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ABSTRACT
We present a new, multidimensional implementation of the Advanced Spectral Leakage (ASL)
scheme with the purpose of modelling neutrino–matter interactions in neutron star mergers. A
major challenge is the neutrino absorption in the semitransparent regime, which is responsible
for driving winds from the merger remnant. The composition of such winds is crucial in the
understanding of the electromagnetic emission in the recently observed macronova following
GW170817. Compared to the original version, we introduce an optical-depth-dependent flux
factor to model the average angle of neutrino propagation, and a modulation that accounts for
flux anisotropies in non-spherical geometries. We scrutinize our approach by first comparing
the new scheme against the original one for a spherically symmetric core-collapse supernova
snapshot, both in 1D and in 3D, and additionally against a two-moment (M1) scheme as
implemented in 1D into the code GR1D. The luminosities and mean energies agree to a few
per cents in most tests. Finally, for the case of a binary merger remnant snapshot we compare
the new ASL scheme with the M1 scheme that is implemented in the Eulerian adaptive mesh
refinement code FLASH. We find that the neutrino absorption distribution in the semitransparent
regime is overall well reproduced. Both approaches agree to within � 15 per cent for the
average energies and to better than ∼ 35 per cent in the total luminosities.

Key words: hydrodynamics – neutrinos – radiative transfer – stars: neutron – supernovae:
general.

1 IN T RO D U C T I O N

The first multimessenger detection of a neutron star merger (Abbott
et al. 2017c) has brought major leaps forwards for many areas of
(astro)physics. For example, the 1.7 s delay between the gravita-
tional wave (GW) peak and the gamma-rays from an event detected
by the Fermi satellite (Goldstein et al. 2017) allowed to constrain
the deviations of the GW propagation speed from the speed of light
to 1 part in 1015 (Abbott et al. 2017c). The detection further allowed
for an independent measure of the Hubble parameter (Abbott et al.
2017b) as suggested by Schutz (1986). The GW signal was followed
by emission all across the electromagnetic (EM) spectrum (e.g.
Abbott et al. 2017a,c; Alexander et al. 2017; Arcavi et al. 2017;
Chornock et al. 2017; Coulter et al. 2017; Goldstein et al. 2017;
Haggard et al. 2017; Hallinan et al. 2017; Kasen et al. 2017; Kasliwal
et al. 2017; Kilpatrick et al. 2017; Margutti et al. 2017; Pian et al.
2017; Savchenko et al. 2017; Smartt et al. 2017; Tanvir et al. 2017;
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Troja et al. 2017). The intensity of the EM emission detected in the
aftermath of the event decayed with a power-law exponent close to
−1.3 (Kasliwal et al. 2017; Rosswog et al. 2018) as expected for
a distribution of freshly synthesized r-process elements (Metzger
et al. 2010; Korobkin et al. 2012). Estimates of the involved ejecta
masses point to ∼0.02 M� for the early blue emission component
and ∼0.04 M� for the later emerging red component (Kasen et al.
2017; Perego, Radice & Bernuzzi 2017b; Rosswog et al. 2018;
Villar et al. 2017). The early blue component requires lanthanide-
free ejecta which, in turn, are the r-process nucleosynthesis result of
matter with Ye � 0.25 (Korobkin et al. 2012; Kasliwal et al. 2019)
(ejected at velocities of ∼0.3 c). The later emerging, red component
stems from matter with electron fractions below this threshold
value. Since the original neutron stars are in β-equilibrium they
contain only about 10−4 M� of matter with Ye > 0.25. Therefore,
the observed ∼2 per cent of a solar mass in the blue component point
to a major re-processing of a large fraction of the ejecta by weak
interactions, raising Ye via e+ + n → p + ν̄e and νe + n → p + e−.
With GW170817 and its EM emission we have thus witnessed
weak interaction ‘in flagranti’. This underlines the paramount
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importance of carefully modelling weak interactions and neutrino
physics in a neutron star merger for reliable predictions of their EM
signature. Addressing the neutrino transport problem by solving
the full multidimensional Boltzmann equation (Lindquist 1966)
is computationally very demanding and for most astrophysical
problems it is prohibitively expensive. Therefore, most multidi-
mensional hydrodynamic studies, both for supernovae and compact
binary mergers resort to transport approximations (e.g. Bruenn,
Buchler & Yueh 1978; Thorne 1981; Bruenn 1985; Mezzacappa &
Messer 1999; Rosswog & Liebendörfer 2003; Buras et al. 2006;
Dessart et al. 2009; Foucart et al. 2016; Perego, Yasin & Arcones
2017a; Cabezón et al. 2018; O’Connor & Couch 2018; Ardevol-
Pulpillo et al. 2019). Our particular focus here is on the Advanced
Spectral Leakage (hereafter ASL) (Perego, Cabezón & Käppeli
2016), that has recently been scrutinized against more expensive
neutrino treatments (Pan et al. 2018) in a core-collapse supernova
context. Since supernovae are roughly spherically symmetric, they
allow for approximations that are not admissible in a neutron star
merger context. In this paper we extend the original ASL scheme to
multidimensional applications, while keeping the general structure
of the equations as presented in the original papers (Perego et al.
2014, 2016). We examine the modified scheme in typical core-
collapse supernova and neutron star merger remnant snapshots. We
focus on the modelling of the absorption in the semitransparent
regime, which is responsible for the neutrino-driven winds (Perego
et al. 2014; Radice et al. 2018b), one of the possible ejection
channels related to the observed blue EM component. We rely
on a spectral treatment of the neutrino–matter interactions, a key
ingredient for capturing the composition of the polar ejecta (Foucart
et al. 2016). The ASL presented here allows for a computationally
inexpensive, spectral treatment of the neutrino absorption in the
semitransparent regime, and it is therefore suitable for long-term
binary merger simulations, where more detailed neutrino treatments
require larger computational resources. The paper is structured as
follows: in Section 2, we describe the ASL methodology both
in its original 1D version (Section 2.1) and in our new multi-D
implementation (Section 2.2). Simulation results are presented in
Section 3. In Section 3.1, we start with a one-dimensional core-
collapse profile. We then move to three-dimensional configurations
in Section 3.2 where we first use the same core-collapse supernova
profile to inspect our multi-D implementation of the ASL scheme.
Finally, we apply the ASL to a neutron star merger remnant.
In all cases, we scrutinize the ASL scheme by comparison with
a two-moment (M1) scheme, and we neglect relativistic effects
everywhere. In Section 4, we summarize our results.

