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We present a method for detection and reconstruction of the gravitational-wave (GW) transients
with the networks of advanced detectors. Originally designed to search for transients with the
initial GW detectors, it uses significantly improved algorithms, which enhances both the low-latency
searches with rapid localization of GW events for the electro-magnetic followup and high confidence
detection of a broad range of the transient GW sources. In the paper we present the analytic
framework of the method. Following a short description of the core analysis algorithms, we introduce
a novel approach to the reconstruction of the GW polarization from a pattern of detector responses
to a GW signal. This polarization pattern is a unique signature of an arbitrary GW signal that can
be measured independent from the other source parameters. The polarization measurements enable
rapid reconstruction of the GW waveforms, sky localization and helps identification of the source
origin.

PACS numbers: 04.80.Nn, 07.05.Kf, 95.55.Ym, 04.30.Db

I. INTRODUCTION

Advanced LIGO detectors [1] has started their oper-
ation at unprecedented sensitivity targeting first detec-
tion of gravitational waves from astrophysical sources.
A more robust detection of gravitational waves is an-
ticipated in the next few years as the advanced LIGO
reaches its designed sensitivity and the other advanced
detectors Virgo [2], Kagra [3] and LIGO-India [4] come
online. Numerous GW signals, expected to be observed
by the advanced detectors (∼ 40 binary neutron star and
possible black hole mergers per year [5]) will begin our
exploration of the gravitational-wave sky and start the
era of the gravitational wave astronomy.

The advanced detectors target detection of GW tran-
sients for a wide range of promising astrophysical
sources including: various types of gamma-ray bursts,
core-collapse supernovae, soft-gamma repeaters, cosmic
strings, late inspiral and mergers of compact binaries,
ring-downs of perturbed neutron stars or black holes, and
as-yet-unknown systems. Most of these sources are dif-
ficult to model, due to their complicated dynamics and
because the equation of state of matter at neutron star
densities is not known. Therefore, the search algorithms
have been developed [6–9] for detection of GW transients,
or bursts of GW radiation in the detector bandwidth,
with no or little assumptions on the source models.

There are two different ways the GW searches are con-
ducted: in real time and searches on the archived data.
The objective of the real time burst search is the iden-
tification and reconstruction of significant event candi-

dates with low latency (within few minutes). The recon-
structed sky location can be promptly shared with the
partner telescopes, which search for a coincident electro-
magnetic (EM) counterpart [10, 11]. A prominent source
for such join observation is a merger of compact binary
objects where one of the companions (or both) is a neu-
tron star. Such mergers may produce several EM signals:
gamma-ray busts (GRB), GRB afterglow, kilonova, etc,
which will fade away with the time scales ranging from
seconds to days [12]. A small fraction of such mergers
(when the GRB beam is pointing at us) can be indepen-
dently detected by the gamma-ray telescopes and associ-
ated with a GW signal by the time of the event. However,
most of the compact binary mergers require a prompt
sky localization with the GW detectors and follow-up
EM searches for possible afterglow. Similar observations
can be performed for the galactic events such as super-
novae or soft-gamma-repeaters, which may produce both
the EM and neutrino counterparts. On contrary, the
objective of the archived burst analysis is to establish
a significance of observed events and identify their pro-
genitors. Such analysis requires detail background stud-
ies and accurate reconstruction of the source parameters,
which may not be readily available with low latency.

Both types of searches and the sky localization studies
have been performed with the baseline burst algorithm
coherent WaveBurst (cWB) [6] used in the analysis of
data form the initial instruments [13–19]. In this pa-
per we describe the improvements of the cWB algorithm,
which is currently used both for the real time burst search
and several archived searches with the networks of ad-
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vanced detectors. This second generation cWB algorithm
includes several novelties. The time-frequency analysis
has been updated with a novel time frequency trans-
form [20], which improved the waveform reconstruction.
It also significantly improved the computational perfor-
mance of the algorithm, enabling a robust low latency
operation. The data conditioning (whitening, removal of
the spectral artifacts, etc) has been enhanced with the
data regression algorithms [21]. Fast reconstruction of
the chirp mass [22] has been introduced to enable rapid
identification of the compact binary coalescence (CBC)
sources. The extensive sky localization studies have been
performed [23].

