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Systems/Circuits

Neuronal Response Latencies Encode First Odor Identity
Information across Subjects

Marco Paoli,”* “Angela Albi,”* ©“Mirko Zanon,” “Damiano Zanini,' “Renzo Antolini,"> and ®“Albrecht Haase'>?
ICenter for Mind/Brain Sciences, University of Trento, Rovereto 38068, Italy and 2Department of Physics, University of Trento, Trento 38120, Italy

Odorants are coded in the primary olfactory processing centers by spatially and temporally distributed patterns of glomerular activity.
Whereas the spatial distribution of odorant-induced responses is known to be conserved across individuals, the universality of its
temporal structure is still debated. Via fast two-photon calcium imaging, we analyzed the early phase of neuronal responses in the form
of the activity onset latencies in the antennal lobe projection neurons of honeybee foragers. We show that each odorant evokes a
stimulus-specific response latency pattern across the glomerular coding space. Moreover, we investigate these early response features for
the first time across animals, revealing that the order of glomerular firing onsets is conserved across individuals and allows them to
reliably predict odorant identity, but not concentration. These results suggest that the neuronal response latencies provide the first

available code for fast odor identification.
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amplitude code.

Here, we studied early temporal coding in the primary olfactory processing centers of the honeybee brain by fast imaging of
glomerular responses to different odorants across glomeruli and across individuals. Regarding the elusive role of rapid response
dynamics in olfactory coding, we were able to clarify the following aspects: (1) the rank of glomerular activation is conserved across
individuals, (2) its stimulus prediction accuracy is equal to that of the response amplitude code, and (3) it contains complementary
information. Our findings suggest a substantial role of response latencies in odor identification, anticipating the static response
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Introduction

Odorant perception initiates when an odorant molecule interacts
with the olfactory receptors (ORs) on the dendrites of the olfac-
tory receptor neuron (ORN; Mombaerts et al., 1996). The nature
of odorant-receptor interaction allows for a certain odorant to
bind to multiple receptors with different affinities (Miinch and
Galizia, 2016), which results in the activation of multiple ORNs
with different response intensities and latencies. These signals
converge into the antennal lobe (AL), whose functional units,
called glomeruli, receive input from a single ORN type, process
this information through a network of local interneurons, and
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relay the resulting information via projection neurons (PNs) to
higher brain areas (Galizia, 2014). Fundamental studies have
shown that information about the odor stimulus identity and
intensity is encoded in the mean response amplitudes of the glo-
merular PNs (Sachse and Galizia, 2003) and that this static spatial
code is conserved across individuals (Galizia et al., 1999b). At the
same time, stimulus-related information is not restricted to the
spatial code, but temporal features may also contribute to odor
coding (Laurent et al., 1996; Spors and Grinvald, 2002).

A robust measure of neural response delay is first spike latency
(Chase and Young, 2007; Junek et al., 2010). It can successfully
predict stimulus identity in different sensory modalities, including
auditory (Furukawa and Middlebrooks, 2002; Nelken et al., 2005),
visual (Gawne et al., 1996; Masquelier, 2012; Reich et al., 2014), and
somatosensory (Panzeri et al., 2001; Petersen et al., 2001, 2002)
systems. An involvement of neuronal response latency in odor
coding was first proposed and modeled (Hopfield, 1995; Margrie
and Schaefer, 2003) and later experimentally tested in vertebrates
(Spors and Grinvald, 2002; Abraham et al., 2004; Wilson et al.,
2017) and invertebrates (Miiller et al., 2002; Krofczik et al., 2008).
A pioneering electrophysiological study in the locust’s antennal
lobe revealed that the spatiotemporal patterns of odor-induced
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activity across a PN population allows predicting stimulus iden-
tity and intensity (Stopfer et al., 2003). The following studies
confirmed that OR response latencies are odorant specific and
conserved across repeated stimulations: Spors et al. (2006), Junek
etal. (2010), and Martelli et al. (2013). Moreover, the stereotyped
AL (or olfactory bulb) topology supports the possibility that re-
sponse latencies might be preserved across subjects (Ressler et al.,
1994; Galizia et al., 1999b). Patterns of glomerular responses are
dynamic, and sensory information can be encoded by the spatial
representation of the active neurons and also by temporal fea-
tures such as response latency, rise time, temporal profile, and
oscillatory activity (Stopfer et al., 2003; Schaefer and Margrie,
2007; Brill et al., 2013; Grillet et al., 2016; Paoli et al., 2016b).
Nevertheless, the contribution of spatial and temporal features to
olfactory coding is still debated. Although latency patterns of
odorant-elicited responses in single Xenopus laevis larvae were
shown to reliably identify odor stimuli (Junek et al., 2010), an-
other study showed that firing latencies are less informative than
response intensity maps (Bathellier et al., 2008).

The present study probes whether stimulus-related response
latencies are conserved across individuals and whether they pro-
vide sufficient information to identify an odorant. Functional
calcium imaging was used to characterize the response patterns of
five odorants across the AL output neurons, suggesting that odor-
ant classification can be correctly performed based on glomerular
response latency distribution. By analyzing the order at which
glomeruli are activated, we show the existence of stimulus-
specific response latency maps that are conserved across animals,
providing information that is available early and with a predic-
tion accuracy comparable to the response amplitude code. Fi-
nally, we test the associative learning and generalization scores for
the same odorants using the proboscis extension reflex (PER)
paradigm (Takeda, 1961; Bitterman et al., 1983; Giurfa and San-
doz, 2012). We were able to observe that bees were capable of
discriminating most of the learned stimuli from the uncondi-
tioned ones, although failing on those, which also do not provide
a reliable code at the neural level.