2 TH E A DVA N C E D SP E C T R A L L E A K AG E

2.1 1D implementation

We first summarize the most relevant features of the ASL scheme
for spherically symmetric systems, as they are described in Perego
et al. (2016). In their work, the ASL scheme is explored both in 1D
and multi-D spherically symmetric core-collapse set-ups, showing
flexibility and overall agreement with other neutrino transport
models. At the heart of the ASL approach is a spectral (i.e. energy-
dependent) description of neutrino transport in which a neutrino
energy spectrum is initially set up to account for the energy-
squared dependence of neutrino–matter interactions. As in most
approximate treatments, we model neutrinos as three independent
species: electron neutrinos νe, electron antineutrinos ν̄e, and a
collective species for heavy-lepton neutrinos and antineutrinos νx.

For the interactions between neutrinos and matter, we consider the
production and absorption of electron neutrinos and antineutrinos
via charged current processes involving nucleons and nuclei, neu-
trino emission by bremsstrahlung and pair processes, and finally
the scattering off nucleons and nuclei. These reactions enter the
computation of the local optical depth τ ν(E, x) for an energy E at
position x, which is a measure of the average number of interactions
a neutrino experiences before escaping to infinity and defined as
integral of the inverse local mean free path λν(E, x

′
) over a path γ

τν(E, x) =
∫

γ :x→+∞

1

λν(E, x′(s))
ds. (1)

Two different optical depths are defined: the first is the total optical
depth τ ν,tot where both absorption and elastic scattering interactions
are equally considered in the inverse mean free path calculation.
The second is the energy optical depth τ ν,en, which is related to the
mean free path over which neutrinos can exchange energy with the
fluid. An analytical estimate of the latter is given by computing the
geometric mean between the total and the absorption inverse mean
free paths:

λν,en(E, x) =
√

c λν,tot(E, x)∑
s χν,ab,s(E, x)

, (2)

where χν,ab,s(E, x) is the absorptivity of the absorption process ‘s’
and c is the speed of light. Each optical depth defines a neutrino
surface at τ ν = 2/3, where neutrinos begin to decouple from matter.

The net specific,1 spectral2 neutrino emission rate (units of
s−1 g−1 erg−3) is initially calculated as a smooth interpolation
between the production rν,prod(E, x) and diffusion rν,diff(E, x) rate

r̃ν(E, x) = rν,prod(E, x) rν,diff (E, x)

rν,prod(E, x) + rν,diff (E, x)
, (3)

where rν,prod(E, x) depends on the production time-scale tν,prod,
which in turn is set by the local emissivity, while rν,diff(E, x)
depends on the time-scale over which neutrinos diffuse out of
the system, tν,diff . This time-scale is set by the local opacity
via ∼ τ 2

ν,tot(E, x). Equation (3) favours rν,diff(E, x) in optically
thick conditions (τν,tot(E, x) � 1) and rν,prod(E, x) in optically thin
conditions (τν,tot(E, x) � 1). We add two further corrections. First,
when a large amount of neutrinos is emitted at the neutrino surface
or is locally produced, Pauli blocking occurs as a consequence of the
fermionic nature of neutrinos. Secondly, emission in optically thin
regimes provided by rν,prod is assumed isotropic, and a fraction of
neutrinos are emitted toward the optically thick regime. To account
for these effects, neutrino emission is reduced by introducing a Pauli
blocking parameter αν,blk: r̃ν → (1 − αν,blk)r̃ν . Thirdly, during the
diffusion process in the optically thick regime, neutrinos thermalize
to lower energies and therefore the spectrum at the neutrino surface
is softened. The softening of the spectrum is included via the term

1

ν (x) exp(−τν,en(E, x)/τcut), with 
ν(x) defined as


ν(x) =
∫ +∞

0 r̃ν(E, x)e−τν,en(E,x)/τcutE2 dE∫ +∞
0 r̃ν(E, x)E2 dE

, (4)

where τ cut parametrizes the typical number of interactions required
to thermalize neutrinos. The equation for the neutrino emission
rate finally becomes (we will occasionally refer to this emission as

1To be explicit: we always use ‘specific’ for quantities on a per mass basis.
2We always use ‘spectral’ for quantities in units of E2 dE.
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cooling)

rν(E, x) = (1 − αν,blk)r̃ν(E, x)
1


ν(x)
exp(−τν,en(E, x)/τcut). (5)

The values of αν,blk and τ cut are geometry-dependent, and must
ideally be calibrated every time the system geometry changes
significantly over the time of the simulation. A good trade-off
is to provide fixed values for these parameters that are able to
approximately reproduce the neutrino properties dynamically in
comparison to other transport approaches. So far, αν,blk and τ cut

have been calibrated in the context of spherically symmetric core-
collapse supernovae simulations against full Boltzmann neutrino
transport (Perego et al. 2016). Electron neutrinos and antineutrinos
have αν,blk ∼ 0.55. Heavy-lepton neutrinos are generally subdom-
inant and their emission in optically thin regime is negligible,
therefore αν,blk ∼ 0. For the thermalization coefficient we adopt
τ cut = 20 for all neutrino species. Although a new calibration in the
context of binary merger simulations would be preferred, for the
time being we assume the same values adopted for core-collapse
simulations, leaving the detailed binary merger calibration task to
a future work. The absorption of neutrinos in the optically thin
regime is hereafter referred to as heating, and the specific, spectral
absorption rate (units of s−1 g−1 erg−3) is defined as

hν(E, x) = 1

ρ(x)
nν,τ�1 χν,ab Fe∓ H, (6)

where ρ(x) is the mass density of the fluid at position x, χν,ab the
absorptivity, nν,τ � 1 the neutrino number density in optically thin
regime, H = exp(−τν,tot) ensures the heating to be applied only in
the optically thin regime. All quantities on the RHS of equation (6)
are functions of energy E and position x. The Pauli blocking factor
for final state electrons and positrons is given by

Fe∓ = 1 − 1

exp((E ± Q ∓ μe)/kBT ) + 1
, (7)

where kB is the Boltzmann constant, Q ≈ 1.293 MeV is the
difference between neutron and proton rest-mass energy, μe is the
electron chemical potential, and T is the fluid temperature. The form
of nν,τ � 1 for a spherically symmetric heating is

nν,τ�1(E, R) = lν(E, R)

4πR2 c μν(E, R)
, (8)

where lν(E, R) is the total, spectral number rate (in s−1 erg−3) at
radius R obtained as solution of a differential equation that accounts
for both emission and absorption of neutrinos while they propagate
from the centre of the system to a distance R

dlν(E, R)

dR
= 4πR2ρ(R)rν(E, R) − χab(E,R)

c
H (E,R)lν(E,R).