In this paper we focus on the cWB analytic framework
enhanced with a novel method for reconstruction of the
GW polarization from the pattern of detector responses
to a GW signal. It significantly simplifies the solution
of the inverse problem in the burst analysis and enables
weakly modeled burst searches with the polarization con-
straints.

The paper is organized as follows. Section II gives in-
troduction into the coherent network analysis, required
to introduce in section III the dual stream likelihood anal-
ysis and the polarization pattern. In sections IV we de-
scribe how it can be used to construct network regulators
- the model independent constraints used in the cWB
analysis.

II. OVERVIEW

A data from a network of K detectors is presented as
discrete series xk[i] in the most general time-frequency
(TF) domain, where k is the detector index in the net-
work and i is the data sampling (TF pixel) index. The
real TF series xk[i] are obtained from the detector time
series with the WDM transform [20]. The data is condi-
tioned to remove spectral features, such as violin, power
and mechanical lines [21].

A detector noise (assuming to be Gaussian) is de-
scribed by the WDM power spectral density Sk[i] es-
timated for every data sample. Therefore, Sk[i] is a
TF series as well, which is convenient for the charac-
terization of a quasi-stationary noise typical for real de-
tectors. The noise-scaled (whitened) data is defined as

wk[i] = xk[i]/
√
Sk[i].

The whitened TS series from all detectors are com-
bined to obtain the energy TF maps E[i] =

∑
k w

2
k[i],

where E[i] are maximized over all possible time-of-flight
delays in the network. The energy maps are used to
identify TF areas (cluster C, i ∈ C) with the excess en-
ergy above the baseline detector noise. The TF clusters,
identified with an appropriate clustering algorithm, de-
fine the burst events, which are analyzed to extract the
signal waveform, polarization and sky location (inverse
problem).

A. Formulation of the inverse problem for bursts

The data vector x[i] = {x1[i], .., xK [i]} recorded by a
network of GW detectors at the time of a gravitational-
wave signal h[i] = [h+[i], h×[i]] with the source sky loca-
tion at θ and φ is a superposition of the network response
Fh[i] and noise n[i]:

x[i] = Fh[i] + n[i], (2.1)

where the h+ and h× are the amplitudes of the two GW
polarization components and F is the network antenna
pattern matrix

F =

 F1+(θ, φ) F1×(θ, φ)
... ...

FK+(θ, φ) FK×(θ, φ)

 . (2.2)

The antenna patterns often include a transformation by
the polarization angle Ψ. But this transformation is
equivalent to a rotation of the wave frame where the vec-
tor h is defined. The network response is Ψ-invariant
and, therefore, the polarization angle can be included in
the definition of h.

To solve the inverse problem one should find the ampli-
tudes of the GW polarization components (h+, h×) and
the sky coordinates (θ, φ) from a coincident output of sev-
eral GW detectors. Initially this problem was considered
by Gursel and Tinto [24] for a network of three detec-
tors. A more solid statistical foundation of the problem
was presented by Flanagan and Hughes [25], who consid-
ered a likelihood method for the estimation of the signal
parameters. They define the likelihood ratio

Λ(x,Ω) =
p(x|h(Ω))

p(x|0)
, (2.3)

where Ω is a parameter set describing the signal, the
p(x|0) is the joint probability that the data is only in-
strumental noise, and p(x|h) is the joint probability that
a GW signal h is present in the data x. The sample index
i is omitted to stress that i ∈ C, where C is a collection
of the TF pixels (cluster).

The explicit form of the likelihood ratio is determined
by the noise model p(x|0) and by the signal model h(Ω).
For un-modeled burst signals Ω = (h+, h×, θ, φ), which
can be found by analytical or numerical variation of Λ.
The advantage of the likelihood method is that it allows
introduction of the signal and noise models, and can be
applied to an arbitrary detector network.

