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Abstract—Network Function Virtualization (NFV) and
Multi-access Edge Computing (MEC) are two technologies
expected to play a vital role in 5G and beyond networks.
However, adequate mechanisms are required to meet the
dynamically changing network service demands to utilize the
network resources optimally and also to satisfy the demanding
QoS requirements. Particularly in multi-domain scenarios, the
additional challenge of isolation and data privacy among
domains needs to be tackled. To this end, centralized and
distributed Artificial Intelligence (AI)-driven resource
orchestration techniques (e.g., virtual network function (VNF)
autoscaling) are foreseen as the main enabler.

In this work, we propose deep learning models, both
centralized and federated approaches, that can perform
horizontal and vertical autoscaling in multi-domain networks.
The problem of autoscaling is modelled as a time series
forecasting problem that predicts the future number of VNF
instances based on the expected traffic demand. We evaluate
the performance of various deep learning models trained over a
commercial network operator dataset and investigate the pros
and cons of federated learning over centralized learning
approaches. Furthermore, we introduce the AI-driven
Kubernetes orchestration prototype that we implemented by
leveraging our MEC platform and assess the performance of
the proposed deep learning models in a practical setup.

Index Terms—5G, Deep Learning, Federated Learning,
Autoscaling, Multi-domain, Multi-Operator Multi-access Edge
Computing, Kubernetes

I. INTRODUCTION

The 5th generation of mobile technology (5G) and beyond
(B5G) is expected to address the demands of emerging
innovative applications from various vertical industries (e.g.,
manufacturing, automotive, healthcare, agriculture), mainly
characterized by ultra-low latency, extremely high
throughput, and increased connectivity density [1]. To satisfy
such challenging performance requirements, Mobile Network
Operators (MNOs) have considered several technological
enablers, amongst which Multi-access Edge Computing
(MEC) and Network Function Virtualization (NFV) are the
two most critical ones [2].

MEC is an ETSI-defined network architecture concept that
brings cloud computing capabilities such as compute,
storage, and network to the edges of the cellular network
where MEC applications could be hosted, thereby, reducing
the delay experienced by users and alleviating the transport
network load [3]. NFV, on the other hand, provides flexibility
and programmability by enabling MEC applications to be
virtualized (i.e., Virtual MEC Application Functions

(VMAFs)) that could be easily deployed and scaled based on
demand from end-users consuming the VMAF [4].

The Mobile Edge nodes have a limited amount of physical
and virtual resource capacity compared to the cloud
datacenters. Therefore, it is necessary to manage these
resources efficiently. An essential characteristic of the NFV
is elasticity. While NFV Management and Orchestration
(MANO) entity (e.g., Kubernetes [5], Open Source
MANO [6], T-nova [7]) enables VMAFs to dynamically
obtain and release resources according to the varying
demands, choosing the correct amount of resources is not a
simple task. Current virtualization platforms offer autoscaling
capabilities using a manual trigger that is reactive (e.g., if
CPU utilization reaches 80%, scale-up VMAF by one).
However, it would be beneficial to have a predictive
autoscaling mechanism in NFV MANO that could
beforehand automatically adapt the resources to the workload
managed by the VMAF without any human intervention. In
this paper, we leverage on Deep Learning algorithms (e.g.,
time series forecasting) to develop predictive autoscaling
solutions for effective resource utilization.

Resource scaling could be either horizontal or vertical [8].
In horizontal scaling (i.e., scaling in/out), the smallest
resource unit is the VMAF (e.g., running on a container or a
Virtual Machine (VM)), and new VMAFs are added or
released as needed. In contrast, vertical scaling (i.e., scaling
up/down) changes the resources assigned to an already
running container or VM, for example, by increasing or
decreasing the allocated CPU. In VMAF autoscaling, there is
a trade-off between cost and Quality of Service (QoS). More
VMAF instances or CPU resources need to be allocated to
guarantee QoS, but allocating more resources increases the
cost. Therefore, the autoscaling mechanism must be aware of
the economic costs of its decisions to reduce the total
expenditure but maintaining an acceptable QoS as agreed in
the Service Level Agreement (SLA) between the end-user
and the application provider (e.g., a round-trip-time).

Currently, industry, academia, and open-source
communities (e.g., Open Network Automation Platform [9]),
are focused on developing Centralized Learning (CL)
algorithms for intelligent end-to-end management and
orchestration of network resources. However, CL requires
aggregating operational data from various data sources (e.g.,
MEC nodes) belonging to single or multiple domains, for
insightful analytics. In the context of this paper,
multi-domain can either mean multiple MNO’s (e.g.,
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Fig. 1: MEC in NFV Reference Architecture as defined by ETSI.

dealing with inter-operator Service Level Agreements) or
multiple geographical domains within a single MNO.
Nonetheless, such data aggregation mechanisms incur
practical challenges, such as regulatory restrictions on
sharing sensitive data (e.g., General Data Protection
Regulation), high bandwidth resources required to transfer
raw data to a central server, and increased risk associated
with single point of failure. Particularly, in a multi-domain
ecosystem, assuring isolation among domains is crucial
because of the security concerns related to one domain
possessing access to other domain’s data.

Therefore, a solution is required to deal with both the
multi-operator collaboration issue and address the
multi-domain (i.e., different geographies) problem within a
single MNO. While these two problems look different, they
share a lot of familiar aspects and can benefit from having
common tools to solve them. Federated Learning (FL) [10]
(i.e., a distributed machine learning approach) is one such
approach where data from multiple domains can be
processed and analyzed in a distributed manner to perform
intelligent end-to-end MANO operations. In this context, FL
offers two main advantages over CL: (i) FL ensures privacy
among the participating domains since the FL algorithm
learns directly from the distributed domain data and only
exchanges model updates among the participants.
Furthermore, FL can leverage techniques such as Secure
Aggregation and Differential Privacy to encrypt data to
protect domains’ information from other domains and
hackers. (ii) FL can significantly reduce the network
bandwidth because only the model parameters are sent to the
centralized aggregator during training process rather than the
stream of raw data like in CL.

In this paper, we will leverage on FL techniques to design
deep learning models for predictive VMAF autoscaling in a
multi-domain setting that can better react to the changing
service requirements, optimize the network resource usage,
and also comply with data protection policies.

The main contributions of this paper are as follows.
(i) We develop and compare different deep learning

algorithms using Feed Forward Neural Networks (FFNN),
Long Short Term Memory (LSTM) networks, and

Convolutional Neural Networks (CNN) for predictive VMAF
autoscaling, in interims of single and multi-step predictions.

(ii) We use the Federated Learning approach to develop
the deep learning algorithms (i.e., those mentioned in step 1)
to preserve the privacy of user data considering the
multi-domain nature of 5G networks and compare their
performance against the centralized approach in step 1. We
investigate and evaluate the performance of two Federated
Learning approaches, i.e., with and without Model
Averaging, on commercial network operator dataset and
compare their predictive autoscaling performance.

(iii) We present the AI-driven Kubernetes-based
orchestration prototype implementation of the designed
horizontal and vertical predictive autoscaling policies, based
on both centralized and federated approaches, leveraging our
MEC platform [11]. We then compare the benefits of a
predictive autoscaling approach to reactive autoscaling.

II. BACKGROUND

A. MANO in MEC-enabled 5G Networks

Fig. 1 represents the MEC in NFV reference architecture,
as defined by ETSI [12]. The Mobile Edge Host consists of
a virtualization infrastructure that provides compute, storage,
and network resources for hosting both the MEC platform
and MEC applications (i.e., VMAFs). The MEC platform is
a collection of essential functionality (e.g., domain name
system, traffic rules manager) required to run VMAFs. The
Mobile Edge Management consists of the MEC Platform
Manager (MPM) and the Mobile Edge Application
Orchestrator (MEAO) responsible for managing the MEC
platform and the lifecycle of MEC applications. NFV
MANO consists of Virtual Infrastructure Manager (VIM),
VNF Manager (VNFM), and NFV Orchestrator (NFVO)
responsible for managing, both physical and virtual compute,
storage, and network resources, lifecycle as well and FCAPS
(Fault, Configuration, Accounting, Performance, and
Security) of VMAFs, and orchestrating end-to-end network
services composed of multiple VNF instances. Moreover,
NFVO is also responsible for exchanging of resource and
service information among other NFVOs, using Or-Or
interface, in a multiple administrative domain scope to
guarantee an end-to-end service performance.

