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Abstract

This paper deals with the simultaneous design of a state feedback law and an event-triggering condition ensuring local
exponential stability and LQ performance in the presence of plant input saturation and of a communication channel between
the controller output and the saturated plant input. To this aim, we adopt Lyapunov-based techniques in a hybrid framework.
The design of the event-triggered control is based on two conditions: one to solve the event-triggered control co-design for LQ
stabilization; the second one to adjust the co-design among all possible solutions of the first condition thanks to a tunable
parameter. The proposed Lyapunov formulation yields an event-triggered algorithm to update the saturated plant input based
on conditions involving the closed-loop state, while an estimate of the domain of attraction is provided. Furthermore, a trade-
off is highlighted relating the optimality level, the size of the estimate of the basin of attraction and the reduction of the
amount of transmissions.
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1 Introduction

In recent years, the study of sampled-data systems has
provided several techniques for dealing with linear or
nonlinear systems. On the one hand, a large attention
has been paid to robust stability with respect to ape-
riodic samplings (see, for example, [8, 15, 22] and ref-
erences therein), where variations on the sampling in-
tervals are seen as a disturbance to the periodic case.
Then, analysis of such systems using the discrete-time
approach [15, 9], the input delay approach [10, 27], and
the impulsive systems approach [21] have emerged. On
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the other hand, an alternative and interesting vision
of sampled-data systems has been proposed in [4, 6],
which suggests to adapt the sampling sequence to cer-
tain events related to the state evolution (see for ex-
ample [5, 13, 16, 19, 31, 41]), in particular for control
implementation as in [35, 39]. In contrast to [12, 20]
where self-triggered controllers are considered, the plant
evolves in continuous-time and is in closed loop with a
controller providing a discrete-time input held during an
asynchronous sampling period. The design of an event-
triggered algorithm can be first rewritten as the stability
study of a system with mixed continuous/discrete dy-
namics (also called hybrid dynamical system), as con-
sidered e.g. in [11, 24, 25] in a different context.

In the event-triggered control framework, two ap-
proaches can be handled. The first one is concerned
with the situation where the controller is given a priori
and only the event-triggered rule has to be designed.
This approach corresponds to an emulation problem
and is addressed in numerous works (see, for example,
[14], [37], [23], [2] and references therein). The second
approach refers to the situation where the design of
both the controller and the event-triggering condition
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has to be performed, simultaneously, which is called a
co-design problem and is addressed only in a few pa-
pers. Usually, the synthesis of the control parameters is
indeed performed a priori using a fully continuous-time
approach [5, 28, 30, 31] or a fully discrete-time approach
[13]. Achieved performances are affected by the choice
of the continuous-time or the discrete-time synthesis
approach. This problem is for example addressed in
[1, 3] including some optimality criteria in the synthesis
phase. Another important feature when dealing with
the stability/performance analysis of control design
problems resides in the presence of actuators’ limita-
tions. It is now well known that the presence of saturated
actuators may cause loss of performance, even unstable
behavior (see, for example, [32] and references therein).
To the best knowledge of the authors, a few existing re-
sults deal with event-based control for saturated plants,
some notable exceptions being [17, 18, 36, 38], where
specific controller-plant structures are considered.

In the current paper, we pursue the goal of characterizing
a desirable behavior of the closed-loop system in terms of
a control Lyapunov function, similarly to [28, 29, 30, 34].
Hence, extending the results developed in [28, 29, 30],
we use a hybrid framework and Lyapunov theory to de-
fine the update policy of event-triggered control algo-
rithms for linear plants subject to input saturation. We
propose a simultaneous design of the state feedback law
and the event-triggering conditions, ensuring local expo-
nential stability and LQ performance in the presence of
plant input saturation and of a communication channel
between the controller output and the saturated plant
input. To this aim, we adopt Lyapunov-based techniques
in a hybrid framework. The originality of this paper with
respect to [17, 18, 28, 30, 36, 38] relies on the design of
the event-triggered control, which is composed by two
conditions. The first one aims at providing a solution to
the event-triggered control co-design for LQ stabiliza-
tion. The second one refines and constrains the co-design
among all possible solutions of the first condition thanks
to a tunable parameter. The proposed Lyapunov for-
mulation yields an event-triggered algorithm to update
the saturated plant input based on conditions involving
the closed-loop state, while an estimate of the domain
of attraction is provided. More specifically, a trade-off is
highlighted relating the optimality level, the size of the
estimate of the basin of attraction and the reduction of
the amount of transmissions.