Materials and Methods

Animal preparation. Foragers honeybees, Apis mellifera, were collected
from outdoor beehives the day before the experiments and housed in
insect tents (BugDorm-2120) under the supply of a 50% sucrose/water
solution. Animal preparation for calcium imaging was performed as de-
scribed previously (Sachse and Galizia, 2002; Paoli et al., 2016b). After
capture, bees were fixed in a custom-made Plexiglas holder that allows
fixing the head with soft dental wax. To proceed with staining, a small
window in the head cuticle was opened and glands and tracheas were
displaced to expose the injection site. The tip of a borosilicate glass needle
coated with Fura-2-dextran (Thermo Fisher Scientific) was inserted be-
tween the medial and lateral mushroom body calyces, where medial an-
tennocerebral tracts (m-ACTs) and lateral antennocerebral tracts
(I-ACTs) cross. After dye injection, the head capsule was closed to pre-
vent brain desiccation, and bees were fed ad libitum with a 50% sucrose/
water solution. On the following day, antennal lobes were exposed to
allow optical access, and the brain was covered in transparent two-
component silicon (Kwik-Sil, WPI). A similar amount of left and right
ALs were prepared to balance eventual lateralization effects (Haase et al.,
2011a; Rigosi et al., 2011, 2015). In this procedure, the degree of labeling
depends on the precision of the injection site and on the amount of dye
loaded on the glass capillary. Hence, a variable level of PN labeling may
result. Nonetheless, the reproducibility of response amplitudes and the
lack of labeling bias for specific glomeruli indicate that the loading pro-
cedure is reproducible.

Stimulus generation. Olfactory stimulation was performed with a
custom-built, computer-controlled olfactometer comprising seven inde-
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pendently controlled odor channels (for details, see Paoli et al., 2017).
Fast microvalves switched between odorants with a temporal precision of
<2 ms. Continuous air suction behind the bee cleared residual odor
traces. The device was controlled by a LabVIEW-programmed user in-
terface, and synchronization of stimulus delivery and image acquisition
was controlled with a clock rate of 2 kHz. Five odorants were used in this
study: 1-hexanol, 3-hexanol, 1-nonanol, isoamyl acetate, and acetophe-
none (Sigma Aldrich). All selected odorants are ecologically relevant, had
been used previously to study olfactory coding in honeybees, and induce
a clear response in the antennal lobe at the chosen dilution (Galizia et al.,
1999b; Szyszka et al., 2011; Paoli et al., 2016a). In addition, they vary in
several structural and functional parameters: 1-hexanol and 1-nonanol
are alcohols with different chain length, whereas 1- and 3-hexanol differ
only by the hydroxyl group position. As a contrast to the three alcohols,
the structurally different aromatic ketone acetophenone was tested. Fi-
nally, isoamyl acetate, a component of the bee alarm pheromone, was
used in contrast to the floral odors. Samples were prepared fresh every
week at a 1:200 (or 1:2000) dilution in mineral oil. We found the dilution
of 1:200 to be well above the bee’s detection threshold and able to activate
multiple glomeruli without saturating olfactory receptors.

After imaging, odor stimulus concentration and kinetics at the honey-
bee’s antennae were measured with a fast photo-ionization detector
(PID; miniPID 200, Aurora) to determine stimulus arrival time at the
olfactory receptors on the antenna in our experimental conditions. The
analysis of the PID data is based on five repeated 1 s stimuli generated for
each odorant with the olfactometer of the imaging setup. To determine
stimulus arrival time at the antennae, we first measured the odor-
dependent propagation time within the PID and then subtracted it from
the PID curves. Then, we determined the mean arrival times and their
fluctuations at the point of the bee antennae for the different odor stim-
uli. To prevent confusion, we still present all imaging data with respect to
an absolute time scale, where t = 0 represents the moment of the
computer-controlled valve opening.

The PID signal amplitude allows us to determine the absolute odorant
concentration and monitor reproducibility of the odor stimulus profile.
Although odorant dilutions are identical (1:200), their concentration in
the vial’s headspace varies because of the odor-specific vapor pressures
(1-hexanol, 126 Pa; 3-hexanol, 450 Pa; 1-nonanol, 5.46 Pa; isoamyl ace-
tate, 747 Pa; acetophenone, 52.9 Pa; all at 25°C). With the calibration
curves provided by the PID manufacturers, we converted odor-
dependent PID voltages into absolute concentrations. At the end of the
stimulus period, when the PID curves are about to saturate (see Fig. 3E),
the following approximate concentrations apply: 1-hexanol, 1.4 ppm;
3-hexanol, 3.1 ppm; 1-nonanol, 0.054 ppm; isoamyl acetate, 1.5 ppm;
acetophenone, 0.036 ppm.

Two-photon functional imaging. Optical imaging was performed, as
described previously (Haase et al, 2011b), via two-photon laser-
scanning microscopy with an imaging platform based on an Ultima IV
microscope (Bruker) optimized for in vivo insect imaging (Haase, 2011).
The calcium-sensitive dye Fura-2-dextran was excited at 800 nm. A high
temporal resolution was obtained via repetitive scanning of one-
dimensional (1D) line traces across all glomeruli of interest at a rate of
100 Hz. The calcium-induced fluorescence changes were recorded with a
photomultiplier (Hamamatsu) in a filter window of 525 = 20 nm. Cal-
cium imaging monitors the change in an intracellular calcium concen-
tration, which is an indirect indicator of neuronal activity. Hence, the
observed signal is delayed with respect to the action potential (Homma et
al., 2009). Even if calcium imaging allows detecting weak activities down
to individual action potentials (Homma et al., 2009; Grewe et al., 2010),
in our setup the signal-to-noise ratio is limited by the short pixel expo-
sure time because of spatial scanning. Therefore, we could not detect
single spikes, and even very weak burst responses may have been missed.

Postprocessing of imaging data. Single glomeruli were identified along
the 1D line scans using a 2D high-resolution reference image. Glomeru-
lar response curves F(t) synchronized with the odor stimuli were ex-
tracted and averaged over the three recorded trials for each odor and each
bee. These fluorescence curves were normalized with respect to their
mean prestimulus baseline activity F,, providing the relative fluorescence
change AF/F(t) = (F(t)—F,)/F,.
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Briefly, the onsets of glomerular activity were determined in the fol-
lowing way. First, the baseline activity was analyzed during the 500 ms
window before stimulus onset, obtaining mean value and SD of the nor-
mally distributed fluorescence. Then, single glomeruli were classified as
responsive when the fluorescence after the stimulus onset stayed for >80
ms above a threshold of 0.66 of the cumulative probability distribution of
baseline activity. The response latency was then approximated by the first
time point of this activity period. In the 25 animals, each tested to five
odorants, a total of 700 glomerular responses were identified according
to this criterion. To maximize the detection of stimulus-induced activities,
the low threshold described above was applied to the activity detection algo-
rithm. On the other hand, this approach likely identified a non-negligible
amount of spontaneous activity as odor related. This adds noise to the sys-
tem, influencing the predictive power of the latency code.