B. Deep Learning

Deep learning or Deep Neural Network (DNN) is a subset
of machine learning in artificial intelligence that has
networks capable of imitating the workings of the human
brain in processing raw data and learning patterns for
effective decision making. Feed Forward Neural Networks
(FFNN), Convolutional Neural Networks (CNN), and
Recurrent Neural Networks (RNN) are the three most
common types of DNNs [13].

FFNN’s are the simplest type of artificial neural networks
that do not have any cyclic connections, and the data passes
from the input layer to the output layer in a single pass without
any state memory of what arrived before. A simple example
of the FFNN is the Multilayer Perceptron (MLP).
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CNN’s are the regularized versions of MLP’s that have
shared-weights architecture and spatial-invariance
characteristics to learn local patterns efficiently, mostly, in
images. CNN’s contain one or more convolutional layers,
which can either be wholly interconnected or pooled. Since
the convolutional layer uses a convolutional operation on the
input, the network can be deeper with only a few parameters.

RNN’s are networks that have cycles and include state
memory to process sequences of inputs. RNN’s share
weights across time, unlike CNN’s, which share weights
across space, thus enabling them to process and represent
patterns in sequential data efficiently. Most common variants
of RNNs include Long Short Term Memory (LSTM) and
Gated Recurrent Units (GRU).

C. Federated Learning
Federated Learning is a recent addition to distributed

machine learning, which aims at training a machine learning
or deep learning algorithm, across multiple local datasets,
contained in decentralized edge devices or servers holding
local data samples, without exchanging their data — thus
addressing critical issues such as data privacy, data security,
and data access rights to heterogeneous data. This approach
of Federated Learning is in contrast to traditional centralized
learning techniques where all data samples are forwarded to
a centralized server and also to classical distributed machine
learning techniques, which assume that the local data
samples are identically distributed and have the same size.

The general design of Federated Learning involves
training local models on local data samples and exchanging
parameters (e.g., weights in a DNN) among those local
models to generate a global model. Federated Learning
algorithms can use a centralized server that orchestrates the
various steps of the algorithm and serves as a reference
clock, or they may be peer-to-peer, where no centralized
server exists [10]. In the rest of the paper (including
simulations and proof-of-concept), we realize FL using a
centralized server whereas the peer-to-peer FL is outside
the scope of this work.

The Federated Learning process is divided into multiple
rounds, each consisting of four steps:

Step 1: Local training - All local servers compute training
gradients or parameters and send locally trained model
parameters to the central server.

Step 2: Model aggregating - The central server performs
secure aggregation of the uploaded parameters from n local
servers without learning any local information.

Step 3: Parameters broadcasting - The central server
broadcasts the aggregated parameters to the n local servers.

Step 4: Model updating - All local servers update their
respective models with the received aggregated parameters
and examines the performance of updated models.

After several local training and update exchanges between
the central server and its associated local servers, it is possible
to achieve a global optimal learning model.

III. RELATED WORK

One of the significant hurdles for the deployment of NFV
is the resource allocation of demanded VNFs or network

services (i.e., a chain of VNFs) in NFV-based network
infrastructures. A comprehensive state of the art on NFV
resource allocation is discussed in [14] by presenting the
fundamental research challenges and introducing a
classification of the main approaches that pose solutions to
solve it. One of the potential solutions for the resource
allocation problem also involves VNF autoscaling [15].
Previous works on VNF autoscaling can be divided into two
categories: reactive mode and predictive mode.

A. Reactive Autoscaling.

In reactive mode, threshold levels can be either statically
pre-defined or dynamically updated. In [16] and [17], the
authors propose scalability mechanisms based on static
thresholds. They define two threshold levels (scaleinthr and
scaleoutthr) to determine if the load reduces below or
exceeds above the respective limits and accordingly triggers
the scaling process. However, such techniques may result in
oscillating behaviour affecting the overall system
performance. On the other hand, [18] and [19] propose
mechanisms such as queuing theory and reinforcement
learning, which allows the scaling policy to be improved
based on dynamic or adaptive thresholds. Although it
performs better than static approaches, it remains a reactive
solution with similar weaknesses.

B. Predictive Autoscaling.

In predictive mode, forecasting techniques (e.g., time
series forecasting) are applied to allow the systems to learn
automatically and to anticipate future needs, based on which
scalability decisions are taken.

The field of time series forecasting has been primarily
influenced by linear statistical methods such as Moving
Average (MA), Auto-Regressive (AR) and Auto-Regressive
Integrated Moving Average (ARIMA). In the 1980s, it was
evident that linear models do not apply to many real-world
applications [20]. Therefore, researchers proposed several
non-linear time series models such as the bilinear model, the
threshold autoregressive model, and the Autoregressive
Conditional Heteroskedasticity (ARCH). We point the
readers to [20] and [21] for a detailed review of previously
introduced linear and non-linear time series models.

In the last two decades, machine learning models have
become main contenders to classical statistical models within
the time series forecasting community. These black-box or
data-driven models are examples of nonparametric non-linear
models which learn the stochastic dependency between the
past and the future using only historical data. [22] provides
a detailed review of different machine learning models (e.g.,
artificial neural networks, decision trees, support vector
machines, nearest neighbour regression) for time series
forecasting. Furthermore, the empirical comparison of
various machine learning models for time series forecasting
is discussed in [23].

In the 5G domain, there already exists a lot of literature
on the use of machine learning models with time series
forecasting to predict traffic loads and in turn to perform
VNF autoscaling. For instance, a comprehensive survey on
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different machine learning methods for reliable resource
provisioning in edge-cloud computing ecosystem is discussed
in [24]. The authors in [25] explore DNN-based and
LSTM-based forecasting framework for VNF resource
requirement prediction using Synthetic Minority
Oversampling Technique and Batch Normalization layer to
deal with the imbalanced dataset. Moreover, they explore the
impact of different feature vector size and the number of
hidden layers on prediction accuracy. They also propose and
evaluate the performance of hybrid LSTM models such as
CNN-LSTM and Bidirectional-LSTM models. Similarly,
[26] offers a novel mechanism, using DNN and LSTM, to
scale 5G core network virtual functions by forecasting the
upcoming traffic load. Through simulations, they compare
the performance of predictive VNF autoscaling to
threshold-based reactive autoscaling.

Similar to the works mentioned above, in our work, we
explore FFNN-based, LSTM-based and CNN-LSTM-based
traffic load forecasting frameworks for VNF autoscaling. But
also, we explore encoder-decoder LSTM and CNN-LSTM
models for multi-step time-series forecasting in VNF
autoscaling. Moreover, we consider both horizontal and
vertical autoscaling, unlike other works that mostly consider
a horizontal approach. But most importantly, we also
propose using Federated Deep Learning techniques for
predictive VNF autoscaling to preserve privacy among
various participants (i.e., multi-domains) in the 5G
ecosystem. Furthermore, we also present a Kubernetes-based
prototype implementation of the designed autoscaling
policies for both centralized and federated approaches.
Additionally, we use real-operator traffic traces to generate
training sets required for predicting auto-scaling decisions,
unlike most other works that are based on simulated datasets.

Standardization activities: Several standardization bodies
such as ETSI, ITU-T, and 3GPP are currently studying the
application of Machine Learning into 5G/B5G mobile network
management. To name a few:

(i) ETSI Zero-touch network & Service Management [27]
is focusing on a novel horizontal and vertical end-to-end
architecture framework intended for closed-loop automation
and optimized for data-driven machine learning algorithms.

(ii) ETSI Experiential Networked Intelligence [28] is
defining a cognitive network management architecture, using
Artificial Intelligence techniques to adjust provided services
based on variations in user needs and business goals.

(iii) Focus Group on Machine Learning for Future
Networks [29] is involved in drafting technical reports and
specifications for applied machine learning in future
networks, including network architectures, interfaces,
protocols, algorithms, and data formats.

(iv) 3GPP specification series 37 [30] is studying about
RAN-centric data collection and utilization for LTE and New
Radio and also on next-generation Self-Optimizing Networks
(SON) for 5G and B5G networks.
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Fig. 2: Multi-domain 5G Mobile Network.