The paper is organized as follows. Section 2 describes the
problem we intend to solve and presents the adopted hy-
brid framework. Section 3 is dedicated to the co-design
of the event-triggered control. Section 4 proposes an il-
lustrative example allowing us to point out the trade-
off between the guaranteed stability, the upper bound
on the quadratic cost, and the number of updates per-
formed in simulation tests. The proof of the main result
is presented in Section 5. Finally, Section 6 ends the pa-
per with concluding remarks.

Notation. N, R+, Rn, and Rn×m denote respectively the
sets of positive integers, positive reals, n-dimensional
vectors and n×m matrices. | · | stands for the Euclidean
norm. Given a compact set A, |x|A = min{|x− y|, y ∈
A} indicates the distance of the vector x from the set
A. The superscript ‘>’ stands for matrix transposition.
For any matrix A in Rn×n, we denote He(A) = A +
A>. For a partitioned matrix, the symbol ∗ stands for
symmetric blocks. I and 0 represent the identity and the
zero matrices of appropriate dimensions. For any matrix
P in Rn×n, P > 0 means that P is symmetric positive
definite. Given a symmetric positive definite matrix P
in Rn×n, E(P ) denotes {x ∈ Rn : x>Px ≤ 1}.

2 Problem statement and sampled-data archi-
tectures

Consider a linear plant with a saturated input

ẋ = Ax+Bs,

s = sat(u),
(1)

where x ∈ Rn, s ∈ Rm and u ∈ Rm are the state vari-
able, the input vector and the control law. A ∈ Rn×n
and B ∈ Rn×m are constant and given matrices such
that pair (A,B) is stabilizable. The function sat(·) in
(1) is a decentralized symmetric saturation with satu-

ration bounds u0 = [ u01 ··· u0m ]
>

, namely s = sat(u)
corresponds to enforcing si = max(−u0i,min(u0i, ui)),
where si and ui denote the i-th components of s and u,
respectively, for all i = 1, . . . ,m.

In this paper we address the problem of event-triggered
implementation of a static state-feedback stabilizing law
for plant (1), given by the following equation

u = Kx. (2)

The gain K ∈ Rm×n is a matrix to be designed that
should ensure local asymptotic stability of the zero
equilibrium of the arising closed-loop system (1), (2)
with a guaranteed basin of attraction containing the
ball B(α) := {x ∈ Rn : |x| ≤ α} where α ∈ R is a
design parameter. Moreover, we require some optimal-
ity guarantee in the sense that for any initial condition
x(0) ∈ B(α), the corresponding (unique) solution to the
closed-loop system (1), (2) is required to satisfy an LQ
type of bound. More specifically, we provide an upper
bound for the following integral cost:

J(x(·), u(·)) =

∫ ∞
0

[
x(t)

s(t)

]>
Q

[
x(t)

s(t)

]
dt, (3)

where Q ∈ R(n+m)×(n+m) is a symmetric positive defi-
nite matrix.
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Sampled and hold devices could be used to obtain a
sampled-data implementation of the feedback law (2)
for plant (1). In the most common case of zero-order-
hold, this corresponds to breaking the continuous-time
closed loop given by s(t) = sat(u(t)), for all t ≥ 0, where
u(t) = Kx(t), and converting this into a zero order hold
ṡ = 0 combined with the update rule s+ = sat(u) for s,
which should be performed at suitable times according
to the specific sampled-data architecture. As mentioned
in the introduction, this architecture could selected as
event-triggered sampling. We explain this architectures
below and use the hybrid formalism of [11, 24, 26]. Event-
triggered sampling corresponds to performing the update
rule s+ = sat(Kx) whenever the augmented state (x, s)
belongs to suitable sets that should be designed in such
a way to guarantee asymptotic stability. In this case, the
sampled-data system can be written as{

ẋ = Ax+Bs,

ṡ = 0,
(x, s) ∈ FE ,{

x+ = x,

s+ = sat(Kx),
(x, s) ∈ JE ,

(4)

where s ∈ Rm represents the held value of the control
input and FE and JE are two subsets of Rn × Rm in-
dicating where the solution is allowed to flow and/or to
jump. Sets FE and JE are respectively called flow set
and jump set and are the available degrees of freedom
in the design of the event-triggered algorithm. This hy-
brid dynamical model allows representing in an efficient
manner the sampled-data nature of the system since a
jump corresponds to an update of the control input. In
this paper, we address the following problem:

Problem 1 Given plant (1), a scalar α > 0 and the
linear state feedback law (2), determine gain K and an
event-triggered sampled-data implementation of the state
feedback law guaranteeing local exponential stability of a
suitable attractor (containing the origin in the projection
to the plant state) for the sampled-data system, with a
basin of attraction containing B(α) and an upper bound
on the performance index (3).