B. Un-constrained likelihood analysis

This section presents the solution of the inverse prob-
lem assuming that the burst parameter set Ω is not con-
strained by a source model and the noise of detectors
in the network is quasi-stationary and Gaussian with the
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power spectral densities S1, ..., SK . The noise-scaled data
vector is than

w[i] =
x1[i, τ1(θ, φ)]√

S1[i]
, ...,

xK [i, τK(θ, φ)]√
SK [i]

, (2.4)

where the detector amplitudes xk[i, τk(θ, φ)] take into ac-
count the time-of-flight delays τk depending upon the
source coordinates θ and φ. Respectively, the noise-
scaled network response vector is

ξ[i] = F[i]h[i], (2.5)

where F[i] is the noise-scaled antenna pattern matrix

F[i] =


F1+(θ,φ)√

S1[i]

F1×(θ,φ)√
S1[i]

... ...
FK+(θ,φ)√

SK [i]

FK×(θ,φ)√
SK [i]

 (2.6)

We also introduce the network matrix f , which is ob-
tained from F by the transformation to the Dominant
Polarization Frame (DPF) introduced by Klimenko et
al [26].

The likelihood functional L is defined as twice the log-
arithm of the likelihood ratio Λ

L[h] = 2(w|ξ)− (ξ|ξ) . (2.7)

where the inner products (w|ξ) and (ξ|ξ) are calculated
over the TF cluster.

The solution for the GW waveforms h is found by vari-
ation of the likelihood functional L[h]. It is convenient to
introduce the antenna pattern vectors f+ and f×, which
are simply the columns of the matrix f and satisfy the
DPF conventions: (f+·f×) = 0 and |f×| ≤ |f+|. These two
vectors define a network plane where the GW response
vector ξ must be located. The likelihood variation gives
a system of linear equations for the amplitudes h+[i] and
h×[i] (also defined in the DPF)[

(w[i] · e+[i])
(w[i] · e×[i])

]
=

[
|f+[i]| 0

0 |f×[i]|

] [
h+[i]
h×[i]

]
. (2.8)

where e+ and e× are the unit vectors along f+ and f×
respectively. Note, the 2× 2 matrix in Eq. 2.8 character-
izes the network sensitivity to the two GW polarizations.
The maximum likelihood ratio statistic is calculated by
substituting the solutions into L[h]. The result can be
written as

Lmax =
∑
i∈C

w[i]P [i]wT [i] , (2.9)

where the matrix P is the projection constructed from
the components of the unit vectors e+ and e×:

Pnm[i] = en+[i]em+[i] + en×[i]em×[i] . (2.10)

The kernel of the projection P is the network plane de-
fined by these two vectors. The null space of the pro-
jection P defines the residual detector noise, which is
referred to as the null stream.

C. Reconstructed network response

The maximum likelihood ratio statistic Lmax is a
quadratic form (see Eq. 2.9), which can be split into the
incoherent Ei and coherent Ec parts

Ei =
∑
i∈C

∑
n

wn[i]Pnn[i]wn[i] , (2.11)

Ec =
∑
i∈C

∑
n6=m

wn[i]Pnm[i]wm[i] . (2.12)

These coherent statistics, together with the energy of the
null stream En, are widely used in the burst searches for
the construction of the event selection cuts. For example,
the network correlation coefficient [6]

cc = Ec/(|Ec|+ En) (2.13)

provides a powerful event consistency test to distinguish
genuine GW events (cc ∼ 1) from spurious events (cc <<
1) produced by the detectors. The statistic Ec (coherent
energy) is particularly important because it depends on
the cross-correlation terms between the detector pairs. It
is used for the construction of the burst detection statistic

ηc = (ccEcK/(K − 1))1/2 , (2.14)

which is an estimator of the network coherent signal-to-
noise ratio for correlated GW signals recorded by differ-
ent detectors.

The coherent statistics are very beneficial for the burst
analysis, provided they are correctly constructed to ad-
dress the “two-detector paradox” [27]. Namely, for any
network of two detectors the cross terms of the projec-
tion operator Pnm[i] (Eq. 2.10) are always equal to zero,
or Ec = 0. Clearly, for two co-aligned detectors with
the identical detector responses this is not true, which
constitutes the two-detector paradox.