IV. PREDICTIVE AUTOSCALING WITH CENTRALIZED AND
FEDERATED DEEP LEARNING

A. Problem Statement

Consider a multi-domain 5G mobile network composed of
three base stations that are interconnected to each other
through Xn interfaces and are served by their respective core
networks using NG interfaces, as shown in Fig. 2. Each
base station in our network topology is equipped with a
resource-constrained Mobile Edge (ME) Host that is capable
of hosting MEC applications and exchanging/transfering data
using Xn interfaces. Assume that a generic MEC application
is hosted on the ME Host as a container (i.e., application
code and all its dependencies are packaged into a single
image), which acts as a black-box entity performing specific
tasks that require computation. Suppose each MEC
application has a specific performance requirement on its
target response time (Dmax) that must be satisfied.
Therefore, if the incoming workload on the MEC application
increases, either the amount of computing resources assigned
to the application needs to be increased or multiple
application instances need to be instantiated. To this end, we
exploit both horizontal and vertical autoscaling of
containerized MEC applications (VMAFs), which can
introduce performance penalties (e.g., down-time), due to the
enactment of the adaptation actions. The containerized MEC
applications can be instantiated quickly and reliably using
container orchestration tools (e.g., Kubernetes), further
simplifying the process of managing and orchestrating
resources required to run those applications.

Stateless/Stateful VNFs: Realizing VNF scaling has been
challenging, and solutions to date have not been entirely
successful. The main hurdle is that many VNFs are stateful,
with the state that may be read or updated quite often (e.g.,
per-packet, per-flow). Consequently, VNF scaling requires
more than just spinning up a new VM/container and updating
the load-balancer to send a portion of traffic to it. Instead,
VNF scaling must also migrate states across instances and
guarantee affinity between packets and their state (i.e., a
packet being directed to the VNF instance that holds the
state needed to process that packet). Recent works [31] have
examined different options in this regard and demonstrated
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Fig. 3: Autocorrelation Plot for all three Base Stations.

their advantages and disadvantages. The three proposed
approaches include: (i) all state is local to the VNF, (ii) all
state is remote and stored in a centralized store (also termed
as stateless VNF), and (iii) a hybrid local-remote approach.
In the rest of the paper, when we say VNF scaling, we refer
to the remote-only approach or stateless VNF approach,
which do not have to deal with state migrations.

Given Dataset: The 5G mobile network operator dataset
includes historical traffic load statistics X of individual
mobile users, covering 3 base stations, for 43 consecutive
days. The traffic load samples are in the form of time series
X = {x[t0], x[t1], ..., x[ti−1], x[ti]} and the traces are
collected on an hourly timescale. The samples indicate the
average traffic load per second for that hour and not the peak
traffic load. So, the samples do not account for any short
bursts (e.g., due to unexpected events) in traffic for that hour.
We observed that there exist a clear trend and seasonality
(i.e., weekend spikes) in the traffic load samples for all three
base stations. The randomness in the time series or the
correlation among traffic load samples for all three base
stations is computed, as shown in Fig. 3, through an
autocorrelation plot. Due to the privacy (Non-disclosure
agreement) constraints, we cannot open-source our dataset.
Therefore, in Table 1, we list the statistical properties of
traffic load samples (in GBPS) in our dataset for each base
station (BS):

ID range mean variance skewness kurtosis

BS1 0 - 5.85 0.89 1.08 2.02 3.87
BS2 0 - 4.01 0.45 0.32 2.04 5.03
BS3 0 - 4.79 0.60 0.65 1.58 2.30

TABLE I: Statistical properties of traffic load samples per base station

Find: Firstly, centralized neural network models that can
predict the future values of x[ti] i.e., the actual number of
VNFs or CPU milllicores required at time
ti+1, ti+2, ..., ti+n. Secondly, neural network models that is
trained in a distributed manner (e.g., using Federated
Learning), where no raw data from either of the base stations

are transmitted to the centralized location to preserve
privacy. Finally, compare the autoscaling prediction
performance of all neural network models developed.

Objective: Maximize Quality of Service (QoS) for the
MEC application consumer or minimize operational cost for
the service provider. The logic behind mapping the traffic
load samples in X to the number of VNFs or 100 millicore
CPU units required to process that traffic load is based on
the above-chosen objective. The accuracy of the prediction
largely influences the achieved goal.

B. Deep Neural Networks and Time Series Forecasting

Deep Neural Networks define parameterized functions
from inputs to outputs as arrangements of many layers of
fundamental building blocks called nonlinear functions.
Common examples of nonlinear functions are sigmoids and
rectified linear units (ReLUs). By adjusting the parameters of
these nonlinear functions, such a parameterized function can
be trained with the goal of fitting a given set of training
samples. To be more specific, we define a loss function L(θ)
over parameters θ, which is the average loss over all training
samples {x1, x2, ......, xn}. So, equation 1 represents the
penalty for mismatch in the training data. The goal of
training is to find the θ that results in the smallest loss,
normally using the stochastic gradient descent (SGD)
technique. In SGD, a batch of samples is selected in random
instead of the whole data set, for each iteration, and the
gradient change is computed to update θ, based on the
direction of gradient change, to achieve the local minimum.

L(θ) = 1/N
∑
i

L(θ, xi) (1)

Time is continuously moving forward, and thus, it is
difficult to deal with temporal data. Time series
forecasting [32] is challenging, mainly when dealing with
long sequences, noisy data, multiple input/output variables,
and multi-step forecasts. Deep learning techniques provide
significant advantages for time series forecasting, such as
automated learning of temporal dependence and automated
handling of temporal structures such as trend and seasonality.
In particular, LSTM neural network has been adopted mainly
for time series forecasting. Adding convolutional layers to
capture local, temporal patterns on top of LSTM layers can
be immensely helpful in specific scenarios.

C. Data Transformation for Time Series Forecasting

In our traffic load dataset, extending backward from time t
we have a time series of {x[ti], x[ti−1], ...}. We now want to
estimate x at a future time ti+s, where s is called the
horizon of prediction. We can predict multiple time samples
in the future. This is basically a function approximation
problem which is represented by equation 2.

x[ti+s] = f(x[ti], x[ti−1], ...) (2)

We now transform this function approximation problem
into a supervised learning problem by using previous time
steps as input variables (X) and using the next time step as
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an output variable (y), and finally an algorithm is used to
learn the mapping function from the input to the output. We
propose two different approaches: (i) QoS prioritized time
series forecasting (YQ) where the network operator gives
priority to QoS over the cost; and (ii) Cost prioritized time
series forecasting (YC) where the network operator chooses
to neglect short-lived bursty traffic to avoid over-provisioning
of VNFs or 100 millicore CPU units. Therefore, the mapping
of traffic load values (Y ) to number of VNFs or 100
millicore CPU units per VNF is based on equation 3 and 4.

YQ(t) = min(vnfmax, ceil(
λ(t)

γ
)) (3)

YC(t) = min(vnfmax, f loor(
λ(t)

γ
)) (4)

where λ(t) is the traffic load in a base station at time t, γ is
the maximum traffic load a single VNF or 100 CPU millicore
units can handle, and vnfmax is the maximum number of
VNFs that can be hosted on the MEC node or (maximum CPU
millicore units)/100 that can be assigned to each VNF. It is to
be noted that since we do not have more details on the nature
of the traffic (e.g., video or web or audio) in our dataset, we
consider the traffic to be a mix of everything. Therefore, when
mapping traffic load to CPU, γ remains the same at all time
intervals. For the benefit of readers, we recommend looking
at [33], which describes how to determine the amount of CPU
required by the VNF to process different kinds of traffic.

The successive values of our time series can be preserved
if we can set up a shift register of delays (e.g., like in
LSTM), which allows each past value to be an additional
spatial dimension in the input to our deep learning prediction
model. Since the input space to the predictor needs to be
finite, at each time instant t, we truncate the history to only
previous z samples (z is called the embedding dimension).