Remark 1 The attractor is precisely defined in Theo-
rem 1 below. In particular, when dealing with asymp-
totic stability, the convergence has to be understood in
terms of the distance from the attractor and not in terms
of the usual Euclidean norm (see [11, Definition 3.5] for
the distance definition and the associated stability no-
tions). ◦

3 Co-design result

3.1 Main theorem

The main result of this paper for LQ stabilization and
the associated optimization problem is stated in the fol-

lowing theorem, whose proof is given in Section 5. Spe-
cial care must be taken when considering the LQ cost
(3), due to the hybrid time domain of solutions. A pos-
sible way to hybridize cost (3) with selection (2), when
considering a hybrid solution (x, s) to (4), is the follow-
ing one:

J(x(·, ·), s(·, ·)) =
∑

j∈domj(x)

∫ tj+1

tj

ψ(x(t, j), s(t, j))dt.

(6)
where domj(x) is the set of j such that x is defined at
(t, j) for at least one t and tj , j ∈ domj(x) are the jump
times associated to the solution (except for t0 = 0).

Furthermore, ψ(x, s) = [ xs ]
>
Q [ xs ], where we recall that

Q = Q> > 0. For simplicity, throughout the paper we
use J to denote J(x(·, ·), s(·, ·)) without indicating its
dependence on the solution under consideration.

Theorem 1 Given Q = Q> > 0 in R(n+m)×(n+m), as-
sume that there exist matrices W = W> > 0 in Rn×n,
Y , X in Rm×n, a diagonal positive definite matrix S > 0
in Rm×m and positive scalar tuning parameters T , α, µ
satisfying the following linear matrix inequalities:[

W Xi

X>i u20i

]
≥ 0 ∀i = 1, ...,m,

[
I αI

αI W

]
≥ 0, (7)

Ψ < 0, (8)

Φ(T ) < 0 (9)

where Xi denotes the i-th row of matrix X, Ψ and Φ(T )

are given in (5), C = [I 0], M(T ) = e([
A B
0 0 ]T) and

Q̄(T ) =
∫ T
0
M>(τ)QM(τ)dτ .

Then, consider the corresponding values P = W−1, K =
YW−1,α, µ. Given any scalar µ̂ ≥ µ, define the following
flow and jump sets for (4):

FE =

(x, s) ∈ Rn × U0 :

[
x

s

]>
Πµ̂

[
x

s

]
≤ 0

 , (10a)

JE =

(x, s) ∈ Rn × U0 :

[
x

s

]>
Πµ̂

[
x

s

]
≥ 0

 , (10b)

Πµ̂ =

[
PA+A>P PB

B>P 0

]
+Q/µ̂. (10c)

Denoting by U0 = {u ∈ Rm : |diag(u0)−1u|∞ ≤ 1}
the range of the saturation function, the event-triggered
closed-loop system (4), (10) is such that the set

A = {0} × U0, (11)
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Ψ =


[

He(AW +BY ) ∗
(Y +X)− SB> −2S

]
∗[

W 0

Y −S

]
−µQ−1

 , Φ(T ) =



[
−W ∗

T (Y +X) −2TS

]
∗ ∗[

W 0

Y −S

]
−µQ̄−1(T ) ∗

CM(T )

[
W 0

Y −S

]
0 −W


. (5)

is locally exponentially stable with basin of attraction in-
cluding the set E(P ) × U0, where E(P ) = {x ∈ Rn :
x>Px ≤ 1}.

Moreover, for each initial condition in E(P )× U0, there
exists at least one solution having unbounded time do-
main in the ordinary time direction t and there is a min-
imum dwell time for all solutions starting in E(P )×U0,
except for those reaching the attractor in finite time. Fi-
nally, for each x(0, 0) ∈ E(P ) ⊃ B(α), the LQ cost given
by (6) satisfies J ≤ µ̂x(0, 0)>Px(0, 0) ≤ µ̂.