(9)

In equation (8) μν(E, R) is called flux factor. It corresponds to the
average of the cosine of the propagation angle for the free streaming
neutrinos. An analytic approximation is given by Liebendörfer,
Whitehouse & Fischer (2009)

μν(E,R) = 1

2

(
1 +

√
1 −

( Rν(E)

max(R, Rν(E))

)2
)

, (10)

where Rν(E) is the neutrino surface radius for energy E. Far from
the neutrino surface (R � Rν) the neutrino flux points toward the
observer direction and the propagation angle is 0, i.e. μν(E, R) =
1. Close to the neutrino surface (R ∼ Rν) and assuming isotropic
neutrino emission above the plane tangential to it μν(E, R) ∼ 1/2.

Given the spectral, specific rates rν(E, x) and hν(E, x) at each
point from equations (5) and (6), the energy-integrated emission
and absorption specific rates are

Rk
ν (x) = ∫ +∞

0 rν(E, x) E2+k dE, (11)

Hk
ν (x) = ∫ +∞

0 hν(E, x) E2+k dE, (12)

respectively, where k = 0 specifies the number rate (g−1s−1) and k
= 1 the energy rate (erg g−1s−1). equations (11) and (12) define the
specific number and energy net rates Q̇k=0

ν (x) and Q̇k=1
ν (x)

Q̇k=0
ν (x) = Rk=0

ν (x) − Hk=0
ν (x), (13)

Q̇k=1
ν (x) = Rk=1

ν (x) − Hk=1
ν (x), (14)

from which the total neutrino number net rate Lk=0
ν and the neutrino

luminosity Lk=1
ν can be derived by integrating over the volume V of

the fluid

Lk=0
ν = ∫

V
Q̇k=0

ν (x)ρ(x) dV , (15)

Lk=1
ν = ∫

V
Q̇k=1

ν (x)ρ(x) dV . (16)

From the last two equations the neutrino average energy is calculated
as

〈Eν〉 = Lk=1
ν

Lk=0
ν

. (17)

The root-mean-squared (rms) energy can be defined too as

Erms =
√

Lk=2
ν

Lk=0
ν

. (18)

In Section 3 we will mainly refer to equation (17) to describe the
neutrino energy, but we additionally provide values for the rms
energies for completeness. From equations (11) and (12) we can
also recover the local net change in the total lepton number fraction
Ẏl(x)

Ẏl(x) = mb

(
Hk=0

νe
(x) − Hk=0

ν̄e
(x) + Rk=0

ν̄e
(x) − Rk=0

νe
(x)

)
(19)

where mb is the baryon mass, and the change of the total specific
matter internal energy u̇(x)

u̇(x) = −(
Rk=1

νe
(x) + Rk=1

ν̄e
(x) + 4Rk=1

ν̄μ,τ
(x)

)+
+ (

Hk=1
νe

(x) + Hk=1
ν̄e

(x)
)
.

(20)

Both Ẏl(x) and u̇(x) contain variations in the lepton number fraction
and specific internal energy by local emission and absorption of
neutrinos and by neutrino diffusion that would dominate in the
optically thick regime. Denoting the variation of the number and
energy of trapped neutrinos per baryon as Ẏν(x) and Żν(x) driven
by diffusion, we can recover the change in the electron fraction
Ẏe(x)

Ẏe(x) = Ẏl(x) − Ẏνe (x) + Ẏν̄e (x) (21)

and the rate of change of the specific internal energy due to local
neutrino emission and absorption ė(x)

ė(x) = u̇(x) − 1

mb

(
Żνe (x) + Żν̄e (x) + 4Żνμ,τ

(x)
)
. (22)

Ẏν(x) and Żν(x) are evaluated at first order in time as

Ẏν(x) = Yν,t+t (x) − Yν(x)

t
, (23)

Żν(x) = Zν,t+t (x) − Zν(x)

t
, (24)
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where t is the current time-step. An adequate time-step should
ensure that the variation of all the variables for which the ASL
provide a source term in the hydrodynamic equations is less than
a given, small percentage (namely � 1 per cent). The number and
energy of trapped neutrinos per baryon at time t and location x are
related to the neutrino-trapped distribution function f tr

ν,t (E, x) by

Yν,t (x) = 4π

(hc)3

mb

ρ(x)

∫
f tr

ν,t (E, x)E2 dE, (25)

Zν,t (x) = 4π

(hc)3

mb

ρ(x)

∫
f tr

ν,t (E, x)E3dE, (26)

where h is the Planck constant. Starting from Yν,t(x) and Zν,t(x),
f tr

ν,t (E, x) is first recovered on the basis of equilibrium arguments.
In particular, we assume a distribution of the form

f tr
ν (E, x) = f eq

ν (E, x)
(
1 − e−τν,en(E,x)

)
, (27)

at time t, where f eq
ν (E, x) is a Fermi–Dirac distribution

f eq
ν (E, x) = 1

e(E/(kBTν (x))−ην (x)) + 1
, (28)

with Tν(x) being the neutrino temperature, which is assumed to be
equal to the matter temperature, and ην(x) the degeneracy parameter,
evaluated by assuming weak equilibrium. Secondly, f tr

ν,t (E, x) is
evolved between t and t + t considering production and diffusion
of neutrinos as two competing processes. Namely, we integrate the
equation

df tr
ν

dt
= ḟ tr

ν,prod + ḟ tr
ν,diff, (29)

where

ḟ tr
ν,prod = f eq

ν − f tr
ν

max(tν,prod, t)
exp

(
− tν,prod

tν,diff

)
(30)

and

ḟ tr
ν,diff = − f tr

ν

max(tν,diff,t)
exp

(
− tν,diff

tν,prod

)
. (31)

At last, Yν,t+t and Zν,t+t are recovered by using f tr
ν,t+t in

equations (25) and (26). For more details, see Perego et al. (2016).
Note that in equations (19) and (20) we have neglected absorption
by heavy-lepton neutrinos in the semitransparent regime, because
at the decoupling surfaces they do not have enough energy to
produce muons and taus by charged-current interactions. Moreover,
heating by heavy-lepton neutrino annihilation and inverse nucleon–
nucleon bremsstrahlung provides negligible contributions in the
semitransparent regime, since the opacities are small (Endrizzi et al.
2019). Neglecting heating by heavy-lepton neutrinos is therefore a
reasonable assumption.