D. Dataset Decomposition

Our dataset is decomposed into training, validation, and
test datasets. We use a rule-of-thumb decomposition
conforming to 60%:20%:20% between the training,
validation, and test datasets, respectively. The data samples
of base station 3 do not fluctuate a lot or is almost static
(also evident from the autocorrelation plot in Fig. 3).
Therefore, we took a semi-randomness approach to split
train/validation/test datasets by choosing (randomly) equal
data samples from all three base stations. This was done to
avoid having all or majority of data samples from base
station 3 in training and validation datasets, which could be
a possibility if we took the approach of complete random
selection. If the regression performance metrics indicate
overfitting, the K fold cross-validation technique can be used
to generate multiple mini train-test splits to tune our
neural-network models, which was not necessary in our case.

E. Centralized Learning for Deep Neural Networks

Finding the parameters of a neural-network model means
searching for the best hyperparameters that can make the
best predictions on the input. We applied grid search and

baby-sitting as search strategies to perform an extensive
search on the space of hyperparameters to find the most
accurate neural-network model. This process included
finding the number of hidden layers and nodes, the batch
size, the regularization parameter, the learning rate of the
optimizer, and the number of epochs. We encountered the
process of finding hyper-parameters time-consuming and
hard, which assures that this topic still requires significant
research. Our search space for finding optimal
hyperparameters for neural-network models are as follows:
• Hidden layers (hn) - 1 to 10.
• Nodes per layer (d) - 24, 48, 72 and 96.
• Activation function per layer (A) - ReLU and tanh.
• Optimizers (O) - adam and SGD.
• Learning rates (lr) - 0.1, 0.01 and 0.001.
• Number of epochs (E) - 100 to 500 in intervals of 100.
• Loss functions (L) - huber and mean squared error.
• Batch size (B) - multiples of 48 upto 480.
• Regularization - Dropout (probability of 0.2 to 0.5).
Motivation for choosing above hyperparameter range: In

our dataset, in addition to weekday and weekend pattern, we
also observe day and night pattern. Since our samples are in
hourly timescale (i.e., 24 per day), we choose multiples of
24 (i.e., 24, 48, 72, 96) as the possible number of hidden
nodes per layer. Consequently, we choose the batch size to
be in the multiples of 48 (i.e., 48 to 480) to at least include
two-day samples in each batch. Loss functions are chosen
based on their sensitivity to outliers, i.e., mean squared error
being more sensitive while Huber being less sensitive. For
selecting the activation function and optimizer, we keep the
most commonly used options in our search space. Finally,
we would like to point out that we tried using only one
hidden layer in our model, which leads to the network
becoming too simple and ineffective to represent the desired
mapping (i.e., high bias). Therefore, due to the increased
number of hidden layers, the number of model parameters to
be fitted will be much higher than our actual data sample
size (i.e., 3096 samples). Consequently, we use stronger
regularization methods (e.g., dropout) to prevent overfitting.

Modeling Centralized DNNs using Tensorflow:
TensorFlow [34] is an end-to-end open-source Python library
for machine learning. It is characterized by a clean, uniform,
and streamlined high-level API, allowing users to rapidly
define, train, and evaluate machine learning models. In
TensorFlow, the structure of the neural network model can
be defined in a modular way using either the Sequential API
or the Subclassing API, as a standalone and fully
configurable module, which can be readily plugged together.
TensorFlow offers several predefined neural layers, such as a
dense layer, a recurrent layer, and a convolutional layer. A
wide range of activation functions, predefined loss functions
and regularization schemes are also supported.

1) Naive Time Series Forecasting: A common naive
forecasting technique is to use the persistence model, which
estimates the value of the next step to be the same as that of
the previous step. Nevertheless, this method performs very
poorly on our seasonal data. Therefore, we consider a
seasonal persistence model using the observed value from the
previous day, i.e., ŷt+i|t = yt+i−q , where q is the seasonal
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period (i.e., in our case q is 24 hours or 24 samples). We
will use this seasonal persistence model as the benchmark
for comparison with other time series forecasting approaches.

2) FFNN for Time Series Forecasting (Algorithm 1): The
time-series data, which includes one feature (i.e., number of
VNFs or number of 100 millicore CPU units per VNF), is
transformed into a supervised learning format with embedding
dimension of z = 48, i.e., only 48 previous time steps are fed as
input to the deep learning model. The data from the input layer
is passed through 3 dense hidden layers with 48 or 24 hidden
nodes per layer and using ReLU as the activation function in
all nodes. The output layer has a single node for the regression
output. For backpropagation, we use an efficient adam version
of SGD with 0.01 learning rate, huber loss function, and 200
epochs. In each epoch, we calculate the loss (i.e., derivative)
and then update the weight matrix for the next epoch based
on the learning rate (lines 7-10). The objective is to minimize
the loss on each epoch and to reach the local minimum. Once
the model is defined and fit on the training data, the model
can be used to predict for the next time step.

Algorithm 1: FFNN for Time Series Forecasting

1 h1, h2, h3 ← dense layer;
2 Dropout Probablity ← 0.5;
3 d1, d2 ← 48, d3 ← 24;
4 A1, A2, A3 ← ReLU;
5 O ← adam, L← huber loss, lr ← 0.01, E ← 200;
6 train set←

base station 1+ base station 2+ base station 3;
7 model← define(h1, h2, h3, d1, d2, d3, A1, A2, A3);
8 for i = 1, i ≤ E, i = i+ 1 do
9 L(i)← compile(model, train set,metrics);

10 new weights(i)← weight update(L(i), O, lr);
11 update(model, new weights(i))

12 return model;

3) LSTM for Time Series Forecasting (Algorithm 2): The
main difference in the LSTM model over the FFNN model is
that the data from the input layer is passed through 3 LSTM
hidden layers with 48 hidden nodes per layer, so as to process
each input sub-sequence of 48 time steps, and using ReLU
as the activation function in all nodes. The output of the final
LSTM hidden layer is followed by 2 dense hidden layers with
48 and 24 nodes, respectively, to interpret the summary of the
input sequence. The backpropagation parameters are the same
as that of the FFNN model with an objective to minimize the
prediction error by reaching the local minimum (lines 7-10).

4) CNN-LSTM for Time Series Forecasting (Algorithm 3):
The main difference in the CNN-LSTM model over the
LSTM model is that the data from the input layer is passed
through 2 conv1D hidden layers, with 64 filters and a kernel
size of 3, followed by a dropout layer for regularization.
CNN layers can extract very informative, deep features,
which are independent of time. CNN’s learn very quickly, so
the dropout layer is needed to slow down the learning
process, eventually resulting in a better final model. The
output of the final conv1D hidden layer is followed by 3
LSTM hidden layers, each with 48 nodes, and 2 dense

Algorithm 2: LSTM for Time Series Forecasting

1 h1, h2, h3 ← LSTM layer, h4, h5 ← dense layer;
2 Dropout Probablity ← 0.5;
3 d1, d2, d3, d4 ← 48, d5 ← 24;
4 A1, A2, A3, A4, A5 ← ReLU;
5 O ← adam, L← huber loss, lr ← 0.01, E ← 200;
6 train set←

base station 1+ base station 2+ base station 3;
7 model← define(h1...h5, d1...d5, A1...A5);
8 for i = 1, i ≤ E, i = i+ 1 do
9 L(i)← compile(model, train set,metrics);

10 new weights(i)← weight update(L(i), O, lr);
11 update(model, new weights(i))

12 return model;

hidden layers with 48 and 24 nodes, respectively. All hidden
layer nodes use ReLU as their activation function. The
backpropagation parameters are the same as that of the
FFNN model with an objective to reach the local minimum
(lines 7-10).

Algorithm 3: CNN-LSTM for Time Series Forecasting

1 h1, h2 ← conv1D layer, h3, h4, h5 ← LSTM layer,
h6, h7 ← dense layer;

2 Dropout Probablity ← 0.5;
3 d1, d2, d3, d4, d5, d6 ← 48, d7 ← 24;
4 A1, A2, A3, A4, A5, A6, A7 ← ReLU;
5 O ← adam, L← huber loss, lr ← 0.01, E ← 200;
6 train set←

base station 1+ base station 2+ base station 3;
7 model← define(h1...h7, d1...d7, A1...A7);
8 for i = 1, i ≤ E, i = i+ 1 do
9 L(i)← compile(model, train set,metrics);

10 new weights(i)← weight update(L(i), O, lr);
11 update(model, new weights(i))

12 return model;

5) Encoder-Decoder LSTM for Multi-step Time Series
Forecasting (Algorithm 4): The Encoder-Decoder LSTM
model is comprised of two sub-models: the encoder and the
decoder. The encoder is responsible for reading and
interpreting the input sequence. The output of the encoder is
a fixed-length vector that represents the model’s
interpretation of the time-series sequence. The output of the
encoder is fed as input to the decoder.