Theorem 1 provides an appealing co-design tool. Indeed,
by solving the matrix inequalities (7)–(9), it is possible
to obtain both the feedback gain K and the parameter
P of the event-triggering conditions in (10). Note also
that the inequalities are nonlinear but become linear af-
ter fixing the scalar T . It is therefore interesting to study
the feasibility properties of the arising LMIs obtained for
different values of T . When finding a solution to (7)–(9)
it is important to keep in mind the several performance
criterias that can be optimized. One of them is the size
of the guaranteed basin of attraction (well quantified by
scalar α), another one is the level of LQ optimality (char-
acterized by µ), and a last one is the size of the param-
eter T , whose role is connected to the expected average
sampling rate of the event triggered implementation, as
explained in the next discussions. In our simulations we
will adopt the optimality goal of maximizing α. Addi-
tional details and discussions are given in Section 4.

Remark 2 As compared to the event-triggered control
proposed in [17] for plants with saturated inputs, The-
orem 1 guarantees local exponential stability of the at-
tractor while the results proposed in [17] only assess the
convergence of the closed-loop trajectories to a bounded
set around the origin. ◦

In the reminder of this section, we will provide several
motivations and explanations about Theorem 1. This
discussion deals with the following issues

• Existence of the tuning parameter T such that the
conditions of Theorem 1 are feasible;
• Motivations for each condition of Theorem 1;
• Influence of the tuning parameters T , α, µ;

• Existence of Zeno solutions in the attractor.

3.2 Existence of the design parameter T

The next feasibility result establishes the existence of
a tuning parameters T , for which solutions to the LMI
problem (7), (8) exist. Its proof is given in Section 5.

Proposition 1 For any control system (1)-(2) and for
any matrix Q in (3), if there exist matrices W = W> >
0 ∈ Rn×n, Y , X in Rm×n, a diagonal positive definite
matrix S > 0 in Rm×m and positive scalars α, µ, which
are solutions to (7) and (8), then there exists a suffi-
ciently small tuning parameter T such that conditions
(7), (8) and (9) are also satisfied.

Proposition 1 states that, if one can find a solution to the
continuous-time LMI problem (7) and (8), then there ex-
ists a sufficiently small T such that both the continuous-
and the discrete-time LMI problems are solvable at the
same time. Proposition 1 also ensures that for sufficiently
small T the same performance level as in the continuous-
time design is obtained. Then, if wanting to solve the
conditions of Theorem 1, the feasibility of (7), (8) and
(9) should be first evaluated for small values of T and
then, T should be gradually increased until the problem
becomes infeasible.

3.3 Discussion on the conditions of Theorem 1

Considering the Lyapunov function V (x) = x>Px, with
P = W−1, the following statements hold

• if the LMIs (7) and (8) are satisfied, then, for any x ∈
E(P ), the solutions to the system with a continuous-
time implementation of the control law s = Kx satis-
fies the Lyapunov condition

V̇ (x) + [ x
Kx ]

>
Q [ x

Kx ] < 0; (12)

• if the LMI (7) and (9) are satisfied, then, for any
x ∈ E(P ), the solutions to the system with a periodic
sampled-data implementation of the control law, satis-
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fies the Lyapunov condition for a T periodic sampled-
data implementation,

∆TV (x) + [ x
Kx ]

>
Q̄(T ) [ x

Kx ] < 0,

where ∆TV (x) = V (CM(T )x) − V (x), matrices C
and M(T ) are defined in the statement of Theorem 1.

The proofs of the two facts above can be found in
[30], [40, Section 3.5] and [32, Proposition 3.1], for
the continuous-time case and in [32, Proposition 3.35]
for the case of periodic sampled-data implementation.
These proofs use the decentralized deadzone function
dz(u) = u − sat(u) and the associated sector condition
exposed in [32, Lemma 1.6].

The design of the control gain K and of the jump and
flow sets via the matrix P is based on both conditions
Ψ < 0 in (8) and Φ(T ) < 0 in (9), for a given param-
eter T . Differently from [30], the addition of condition
(9) adjusts the choice of the control parameter K and
the Lyapunov matrix P to fit in a better manner the
sampled-data implementation. As a consequence, the
event-triggered algorithm requires less updates of the
control input, as we will see in Section 4.