Correlation of response latencies and amplitudes. For each odor, the
distribution of glomerular response latencies was analyzed via fitting
Gaussian curves to the peak of the early response. The normal distributed
early responses (<200 ms) and the uniformly distributed late responses
(>200 ms) were separately analyzed for potential correlations between
response latency and response amplitude using Pearson’s correlation
coefficients.

Testing odor specificity and generality of the latency code: general concept
of the analysis. The analysis of glomerular response latencies is con-
strained by the fact that absolute response latency variations are domi-
nated by odor- and glomerulus-independent offsets across individuals.
To avoid these biases, olfactory neuronal responses are classified by the
order in which they are triggered in single subjects, rather than by the
absolute onset timing. Hence, for each animal, the odor-induced re-
sponse is represented by an odor-specific latency rank vector. By the use
of relative latency vectors, the absolute delay of the intracellular calcium
increase with respect to the changes in membrane potential has no influ-
ence on the rank code. However, this code is not equivalent to a first spike
code, which is based on absolute spike timing, but rather reflects the
order of firing onsets (Thorpe et al., 2001).

The similarity between any two latency vectors is tested and quan-
tified by the rank correlation coefficient (RCC; Egs. 1, 2). To assess
whether the latency rank code is odor specific and conserved across
individuals, responses of individual test animals (i.e., individual la-
tency vectors; Eq. 3) are compared with the average latency vectors of
all remaining animals (odor template vectors; Eq. 4). After selecting
an odor response vector of a single test bee in a stimulus-blind mode,
the eliciting odorant is predicted from the maximum correlation (Eq.
5) between this test latency vector and the odor template vectors. A
prediction probability of the latency code is obtained by repeating this
analysis for each of the 25 bees.

To compare odor specificity and generalizability of the latency code
with the amplitude code, the same analysis is performed on the re-
sponse amplitude by creating an amplitude rank vector. Furthermore,
we test the redundancy of the information of both parameters by
combining both codes and by comparing the prediction accuracy to
latency and amplitude separately. Finally, the neural codes are com-
pared with behavioral odor generalization in a classical conditioning
experiment. The single analysis steps are described in detail in the
following paragraphs.

Rank correlation coefficient. To evaluate odorant specificity and gener-
ality of response latencies, cross-correlations of glomerular response la-
tencies were calculated between different odorant responses in different
bees. Single responses were characterized by a response vector, contain-
ing the response latencies for all activated glomeruli. For pairwise com-
parisons between different stimuli and different bees, only commonly
activated glomeruli were considered, to avoid any bias from the spatial
response pattern on the temporal latency code.

The characterization of odor responses was restricted to the rank of
onset of single glomeruli (Junek et al., 2010). To compare two responses,
X and Y, instead of looking at the correlation of absolute latencies, we
used Kendall's RCC, 7 (Kendall, 1938). This can be expressed by
the number of sorting inversions n;,,, required to establish in vector X the
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same latency order as in vector Y, or vice versa. Normalization by the
maximum number of inversions and projection onto the interval [—1, 1]
gives the following:

2ninv

XY =1 e D2

(1)
7 becomes 1 for the perfect positive correlation, 0 is the absence of the
correlation, and —1 is the perfect negative correlation.

Rank correlation coefficients are now calculated across animals for
different odor stimuli. Results are therefore labeled by four parameters:
for odorant A applied to bee k and odorant B applied to bee m, the rank
correlation coefficient becomes as follows:

Zninv(A)k)B)m)
1o (Ask,Bm) (n,q(Ask,Bym) — 1)/2°

7(Ak,B,m) =1 (2)
where only those glomeruli showing activity in both response vectors are
compared. The number of commonly activated glomeruli is given by
n,(A, k, B, m).

Odorant predictability. The generalizability of a latency rank code was
tested by analyzing stimulus predictability. Single bees were chosen as
test subjects, represented by their response latency vectors for the differ-
ent tested odorants. To compare these test responses against a potential
universal latency code, odorant template vectors were created from the
responses of all remaining animals of the cohort. To obtain these tem-
plates, single response latency vectors were corrected against odorant-
independent delays by projecting latencies linearly onto the interval [0,
1]. Such a normalized latency vector in response to odorant A in bee k is
obtained from the following:

(x1,%, . .

max X; — min x;

»X,) — min x;
Xnorm (A)k) =

(3)

where x; is the single glomerular response latency.

To create a template vector for odorant A, normalized responses were
then averaged over all bees except the test subject k via weighted averag-
ing. The weights were the numbers of commonly active glomeruli 1, (4,
k, i), which reward higher information content when more glomeruli can
be compared. The template vector for an averaged response to odorant A
involving all animals except the test bee k is then given by the following:

D a4k Xoorm (Asd)
D aitact (Ak)

Xlemp (A>k) = (4)

To quantify the correlation between a test subject’s response and these
average response vectors, the five rank correlation coefficients between
the test latency vector and the odorant templates were calculated. To
determine the odorant predictability, this procedure was repeated for
each of the 25 bees as a test subject, providing as a result 25 rank corre-
lation coefficient matrices of dimension 5 X 5, containing the correla-
tions of all test odorants with all template odors in every single bee. To
predict a single test odor A in a single bee k, we calculated the maximum
rank correlation coefficient 7, between the test response X,.(A, k) and
the five template odorants B;:

Tmax(Xtest(A)k)) = rrlaxBI T(Xtesl(A)k)) Xtemp(Bi)k))' (5)

Averaging the prediction results over all bees produces a generalization
matrix (Quian Quiroga and Panzeri, 2009) showing prediction probabil-
ities of all template odors for each test odorant.

Amplitude code and combined code. To compare the latency code with
the static response amplitude code, we calculated the latter from the
imaging data by averaging the relative fluorescence change in single
glomeruli over 800 ms after their response onset. Amplitude rank vectors
for the single bee responses were then formed by the ordered ampli-
tudes of responsive glomeruli. As for the latency code, the comparison
of single amplitude response vectors was performed via the rank cor-
relation coefficient (Eq. 1). To quantify odor predictability via the
amplitude rank code, single test bee responses are compared with
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template vectors (Eq. 4) calculated by averaging the normalized am-
plitude rank vectors weighted by the number of activated glomeruli
(Eq. 3) of all remaining bees. As for the latency code, the tested
odorant is predicted by the highest RCC between test and template
vectors for the five odorants (Eq. 5). The mean prediction probabili-
ties for each template odor against the test odorants generate the
generalization matrix of the amplitude code.