The data from the input layer is fed to the LSTM hidden
encoder layer, with 48 nodes, to read and encode the input
sequences of 48 time steps. The encoded sequence is
repeated three times by the model, for the 3 output time step
predictions required, using a RepeatVector layer. This
sequence is then passed through 2 LSTM hidden decoder
layers with 48 nodes per layer. Then, the sequence is passed
through 2 dense hidden decoder layers with 48 and 24 nodes,
respectively, before using a dense output layer wrapped in a
TimeDistributed layer to produce one output for each time
step in the output sequence. All nodes use ReLU as the
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activation function. For backpropagation, we use an efficient
adam version of SGD with 0.01 learning rate,
mean squared error loss function, and 500 epochs. In
each epoch, we calculate the loss (i.e., derivative) and then
update the weight matrix for the next epoch based on the
learning rate so as to reach the local minimum (lines 9-11).

Algorithm 4: Encoder-Decoder LSTM for Multi-step Time
Series Forecasting

1 h1, h2, h3 ← LSTM layer, h4, h5 ← dense layer;
2 r1 ← repeatvector layer;
3 Dropout Probablity ← 0.5;
4 d1, d2, d3, d4 ← 48, d5 ← 24, d(r1)← 3;
5 A1, A2, A3, A4, A5 ← ReLU;
6 O ← adam, L← mse loss, lr ← 0.01, E ← 200;
7 train set←

base station 1+ base station 2+ base station 3;
8 model encoder ← define(h1, r1, d1, d(r1), A1);
9 model decoder ← define(h2...h5, d2...d5, A2...A5)

for i = 1, i ≤ E, i = i+ 1 do
10 L(i)← compile(model encoder +

model decoder, train set,metrics);
11 new weights(i)← weight update(L(i), O, lr);
12 update(model encoder +

model decoder, new weights(i))

13 return (model encoder +model decoder);

6) Encoder-Decoder CNN-LSTM for Multi-step Time
Series Forecasting (Algorithm 5): The major difference in
encoder-decoder CNN-LSTM model over encoder-decoder
LSTM model is that data from the input layer is passed
through 2 conv1D hidden encoder layers, with 64 filters and
a kernel size of 3, followed by a max-pooling layer that
summarizes the most activated presence of a feature. The
encoded sequence is repeated three times by the model, for
the 3 output time step predictions required, using a
RepeatVector layer. This sequence is then passed through 3
LSTM hidden decoder layers and 2 dense hidden decoder
layers, before using a dense output layer wrapped in a
TimeDistributed layer to produce one output for each time
step in the output sequence. All nodes use ReLU as the
activation function. The backpropagation parameters are the
same as that of the encoder-decoder LSTM model to reach
the local minimum (lines 9-11).

F. Federated Learning for Deep Neural Networks

In contrast to the centralized model training techniques,
federated learning allows ME hosts belonging to multiple
domains to collaboratively learn a shared global model,
without the need to transfer or share raw data across domains
or to a centralized server during the training process. The
objective of the training is to find the best hyperparameters
for the federated neural-network models that can make the
best predictions on the input. Our search space for finding
optimal hyperparameters is the same as that of centralized
learning, which was discussed earlier. We adopt two
federated learning approaches, i.e., with and without model

Algorithm 5: Encoder-Decoder CNN-LSTM for Multi-step
Time Series Forecasting

1 h1, h2 ← conv1D layer, h3, h4, h5 ← LSTM layer,
h6, h7 ← dense layer;

2 r1 ← maxpooling layer, r2 ← repeatvector layer;
3 Dropout Probablity ← 0.5;
4 d1, d2, d3, d4, d5, d6 ← 48,

d7 ← 24, d(r1)← 2, d(r2)← 3;
5 A1, A2, A3, A4, A5, A6, A7 ← ReLU;
6 O ← adam, L← mse loss, lr ← 0.01, E ← 200;
7 train set←

base station 1+ base station 2+ base station 3;
8 model encoder ←

define(h1, h2, r1, r2, d1, d2, d(r1), d(r2), A1, A2);
9 model decoder ← define(h3...h7, d3...d7, A3...A7)

for i = 1, i ≤ E, i = i+ 1 do
10 L(i)← compile(model encoder +

model decoder, train set,metrics);
11 new weights(i)← weight update(L(i), O, lr);
12 update(model encoder +

model decoder, new weights(i))

13 return (model encoder +model decoder);

averaging, to train the five neural-network models that were
considered in the centralized approach (from section IV.E).

Modeling Federated DNNs using PyTorch and PySyft:
PyTorch [35] is an open-source Python library that provides
two high-level features: tensor computation (e.g., NumPy)
and deep neural networks built on a tape-based autograd
system. PyTorch also supports a rich ecosystem of tools and
libraries to explore AI development. PySyft [36] is one such
Python library that allows us to handle remote tensors,
remote models, and remote operations through virtual or
physical worker objects for secure and private deep learning
using Federated Learning. In our simulations, we create 4
virtual workers, i.e., 1 for central server (e.g., a trusted third
party) and 3 for ME hosts.

1) Federated Learning without Model Averaging
(Algorithm 6): Initially, we define a neural network model in
the central server with the same architecture as previously
used in centralized learning. We call this model
global model (line 6). The training process includes three
steps (i.e., since we have 3 virtual ME hosts) for each epoch.
First, the central server sends the global model and the
training configuration to the 1st ME host. The 1st ME host
now trains the model on its local training dataset and
updates the weight matrix based on the calculated loss. The
central server now receives the updated local model (with
gradients) from the 1st ME host and assigns it to the
global model (lines 8-12). Now, the central server sends the
updated global model to the 2nd ME host. The 2nd ME
host now trains the model on its local training dataset and
updates the weight matrix based on the calculated loss. The
central server now receives the updated local model (with
gradients) from the 2nd ME host and assigns it to the
global model (lines 8-12). The same process occurs with
the 3rd ME host (lines 8-12). For every epoch, the same
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procedure is repeated until the global loss function
converges, or a desirable accuracy is reached (lines 7-13).

Algorithm 6: Federated Learning without Model Averaging

1 h1...h7 ← conv1D or LSTM or dense layer;
2 d1...d7 ← 48 or 24;
3 A1...A7 ← ReLU;
4 O ← SGD, L← huber loss, lr ← 0.01, E ← 200;
5 train set(1)← base station(1), train set(2)←

base station(2), train set(3)← base station(3);
6 global model←

define(h1, ..., h7, d1, ..., d7, A1, ..., A7);
7 for i = 1, i ≤ E, i = i+ 1 do
8 for j = 1, j ≤ no. of ME hosts, j = j + 1 do
9 model(j)← global model;

10 L(j)←
compile(model(j), train set(j),metrics);

11 new weights(j)←
weight update(L(j), O, lr);

12 global model←
update(model(j), new weights(j));

13 return global model;

2) Federated Learning with Model Averaging (Algorithm
7): The previous approach of Federated Learning has some
significant shortcomings to guarantee data privacy. Most
notably, when the central server receives the updated model
from the 1st ME host and sends the updated model to the
2nd ME host, the 2nd ME host can look at the gradients of
1st ME host and restore their training data to some extent.
Therefore, we employ Federated Learning with a Model
Averaging approach where the gradients from multiple ME
hosts are averaged before updating the global model. This
algorithm has two parts to it: (i) training local models on
each ME host and (ii) averaging the locally trained models
on the central server before updating the global model.

First, the central server sends the global model and the
training configuration to all three ME hosts. Each ME host
now trains the model on its local training dataset and
updates the weight matrix based on the calculated loss. The
central server now receives the updated local models (with
gradients) from all three ME hosts (lines 7-13). The central
server aggregates the gradients received from all three ME
hosts and updates its global model (lines 14). In the next
epoch, the updated global model is now sent to all ME
hosts, and the same procedure is repeated for every epoch
until the global loss function converges, or a desirable
accuracy is reached (lines 6-15).