3.4 Influence of the tuning parameters

On the one hand, the jump and flow sets in (10) can
be suitably modified by selecting the desired LQ perfor-
mance level µ̂. In particular, note that for µ̂ = µ one re-
covers the same LQ performance as the continuous-time
feedback guaranteeing (12). However, one may increase
µ̂ and trade in some performance because this leads to
strictly larger flow sets and strictly smaller jump sets.
Furthermore, it is expected that enlarging the flow set
and reducing the jump set leads to less jumps in solu-
tions starting from the same initial conditions. It yields
smaller average sampling rate, which is desirable from
an event-triggered viewpoint. While this observation is
only qualitative, its advantages are readily illustrated
through the numerical results of Section 4.

On the other hand, the shape of the jump and flow sets
in (10) heavily relies on the properties of the Lyapunov
function V (x) = x>Px that are established in Theo-
rem 1. For example, an advantageous feature of these sets
is given by the fact that whenever the continuous-time
feedback of Theorem 1 would lead to a control input that
remains saturated for some time interval (this is the case,
for example, during the initial transient of a trajectory
that starts far from the attractor), the event-triggered
solution (4), (10) does not experience any jump. This
fact can be seen by noticing that the flow set FE in (10a)
is defined as the set where the Lyapunov-like function
V (x) = x>Px experiences a suitable decrease, as es-
tablished in Theorem 1. Since for all such responses the

plant input remains constant also for the continuous-
time solution, then the event-triggered solution remains
in the flow set without triggering any sampling. This
aspect is well illustrated by some of the simulations re-
ported in Section 4.

3.5 Existence of Zeno phenomenon

The hybrid system exhibits Zeno solutions in the at-
tractor (even though it also admits solutions that never
jump and forever flow). Actually, both jump and flow
sets are closed, which causes a nonempty intersection
(including the attractor) that could be avoided by pick-
ing a jump set that is not closed. Selecting closed jump
and flow sets however ensures well-posedness of the hy-
brid dynamics, as illustrated in [11, Ch. 4 and 6], which,
among other things, enables the use of La Salle’s invari-
ance principle, and implies robustness of asymptotic sta-
bility. Closed flow and jump sets also allow capturing,
in the set of the (non-necessarily unique) solutions to
the well-posed dynamics, any possible limiting solution
produced by vanishing perturbations affecting the nom-
inal dynamics. This type of “rich” behavior within the
attractor is a common feature in event-triggered designs
and has been already observed in [23, §IV.B and IV.C].
If wanting to enforce some kind of semiglobal practical
dwell-time property, one may consider the possibility of
modifying the triggering laws as suggested in [23, §IV.C]
to obtain practical stability results.

4 Simulation example

Consider plant (1) as the mass-spring system with desta-
bilizing friction studied in [40, Example 7.2.6], corre-
sponding to

A =

[
0 1

−k/m −f/m

]
, B =

[
0

1/m

]
, (13)

where k = 1, m = 0.1, f = −0.01 and u0 = 1. The cost

function (3) is selected with Q =
[
2 1 0
1 1 0
0 0 0.5

]
. The plant is

exponentially unstable. Therefore it is only possible to
design a state feedback gainK that locally exponentially
stabilizes the origin.

We aim at presenting first the influence of parameter T
on the size of the estimated domain of attraction. Sec-
ond we show the effects of parameter µ̂ on the number
of control updates required by the event-triggered con-
troller. Finally, we present a comparison between our
event-triggered control and a periodic sampled-data im-
plementation.

Influence of T on the event-triggered algorithm:
Table 1 summarizes the result of the LMI optimization
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(c) T = 0.845: Number of control updates: 11.

Fig. 1. Simulation results representing the state x (top), the
timer τ (middle), and the control inputs u (bottom), the
three associated gains being reported in Table 1.

problem

max
W,X,Y,S,α

α, subject to (7), (8) and (9), (14)

with µ = 5 for several values of T . This optimization
problem aims at maximizing the size of the estimate
of the basin of attraction. Note that selecting T = 0
refers to optimization problem (14) only considering the
continuous-time LMI constraints (7) and (8) as pre-
sented in [30]. Table 1 reports the Lyapunov matrix
P = W−1, the controller gainK, the size of the estimate
of the domain of attraction represented by α and the av-
erage numberN of updates resulting from 80 simulations