To test whether there is complementary information in latency and
amplitude code, both codes were combined by comparing the RCC val-
ues of test and template vectors not separately for latencies and ampli-
tudes, but by choosing the highest RCC across all 10 confrontations of a
test latency vector with the latency templates and a test amplitude with
the amplitude templates. The predicted odor by this combined code is
then averaged again over all tests, which forms the generalization matrix
for a combined code.

Behavioral generalization via a proboscis extension reflex assay. For the
PER assay, bees were briefly ice-anesthetized and restrained in individual
stages with the head blocked with a tape strip (Bitterman et al., 1983).
Bees were fed with a 50% sucrose/water solution, and experiments were
performed ~2 h after the animals’ preparation. A LabVIEW-based soft-
ware controlled the olfactometer (analogous to the one used for imaging,
implemented for semiautomatic PER assays), which determined odor
presentation onset, duration, and intertrial interval. Odorants were di-
luted 1:200 in mineral oil to match imaging conditions. The conditioning
procedure consisted of five pairings between odorant [conditioned stim-
ulus (CS)] and sucrose reward [unconditioned stimulus (US)]. During
conditioning, each animal was individually exposed for 28 s to a flow of
clean air (context familiarization), followed by 4 s of an initially neutral
odorant. A 50% sucrose/water solution was presented as a reward for 3 s
with a 1 s temporal overlap between the CS and US. After each condi-
tioning trial, each bee was kept in place for an additional 28 s and then
removed from the airflow. Proboscis extension after CS presentation and
before US presentation was checked for establishing the learning curve.
Only an extension beyond the virtual line between the open mandibles
was counted as a positive response. After successful conditioning, an-
imals were tested against all odorants to generate the behavioral gen-
eralization matrix (Guerrieri et al., 2005). To reduce extinction
probability of learned responses, the protocol was shortened to 13 s
prestimulus and poststimulus clean air exposure, 4 s of test odorant
exposure, and 5 min of the intertest interval. Bees were trained in
groups of 10, and test odorants were presented in a randomized order
by the stimulus generator in an investigator-blind way. The final
analysis was performed on all bees that learned the odor and re-
sponded to at least one of the five test odorants: n = 26 animals
trained for 1-hexanol; n = 26 for 3-hexanol; n = 29 for 1-nonanol;
n = 23 for isoamyl acetate; and n = 25 for acetophenone.

Experimental design and statistical analysis. The significance of the re-
sults predicting a test odorant via the maximum rank correlation coeffi-
cient 7., was determined by a x? test for each odor on the null
hypothesis that predictions were random, which would produce each of
the five outcomes with a probability of 20%. Results were Bonferroni
corrected for the familywise error rate.

The differences in the average prediction accuracies among latency,
amplitude, and combined code were tested for significance with paired ¢
tests on n = 125 samples (5 odors X 25 bees). Test results were corrected
for a false discovery rate via the Benjamini-Hochberg method.

In the PER experiments, for each trained group, differences between
the response to the trained odorant and each of the four novel stimuli
were tested with multiple ¢ test tests, group sizes as indicated in the
previous section. Results were Bonferroni corrected for the familywise
error rate.

The overlap between neural codes and the behavioral code was
quantified with a x? goodness-of-fit test. The observed prediction prob-
abilities of the neural codes were confronted with the behavioral gener-
alization probabilities for all odor test/template combinations, for which
the PER responses were nonzero (19 odor combinations).

To analyze the influence of concentration on the latency rank code, a
bootstrapping analysis (10,000 samples with replacements) was performed
on the mean rank correlation coefficient Taveraged over 25 test bees:
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a-(*Xtesl (A) > Xtemp (B) )

Nbee

k=1 2Mine(Xiest(A,6), Xiemp(BoK))

=1- Nbee (6)

o maX; s [Ma(A,B, ) (m,a(AB,j) — 1)]/2

The set of test bees were sampled with replacements (10,000 samples for
each stimulus). The resulting bootstrap distributions of 7 were compared
for different concentrations and different odorants.

Results

Spatial distribution of olfactory response activity

Honeybee antennal lobe PNs were labeled with a calcium-
sensitive dye (Paoli et al., 2017) to optically measure odorant-
induced intracellular calcium variations. Spatiotemporal response
patterns were recorded for five odorants in 25 bees. Figure 1A
shows a single glomerulus resolved by the two-photon excited
fluorescence signal. We recorded neural activities from 12 glom-
eruli of similar imaging planes. Glomeruli were identified by
comparing their morphology and anatomical location with the
honeybee AL reference atlas (Galizia et al., 1999a; Fig. 1B). For
each odorant, glomerular responses were obtained from stimulus-
evoked relative fluorescence changes, averaged over time and
over three successive odorant presentations (Fig. 1C). The mean
activity odor response maps show odorant-specific activations,
which are highly conserved across individuals. Each glomerulus
was activated by one to three of the five odorants, and each odor-
ant induced a strong excitatory response in two to four of the
monitored glomeruli (Fig. 1C).

Odorant-dependent response latencies

Glomerular responses vary in intensity, duration, onset, and rise
time. Nonetheless, their temporal response profiles are highly
conserved not only within trials but also across individuals, and
they produce very homogeneous patterns even after averaging
across all animals (Fig. 2A). Two examples of highly conserved
response latencies are presented in Figure 2, B and C. In particu-
lar, a selective and consecutive activation of glomeruli 17 and 33
after nonanol stimulation is shown for three honeybees, where
glomerulus 17 displays a consistently shorter response latency
compared with glomerulus 33 (Fig. 2B). Similarly, glomeruli 48
and 36 are both activated by isoamyl acetate with similar response
amplitude, but glomerulus 36 consistently anticipates the re-
sponse onset of glomerulus 48 (Fig. 2C). Overall, odorant-evoked
glomerular responses appear to be conserved across animals, and
both stimulus and glomerulus-specific. Moreover, Figure 2-1
(available at https://doi.org/10.1523/JNEUROSCI.0453-18.2018.
f2-1) shows that the responses of the 25 bees are highly conserved,
which confirms that, although dye loading variability may exist,
the overall response is consistent across animals both in terms of
response amplitude and kinetics.