The origin of the “two-detector paradox” is the am-
biguity of the projection operator. The likelihood Lmax

is invariant with respect to the rotation in the network
plane where any two orthogonal unit vectors can be used
for the construction of the projection Pnm[i]. Therefore,
we select two such unit vectors u[i] and v[i] that the like-
lihood component corresponding to the vector v[i] van-
ishes and the projection Pnm(v[i]) can be omitted. The
Lmax and the coherent statistics are given by the projec-
tion

Pnm(u[i]) = un[i]um[i] , (2.15)

which resolves the two-detector paradox. The vectors
u[i] define the reconstructed network response

ξr[i] = (w[i] · u[i])u[i] , (2.16)

which components are the un-constrained likelihood es-
timators of the noise-scaled detector responses.
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III. DUAL STREAM LIKELIHOOD ANALYSIS

As defined in section II a network noise-scaled data
stream is w. Additionally a quadrature data stream w̃
is used. It can be obtained from the original detector
data, which is phase-shifted by −90o. The data (w, w̃)
defines the network dual data stream conveniently pro-
vided by the WDM transform: applied to the detector
time-series it generates both data streams. For the un-
modeled reconstruction (see section II B) the analysis can
be performed individually for each data stream resulting
in the likelihood statistics Lmax and L̃max. Formally, the
quadrature data stream does not contain any new infor-
mation, nevertheless Lmax 6= L̃max. This is because for
a given time-frequency cluster the quadrature counter-
parts may have different contributions both from the sig-
nal and noise. Therefore, the inclusion of the quadrature
stream can improve the collection of the signal energy
and, respectively, improve the reconstruction. Also the
dual data stream is required for the inclusion of the signal
polarization models into the analysis.

A. Phase transformation

Each dual data stream sample is presented by the data
vectors w[i] and w̃[i]. We define a phase transformation
to calculate the amplitudes for an arbitrary phase shift
λi:

w′[i] = w[i] cosλi + w̃[i] sinλi , (3.1)

w̃′[i] = w̃[i] cosλi −w[i] sinλi , (3.2)

where the individual phase shift λi is applied to each data
sample. In the likelihood functional the same transfor-
mation should be applied to the detector responses ξ[i]

and ξ̃[i]. The quadrature likelihood functionals L and L̃

L[h] = 2(w|ξ)− (ξ|ξ) (3.3)

L̃[h] = 2(w̃|ξ̃)− (ξ̃|ξ̃) (3.4)

vary as the phase transformation is applied, however the
total likelihood L◦ = L+ L̃ is the phase invariant. There
are several distinct phase transformations, two of which
are considered below.

In the orthogonal phase transformation (OPT) the
phase shift is selected such that the network responses

ξ′[i] and ξ̃
′
[i] in the network plane become orthogonal to

each other. The OPT pattern is used for calculation of
dual stream coherent statistics in Section IV A.

The polarization phase transformation (PPT) is de-
fined by the scalar products of the network response and
the antenna pattern vectors

cosλi ∝ (ξ[i] · e+[i]), sinλi ∝ (ξ̃[i] · e+[i]) . (3.5)

The purpose of the phase transformations is to obtain
the signal polarization patterns. Namely, the wave polar-
ization is captured by the network as a distinct pattern of

the GW responses in the network plane, which is revealed
when a particular phase transformation is applied.

B. Polarization pattern

To describe the polarization state of a generic GW sig-
nal the following parameterization of the wave is used:

ξ = hF+(ψ) + eHF×(ψ) , (3.6)

ξ̃ = −HF+(ψ) + ehF×(ψ) , (3.7)

where the instantaneous parameters of the signal are: h
and H are the strain amplitudes, ψ is the polarization
angle and e is the wave ellipticity. Here and below in
the text we omit the sample index i. In general, these
are the ad-hoc wave parameters, however, they can be
related to the astrophysical wave parameters as described
in section III C. For this particular convention, the ξ and
ξ̃ are the 0◦-phase and −90◦-phase network responses
and the sign of e defines the wave chirality or the sign
of the quadruple product [ξ× ξ̃] · [F+(ψ)× F×(ψ)]. The
antenna pattern vectors F+(ψ) and F×(ψ) are related to
the DPF vectors f+ and f×

F+(ψ) = f+ cos(γ)− f× sin(γ) , (3.8)

F×(ψ) = f× cos(γ) + f+ sin(γ) , (3.9)

where γ = Ψ−ψ and Ψ is the DPF angle. The PPT pat-
tern is obtained by application of the transformation 3.5
to the vectors (ξ, ξ̃) 3.6-3.7. The resulting PPT pattern
is described by the following tree vectors oriented along
the f+ and f×

ξ+ = f+h◦β+(e, γ), (3.10)

ξ× = −f×h◦
1− e2

2
sin(2γ)β−1+ (e, γ), (3.11)

ξ̃× = f×eh◦β
−1
+ (e, γ), (3.12)

where h◦ =
√
h2 +H2 is the wave amplitude and

β±(e, γ) =
1√
2

[1 + e2 ± (1− e2) cos(2γ)]1/2 . (3.13)

The product h◦β+(e, γ) is the norm of sin(λi) and
cos(λi) in Equation 3.5. The vectors ξ+ and ξ× describe

the 0◦-phase network response, and the vector ξ̃× de-
scribes the −90◦-phase network response. By measuring
these three vectors for each network data sample, the
instantaneous signal parameters ho, e and ψ can be de-
termined.