V. KUBERNETES-BASED IMPLEMENTATION

A. Docker Container and Kubernetes Orchestration

Docker [37] is a software platform designed to build,
deploy, and manage applications easily, quickly, and
efficiently. A Docker container image is a standalone,
lightweight, executable software package, which includes the
application code and all the necessary data for its execution
(e.g., dependencies, system libraries and tools, configuration

Algorithm 7: Federated Learning with Model Averaging

1 h1...h7 ← conv1D or LSTM or dense layer;
2 d1...d7 ← 48 or 24;
3 A1...A7 ← ReLU;
4 O ← SGD, L← huber loss, lr ← 0.01, E ← 200;
5 train set 1← base station 1, train set 2←

base station 2, train set 3← base station 3;
global model←
define(h1, ..., h7, d1, ..., d7, A1, ..., A7);

6 for i = 1, i ≤ E, i = i+ 1 do
7 model 1,model 2,model 3← global model;
8 L1(i)←

compile(model 1, train set 1,metrics);
9 new weights1(i)← weight update(L1(i), O, lr);

10 L2(i)←
compile(model 2, train set 2,metrics);

11 new weights2(i)← weight update(L2(i), O, lr);
12 L3(i)←

compile(model 3, train set 3,metrics);
13 new weights3(i)← weight update(L3(i), O, lr);
14 global model←

federated avg(new weights1(i),
new weights2(i), new weights3(i));

15 return global model;

files). Therefore, containerized applications can be run
reliably in different computing environments. Docker
consists of a container-runtime (e.g., docker-engine) that
enables us to create and run container images, either utilizing
REST APIs or command-line interface. Docker also allows
for configuring a container with a resource quota (e.g., CPU)
that it can use on the host machine. The resource quota can
be updated on runtime, thus also enabling vertical scaling.

Kubernetes [5] is a container-orchestration system for
simplifying and automating application deployment, scaling,
migration, and management across a distributed cluster of
Docker-enabled nodes (e.g., Mobile Edge Host nodes, cloud
nodes). A pod is the basic and smallest execution unit of an
application within the Kubernetes object model that we can
create/deploy. A pod comprises one or multiple application
containers, storage resources, and policies on how the
container must run. Kubernetes architecture follows the
master-workers pattern where the master deals with the
orchestration and scheduling of pods in the worker nodes
based on their computational capabilities. The default
scheduling policy is Spread, which distributes pods among
all worker nodes. To scale an application horizontally, we
must run multiple pods, i.e., one for each instance, which, in
Kubernetes, is referred to as replication.

B. A vendor-agnostic Multi-access Edge Computing Platform
We introduce the vendor-agnostic Multi-access Edge

Computing prototype [11], as shown in Fig. 4, which
consists of an LTE base station, an LTE core network, and a
mobile edge host. The mobile edge host consists of a
multilayer software switch (i.e., open virtual switch),
configurable packet processing elements (i.e., using click
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Fig. 4: A vendor-agnostic Multi-access Edge Computing prototype.

modular router [38]) for traffic routing, and containerized
MEC applications (i.e., nginx webserver). We introduce two
packet processing elements, i.e., S1AP Monitor and GTP
encap/decap. Before jumping into the details of these
elements, we need to recap on how user plane traffic is
managed in the LTE Mobile Network.

Once a User Equipment (UE) completes the attach process
and successfully connects to the mobile network, it can send
or receive data to or from the Packet Data Networks (PDN).
The uplink UE IP traffic received by the base station over
the air interface is encapsulated into a GPRS Tunneling
Protocol (GTP) packet before sending it to the Serving
Gateway (SGW). This GTP tunnel is terminated at the SGW,
where a new GTP tunnel is created towards the PDN
Gateway (PGW). Finally, the PGW removes the GTP header
and forwards the UE IP traffic towards the intended
destination (e.g., the Internet). A similar process takes place
even in the downlink direction.

For the nginx webserver MEC application to operate, the
ME host has to steer IP packets from base station or core
network entities towards the MEC applications running on
the ME host. The MEC applications can either terminate the
IP packets by itself (end-point mode) or modify the IP
packets and pass it back to the original PDN connection
(pass-through mode). In Bump-in-the-wire approach [39],
since user plane traffic is GTP encapsulated, the S1AP
Monitor element monitors the control plane messages (e.g.,
session management, path switch management) and extracts
the UE context information (e.g., GTP tunnel IDs, UE IP
address, base station and core network IP addresses). The
GTP encap/decap element then performs GTP decapsulation
on user plane GTP packets or re-encapsulation on IP packets
based on the UE context information.

C. AI-driven Kubernetes Orchestration in MEC-enabled
Mobile Networks

To enable predictive autonomic capabilities in Kubernetes
orchestration, we extend the Kubernetes architecture to
introduce the Monitor, Analyze, Plan, and Execute (MAPE)
closed control loop. The Monitor component collects
operational data (e.g., CPU), either through a centralized or

distributed approach, from all deployed pods in the worker
nodes. The Analyze component uses the collected data to
perform intelligent analytics (e.g., deep learning for
predictive VMAF autoscaling), either through centralized or
distributed techniques, and to decide whether an adaptation
is necessary for the deployed pods. If the adaptation is
required, the Plan component defines an adaptation plan
(e.g., scale VMAF1 by one instance at time t + i) for the
deployed VMAFs, which is performed by the Execute
component, i.e., Kubernetes master. The modularity and the
support of APIs allow us to integrate our MAPE components
in Kubernetes easily. To exchange data and model updates
between central server (Master) and local ME hosts
(Workers), we use websocket server-client connections. In
practical deployments, a distributed streaming platform (e.g.,
Apache Kafka [40]) could be used for building real-time
data pipelines instead of websocket connections.

Our AI-driven Kubernetes orchestration prototype follows
the masters-workers pattern, which decentralizes the MAPE
closed control loop. In particular, as shown in Fig. 5, the
prototype includes one master node, which runs all the
MAPE phases, and three ME host worker nodes, which runs
either the M phase for centralized analytics approach or
MAP phases for distributed analytics approach. The nodes
are interconnected using a Flannel overlay network, which
facilitates cluster networking. Each of these nodes runs a
Kubelet, i.e., a Kubernetes node agent that plays the role of
a Monitor component, which natively collects metrics (e.g.,
CPU utilization) about containers running on the node in the
time-series format. The collected data is either transferred to
a centralized master node or stored in the respective worker
nodes. Centralized and Federated Deep Learning takes the
role of Analyze and Plan components, which
analyzes/interprets the collected time-series data, either
through centralized or federated approaches, and predicts the
required future actions. Finally, Kubernetes Master (i.e.,
kube-scheduler) serves the role of Execute component,
which increases or decreases the VMAF pods (i.e., through
replica sets) or 100 millicore CPU units per VMAF (i.e., by
updating the CPU capacity of the pod with a new
deployment) in a particular worker node. For our
demonstration, nginx web servers are containerized and
deployed as MEC application pods on worker nodes.

For reactive autoscaling, the Metrics Server [41] retrieves
metrics exposed by kubelet on each node through the
Resource Metrics API and aggregates the cluster-wide
resource usage data. The Horizontal Pod Autoscaler (HPA)
and Vertical Pod Autoscaler (VPA) are custom resource
definition objects (i.e., resource quotas such as CPU,
memory) for horizontal and vertical autoscaling, respectively.
These autoscaler objects fetch metrics from a series of
aggregated APIs provided by Metrics Server and thus
facilitates autoscaling the number of pods or CPU millicores.

Moreover, the Prometheus monitoring application [42] can
retrieve all the collected metrics from the worker nodes into
a time-series database. It then allows querying them
on-demand, thus facilitating data visualization through
Grafana [43] integration.
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Fig. 5: Prototype of AI-driven Kubernetes Orchestration in MEC-enabled Mobile Networks.