To determine odorant-related responses, we used a threshold-
ing algorithm. A response was defined as a long-lasting deviation
from the mean resting state that was temporally correlated with
the stimulus. With this method, we were able to identify 700
stimulus-correlated glomerular responses across all analyzed
bees. Notably, calcium imaging represents an indirect measure of
a change in voltage potential associated with a spiking activity.
Nonetheless, because of the fast increase in intracellular calcium
concentration after neuronal activity and to the fast Fura-2 cal-
cium binding kinetics, this method allows, although with a con-
stant offset to electrophysiology (Junek et al., 2010), a precise and
reliable detection of both induced and spontaneous activity. On
the contrary, slow Fura-2 calcium dissociation kinetics and slow
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glomeruli 33 and 17 to odorant 1-nonanol in three different bees. €, Example response profiles of glomeruli 48 and 36 to odorant isoamyl acetate in three different bees. Odor responses for all
individuals are visualized in Figure 2-1 (available at https://doi.org/10.1523/INEUROSCI.0453-18.2018.f2-1) and are available in numerical form in Figure 2-2 (available at

https://doi.org/10.1523/JNEUR0SCI.0453-18.2018.f2-2).
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Figure3.

Quantitative analysis of response onset latency and amplitude distribution. 4, Histograms of the response latency distribution across all active glomeruliin all tested animals for the five

odorants. Gaussian fits mark the peaks of the early evoked responses. B, Plot of the early (<200 ms) glomerular response latencies, pooled across all bees and odorants, versus the corresponding
response amplitudes, measured by the relative fluorescence change (Pearson’s correlation coefficient, —0.10). C, Plot of the late (=200 ms) glomerular response latencies, pooled across all bees
and all tested odorants, versus the corresponding response amplitudes (Pearson’s correlation coefficient, —0.21). D, Mean latency of the evoked responses (peaks of the normal distribution in 4;
green bars) compared with the delay of the odor arrival at the position of the bee’s antennae measured by PID (gray bars). 1-hex, 1-Hexanol; 3-hex, 3-hexanol; non, nonanol; iso, isoamyl acetate;
acp, acetophenone. E, PID response curves for the five odorants (mean == SEM, n = 5). Red lines denote threshold criteria and onset points. — AF/Findicates the change in fluorescence normalized

to background fluorescence. corr. coeff., Correlation coefficient.

clearance of intracellular calcium limit the temporal resolution of
response offset (Galizia and Kimmerle, 2004; Moreaux and Lau-
rent, 2007; Grewe et al., 2010).

Response latencies were found to be broadly distributed (Fig.
3A). The distribution contains two components, one uniformly
distributed over the whole stimulus duration and the other one
normally distributed, with short latencies ~125 ms. To test
whether response latencies and amplitudes provide redundant
measures of the same quantity, we analyzed the amplitude—la-
tency correlation of all responses in both distribution compo-
nents. This analysis detected little or no correlation between both
degrees of freedom of the response patterns, with Pearson’s cor-
relation coefficients of —0.10 and —0.21 for the early (<200 ms)
evoked responses and the late (>>200 ms) responses, respectively
(Fig. 3B, C). To further investigate how fast PNs respond to an
olfactory stimulus, we measured odorant arrival times at the bee
antennae (Fig. 3E) and compared them with the peaks of the
evoked response distributions observed in Figure 3A. Notably,
odor delivery kinetics was highly reproducible and odorant spe-
cific, showing onsets between 18 = 2 ms (1-hexanol) and 41 * 2
ms (acetophenone) after valve opening (Fig. 3D, gray bars). To
estimate the absolute response latencies, the differences between
odor stimulus onsets and mean neuronal activation latencies
were calculated, varying between 86 ms for acetophenone and
112 ms for 1-nonanol. Therefore, first sensory information ar-
rives, on average, after 100 ms from stimulus delivery.

Odorant prediction from the latency rank code
A full analysis of a potential latency code is often hindered by
fluctuations caused by odorant-independent offsets (e.g., an-

tennal movements, oscillatory pattern cycles, and individual
network variability) and glomerulus-independent offsets
(e.g., differences in volatility of the single odorants). To ac-
count for these effects, for each animal we built a vector, where
glomerular responses were ranked based on their response
latencies, that is the sequence with which responsive glomeruli
start firing. In this way, the response of an individual animal to
a certain odorant is represented by a latency rank vector, com-
posed of the glomerular labels in the order of their response
onsets (see Materials and Methods for details). The similarity
between latency rank vectors was quantified by Kendall’s rank
correlation coefficient T (Kendall, 1938), which provides a
measure for the odorant specificity of a latency rank code
across individuals. Importantly, both stimulus-evoked signals
and spontaneous activity contributed to the latency rank vec-
tor for a certain odorant in a given individual. Hence, the
predictability of a latency-based code is challenged by the
presence of random noise.

To probe the universality of a latency rank code, we calcu-
lated the correlation between response latency rank vectors of
individual “test” bees with template vectors obtained by aver-
aging the response latencies of all remaining animals to a spe-
cific odorant. As a classifier for blind identification of the test
odorant, we used the maximum rank correlation coefficient
Tmax Detween the test latency vector and the five odor template
vectors. To quantify odor prediction accuracy, each bee was
selected once as a test subject, providing 25 tests for each
odorant. Figure 4A shows a latency code prediction matrix,
where the prediction probability for each template odorant is
shown for every test odorant.
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Odorant prediction accuracy of rank latency vectors. A-C, Generalization matrices of the three neural odor codes based on glomerular latencies (4), amplitudes (B), and combined codes

(€). Each matrix shows the probability of a test odorant being identified as one of the five odor templates (based on n = 25 test bees). D, The combined code performs significantly better than the
latency (p = 0.011) and amplitude (p = 0.033) codes. No difference was found between amplitude and latency code prediction accuracy (p = 0.51, all paired t-test, Benjamini-Hochberg-
corrected; * indicates p values << 0.05). E, Learning curves show the improvement in the PER response percentage to the (S across five conditioning trials. The number of conditioned animals for the
five odorants were as follows: 1-hex, n = 27;3-hex,n = 37;non, n = 34;iso, n = 46;acp,n = 25.F, Generalization matrix obtained from the psychometric data of the PER assay. The matrix shows
the proboscis extension probabilities for all combinations of conditioned/tested odors. Only animals that responded to at least one test odor were considered. For the five groups, the number of
individuals was as follows: 1-hex, n = 26; 3-hex, n = 26; non, n = 29; iso, n = 23; acp, n = 25. 1-hex: 1-Hexanol; 3-hex, 3-hexanol; non, nonanol; iso, isoamyl acetate; acp, acetophenone.