For a given GW event, the collection of vectors
{ξ+,ξ×,ξ̃×} describes its unique polarization pattern.
Figure 1 shows the examples of the polarization patterns.
However, this pattern can be significantly distorted by
the network. For example, the detector noise adds ran-
dom vectors to the GW responses and randomizes the
polarization patterns for a weak GW signal. Also the
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FIG. 1: Polarization patterns (from top to bottom) for waves
with circular, elliptical, linear and random polarization, before
(left plots) and after (right plots) the PPT is applied. Dots of
two different colors represent the orientation and amplitude
of the 0◦-phase (blue) and -90◦-phase (red) response vectors
originating at zero. The network antenna vectors form the
coordinate frame with f× and f+ pointing along the vertical
and horizontal axis respectively. The patterns are calculated
for a sky location where |f×| ≈ |f+|.

measured polarization pattern strongly depends on the
network alignment factor: α = |f×| / |f+|. For any prac-
tical network α < 1, therefore the polarization pattern is
always distorted (biased) by the network. The bias cor-
rection is straightforward, however, it becomes increas-
ingly inaccurate when α << 1. When α = 0 only the ξ+
vector can be measured regardless what is the GW polar-

ization state. Namely, the original GW polarization can
not be reconstructed from such pattern of the network
responses. The network of LIGO detectors has α << 1
for a significant fraction of the sky (see top Figure 2).
Therefore, in most cases the polarization state of a GW

FIG. 2: The distribution of α over the sky for Livingston-
Hanford network (top), Livingston-Hanford-LIGOIndia (mid-
dle) and Livingston-Hanford-Virgo-Kagra-LIGOIndia (bot-
tom). The detector site locations and the orientations of the
arms are shown on the map. The LIGOIndia location is just
an example: there is no official site yet.

signal can not be measured. To improve the polariza-
tion coverage, one has to increase the alignment factor
by adding more detectors to the network with optimally
oriented detector arms (see bottom Figure 2). The full
polarization coverage is achieved when α is close to unity,
which greatly improves and simplifies the reconstruction.
In this case, the polarization state of arbitrary GW sig-
nal can be un-ambiguously identified from the pattern
of the network responses in the network plane. Also, a
more complete polarization coverage helps reconstruction
of the sky coordinates and other source parameters.
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C. Polarization constraints

The wave parameters e[i] and ψ[i] describe the polar-
ization pattern. In some case they can be related to the
astrophysical source parameters. In this section we ex-
plicitly use the sample index i to demonstrate that the
event parameter may vary during its time-frequency evo-
lution. For example, for binary systems e[i] are defined
by the inclination angle of the source and ψ[i] are defined
by the polarization angle. The parameters e[i] and ψ[i]
can be constrained when sources with a certain polar-
ization state are considered. For un-modeled signals all
e[i] and ψ[i] are free parameters or, in other words, the
wave polarization is random (r-waves). In this case, the
solution for the network responses has been already de-
scribed in the previous section. By imposing constraints
on e[i] and ψ[i], the r-waves can be divided into sub-
classes with more definite polarization states. For ex-
ample, most GW signals should produce patterns with
fixed chirality (all e[i] > 0 or all e[i] < 0). Therefore, the

vectors ξ̃× can be constrained to have the same chirality
(ι-waves). A more narrow sub-class of ι-waves are non-
precessing binary systems, where the parameters e[i] are
related to the inclination angle of the source and there-
fore e[i] = const. The angles ψ[i] define the orientation of
the reconstructed response vectors in the network plane.
Assuming that the parameters e[i] are free, the constraint
ψ[i] = const describes a particular class of GW signals
with the same direction of the network response vectors
(Ψ-waves). The elliptical, linear and circular waves are
defined when both angles e[i] and ψ[i] are constrained.
The constraints for the ι-waves and Ψ-waves, and their
combinations characterizing different polarization mod-
els are summarized in Table I. The simplest solution is