2.2 Multi-D implementation

All physical quantities shown in Section 2.1 are local and inde-
pendent of the system geometry, except for equations (1), (8),
and (10). In particular, equation (10) is straightforward to use
only in cases where the neutrino surface is easy to reconstruct.
While this argument is certainly valid for a spherically symmetric
configuration, for a more complex geometry like a neutron star
merger remnant is not. Indeed, given the presence of a torus around
the central compact object the neutrino decoupling surface has larger
radii on the equatorial plane than along the polar axis (Dessart
et al. 2009; Perego et al. 2014). In the following, we describe
our implementation of equations (1), (8), and (10) to a multi-D
configuration.

2.2.1 Optical depth

The computation of the optical depth is performed by taking
the minimum among values of the optical depth calculated by
integrating the neutrino mean free path over a set of pre-defined
radii. In particular, given a point (x, y, z) we consider the following
outgoing paths:

(i) fixed (y, z), path along x
(ii) fixed (x, z), path along y
(iii) fixed (x, y), path along z
(iv) fixed x, diagonal path along y, z
(v) fixed y, diagonal path along x, z
(vi) fixed z, diagonal path along x, y
(vii) diagonal path along x, y, z.

The likelihood of being close to the true minimum optical depth
at a point increases by increasing number of paths. For this reason,
the choice of diagonal paths ensures a more accurate calculation of
the optical depth by avoiding local overestimates that would arise
otherwise. However, it is important to stress that this algorithm
leads inevitably to an overestimation of the local optical depth, as a
consequence of the limited number of paths that can be practically
chosen for calculations.

2.2.2 Flux factor

To construct a more general form for the flux factor that still
resembles the general properties of equation (10) we borrow the
linear dependence of the inverse flux factor from the optical depth
from equation (31) of O’Connor & Ott (2010). Although their
equation (31) does not consider a spectral distribution of energies,
we take that form to get an approximate expression of the flux factor
at any energy by just extending the grey interpolation formula to a
spectral form by adding the energy dependence. Therefore, we use

1

μν

(E, x) =
{

1.5 τν,tot(E, x) + 1 if τν,tot(E, x) ≤ 2/3

2 otherwise
. (32)

Using this expression we mimic equation (10) with a flux factor
μν(E, x) tending to 1 for small optical depths and having its
minimum value at τ ν,tot(E, x) = 2/3 equal to 1/2. Moreover, we
enforce a similar constraint as in equation (6) by setting the value
of the flux factor to be 1/2 for any optical depth larger than 2/3.
equation (32) is more suitable than equation (10) for a general
geometry since it only depends on the local optical depth, and
no previous knowledge of the radius of the neutrino surface is
required. However, a different choice of the flux factor might lead
to noticeable variations of the amount of heating. We will quantify
the effects of this choice of flux factor in the next section.

2.2.3 Flux anisotropy

Modelling the neutrino density distribution in space accurately
requires the knowledge of the path along which neutrinos propagate
from the optically thick to the optically thin region. While this is
trivial in spherical symmetry, it is not so for a general geometry such
as a merger remnant. Sophisticated algorithms have been designed
(Perego et al. 2014), but come at large computational expense. Here
we take a simpler approach. We modify equation (8) according to
the equation 3 of Martin et al. (2018). In their work the total, axially
symmetric neutrino flux an observer receives far from the neutrino
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emitting region is approximated by

Jν(θ, R) = 3(1 + βν cos2 θ )

3 + βν

Lk=1
ν (θ, R)

4πR2〈Eν〉 , (33)

where θ is the angle of the observer with respect to the source pole
and βν = Jν (θ=0,R)

Jν (θ=π/2,R) − 1 measures the degree of flux anisotropy
which depends on the geometry of the source. In particular, a
spherically symmetric source would have βν = 0. On the other
hand, in the context of mergers the presence of a torus implies more
escaping neutrinos along the polar region rather than along the
optically thick equatorial region, and therefore βν > 0 (Rosswog &
Liebendörfer 2003; Dessart et al. 2009; Perego et al. 2014; Foucart
et al. 2016). In order to adapt equation (33) to our problem of
reconstructing the neutrino density distribution in our domain, we
assume a similar modulation ∼cos b(θ ), but we gauge the exponent b
by comparison with an M1 neutrino transport approach. Moreover,
we make the assumption that the value of βν that would in principle
be a function of the distance to the source of neutrino emission
is constant and equal to the value measured at large distances.
Furthermore, at distances close to the neutrino surface the effects
of the neutrino angular distribution arise and the hypothesis of pure
radial fluxes breaks down. We thus calculate the neutrino density
nν,τ � 1(E, x) at each radius R = |x| as in equation (8) by retaining a
spherically symmetric neutrino spectral number rate lν(E, |x|), but
on one side we add the flux factor μν(E, x) of equation (32) and on
the other side we include the modulation factor ∼ cosb(θ ) to keep
track of the effect of the geometry of the system on the neutrino
fluxes. Therefore we replace equation (8) with

nν,τ�1(E, x) = (1 + b)(1 + βν cosb(θ ))

1 + b + βν

lν(E, |x|)
4π |x|2cμν(E, x)

, (34)

where θ ≡ θ (x) and we rewrite the angular dependent pre-factor
such that the integral over the solid angle is 4π . Note that unlike
equation (10) we use μν(E, x) from equation (32) and therefore
points in space at same distance R = |x| to the centre of the system
can potentially have different values of the flux factor. Only for
spherically symmetric systems they are the same and we recover
equation (8) by setting βν = 0. Note that in equation (8) we
keep the assumption of axial symmetry when calculating the flux
modulation. A high degree of axisymmetry is generally expected
after few tens of ms irrespective of the mass ratio (Perego, Bernuzzi
& Radice 2019). This time-scale reduces even more if angular
momentum transport by turbulent magnetic viscosity is effective.
Therefore, except the first few ms after the merger, our assumption of
axis symmetry is reasonable. As last step we estimate βν considering
an approach similar to the one of Rosswog & Liebendörfer (2003).
We divide neutrinos in two groups: diffusive and free streaming
neutrinos. The former propagate outward following the direction
of the gradient n̂ρ = −∇ρ/|∇ρ|, while the latter are emitted
isotropically. The luminosity at a polar angle θ coming from the
diffusive neutrinos is selected by choosing those neutrinos emitted
within a ring of width θ around the θ direction. Therefore, the

luminosity per solid angle �ν(θ ) = Lk=1
ν

�
is

�ν(θ ) =
∑

i Rk=1
i,ν,diff (θ )mi

2π sin(θ )θ
+

∑
j Rk=1

j,ν,prodmj

4π
, (35)

where the index i in the sum is limited to those fluid points for
which θ − θ /2 < θ i < θ + θ /2 and cos(θi) = n̂ρ · êz, êz being
the unit vector along the z-axis, and the index j extends over the
whole volume. mi and mj are the masses of the fluid elements i and
j. The diffusive and free streaming contributions to the luminosity
are calculated as