VI. EXPERIMENTAL RESULTS

A. Simulation Environment

We consider a mobile network scenario with three ME
Hosts, as shown in Fig. 2. Suppose each of these MEC hosts
is capable of hosting MEC applications or VNFs on their
NFV Infrastructure, as shown in Fig. 5. For horizontal VNF
autoscaling, we assume that each ME host node can host a
maximum of 10 VNFs (this assumption is based on the fact
that MEC hosts are resource-constrained as compared to the
centralized Cloud, which can host 100’s of VNFs at a time,
since they are located closer to the base station) where each
of those VNFs has 1000 millicore CPU units. For vertical
autoscaling, the scaling step size is set at 100 millicore CPU
units (i.e., reaching up to a maximum of 1000 millicores per
VNF). As traffic load increases, additional VNF/CPU
instances are deployed to satisfy QoS requirements, whereas
if traffic load declines, VNF/CPU instances are removed to
minimize operational costs. Once the neural-network models
are created as discussed earlier, the performance of these
models is assessed based on correctly predicted outcomes in
a test dataset. The centralized neural-network models are
realized using the TensorFlow machine learning platform,
while federated neural-network models are implemented
using PyTorch and PySyft machine learning libraries.

We evaluate our neural-network models using three
performance metrics: mean absolute error (MAE), mean
squared error (MSE), and root mean squared error (RMSE).
MAE calculates the average magnitude of errors in a set of
predictions, without recognizing their direction (i.e., the
average of the absolute values of variations between the
prediction and the corresponding observation). MSE
estimates the average of the squares of the errors (i.e., the
average squared deviation between the predicted values and
the original values). RMSE is a quadratic scoring rule which
estimates the average magnitude of the error (i.e., the
difference between the estimated values and the original
values are each squared and then averaged over the sample).

Then, the square root of the average is calculated. These
performance metrics are represented using box plots, where
the box portion of the box plot is defined by three lines at
25th percentile, 50th percentile and 75th percentile. The
distance between the upper (75th percentile) and lower (25th
percentile) lines of the box, called the inter-quartile range,
gives the spread of our performance metrics.

B. Simulation Results

1) Naive vs FFNN vs LSTM vs CNN-LSTM
neural-network models: The box plots in Fig. 6 compares
the performance of Naive, FFNN, LSTM, and CNN-LSTM
neural-network models for both QoS and cost prioritized
horizontal autoscaling objectives by performing 10 runs of
simulation for each case and measuring MAE, MSE, and
RMSE in predicted number of VNF instances. Please note
that we compare only the median values from the box plot.
We use 3072 samples from the dataset and divide into
training, validation, and test samples in the ratio of
60%:20%:20%.

For QoS prioritized autoscaling, the CNN-LSTM neural-
network model performs the best with 0.54 MAE, 1.36 MSE,
and 1.16 RMSE. The second best is the LSTM model with
0.55 MAE, 1.39 MSE, and 1.17 RMSE. The third best is the
FFNN model with 0.64 MAE, 1.42 MSE, and 1.19 RMSE,
and the worst performant is the Persistence model with 4.35
MAE, 13.94 MSE, and 3.73 RMSE.

For cost prioritized autoscaling, the LSTM neural-network
model delivers the best at 0.31 MAE, 1.01 MSE, and 1
RMSE. The second best is the FFNN model with 0.42 MAE,
0.94 MSE, and 0.96 RMSE. The third best is the
CNN-LSTM model with 0.44 MAE, 1.44 MSE, and 1.2
RMSE, and the worst performant is the Persistence model
with 3.28 MAE, 12.32 MSE, and 3.51 RMSE.

2) Multi-step forecasting encoder-decoder models: The
box plots in Fig. 7 compares the performance of LSTM and
CNN-LSTM encoder-decoder neural-network models with
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Fig. 6: Comparision of the proposed neural-network models with QoS
and Cost prioritized autoscaling objectives.

QoS prioritized horizontal autoscaling objective by
performing 10 simulation runs for each case and measuring
MAE, MSE, and RMSE for 1st-step, 2nd-step, and 3rd-step
predictions of number of VNF instances.

For 1st-step prediction, the CNN-LSTM encoder-decoder
model measures with 0.06 MAE, 0.01 MSE, and 0.06 RMSE,
and the LSTM encoder-decoder neural-network measures with
0.52 MAE, 0.58 MSE, and 0.52 RMSE.

For 2nd-step prediction, the CNN-LSTM encoder-decoder
model measures with 0.08 MAE, 0.01 MSE, and 0.08 RMSE,
and the LSTM encoder-decoder neural-network measures with
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Fig. 7: Comparision of the proposed encoder-decoder neural-network
models for 1st-step, 2nd-step and 3rd-step predictions.

0.72 MAE, 1.15 MSE, and 0.72 RMSE.
For 3rd-step prediction, the CNN-LSTM encoder-decoder

model measures with 0.18 MAE, 0.07 MSE, and 0.18 RMSE,
and the LSTM encoder-decoder neural-network measures with
0.82 MAE, 1.46 MSE, and 0.82 RMSE.

In all three cases, the CNN-LSTM model performs the best
compared to the LSTM model. Also, the 1st-step predictions
are better than the 2nd and 3rd-step predictions in both models.

In summary, it is worth mentioning that based on the
previous analysis from Fig. 6 and Fig. 7 we can conclude
that although LSTM models constitute a popular and robust
choice for load forecasting time series, their usage along
with convolutional layers could provide a boost in the
development of an efficient forecasting model. The reason
being convolutional layers in CNN-LSTM will extract useful
knowledge and learn the internal representation of
time-series data while the LSTM layers identify the
short-term and long-term dependencies.

3) Centralized vs Federated Learning: The box plots in
Fig 8 compares the performance of centralized learning
models to federated learning models (i.e., with and without
model averaging) trained on the distributed data (i.e., 3
virtual ME host nodes). The models are evaluated for QoS
prioritized horizontal autoscaling objective by running 10
simulations for each case and measuring MAE, MSE, and
RMSE in predicted number of VNF instances. The Table II
also shows the comparison of MAE, MSE, and RMSE
median values for centralized and federated learning neural
network models. For each of the three neural network
models (i.e., FFNN, LSTM, and CNN-LSTM), the
centralized model performs the best. The second best is the
federated learning without model averaging, and the worst
performant is the federated learning with model averaging.
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Fig. 8: Comparision of the proposed neural-network models with
centralized, federated-without-ML and federated-ML algorithms.

The performance of federated learning models is poorer
compared to the centralized approach, mainly because of the
non-IID data distribution on each local ME host i.e., the
skewness of data distribution [44]. The skewness can be
represented as the distance between the data distribution on
each local ME host and the population distribution. Such a
distance can be evaluated with the earth mover’s distance
(EMD) and is inversely proportional to the test accuracy.

C. Prototype-based Results
Based on the encouraging simulation results, we evaluate

both the centralized and federated learning algorithms in the
AI-driven Kubernetes orchestration prototype that we
described earlier. Furthermore, we compare the native
reactive autoscaling solution against AI-driven predictive
autoscaling solutions. The reference MEC application used is
the Nginx web server, which, upon request, serves the web
page request. As seen in Fig. 9, the MEC application
receives a varying number of concurrent requests, such that
the incoming workload pattern follows our traffic load
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Fig. 9: Workload used in the prototype experiments.

dataset used in the simulation. However, for prototype
experiments, we assume that data samples in our real
operator dataset are of 5-minute granularity, thus
simplifying/speeding our prototype evaluations. It is to be
noted that since the traffic load samples are average values
over the entire hour, we generate web requests to achieve the
same workload pattern for 5-minute intervals as well. We
measure the average target response time for different
approaches of horizontal and vertical autoscaling.

Here, we describe the Kubernetes configuration setting
used for reactive autoscaling. For horizontal autoscaling, the
HPA checks metrics values through metrics-server at 30
second time-intervals, and the relative metrics tolerance is
set at 5%. The threshold levels for HPA are set at 100
millicore CPU utilization (i.e., 10% of maximum capacity)
to draw parallel comparisons with vertical scaling.
Additionally, the HPA waits for 3 minutes following the
previous scale-up event to allow metrics to stabilize. It then
waits for 5 minutes from the last scale-down event to avoid
autoscaler thrashing. For vertical autoscaling, the VPA
checks metrics values through metrics-server at 10 second
time-intervals and operates using Auto mode (i.e., not a
typical reactive approach with threshold levels but uses a
recommender system that can predict future pod resource
requirements). The VPA waits for approximately 5 minutes
following the previous scale-up or scale-down event to avoid
the ping-pong effect. The changes in the resource limits of
pods result in restarting the pod that might lead to instability.
It is to be noted that VPA and HPA cannot work together on
the same pod since both are not compatible.