e ψ pattern polarization

constraint constraint constraint state

- - - r-waves

sign(e[i]) = const - - ι-waves

- ψ[i] = const - ψ-waves

e[i] = const ψ[i] = const - elliptical

e[i] = 0 ψ[i] = const - linear

- - ξ̃× = 0 loose linear

e[i] = ±1 - - circular

- - ξ× = 0 loose circular

TABLE I: The constraints on e (first column), ψ (second col-
umn) and the pattern vector (third column). The correspond-
ing polarization states are shown in the last column.

for the waves with the circular polarization: e[i] = ±1. A
less strict (loose) circular polarization constraint is when
ξ× = 0. In this case the network responses are defined

by the vectors ξ+ and ξ̃× and the condition e[i] = ±1 is
not enforced. For linear waves e[i] = 0 and all 0◦-phase
response vectors are co-aligned, or ψ[i] = const. Respec-
tively, a less strict (loose) linear polarization constraint

is defined by the condition ξ̃× = 0 when the condition
ψ[i] = const is not enforced. The polarization constraints
can be used to construct weakly modeled burst searches
targeting broad classes of GW transients. The ι-wave
constraint can be applied to any rotating source. The el-
liptical, circular and the ψ-wave constraints can be used
to search for compact binary sources with different spin
configurations.

D. Likelihood solutions

The solution for the wave parameters h◦, e and ψ,
and hence, the waveforms ξ and ξ̃, can be obtained by
maximizing the likelihood functional in Equations 3.3-
3.4. For un-constraints case when all the wave param-
eters are free, it is straightforward to show that the so-
lutions for the network responses are given by the pro-
jections of the data vectors (w,w̃) on the network plane.
As described above the un-modeled burst analysis can
be constrained to search for GW signals with various po-
larization states. In general case, the constrained likeli-
hood problem is hard to solve analytically and the nu-
merical solutions are computationally prohibitive. To
solve this problem, we apply the phase transformation
in Equation 3.5 to the data vectors w and w̃. This
transformation reveals the underlying polarization pat-
tern {w+,w×,w̃×} smeared by the detector noise. The
detector responses can be reconstructed directly from
this pattern. The solutions for different polarization
states can be obtained by imposing the polarization con-
straints in Table I. As follows from Equations 3.10-3.12,
for linear (e = 0) and circular (e ± 1) waves the com-

ponents ξ̃× = 0 and ξ× = 0 respectively. Therefore,
the reconstructed responses for the loose linear polar-
ization constraint are (ξ+ = w+, ξ× = w×, ξ̃× = 0)
and for the loose circular polarization constraint they are
(ξ+ = w+, ξ× = 0, ξ̃× = w̃×). The solution for linear

waves is (ξ+ = p+, ξ× = p×, ξ̃× = 0) where p are the
projections of w+ + w× on their average vector. The
analytic solutions for the other polarization constraints
are straightforward to find and we do present them here.
Such significant simplification of the inverse problem is
possible due to the polarization transformations intro-
duced in this paper. It enables rapid searches over the
entire sky and reconstruction of source coordinates in real
time.

E. Sky localization

As described in Section II B the maximum likelihood
and other coherent statistics are functions of the sky co-
ordinates θ and φ. They are sensitive to the arrival time
of a GW signal at the detector sites and can be used for
the source localization. The reconstructed source loca-
tion is defined at the maximum of the likelihood statistic
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Lmax(θ, φ) or the sky statistic

Lsky(θ, φ) = cc(θ, φ)Lmax(θ, φ). (3.14)

The Lsky statistic has better performance than Lmax for
networks with two detectors and both statistics have
comparable performance for larger networks. The prob-
ability distribution over the sky is calculated as