T P K α N

0 [ 0.3481 0.0275
0.0275 0.0661 ] [ −3.7412 −8.7110 ] 1.688 49.6

0.1 [ 0.3491 0.4517
0.4517 0.0669 ] [ 0.1855 −0.5161 ] 1.685 30.7

0.2 [ 0.3624 0.0328
0.0328 0.0699 ] [ 0.3437 −0.5477 ] 1.652 13.0

0.4 [ 0.6487 0.0685
0.0685 0.1168 ] [ 0.3966 −0.2457 ] 1.233 13.2

0.6 [ 0.9203 0.1364
0.1364 0.2090 ] [ 0.4874 −0.1373 ] 1.028 12.8

0.84 [ 41.614 4.503
4.503 10.136 ] [ 0.5576 −0.0588 ] 0.153 11.8

Table 1
Solutions to optimization problem (14) under the LMI con-
straints (7), (8) and (9), and average number over 80 differ-
ent initial conditions of control updates in simulations of 10s
with the corresponding event-triggered algorithm of Theo-
rem 1.

of 10s, with initial conditions x0 satisfying x>0 Px0 = 1
and with µ̂ = µ = 5. Table 1 shows that increasing pa-
rameter T in the LMI formulation of Theorem 1 leads
to increasingly smaller values of α (namely the size of
the estimate of the domain of attraction). Increasing T
leads to increasingly smaller values of α (next to last col-
umn of Table 1). On the other hand, the benefits of in-
troducing the sampled-data criteria appear when imple-
menting the event-triggered algorithm, since increasing
T leads to a notable reduction of the number of updates
during the considered simulations (last column of Ta-
ble 1). The maximal value of T such that the conditions
of Theorem 1 are satisfied is 0.845. Indeed, we can see
on Table 1 that the size α of the estimate of the domain
of attraction becomes small.

Some simulations are depicted in Figure 1 for some val-
ues of T . The evolution of the state x (top traces) shows
that the performance is better when T is zero (block (a)),
at the price of a larger number of control updates as visi-
ble from the evolution of a timer 1 (middle traces). More-
over, looking at the control input u (lower traces), one
realizes that even if all the initial conditions are chosen
at the boundary of the estimate of the domain of attrac-
tion (i.e. x>0 Px0 = 1), the control input u obtained with
T = 0.845 (case (c)) never reaches the saturation level.
This is a consequence of the reduction of the domain of
attraction when T increases, as mentioned earlier when
commenting the results of Table 1. Finally, Figures 1(b)
and (c) depict the fact that the sampling eventually be-
comes pseudoperiodic, as noticed in [7]. Note that in this
pseudoperiodic regime, its pseudoperiod is slightly larger
than T = 0.845, corresponding to the largest value of T
solving the condition of Theorem 1.

Influence of µ̂: Figure 2 shows the average number of
updates resulting from simulations of 10s of the event-
triggered algorithm for 80 initial conditions satisfying

1 In order to show the instants where the control law is
updated, a timer has been incorporated to system (4). It
consists of a variable τ , whose dynamics is governed by τ̇ = 1
along flow and τ+ = 0 across jumps.
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Fig. 2. Average number of updates over 80 simulations as
a function of the degree of optimality µ/µ̂ and for several
values of the parameter T for system (13).

x>0 Px0 = 1, for several values of the parameter T and
several levels of (normalized) performance µ/µ̂. It is
shown that increasing the sampling period T reduces
notably the number of updates. Moreover, for larger se-
lections of T , the choice of the performance level µ̂ does
not seem to significantly affect the number of updates
in these simulations. Nevertheless, one can see that for
large values of T , the influence of µ/µ̂ becomes more
regular and monotone.

Event-triggered vs. periodic samplings: As a final
illustration, we compare our event-triggered algorithm
with a periodic sampling implementation of period Tp.
To do so, we select the maximal value of T solving the
conditions of Theorem 1, i.e. Tp = 0.845, and we obtain a
controller resulting from the LMI optimization problem

max
W,X,Y,S,α

α, subject to (7) and (9), (15)

with µ = 5, where (7) and (9) correspond to a stabiliza-
tion criterion for saturated discrete-time systems. The
solution of this problem gives a controller gain K =
[0.4661 0.0981] and α = 1.222. Then, in order to pro-
vide a fair comparison, we select our event-triggered al-
gorithm with T = 0.4 and µ̂ = µ = 5 leading to a similar
size of the estimated domain of attraction as reported in
Table 1.