X’ tests rejected the null hypothesis that predictions were ran-
dom for all test odors except for 3-hexanol [1-hexanol: x*(4) =
25.2,p = 0.0002; 3-hexanol: x2(4) = 6.8, p = 0.7342; 1-nonanol:
X>(4) = 38.2, p = 0; isoamyl acetate: y*(4) = 31.6, p = 0; aceto-
phenone: x*(4) = 31.8, p = 0]. In four of five odorants, the
correct test/template combination was strongly dominant, show-
ing a prediction accuracy between 60 and 70%, which is signifi-
cantly above the 20% chance level. This suggests that the latency
rank code provided sufficient information for odorant recogni-
tion. A lower percentage of correct predictions was observed for
3-hexanol, a position isomer of 1-hexanol with very high struc-
tural similarity. In fact, 3-hexanol was correctly recognized in
36% of the cases, whereas it was confused with 1-hexanol in 28%
of the cases, accounting for the majority of all prediction errors.

Comparison with amplitude code and combined code

Next, we assessed the accuracy of the intersubject odor prediction
with respect to the commonly used glomerular response ampli-
tude code. From the imaging data, we extracted the amplitude
rank code represented by the ordered response amplitudes of all
activated glomeruli in every measurement. As for the latency
code, we studied odorant specificity and universality of the am-
plitude code based on Kendall’s rank correlation coefficient. The
predictability matrix of the amplitude rank code (Fig. 4B) shows
a highly similar pattern to the latency rank code, with a clear
domination of the correct predictions. The correct identification
probabilities are slightly higher than those of the latency code,
except for acetophenone, which is correctly recognized only in
48% of the cases (vs 60% of the latency rank code). The correct

identification of 3-hexanol was increased to 48%, still with the
highest generalization probability of 28% with 1-hexanol.

To test how redundant the information provided by the two
different features was, latency- and amplitude-based codes were
combined into a single matrix. The resulting measure showed
improved predictions rates compared with the two separate
codes (Fig. 4C). Although acetophenone was correctly predicted
in 68% of the cases, the similarity between 3-hexanol and
1-hexanol still challenged the predictive power of the code. In
fact, whereas 3-hexanol is correctly matched in 52% of the cases,
the same odorant is confused with 1-hexanol in 32% of the cases.

Finally, we quantified the overall performance of the two
codes by calculating an average prediction accuracy across odor-
ants (58 = 5, 62 £ 5, and 70 £ 4% for latency, amplitude, and
combined code, respectively; Fig. 4D). A statistical analysis
showed that the provided information is not significantly differ-
ent between the two single-feature codes (t(,,,) = —0.663, p =
0.51). Instead, the combined code provides significantly more
odor-related information compared with the latency code
(t(124y = —2.60,p = 0.011) or the amplitude code (t,,4) = —2.17,
p = 0.033; all results are corrected for a false discovery rate via the
Benjamini-Hochberg method; Fig. 4D).

Comparison of neural codes and behavioral

odor generalization

To test to what degree the neural codes match the behavioral
output, the predictability matrices based on latency, amplitude,
and combined codes were compared with a behavioral assay for
learned odorant recognition. All used odorants were successfully
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concentrations. 1-Hexanol (1-hex, B) and isoamyl acetate (iso, C) were used as odorants.

learned by the bees, and for all but isoamyl acetate, a PER score of
>75% was reached at the fifth conditioning trial. Associative
conditioning with isoamyl acetate was less successful, providing a
final score of 52% (Fig. 4E). After conditioning, bees were tested
for generalization effect by sequentially probing each animal with
all five odorants (including the learned one) in the absence of a
sugar reward. A positive PER response would show the recogni-
tion of the learned odorant or, if the test odorant was a novel one,
a generalization effect. In the following sections, we name the
resulting response probabilities as the behavioral generalization
matrix, although effects likewise may be caused by the inability to
discriminate between learned and tested odorants. The behav-
ioral generalization matrix (Fig. 4F, off-diagonal data) shows the
PER probability in the presence of odorants different from the
one learned during training, normalized by the responses to all
test odorants. The highest response probability was always ob-
served after presentation of the conditioned stimulus, whereas a
lower degree of responsiveness was shown when bees were pre-
sented with novel odorants. However, an identical PER score for
both isomers suggests that bees either generalize between the two
odorants or failed to discriminate them. Instead, bees trained on
isoamyl acetate showed a generally higher degree of generaliza-
tion that seemed independent of the odorants’ chemical similar-
ity. Multiple ¢ tests confirmed the preference for the trained
odorant with respect to all other odorants for bees conditioned to
1-hexanol, acetophenone, and 1-nonanol [12 odor pair combi-
nations, maximum p = 1.0 X 107 for (1-hex/3-hex), Bonfer-
roni corrected]. The response frequencies to 1-hexanol and

3-hexanol were not significantly different when animals were
conditioned with 3-hexanol. Similarly, response frequencies to
1-hexanol and isoamyl acetate did not differ for bees conditioned
with isoamyl acetate.

To quantify the odor generalization predicted by the neuronal
codes and the behavioral output, we compared the matrix ele-
ments of the three different codes (Fig. 4A—C) with the PER assay-
based generalization matrix (Fig. 4F) with a x* goodness-of-fit
test. The results show a high agreement of neural code and be-
havioral data: x*(18) = 3.13 and p = 3.8 X 10> for latency
coding, x*(18) = 1.73 and p = 3.5 X 107 for amplitude coding,
and x*(18) = 1.61 and p = 1.9 X 10~ for the combined code.