Psky(θ, φ) ∝
(
|f+|2 + |f×|2

)n
exp

[
S − S◦

2σ2
s

]
, (3.15)

where S is either Lmax or Lsky, S◦ is the maximum of S
in the sky and σs is the scaling parameter close to unity.
The parameter n = 2 invokes the antenna pattern prior
function used for networks with two detectors. For n = 0
the prior is not used. The scaling parameter σs could
vary depending on the network and used to calibrate the
probability Psky, so it correctly represents the fraction of
sources found in a given error region. Figure 3 shows the
sky localization performance of the advanced Livingston-
Hanford-Virgo network for a population of simulated sig-
nals expected from mergers of compact binary sources.
It is characterized by the median search area defined as
the size of the error region in the sky containing 50% of
sources. Also Figure 3 shows that the ψ-wave constraint
significantly improves the source localization. This is an
expected improvement for sky localization constrained by
the source models [28]. Of course, any modeled sky local-
ization can be biased when the model does not accurately
match the observation. However, the ψ-wave constraint
uses a very general assumption about the compact binary
sources and no significant bias is expected.

FIG. 3: Fraction of sources (vertical axis) reconstructed by
advanced Livingston-Hanford-Virgo network (at designed sen-
sitivity) within the error region in square degrees (horizontal
axis: the legend shows the median search area) for a simulated
population of binary black holes: uniform in volume distribu-
tion with component masses between 15 and 25 solar mass
and spin parameter between 0 and 0.9

IV. NETWORK CONSTRAINTS

The polarization constraints should be distinguished
from the network constraints (or regulators), which give
a model-independent way to constrain the wave param-
eters ho[i], ψ[i] and e[i]. Main purpose of the regula-
tors is to eliminate unlikely solutions of the likelihood
functional and, therefore, reduce the false alarm rates
due to the instrumental and enviromental artifacts in
the data. The first network regulators were introduced
by Klimenko et al [26] to utilize the network properties
in the likelihood analysis. Depending on the configura-
tion, detector noise and sky location, the detector net-
work may have much lower sensitivity to the second GW
component: |f×| << |f+|. In this case most of the net-
work SNR is produced by the f+ response (see Eq. 2.8.)
The f× network response is likely to yield low SNR and
therefore may not be reconstructed from the noisy data.
Such a priori knowledge can be used in the analysis to
constrain the likelihood solutions and reduce the number
of free parameters in the wave model.

A. Network and event index

The weight of each detector in the network is defined
by its noise-scaled response (Eq. 2.5). Depending on
the spectral characteristics of the detector noise and the
source sky location, the detector can be a key player in
the network or just a spectator. The detector role varies
from event to event and with time, depending on the run
conditions. The quality of the network depends on how
many detectors can contribute to the measurement. It is
characterized by the network index

In =
|f+|2 + |f×|2

|f+|2 ν(e+) + |f×|2 ν(e×)
, (4.1)

where ν(e) =
∑
k e

4
k for any unit vector e. The network

index is distributed between 1 and K representing the
effective number of detectors available for the measure-
ment. It is useful to introduce also the event index

Ie =
|ξ′|2 + |ξ̃

′
|2

|ξ′|2ν(u) + |ξ̃
′
|2ν(v)

, (4.2)

where the unit vectors u and v are along the OPT vec-

tors ξ′ and ξ̃
′

respectively (see Section III A). The event
index is representing the effective number of coincident
detectors participating in the measurement. Usually, a
low value of Ie or a significant difference between In and
Ie is an indication of a spurious event produced by the
detector noise.

Note, for calculation of the event index and the other
coherent statistics, the reconstructed responses should be

transformed to the OPT pattern {ξ′, ξ̃
′
}, where the vec-

tors u and v are orthogonal. They define the projection
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operators Pnm(u) and Pnm(v) respectively (see Equa-
tion 2.15). The coherent statistics 2.11-2.12 are calcu-
lated individually for the 0◦-phase and −90◦-phase data
and combined together.

B. Regulators

As prescribed by the un-constrained likelihood anal-
ysis, the orientation of the reconstructed response ξ is
always along the unit vector u (see Eq. 2.16.) However,
when |f×| = 0, which is the case for detectors with co-
aligned arms, the true network response must be pointing
along the vector f+. Therefore, instead of the vector u,
the unity vector along f+ must be selected for the pro-
jection. This constitutes the hard regulator, which con-
strains the likelihood analysis to ignore the ×-response
of the network. This and several other regulators have
been used to analyze data collected by the initial LIGO
and Virgo detectors.