Figure 3 shows the evolution of state x, timer τ and con-
trol input u with the same initial conditions. We see that
the state of the system with the event-triggered control
converges faster than the system with the periodic sam-
pling, where oscillations notably affect the convergence.
Note that it is possible to find a solution to problem (15)
for larger values of Tp. This would lead to a reduction
of the number of control updates but at the price of a
performance degradation.
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Fig. 3. Simulation results representing x (top), the timer τ
(middle), and the control inputs u (bottom) for a periodic
sampled-data control with a period Tp = 0.845 and the even-
t-triggered control (4) provided with T = 0.4.

5 Proofs of the main results

Proof of Theorem 1. Define the function ζ as

(x, s) 7→ ζ(x, s) = 2x>P (Ax+Bs).

According to (10c), consider function x 7→ V (x) =
x>Px and along the flow dynamics of (4), we have

V̇ (x, s) := 〈∇V (x), Ax+Bs〉 = ζ(x.s)

= [ xs ]
>

Πµ̂ [ xs ]− [ xs ]
> Q
µ̂ [ xs ] .

(16)

As a consequence, and due to the definition of the flow set

in (10a), which implies [ xs ]
>

Πµ̂ [ xs ] ≤ 0, for all (x, s) ∈
FE , we have:

V̇ (x, s) ≤ − [ xs ]
>

(Q/µ̂) [ xs ]

≤ −ε |[ xs ]|2 , ∀ [ xs ] ∈ FE ,
(17a)

where ε = λmin(Q/µ̂) > 0. Moreover, across jumps one
trivially has

V (x+)− V (x) = 0, ∀ [ xs ] ∈ JE , (17b)
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because x+ = x.

To show local asymptotic stability, we focus on the set
E(P ) = {x ∈ Rn : x>Px ≤ 1} that satisfies E(P ) ⊃
B(α), because of the LMI on the right side of (7). In
particular, from (17) we have (strong) forward invari-
ance of E(P ) × U0. Let us make the following change
of variables in (7): W = P−1, S = U−1, Y = KP−1,
X = HP−1. Then, pre- and post-multiplying Ψ defined

in (5) by diag
(
P, U, I, I

)
, one gets

Ψ̃ =


[

He(P (A+BK)) ∗
U(K+H)−B>P −2U

]
∗[

I 0

K −I

]
−µQ−1

 .

By applying a Schur complement to Ψ̃, yielding a matrix
Ỹ whose size is the one of the upper left block of Ψ̃,

we develop
[
x+

s+

]>
Ỹ
[
x+

s+

]
noticing that x+ = x and

s+ = sat(Kx) = Kx+ − dz(Kx+) (where dz(w) = w −
sat(w) is the deadzone function). Then, it follows that
(8) implies, for all (x, q),

ζ(x+, s+) + 2q>U((K +H)x+ − q) +
1

µ
ψ(x+, s+) ≤ 0,

(18)
where q = dz(Kx+). Using well-known generalized sec-
tor condition approaches (see, e.g., [32, Lemma 1.6]), and
exploiting the forward invariance of E(P )×U0, we obtain
that the left constraints in (7) imply q>U((K+H)x+−
q) ≥ 0 for all [ xs ] ∈ (E(P )×U0), which may be exploited
together with (18) to obtain for all [ xs ] ∈ (E(P )× U0),

[
x+

s+

]>
Πµ̂

[
x+

s+

]
+

(
1

µ
− 1

µ̂

)
ψ(x+, s+) < 0. (19)

This, together with µ̂ ≥ µ and positive definiteness of
ψ implies that (x+, s+) is in the interior of the flow set
where some flow will necessarily occur, associated with
a strict decrease of V as established in (17a). Summa-
rizing, either x = 0 (namely (x, s) ∈ A) or the solution
has to flow after each jump. Then, no complete discrete
solution (namely a complete solution that never flows)
exists outside A and asymptotic stability follows from
item (ii) of [11, Cor. 8.9]. Moreover, the solutions do not
escape in finite time, implying forward completeness of
maximal solutions thanks to [11, Prop. 6.10]. Finally,
due to homogeneity in a neighborhood of the attractor,
and compactness of E(P )×U0, exponential stability fol-
lows from [33, Prop. 1].