1) QoS-prioritized/Cost-prioritized predictive vs Reactive
Horizontal Autoscaling: In the QoS-prioritized case,
optimizing the average response time is more important than
minimizing the resource allocation cost. Fig 10 compares the
reactive horizontal autoscaling approach with the best
performing (based on our simulation results) QoS-prioritized
predictive centralized learning neural network model
(LSTM). Minimizing resource allocation cost is more
important than optimizing the average response time in a
cost-prioritized case. Fig 11 compares the reactive horizontal
autoscaling approach with the best performing (based on our
simulation results) cost-prioritized predictive centralized
learning neural network model (CNN-LSTM). The bottom
plot represents the number of containers with respect to time
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Dataset
FFNN LSTM CNN-LSTM

CL FL - no MA FL - MA CL FL - no MA FL - MA CL FL - no MA FL - MA
MAE 0.64 3.12 3.41 0.55 1.44 1.49 0.54 1.62 1.80
MSE 1.42 11.62 11.96 1.32 3.45 3.62 1.36 3.8 3.96
RMSE 1.19 3.40 3.45 1.14 1.85 1.9 1.16 1.94 1.98

TABLE II: Comparision of MAE, MSE, and RMSE median values for centralized and federated neural network models.
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Fig. 10: Comparision of reactive and best performing predictive QoS-
prioiritized centralized learning model (CNN-LSTM) for horizontal
autoscaling.
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Fig. 11: Comparision of reactive and best performing predictive
Cost-prioiritized centralized learning model (LSTM) for horizontal
autoscaling.

(to be noted that in Fig. 10-14 black lines represent the
ground-truth traffic load data at each time instance calculated
using equations 3 or 4), and the upper plot represents the
corresponding average round-trip-time at that particular time
instance.

Based on both the figures (Fig 10 and Fig 11), it is
evident that reactive autoscaling (i.e., orange lines) is slow in
reacting to sudden traffic load spikes compared to predictive
autoscaling (blue lines). The main cause being the wait time
of 3-5 minutes to perform scale-up or scale-down actions by
Kubernetes HPA after previous scaling events. Therefore, the
reactive points in both Fig 10 and Fig 11 are sometimes seen
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Fig. 12: Comparision of QoS-prioiritized and Cost-prioritized
centralized learning model for horizontal autoscaling.
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Fig. 13: Comparision of centralized, FL-No-MA and FL-MA
predictive QoS-prioiritized CNN-LSTM models for horizontal
autoscaling.

above/below the predictive points, i.e., the HPA is still
performing the scaling action of the previous timestep (3-5
minutes delayed action). Therefore, for reactive autoscaling,
the number of scaled containers at a particular time instance
is less/more than the actual requirement (i.e., black lines),
which directly increases the overall round trip time for the
MEC application users.

2) QoS vs Cost Prioritized Horizontal Autoscaling:
Fig 12 compares the performance of QoS-prioritized and
Cost-prioritized predictive autoscaling approaches by plotting
the predicted number of containers and the corresponding
average RTTs. In cost-prioritized autoscaling (blue lines), as
we see in the bottom graph, the number of scaled containers
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Fig. 14: Comparision of centralized, FL-No-MA and FL-
MA predictive QoS-prioiritized CNN-LSTM models for vertical
autoscaling.

is less than that of the QoS-prioritized autoscaling (red lines)
to handle the same traffic load (e.g., see x-axis at timeslot 20
min). Consequently, as we see in the top graph, the RTT
(e.g., again see x-axis at timeslot 20 min) for
Cost-prioritized case is much higher than the QoS-prioritized
case to serve the same traffic load. However, it is to be noted
that at one particular time slot (i.e., at 75 minutes in Fig 12)
the neural network for QoS-prioritized mechanism predicted
9 containers while for Cost-prioritized it predicted 10.
Although we expect equal or more containers for
QoS-prioritized than Cost-prioritized, we could not justify
the reason for this prediction due to the black-box nature of
neural networks. This would be something we plan to
explore with Explainable AI in the future.

Similarly, let us consider the total cost to be directly
proportional to the number of containers hosted (i.e.,
ignoring the cost of QoS violations). At timeslot 20 min,
QoS-prioritized approach hosts 4 VNFs to achieve an RTT
of 76 seconds while the cost-prioritized approach hosts 3
VNFs to achieve an RTT of 106 seconds. Therefore, the
cost-prioritized approach is cheaper by 25% to
QoS-prioritized approach but with a poorer QoS/RTT.

3) Centralized vs Federated Learning QoS-prioritized
predictive Horizontal/Vertical Autoscaling: Fig 13 and
Fig 14 compares the performance of centralized learning
model to federated learning models (i.e., with and without
model averaging), trained on the distributed data (i.e., 3
physical ME host nodes) using CNN-LSTM neural network,
for QoS-prioritized horizontal and vertical autoscaling,
respectively. The bottom plot represents the number of
containers or the number of 100 millicore CPU units with
respect to time. The upper plot represents the corresponding
average round-trip-time at that time instance.

Based on both the figures (Fig 13 and Fig 14), it is clear
that the centralized learning model (blue lines) performs
better autoscaling predictions compared to federated learning
models, i.e., with (red lines) and without (green lines) model

averaging. Consequently, the overall round trip time for the
MEC application users increases in the federated learning
models approach. In particular, for vertical autoscaling
(Fig 14), round trip times are significantly higher compared
to the horizontal autoscaling, especially at traffic load peaks,
due to the pod restarts on each adaptation and the time it
takes to bring the Kubernetes cluster to a stable state.

CPU Utilization. The ME hosts in our proof-of-concept
experiments used Intel Core i7 processor (1.8 GHz with 4
Cores), and we observed that the CPU utilization maxes out
to 100% during ML model training, thus slowing down all
other processes and heating the system. Therefore,
considering the resource limitations of ME hosts, running AI
algorithms on ME hosts is a very challenging problem to
solve. However, this is a research problem that the MEC
community is trying to address over the last couple of years.
In the future, MEC nodes will include specialized hardware
solutions (e.g., FPGA-based GTP accelerators, GPU-based
video/audio accelerators) to host low-latency MEC
applications (e.g., Virtual Reality) that will make use of AI
algorithms. Therefore, a percentage of such hardware
resources must be reserved for 5G network management
related AI algorithms. Nevertheless, we acknowledge the fact
that this is a drawback in our proposed approach to use FL.

VII. CONCLUSIONS

The first part of the paper aims to design centralized and
federated deep learning techniques for predictive autoscaling
with QoS-prioritized and cost-prioritized objectives. We
model the autoscaling problem as a time series forecasting
problem and determine one-step and multi-step future
predictions using real-operator traffic load datasets for
training, validation, and testing. We evaluate and compare
FFNN, LSTM, and CNN-LSTM models by measuring the
MAE, MSE, and RMSE key performance metrics. For
centralized learning and one-step predictions, CNN-LSTM
performs the best for the QoS-prioritized objective and
LSTM performs the best for the cost-prioritized goal. For
centralized learning and multi-step predictions, the
encoder-decoder CNN-LSTM model outperforms the
encoder-decoder LSTM model. For federated learning, both
LSTM and CNN-LSTM models perform equally better than
the FFNN model. Finally, federated learning performs poorly
compared to centralized learning due to the non i.i.d. data
samples in the individual local ME host nodes.

The second part of the paper aims to design and
implement a AI-driven Kubernetes-based orchestration
prototype by leveraging our MEC platform. We evaluate
both centralized and federated learning models for horizontal
and vertical containerized-VMAF (i.e., Nginx webserver as a
MEC application) autoscaling by measuring the overall
round trip time. Furthermore, we compare the native reactive
autoscaling approach to our predictive autoscaling
techniques. The prototype evaluations confirm the simulation
results achieved in the first part.
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