Rk=1
i,ν,diff (θ ) = ∫ +∞

0 fi,ν,diff (E)ri,ν(E)E3dE (36)

Rk=1
j,ν,prod = ∫ +∞

0 fj,ν,prod(E)rj,ν(E)E3dE (37)

with fi,ν,diff (E) and fj,ν,prod(E) being the fractions of diffusive and
free streaming contribution to the emission rates ri, ν(E) and rj, ν(E)
at i and j points, respectively, which can be approximated by 3

fi,ν,diff (E) ≈ r̃i,ν(E)

ri,ν,diff (E)
, (38)

fj,ν,prod(E) ≈ r̃j ,ν(E)

rj,ν,prod(E)
. (39)

The value of βν is then estimated from the ratio of the fluxes ∼ �ν

R2

an observer close to pole and equator would see at a fixed distance
R to the source 4

βν = �ν(θ ≈ 0◦)

�ν(θ ≈ 90◦)
− 1. (40)

It is important to note that in the computation of βν we distin-
guish between neutrino species as the relevant neutrino–matter
interactions differ between them and they also have different
decoupling surfaces (see Fig. 11 for example), but for each species
we do not consider different βν for different neutrino energies.
Nevertheless, our algorithm accounts for the different contributions
to βν from different energies and therefore we assume equation (40)
as indicative for a suitable estimate of the spectral neutrino density
of equation (34).

3 R ESULTS

In this section, we summarize our results. We begin by applying the
ASL to a 1D core-collapse supernova profile. Subsequently we map
this profile on a 3D grid and apply our multi-D implementation of
the ASL, see Section 2.2. Finally, we use the ASL to extract the
neutrino physics from a neutron star merger remnant. Our tests
are performed by taking snapshots of density, temperature, and
electron fraction from dynamical simulations (Rosswog et al. 2017)
as a background on which we evolve the neutrino quantities until
they achieve a steady state. For the core-collapse supernovae tests,
we use the Lattimer–Swesty Equation of State (EoS) (Lattimer
& Douglas Swesty 1991) with nuclear incompressibility K =
220 MeV, a standard choice widely used throughout the literature.
In light of the recent constraints on the EoS from gravitational and
electromagnetic observations of GW170817 (Abbott et al. 2018;
Coughlin et al. 2018; Most et al. 2018; Radice et al. 2018a) for
the binary merger remnant we consider the SFHo EoS, which
provides masses in agreement with the highest neutron star masses
measured until very recently (Demorest et al. 2010; Antoniadis
et al. 2013), but in tension with the most recent measurement of
a 2.17+0.11

−0.10 M� neutron star (Cromartie et al. 2019). The neutrino
transport is run with a spectrum of 20 geometrically increasing

3We neglect the Pauli blocking and the thermalization correction for this
calculation.
4We do not exactly choose the angles θ = 0◦ and θ = 90◦ for two reasons:
first, the solid angle corresponding to θ = 0◦ is small and the value of �ν (θ =
0◦) would be associated with a small region that would not be representative
of the flux at the pole. Secondly, the cosine dependence is only meant as
an approximate trend of the flux between pole and equator. We therefore
set our fiducial angles close to pole and equator to θ = 10◦ and θ = 80◦,
respectively.
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4216 D. Gizzi et al.

energy groups from 3 to 300 MeV. We also explore for fixed energy
interval the convergence of our results by changing the number of
energy bins, and for fixed number of bins we also increase and
decrease the energy interval to test the dependence of our results
on the energy spectrum. Our ASL results are compared with a
two moment scheme (M1) (Thorne 1981). In particular, for the
core-collapse supernovae tests we compare with the M1 scheme
of the spherically symmetric Eulerian hydrodynamics code GR1D
(O’Connor & Ott 2010; O’Connor 2015; O’Connor & Ott 2013).
Since we take the 1D core-collapse supernova snapshot from the
dynamical simulations of Perego et al. (2016), which uses the same
ASL described in Section 2.1, we perform a dynamical simulation
of the same progenitor with GR1D and take the outcome from
the simulation at the same time post-bounce to make a consistent
comparison. For the binary neutron star merger case we compare
with the M1 scheme implemented in the Eulerian hydrodynamics
code FLASH (Fryxell et al. 2000; O’Connor & Couch 2018). Unlike
the core-collapse case, we take a snapshot of a post-merger remnant
from the simulations of Rosswog & Liebendörfer (2003), which
uses a grey leakage scheme, and apply both the ASL implementation
described in Section 2.2 and the M1 scheme in FLASH to it.
Applying a different transport approach to the one adopted for
obtaining the snapshot introduces inconsistencies that will be
quantified.

3.1 ASL in 1D core-collapse supernovae

We take a snapshot at 275 ms post-bounce of the 15 M� progenitor
of Perego et al. (2016), whose dynamical evolution has been
simulated with the spherically symmetric hydrodynamics code
Agile (Liebendörfer, Rosswog & Thielemann 2002). The radial
profile has a variable resolution with radius ranging from �1 km
to tens of km moving from the inner to the outer regions, with a
maximum radial extension of 6832 km. In order to describe the
profile properties, it is worth summarizing the previous dynamics.
During the collapse phase the deleptonization of the iron core
reduces the fraction of electrons Ye in the core by producing electron
neutrinos. Neutrinos freely stream out initially and therefore the
total lepton number decreases. Once neutrinos get trapped, the
decrease in Ye is compensated by the fraction of trapped neutrinos.
At core bounce a shock forms and propagates outward. During
the shock propagation, iron nuclei falling into the shock are
photodissociated into neutrons and protons. At this stage, neutrinos
of all flavours are largely produced by charged current interactions
and pair processes. Dissociation of iron nuclei into nucleons, the
ram pressure of the still infalling outer layers, and the energy losses
due to the neutrino burst when it surpasses the neutrinosphere,
cause the shock to stall. Neutrino absorption behind the shock in
the so-called gain region helps the shock to revive and in some
cases leads to the final explosion. In the top row panels of Fig. 1
we show density, temperature, and electron fraction as a function of
the radius, while in the second and third rows we show the number
and energy of trapped neutrinos per baryon, denoted as Yν and Zν ,
respectively. We evolve such fractions until steady state is reached
while keeping density, temperature, and electron fraction of the
fluid fixed. Once in equilibrium, the rates of the trapped neutrino
components vanish, which translates into u̇ = ė and Ẏl = Ẏe, see
equations (20) and (21). The distribution of u̇ and Ẏl (from a
simulation using the flux factor of equation (32)) is shown in Fig. 2.
All the results we are going to show are referred to this equilibrium
state.