Concentration independence of the latency rank code

Finally, we investigated whether the latency rank vector analysis
could also discriminate between different odorant concentra-
tions. Thus, we compared the response with two odorants,
1-hexanol and isoamyl acetate, at different dilutions: a lower one,
1:2000, and a higher one, 1:200, as used in the previous experi-
ments. We calculated the mean rank correlation coefficients
across subjects (Eq. 6) and looked at their distribution via a boot-
strap analysis. When performing this analysis on the five odor-
ants at the same concentration, the correlations within single
odor groups were comparably high, whereas no correlation was
found when comparing responses with different odorants (Fig.
5A). In particular, the highest mean latency rank correlation
across different odorants was smaller than 0.02, whereas the low-
est correlation within an odor group was higher than 0.08. This
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shows that random correlations (e.g., attributable to spontane-
ous activity in single bees) are unlikely to significantly influence
the stimulus-induced correlations.

We then studied mean latency ranks across stimulus concen-
trations. The mean rank correlation coefficients computed for
1-hexanol at low concentration (average, 0.25) were strongly re-
duced compared with the high concentration-induced ones (av-
erage, 0.47), indicating a weak correlation at a low odorant
concentration. In addition, the correlation between responses to
low- and high-concentration odorants (average, 0.44) was found
to be higher than the correlation of neural responses to the low-
concentration stimulus (Fig. 5B). For isoamyl acetate, the mean
rank correlation coefficient distribution was not significantly
lower for the low concentration (average, 0.40) with respect to
the high concentration (average, 0.37). However, the correlation
between low- and high-concentration responses was found to be
equally high (mean, 0.38; Fig. 5C).

Discussion

The question of how odor information is encoded within the
insect antennal lobe, or the vertebrate olfactory bulb, has been
widely investigated. A major finding has been the observation
that odorants are represented in the glomerular space by glomer-
ular response maps based on the mean response amplitudes of
individual glomeruli. This code was found to be highly conserved
across animals (Galizia et al., 1999b). Furthermore, it was shown
that temporal features of the glomerular responses are also car-
rying information on the odor stimulus identity as well as its
intensity (Stopfer et al., 2003).

Here, we investigate a coding parameter that may provide the
first information on an olfactory stimulus, the glomerular re-
sponse latencies. Our aim is to clarify the following fundamental
open questions about a potential latency code: 1) Are stimulus-
specific latency patterns conserved across individuals? 2) Can the
latency code compete with the static amplitude code in odor
discrimination power? 3) Do glomerular latencies and ampli-
tudes carry complementary information? 4) Is the latency rank
code capable of distinguishing between different odorant con-
centrations? 5) Can the latency code predict behavioral odor dis-
crimination performance?

Notably, the fundamental electrophysiological studies that
provided first insights into the temporal dimension of odor cod-
ing focused on oscillatory features over an extended stimulus
duration. Their analysis excluded the fast dynamics by restricting
time resolution to 50 ms (Laurent and Davidowitz, 1994; Wehr
and Laurent, 1996; Stopfer et al., 2003; Mazor and Laurent,
2005).

Here, we adopted a complementary approach based on a fast
calcium imaging analysis, which allows detecting both evoked
and spontaneous activities with high temporal resolution
(Moreaux and Laurent, 2007; Grewe et al., 2010). Indeed, a small
subset of the detected responses is likely attributable to sponta-
neous firing (Galdn et al., 2006; Grewe et al., 2010). However, we
did not remove these events from the analysis because spon-
taneous activities can be distinguished from stimulus-evoked
activities only in terms of duration, not by onset timing. No-
tably, higher-order brain centers that might read out the la-
tency code will also face the same problem (Jortner et al.,
2007). Thus, we decided to analyze the latency code in the
presence of this background activity, to test its robustness
under naturally noisy conditions.

A limitation of calcium imaging analysis is that detectable
intracellular calcium increase displays a delay of a few millisec-
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onds with respect to changes in voltage potential (Homma et al.,
2009; Junek etal., 2010). Nonetheless, this aspect would influence
an analysis of absolute latency values but not the response latency
ranks.

This study extends an analysis of response latencies across
subjects. Although the labeling method is susceptible to across-
subject variability, e.g., the number of labeled PN or the amount
of incorporated dye, this did not significantly alter kinematics
nor amplitude of measured response curves (see Fig. 2-1, avail-
able at https://doi.org/10.1523/JNEUROSCI.0453-18.2018.12-1;
and for a corresponding 4D data array, see Fig. 2-2, available at
https://doi.org/10.1523/]NEUROSCI.0453-18.2018.f2-2). Also,
previous calcium imaging studies on PN activity revealed a high
level of synchronization within each glomerulus (Franke, 2009),
suggesting that a variable number of labeled PNs within a given
glomerulus is not influential on the measurement of the relative
response onset.

To test the predictive power of the latency code, we selected
five odorants with very different significance for honeybees: floral
compounds like alcohols (1-hexanol, 3-hexanol, and 1-non-
anol); aromatic ketones (acetophenone); and a component of the
sting alarm pheromone, like the ester isoamyl acetate (Boch et al.,
1962). To further challenge the code’s predictive power, some
components were chosen to be structurally similar, like
1-hexanol and 1-nonanol, or almost identical, such as 1-hexanol
and 3-hexanol. The analysis was conducted on a population of 25
honeybees and showed that the response latency rank patterns
allowed distinguishing all odorants with statistical significance,
except for the position isomers (i.e., 1-hexanol and 3-hexanol).
In all significant cases, the prediction accuracy was higher or
equal to 60% (vs the chance level of 20%), which is surprising
given that tested individuals were not preselected based on phys-
iological parameters such as age or foraging experience. In the
only nonsignificant case of 3-hexanol, the prediction accuracy
was 36%, with the majority of the wrong classifications attribut-
able to a mismatch with the 1-hexanol template. This does not
necessarily imply that a high structural similarity constitutes a
limit for the latency code. Most likely, this limitation derives from
the small subset of active glomeruli comparable across all ani-
mals. In fact, we expect that increasing the number of involved
glomeruli would also increase the code’s predictive power. Junek
et al. (2010) performed a similar analysis, although limited to
single subjects, where they monitored the neural responses of the
olfactory bulb in individual Xenopus tadpoles. They reported that
the prediction accuracy for a set of three odorants increased to-
gether with the number of activated neurons, from 70% accuracy
for three responding cells to 100% accuracy when 10 neurons or
more were activated. Although the present study adds additional
complexity by considering across-subject variations, the num-
bers provided by Junek et al. (2010) are in agreement with our
vector correlation analysis, which was usually limited to an aver-
age of five to six commonly active glomeruli per comparison. The
present findings also indicate that the temporal features are con-
served and allow odor prediction across individuals.

