) to our fiducial green cell, one sees that the
path found by tree MODA is not in fact along the radial direc-
tion (which in this case would be close to horizontal). This is a
discretization problem caused by the low resolution of the mesh
of ll-cells. One notices that there are eight direct neighbors at r1.
Because the profile of λ is radial, MODA will choose the lower-
left corner cell (since its center of mass is further away than that
of, e.g., the cell directly to the left, it also has larger λ), even
though this may not lead to the correct analytic solution. The
same problem appears at radius r2: because of the discretization,
the spherical shell is not uniformly filled with cells, and there are
cells whose center of mass “just doesn’t make it” into the shell
(e.g., immediately to the right of the domain center). MODA will
select the best possible solution from the list of cells and most
of the times it will provide a very reasonable approximation, but
one has to keep this in mind as being an important source of
error.

Finding the closest cell in the correct direction. If a cell with
a large enough mean free path has been found amongst the very
first neighbors (this can happen if the value of f in Eq. (4) is very
small, which in practice is a bad idea since it may lead to getting
trapped in regions of local maxima, as explained in Sect. 2.2)
then that cell is chosen as a successor.

Otherwise, it means that we have a direction of integra-
tion (given by the coordinates of the cell found in the previ-
ous step) and need to find the closest ll-cell in the respective
direction. Achieving directed transport has long been a problem
in SPH: radiation propagates along straight lines, while a typi-
cal SPH particle distribution is highly irregular: if one wants to
find the closest cell in a given direction, the least complicated
approach is to compute the direction vector to each neighboring
cell, and then the cosine of the angle between that vector and the
desired direction of integration. The cell which gives the largest
cosine will be the best approximation to the desired direction.

If one implements tree MODA at the level of particles in-
stead of ll-cells, an interesting alternative is the concept of vir-
tual SPH particles (Pawlik & Schaye 2008): instead of searching
for an actual particle that is only approximately in the desired di-
rection of integration, a virtual particle is created exactly in the
direction where it is needed, at a distance comparable with the
local resolution length, allowing the path to proceed in exactly
the desired direction. Implementing this into the current code is
not straightforward: the path cannot stop at the newly-introduced
virtual particle, so after its creation one needs to find its suc-
cessor as well; this means that one would need to maintain two
separate lists, a list of ll-cells and a list of virtual particles, etc.

Performing the integration. Once the direction of integration
has been found throughout the entire computational domain the
integration is performed in a very similar manner to the grid
MODA, by means of a recursive subroutine. For each ll-cell, the
successor is known and can fall in one of two categories: either
its optical depth τ is not yet known, in which case it is recursively
computed, or it is known, in which case Eq. (9) is evaluated with
l = 1, i.e., by just computing the increase in the optical depth
when moving between the two cells, and then adding it to the
already-computed optical depth of the successor.

Appendix B: Parallelization

Parallelization of grid MODA. Most loops appearing in MODA
have been parallelized from the beginning using OpenMP con-
structs. However, the integration of MODA into a complex

MPI code such as FISH (Käppeli et al. 2011) requires special at-
tention. By far the most challenging issue is that calculating the
optical depth τ (and here we include both the determination of
an integration path, and the evaluation of the integral itself), re-
quires information from the entire computational domain. This
is problematic in an MPI environment, where the information
about the computational domain is distributed between multi-
ple nodes, each with its own separate memory. The repeated
exchange of necessary information between all nodes would be
highly expensive, and a MODA-like algorithm that only needs to
exchange information about the boundary zones between neigh-
boring subdomains has not yet been devised. On the other hand,
the calculation of τ only depends on the mean free path, which
is a local quantity that can be computed by each MPI node sep-
arately; moreover, the calculation of τ is efficient and has been
OpenMP parallelized. The natural solution is then to set aside
one node (i.e., the “MODA node”) for the sole purpose of the
optical depth calculation. This node receives a list of mean free
paths from all processors, calculates the optical depth using the
MODA algorithm, and then sends back the list of optical depths
to each respective processor.

Initial experiments have shown that the calculation of the op-
tical depth for one energy bin in core collapse supernova sim-
ulations with FISH takes of the order of one MHD time step.
Since ∼20 energy bins are typically used, and both the effective
and the total optical depth (see Sect. 2.1) need to be calculated,
a few possibilities exist to balance the time spent in these two
parts of the code:

(a) The optical depth can be assumed to not change significantly
after one MHD time step, therefore τ can be evaluated once
every few time steps; for example, if computing τ for each of
the 20 energy bins takes ∼one MHD time step, then the op-
tical depth will effectively be calculated once every 20 time
steps, which depending on the simulation may be sufficient.

(b) Optical depths are dependent on the neutrino energy, how-
ever we can assume that their paths do not change signifi-
cantly between two neighboring energy bins. It may there-
fore suffice to only calculate the integration path (which is
the most expensive part of MODA) for three representative
energy values (“low”, “medium”, “high”), and then for each
of the 20 energy bins to choose which of the three paths is
more appropriate and perform the integration along it – us-
ing the correct spectral mean free paths.

(c) One can also use multiple MODA nodes, e.g., three nodes,
one for each energy regime described in (b), or two nodes,
one for the effective and one for the total optical depth, etc.

Parallelization of tree MODA. The four parts of the tree
MODA algorithm described in Appendix A.2 are – at this stage
– parallelized with OpenMP. The tree walks that find the suc-
cessor of each cell greatly resemble those performed by the
SPH neighbor search and the gravity calculations, in that they
are performed independently for each ll-cell. This makes the al-
gorithm ideal for parallelization with OpenMP. The integration
of the optical depth is also easy to parallelize, although it may
happen that, if several threads work at the same time on cells that
have partially overlapping integration paths, the calculation for
the common part will be done multiple times.
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