3.1.1 Neutrino rates

In Fig. 3 we show the specific emission rate along the radial profile
for different energies, obtained from equation (5) by multiplying
for each energy by E2E of the corresponding bin, as well as the
cumulative contribution from all energies. The main contribution
to the neutrino emission comes from neutrino energies below ∼
few tens of MeV for all neutrino species. In particular, all species
show a decreasing contribution to the emission with increasing
energy at low radii because of the ∼ τ−2

ν,tot ∼ E−2
ν dependence

of the diffusion rate (equation 31 of Perego et al. 2016) that
causes high-energy neutrinos to have a lower diffusion rate and
therefore to diffuse out less efficiently than low-energy neutrinos.
The production rate dominates over the diffusion rate at large radii.
Given the emissivity dependence ∼jν (equation 30 of Perego et al.
2016), neutrino emission is governed by the low temperatures and
is therefore suppressed at all energies. Similarly, in Fig. 4 we show
the specific absorption rate for electron neutrinos and antineutrinos
(heavy-lepton neutrinos are not included in the heating). Neutrino
absorption is calculated locally for each neutrino energy if the
condition τ en,ν(E, x) ≤ 1 is satisfied, and depends on the local
amount of available neutrinos, which in turn depends on both
local production and on neutrinos coming from innermost regions.
Local neutrino production decreases as the radius increases, as a
consequence of the decrease in temperature and density. In addition,
the amount of neutrinos at a given radius coming from innermost
regions is reduced both by absorption occurring at smaller radii and
by the ∼1/R2 dependence in equation (34). Therefore, all energies
show a decrease in the local neutrino absorption with increasing
distance from the centre. We also notice in the same way of the
emission rate that the larger contribution to the heating rate comes
from neutrinos of ∼ few tens of MeV, as a result of the dependence
of the neutrino absorption on the emission via the number rate
lν(E, x).

3.1.2 Flux factor and heating

In Fig. 5 we compare the inverse of the flux factor for the two
prescriptions of equations (10) and (32), labelled as old and new,
respectively, for electron neutrinos and antineutrinos at different
energies, as it enters equation (6) and it therefore affects the local
heating. The largest differences are at energies �40 MeV with
discrepancies up to ∼ 25–30 per cent. Such differences are expected
since the flux factor from equation (32) depends on the optical depth
rather than the radius as in equation (10), and therefore the trend
in Fig. 5 resembles the trend of the optical depth. Nevertheless,
as we have seen in Fig. 4 the largest contribution to the heating
comes from neutrinos of energies of few tens of MeV. We therefore
do not expect such differences to contribute sensitively to the
global neutrino luminosities for our snapshot calculations. In fact,
in the bottom panels of Fig. 6 we show the quantity −Q̇k=1

ν in
units of 1020 erg g−1 s−1 calculated from equation (14), which is
a measure of the local heating rate. Overall, we see a very good
agreement between the old (blue line) and new (red line) flux factor
prescriptions, with differences at the order of a few per cent in the
region where heating gets important (−Q̇k=1

ν > 0). More detailed
quantification of the heating with our new flux factor prescription
during full dynamical simulations will be the subject of future
work. As an additional test, we show in Fig. 6 a comparison at
the same time post-bounce of the same quantity −Q̇k=1

ν provided
by a dynamical evolution of the same progenitor starting at the onset
of collapse performed with GR1D (black-dashed line). Compared
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ASL for multi-D simulations 4217

Figure 1. Top row: 1D profile of density (left-hand panel), temperature (middle panel), and electron fraction (right-hand panel) at 275 ms after core bounce.
The shock is located at ∼120 km from the core, clearly visible from the jump of density and temperature. Their values in the core are about ρ ∼ 3 × 1014 g cm−3

and T ∼ 12 MeV, respectively. The effect of the deleptonization until neutrino trapping leads to an inner electron fraction of Ye ∼ 0.3. The passage of the shock
during its propagation affects both T and Ye sensitively. In particular, neutrino–matter interactions after iron nuclei dissociation decrease the electron fraction
down to Ye ∼ 0.1. Conversely, temperatures reach their maximum at T ∼ 30 MeV. Matter properties in the outermost layers are untouched by the shock and
therefore have their original Ye and low values of T. Second and third rows: number and energy of trapped neutrinos per baryon along the 1D profile. From
left to right, electron neutrinos, electron antineutrinos, and heavy-lepton neutrinos. Electron neutrinos are confined within a region of ∼20 km from the core,
while electron antineutrinos and heavy-lepton neutrinos are within 10−30 km. Bottom row: density (left-hand panel), temperature (middle panel), and electron
fraction (right-hand panel) of the core-collapse snapshot at 275 ms after bounce on the y = 0 plane of the 3D grid. The peak in the temperature that is visible at
T ∼ 20 km in the 1D profile is shown here in yellow. In the same way, the drop in the electron fraction down to Ye ∼ 0.1 corresponds to the black-red region.

to our test with the ASL, the net rate from GR1D provides
less cooling (less negative −Q̇k=1

ν ) in the ranges ∼30−50 and
∼65−80 km, with a larger one only in the range ∼50−65 km
for electron neutrinos. This is the result of a dynamical evolution

with a different neutrino transport, where at the same time after
bounce the structure of the star shows significant differences with
respect to the ASL run, clearly visible in the density and temperature
profiles on the top panels of Fig. 6. In particular, the GR1D profile
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4218 D. Gizzi et al.

Figure 2. Specific total internal energy rate (left-hand panel) and lepton number fraction rate (right-hand panel) once steady state is reached. Negative values
of u̇ describe the loss of internal energy due to neutrino emission at equilibrium, while positive values mark the region where the heating dominates. The
negative electron fraction rate is a result of the conversion of electrons into neutrinos.