Next, we compared the latency rank code with the amplitude
rank code, detecting no significant difference between the aver-
age predictive power of the two separate codes. To quantify the
redundancy between codes, we performed a correlation analysis
between response latencies and amplitudes across all measured
responses. The low correlation coefficients (Fig. 3 B, C) indicate
that the two parameters are not correlated, suggesting that they
may provide different and complementary information. Indeed,
a combined code based on both features provided a significant


https://doi.org/10.1523/JNEUROSCI.0453-18.2018.f2-1
https://doi.org/10.1523/JNEUROSCI.0453-18.2018.f2-2

Paoli, Albi et al. @ Latency-Based Code for Primary Odor Processing

increase in predictive power with respect to both the latency and
the amplitude-based codes. This suggests that the temporal and
spatial features of the odor response patterns carry complemen-
tary information. These findings are in agreement with previ-
ously reported measurements of the response latencies and
amplitudes of mice ORNs (Spors et al., 2006), where no correla-
tion was found.

How stimulus properties are actually encoded within the spa-
tiotemporal response patterns is still debated. Carcaud et al.
(2015) observed that the pheromonal compound of honeybee
queens, drones, or workers were processed differently by the pro-
jection neurons of m-ACTs and I-ACTs. More recently, the same
authors suggested that parallel processing could also affect com-
mon odorant processing, with the two projection neuron tracts
delivering different and complementary information on the na-
ture of the received odorants (Carcaud et al., 2015, 2018). Brill et
al. (2013) simultaneously performed electrophysiological re-
cordings on the m-ACTs and I-ACTs of the honeybee AL output
neurons and observed that the more broadly tuned 1-ACT deliv-
ers fast general information on odor timing, whereas the medial
tract relays on more specific information of odor identity, al-
though with a temporal offset. In our imaging experiments, we
recorded exclusively from 1-ACT PNs and were able to confirm
the fast and heterogeneous response time distribution reported
previously. In addition, we could show that the fast responses
detected in the I-ACT PNs do not simply depend on the stimulus
dynamics but are both glomerulus and stimulus specific and en-
code odor identity information.

Can the response latency rank code provide information
also on the odorant’s concentration? A direct comparison of
the correlations between responses obtained after stimulation
with high and low odor concentrations advocates for a concen-
tration independence of the latency rank code. A previous study
suggested that glomerular response latencies might provide a
concentration-invariant code for prompt odor identification
(Krofczik et al., 2008), a code later complemented by the average
firing rate (i.e., the amplitude code) conveying concentration-
related information. This view is further supported by a study in
Drosophila, where a complete concentration invariance of the
ORNs dynamics was observed (Martelli et al., 2013). Instead, a
weak concentration dependency of response latencies has previ-
ously been shown in the mitral/tufted cells in the Xenopus olfac-
tory bulb (Junek et al., 2010) and in the initial response dynamics
of the rat olfactory sensory neurons (Carey et al., 2011). Impor-
tantly, when analyzing concentration dependence, possible dif-
ferences between the information content of absolute response
latencies and relative latency ranks need to be considered. With
increasing stimulus concentration, a decrease in absolute re-
sponse latency can be expected because of an increase in odorant—
receptor interaction probability (Egea-Weiss et al., 2018).
Indeed, a neuronal network model of pheromone coding in
moths proposed that differences in relative latency encode
concentration-invariant information on stimulus identity, whereas ab-
solute latencies reflect stimulus intensity (Belmabrouk et al.,
2011). Similarly, an imaging study in the rat and mouse olfactory
bulb also showed that increasing odor concentration resulted in
reduced absolute response latencies, whereas the sequence of glo-
merular activation was unaffected (Spors and Grinvald, 2002).

Finally, we compared the classification performance of the
latency rank code with the honeybees’ behavioral generalization
between a learned odorant and a set of different test compounds.
All tests showed a generally high differentiation efficiency and a
low level of generalization for chemically diverse odorants. In-
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stead, a strong generalization was observed for 1-hexanol and
3-hexanol, as predicted by the latency rank code. Contrary to the
predictability codes, the behavioral response of isoamyl acetate-
trained animals turned out to be more complex. As reported
previously, isoamyl acetate appeared to be more difficult to learn
compared with other odorants (Wang et al., 2016). This odorant
is a component of the bee alarm pheromone, which may modu-
late honeybee neurophysiology and explain the reported results
(Urlacher et al., 2010; Baracchi et al., 2017; Nouvian et al., 2018).
Overall, behavioral tests were coherent with an odorant classifi-
cation model based on the glomerular response latency rank
code. Although strong differences in the latency rank code cor-
rectly predict a clear distinction between test odorants, the higher
similarity between latency rank vectors of similar odors is con-
firmed by a high degree of generalization in the behavioral test.
The quantitative analysis of the correct prediction of behavioral
responses by the glomerular code was performed via a goodness-
of-fit test between the neural code-based predictions and the be-
havioral generalization matrix elements. The results reflect the
high agreement between all codes and the behavior, where the
highest significance level is reached by the combined code, sug-
gesting that odor information stored in the latency ranks might
indeed contribute to the control of motor output.

In conclusion, this study provides the first experimental evi-
dence that glomerular response latencies are conserved across
individuals. Consequently, a code based on the glomerular re-
sponse latency rank allows odorant identification across subjects,
with similar prediction accuracy as the glomerular response am-
plitude code. Furthermore, the latency rank code appears to be
concentration invariant, thus supporting the idea that it provides
a fast mechanism to encode odorant identity, which is then com-
plemented by slower features providing odor intensity informa-
tion. Indeed, a comparison of the predictive power of a code
based on amplitude, latency, or both features showed that a com-
bined code has a significantly greater prediction accuracy, sup-
porting the hypothesis that the odor perception may rely on both
a fast/temporal and a slow/spatial component.
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