Let us now prove that at least one solution has un-
bounded domain in the ordinary time direction. First
recall that the set E(P ) × U0 is forward invariant from

(17). Then notice that in a small neighborhood of the
attractor we have sat(Kx) = Kx so that the hybrid
dynamics is homogeneous. This means that there ex-
ists a small enough η such that in the set E(P/η) =
{x ∈ Rn : x>Px ≤ η} all nontrivial solutions are
scaled versions of the solutions starting on its boundary
{x ∈ Rn : x>Px = η}. Consider now any solution jump-

ing from the compact set (E(P ) \ E(P/η)×U0)∩JE and
notice that from (19) that solution has to flow for some
nonzero time (because it jumps to the interior of the flow
set). Then all solutions jumping from this compact set
will flow for some uniform minimum time τmin. From
homogeneity, this property is enjoyed by any nonzero so-
lution jumping from the whole set (E(P )×U0)∩JE \{0}
which ensures a minimum dwell time for all such solu-
tions, therefore unboundedness of their domain in the
ordinary time direction. Since the attractor belongs to
the flow set and it is an equilibrium for the flow dynam-
ics, then there exists a solution with unbounded domain
in the ordinary time direction also from {0}.

Let us now prove the property of the cost function. Given
any solution x, for each j ∈ domj(x), we know that
the solution flows in the open time interval (tj , tj+1)
(which could be empty and where it could be that tj+1 =
∞). Then for all (t, j) in such a “flowing” ordinary time

interval, from
[
x(t,j)
s(t,j)

]
∈ FE we may rearrange (16) as:

V̇ (x(t, j), s(t, j)) +
1

µ̂
ψ(x(t, j), s(t, j)) ≤ 0,

which can be integrated from tj to tj+1 to get

V (x(tj+1, j))− V (x(tj , j))

+ 1
µ̂

∫ tj+1

tj
ψ(x(t, j), s(t, j))dt ≤ 0.

(20)

Since x+ = x across jumps, for all j ∈ domj(x) satisfying
j ≥ 1 one has V (x(tj+1, j+1)) = V (x(tj+1, j)) (see also
(17b)). Then, also recalling that t0 = 0, we can sum the
inequalities (20) for all j ∈ dom(x) to get, also using
positive definiteness of V ,

1

µ̂

∑
j∈domj(x)

∫ tj+1

tj

ψ(x(t, j), s(t, j))dt

≤ V (x(0, 0)) = x(0, 0)TPx(0, 0) ≤ 1,

as to be proven. ♦

Proof of Proposition 1. Applying twice the Schur com-
plement to the LMI (9) leads to

I :=

[
−W ∗

T (Y +X) −2TS

]
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+

[
W Y >

0 −S

]
M>(T )C>W−1CM(T )

[
W 0

Y −S

]

+

[
W Y >

0 −S

]
Q̄(T )/µ

[
W 0

Y −S

]
.

From the definitions of M(T ) and Q̄(T ), it holds

CM(T )

[
W 0

Y −S

]
=
[
W 0

]
+ T

[
AW +BY −BS

]
+o(T )

Q̄(T ) = TQ+ o(T ),

where the notation o(T ) represents some quantities,
which are negligible for some sufficiently small positive
values of T . Then, by re-injecting this expression into
I, some calculations show that

I = T

([
He(AW +BY ) ∗
Y +X − SB> −2S

]

+

[
W Y >

0 −S

]
Q/µ

[
W 0

Y −S

])
+ o(T ).

Applying the Schur complement, the continuous-time
stability conditions (7), (8) are retrieved. Then, if there
exist matrices W,X, Y, S solutions to (7), (8), there ex-
ists a sufficiently small positive T such that matrix I is
negative definite, which implies that the same matrices
are a solution to (9). ♦

6 Conclusion

Focusing on linear plants we proposed the simultaneous
design of the state feedback law and the event-triggering
conditions ensuring local exponential stability and LQ
performance in the presence of plant input saturation
and of a communication channel between the controller
output and the saturated plant input. The design of
the event-triggered control is composed by two condi-
tions derived from Lyapunov-based techniques in a hy-
brid framework. The first condition provides a solution
to the event-triggered control co-design for LQ stabiliza-
tion. The second one constrains the co-design among all
possible solutions of the first condition thanks to a tun-
able parameter. The proposed event-triggered algorithm
consists of updating the saturated plant input based on
conditions involving the closed-loop state, while an esti-
mate of the domain of attraction is provided. Moreover,
the trade-off relying the optimality level, the size of the
estimate of the basin of attraction and the reduction of
the amount of transmissions has been highlighted.

References

[1] M. Abdelrahim, R. Postoyan, J. Daafouz, and
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