Figure 3. Specific emission rate at different energies between 3 and 300 MeV for electron neutrinos (left-hand panel), electron antineutrinos (middle panel),
and heavy-lepton neutrinos (right-hand panel). The dashed-line corresponds to the energy-summed rate. In contrast to electron neutrinos and antineutrinos,
heavy-lepton neutrinos can still provide an important contribution to the emission at energies �40 MeV. Low-energy neutrinos contribute the most to the local
emission.

Figure 4. Specific absorption rate at different energies between 3 and 300 MeV for electron neutrinos (left-hand panel) and electron antineutrinos (right-hand
panel). The dashed-line corresponds to the energy-summed rate. The largest contribution to the local absorption is provided by low-energy neutrinos.

has a colder and less compact layer within ∼30−50 km where
most of the emission occurs. Note also the different location of
the shock, which is located at ∼105 km for the GR1D case. On
the other hand, we do not see a difference in the peak heating
rate near 100 km, with −Q̇k=1

ν ∼ 2.5 × 1020 erg g−1 s−1 for both
runs.

3.1.3 Neutrino luminosities and average-rms energies

Given the specific net rates we calculate the total neutrino lumi-
nosities and average energies given by equations (16) and (17). The
results are shown in the first row of Table 1 for both the old and the
new flux factor prescriptions. The latter reduces the luminosities
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ASL for multi-D simulations 4219

Figure 5. Inverse of the electron neutrino (left-hand panel) and antineutrino (right-hand panel) flux factor for the prescriptions of equations (10) and (32),
labelled as old and new, respectively. Different neutrino energies of the global spectrum are chosen as reference. Note the larger deviations from the old
prescription at high energies, due to the τ -dependence of the new prescription.

Figure 6. Top row: Density (left-hand panel) and temperature (right-hand panel) profiles as in Fig. 1 but with the addition of the data from the GR1D
run. Bottom row: Measure of the heating rate in units of 1020 erg g−1 s−1 along the radial profile for electron neutrinos (left-hand panel) and antineutrinos
(right-hand panel) with the old (blue) and new (red) prescription for the flux factor. An overall good agreement between the two choices of flux factor is visible,
with differences at the level of few per cents. Positive values mark the dominance of neutrino absorption over emission which can be seen behind the shock
location at ∼120 km. The dashed line shows the result from a dynamical simulation with GR1D.

compared to the former by � 5 per cent. The average energies are
less affected with differences � 1 per cent. For completeness, we
also calculate the rms neutrino energies from equation (18) and find
Erms,νe = 14.21 MeV, Erms,ν̄e = 17.07 MeV, Erms,νx = 25.33 MeV,
in agreement with Perego et al. (2016). We further show the results
obtained by performing the same calculations with GR1D in the last
row of Table 1. The electron neutrino and antineutrino luminosities

are lower by � 10 per cent compared to the ASL runs due to the
combination of an overall weaker neutrino cooling and comparable
heating. Heavy lepton neutrinos have instead ∼ 7 per cent lower
luminosity. By looking at the average energies, differences are at
the level of � 5 per cent for electron neutrinos and antineutrinos,
and of ∼ 7 per cent for heavy-lepton neutrinos. A similar trend is
seen in the rms energies. Overall, beside the different grid set-ups,
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Table 1. Summary of the values of neutrino luminosities and average energies with ASL for both prescriptions of flux factors
and for both 1D and 3D implementations. Considering the comparison with the 1D implementation of Section 3.1, the 3D
implementation provides electron neutrino and antineutrino luminosities larger by ∼ 7–8 per cent with the new choice of flux
factor. Heavy lepton neutrinos are less affected with a discrepancy of ∼ 1 per cent instead. Similar trend is observed with the
old flux factor prescription, with deviations reaching ∼ 10 per cent for electron neutrinos and antineutrinos. Such discrepancies
reduce to ∼ 3–4 per cent and to ∼ 1–2 per cent with old and new prescription respectively when comparing with the same 1D
radial profile but with uniform resolution of 1 km. Comparing the two flux factor prescriptions in 3D, the new one provides
electron neutrino and antineutrino luminosities ∼ 6–7 per cent smaller than the old one. The 1D comparison between the two
flux factor choices provides a slightly lower percentage of ∼ 4–5 per cent instead. Overall, discrepancies in the average energies
are of the order of � 1–2 per cent. We additionally show the values obtained by performing the same calculations with the M1
scheme of GR1D.

Implementation Flux factor, old choice Flux factor, new choice

1D, variable resolution, ASL L1
νe

= 4.70 × 1052 erg s−1 L1
νe

= 4.50 × 1052 erg s−1

L1
ν̄e

= 4.61 × 1052 erg s−1 L1
ν̄e

= 4.43 × 1052 erg s−1

L1
νx

= 2.04 × 1052 erg s−1 L1
νx

= 2.04 × 1052 erg s−1

〈Eνe 〉 = 12.86 MeV 〈Eνe 〉 = 12.77 MeV
〈Eν̄e 〉 = 15.69 MeV 〈Eν̄e 〉 = 15.52 MeV
〈Eνx 〉 = 20.35 MeV 〈Eνx 〉 = 20.35 MeV

1D, uniform resolution of 1 km, ASL L1
νe

= 5.00 × 1052erg s−1 L1
νe

= 4.76 × 1052 erg s−1

L1
ν̄e

= 4.88 × 1052 erg s−1 L1
ν̄e

= 4.67 × 1052 erg s−1

L1
νx

= 2.01 × 1052 erg s−1 L1
νx

= 2.01 × 1052 erg s−1

〈Eνe 〉 = 12.98 MeV 〈Eνe 〉 = 12.82 MeV
〈Eν̄e 〉 = 15.72 MeV 〈Eν̄e 〉 = 15.56 MeV
〈Eνx 〉 = 20.33 MeV 〈Eνx 〉 = 20.33 MeV

3D, uniform resolution of 1 km, ASL L1
νe

= 5.17 × 1052 erg s−1 L1
νe

= 4.82 × 1052 erg s−1

L1
ν̄e

= 5.11 × 1052 erg s−1 L1
ν̄e

= 4.79 × 1052 erg s−1

L1
νx

= 2.01 × 1052 erg s−1 L1
νx

= 2.01 × 1052 erg s−1

〈Eνe 〉 = 12.89 MeV 〈Eνe 〉 = 12.63 MeV
〈Eν̄e 〉 = 15.77 MeV 〈Eν̄e 〉 = 15.50 MeV
〈Eνx 〉 = 20.17 MeV 〈Eνx 〉 = 20.17 MeV

GR1D, M1 L1
νe

= 4.20 × 1052 erg s−1

L1
ν̄e

= 4.10 × 1052 erg s−1

L1
νx

= 1.90 × 1052 erg s−1

〈Eνe 〉 = 13.30 MeV
〈Eν̄e 〉 = 16.40 MeV
〈Eνx 〉 = 18.90 MeV

these discrepancies are a consequence of the usage of different
neutrino transport schemes.