Given a network of detectors, in some cases it is pos-
sible to predict the distributions of the wave parameters
and anticipated network responses to a generic GW sig-
nal. The polarization transformation significantly simpli-
fies the construction of regulators. After substituting the
left side of the Equations 3.10-3.12 with the data pattern
vectors {w+,w×,w̃×} we obtain the following identities

α2|w+|2 = |f×|2h2◦β2
+(e, γ), (4.3)

|w×|2 + |w̃×|2 = |f×|2h2◦β2
−(e, γ), (4.4)

−α (w× · e×) |w+| = |f×|2h2◦
1− e2

2
sin(2γ), (4.5)

α (w̃× · e×) |w+| = |f×|2h2◦e, (4.6)

that can be solved for e and sin(γ). As prescribed by

Equations 3.11-3.12, the responses ξ× and ξ̃× vanish
when sin(γ)→ 0 and e→ 0 respectively. Figures 4 show
the distributions of the reconstructed e and sin(γ) for
noise and signal, and the Livingston-Hanford network.
Unlike the signal, the noise is clustering at the low val-
ues of e and sin(γ). The noisy data can be identified by
the regulator

Γ =
√
e2 + sin2(γ) (4.7)

when Γ is below some threshold Γo. For appropriately
selected Γo, the regulator identifies data pixels with the
marginal signal components ξ× and ξ̃× and zeroes them.

The regulated responses (ξ+ = w+, ξ× = 0, ξ̃× = 0)
are biased: a small fraction of events can be miss-
reconstructed and excluded from the analysis. Despite
this relatively small (and controlled) loss, the regula-
tor otherwise is very efficient in reducing the false alarm
rates, with a typical reduction factor of ∼ 10−6. It en-
tirely eliminates the single detector FAR and significantly
suppresses FAR from the accidental coincident events
produced by the detector pairs. To further reduce the

double coincidence FAR, we introduce the second regu-
lator, which utilizes the network and the event indexes

∆ = I−1e − α|ν(e+)− ν(e×)|. (4.8)

The condition ∆ > 0.5 is used to identify the situation
when two or less detectors are used in the measurement.
In this case the reconstructed responses are constrained
to be (ξ+ = w+, ξ× = 0, ξ̃× = w̃×). Both regulators
can be used to constrain the detector networks when ei-
ther the network alignment coverage is insufficient, or the
effective number of detectors is less than 2.

FIG. 4: Distribution of e and sin(γ) for Livingston-Hanford
network obtained from the simulation of a single-pixel events
uniformly distributed over the sky. The top plot is for Gaus-
sian noise and the bottom plot is for signal with the random
polarization.
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V. CONCLUSION

In the paper we present the improved analytic frame-
work of the cWB analysis algorithm. The objective of
this analysis is the detection and reconstruction of un-
modeled GW transients. It is achieved by solving the
burst inverse problem - reconstruction of the signal wave-
forms, wave polarization and the sky coordinates of the
source. The reconstruction is performed by using the
likelihood formalism with the signal waveforms as free
parameters. The waveforms can be described with the
wave parameters and constrained, which enable a range
of weakly modeled burst searches. The likelihood anal-
ysis yields a number of detection statistics used for the
ranking of detected events (the network coherent SNR),
the rejection of background events (the network correla-
tion coefficient) and for the sky localization.

The novelty of the paper is in the introduction of the
polarization patterns. By imposing a simple phase trans-
formation to the network data, a characteristic pattern
emerges revealing the polarization state of an arbitrary
GW signal. This unique signature of the signal can be
measured independent from the other source parame-
ters. The polarization transformation significantly sim-
plifies the solution of the inverse problem: the detector
responses can be reconstructed directly from the pattern.
The polarization constraints can be imposed, which en-
able weakly modeled burst searches. The reconstruction

is computationally efficient allowing for rapid searches
over the entire sky and the reconstruction of source coor-
dinates in real time with a few minutes latency. We also
identify factors limiting reconstruction and how the po-
larization measurements are affected by the network. A
simple metric (network alignment factor α) determines
the network ability to capture polarizations. The net-
work of LIGO and Virgo detectors has a low alignment
coverage for a significant fraction of the sky. Therefore,
in most cases, the polarization state of a weak GW signal
can not be measured. Adding Kagra and LIGO-India de-
tectors to the advanced network will significantly improve
the alignment coverage and, hence, the reconstruction of
the signal parameters.
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