3.1.4 Number of energy bins

We finally determine the number of energy bins that are needed for
trustworthy results for the luminosities and average energies. We
first vary the number of energy bins in the fixed energy interval [3,
300] MeV. Table 2 summarizes our findings. A number of energy
bins �10 causes sensitive deviation from a regime of convergence
that is visible at larger numbers (which includes our preliminary
choice of 20 energy groups in [3, 300] MeV). In particular, we notice
a decrease in the luminosities and to a minor extent in the average
energies, as a result of poorly resolved energy-integrated emission
and absorption rates. We therefore choose 20 energy bins and vary
the energy interval. In this way, variations in the simulation outcome
by a reduction of the spectrum size would provide information on
those energy ranges that are too small regardless of the number
of energy bins. Moreover, we can assess whether the regime of
convergence with 20 bins is satisfied for wider intervals of energies
or if it is strictly bound to certain energy ranges. Results are shown
in Table 3. We see that cutting the energy spectrum [3, 300] MeV
at high energies leads to a significant decrease of L1

νx
that starts

appearing from spectra with upper energies below ∼75 MeV and

that worsen by up to about 50 per cent decrease for the smallest
range [3, 30] MeV. The average energy 〈Eνx

〉 is also reduced to
14.37 MeV. This reduction is due to the lack of contribution coming
from energies � 40 MeV, that can still be relevant to the emission
from heavy-leptons (see left-hand panel of Fig. 3). In contrast,
electron neutrino and antineutrino values remain almost stationary.
In the same way, cutting the energy spectrum at low energies from 3
MeV has a strong impact on the luminosities, with a reduction of up
to 70–80 per cent for electron neutrinos and antineutrinos in the case
of the [25, 300] MeV range. The average energies show the opposite
trend, increasing as a result of the high energies giving contribution
to the luminosity L1

ν via equations (11), (12), and (14) and thus
affecting the mean of equation (17). On the other hand, we notice
a convergence in the values of L1

ν and 〈Eν〉 for spectra spanning a
range from 3 MeV to hundreds of MeV. In particular, no sensitive
variations are seen by extending the interval of energies above 300
MeV. The smallest interval above which we start seeing convergence
is [3, 75] MeV. However, it is important to specify that we are here
basing our convergence tests by just looking at global neutrino
luminosities and neglecting the convergence of the fractions of
neutrino trapped components Yν and Zν which are crucial in the
modelling of the diffusion while performing dynamical simulations.
Such convergence requires neutrinos of energies at least equal to the
neutrino chemical potential in the core (set by the beta-equilibrium
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Table 2. Variation of the neutrino luminosities and average energies by changing the number of energy bins in the interval [3,
300] MeV. Choosing a number of energy bins larger than ∼10 leads to stable values, whereas fewer bins cause notable deviations.

Energy bins L1
νe

(erg s−1) L1
ν̄e

(erg s−1) L1
νx

(erg s−1) 〈Eνe 〉 (MeV) 〈Eν̄e 〉 (MeV) 〈Eνx 〉 (MeV)

5 3.43 × 1052 3.36 × 1052 1.67 × 1052 11.66 15.45 18.88
10 4.45 × 1052 4.43 × 1052 2.00 × 1052 12.71 15.59 20.13
15 4.59 × 1052 4.48 × 1052 2.02 × 1052 12.78 15.57 20.25
20 4.54 × 1052 4.48 × 1052 2.04 × 1052 12.77 15.52 20.35
25 4.65 × 1052 4.51 × 1052 2.01 × 1052 12.88 15.57 20.22
30 4.66 × 1052 4.55 × 1052 2.05 × 1052 12.88 15.62 20.41
35 4.57 × 1052 4.53 × 1052 2.03 × 1052 12.77 15.59 20.34
40 4.66 × 1052 4.56 × 1052 2.03 × 1052 12.89 15.64 20.34
45 4.62 × 1052 4.55 × 1052 2.04 × 1052 12.82 15.61 20.38
50 4.62 × 1052 4.55 × 1052 2.03 × 1052 12.83 15.61 20.37
55 4.58 × 1052 4.57 × 1052 2.04 × 1052 12.82 15.63 20.40
60 4.66 × 1052 4.53 × 1052 2.04 × 1052 12.86 15.58 20.41

Table 3. Variation of the luminosities and average energies for all neutrino species considered, with 20 energy bins in total but varying
the energy interval. A stability is seen as long as the energy interval is between few MeV to few hundreds MeV. Either a restriction of the
interval to energies below ∼75 MeV or above ∼10 MeV causes sensitive variations in either the luminosities or the average energies, or
both. Note that although a convergence in the luminosities is already seen for energies above ∼75 MeV, dynamical simulations would
also require neutrino energies above ∼100 MeV to properly model the neutrino trapped components.

Energy range (MeV) L1
νe

(erg s−1) L1
ν̄e

(erg s−1) L1
νx

(erg s−1) 〈Eνe 〉 (MeV) 〈Eν̄e 〉 (MeV) 〈Eνx 〉 (MeV)

[3, 30] 4.35 × 1052 4.13 × 1052 1.08 × 1052 12.58 15.07 14.37
[3, 50] 4.53 × 1052 4.44 × 1052 1.78 × 1052 12.78 15.54 18.86
[3, 75] 4.54 × 1052 4.48 × 1052 2.01 × 1052 12.81 15.58 20.22
[3, 100] 4.59 × 1052 4.48 × 1052 2.03 × 1052 12.83 15.55 20.35
[3, 150] 4.56 × 1052 4.44 × 1052 2.02 × 1052 12.77 15.53 20.27
[3, 200] 4.60 × 1052 4.44 × 1052 2.04 × 1052 12.81 15.51 20.35
[3, 250] 4.64 × 1052 4.43 × 1052 2.01 × 1052 12.85 15.49 20.24
[3, 300] 4.50 × 1052 4.43 × 1052 2.04 × 1052 12.71 15.54 20.35
[3, 350] 4.53 × 1052 4.44 × 1052 2.05 × 1052 12.76 15.50 20.38
[3, 400] 4.59 × 1052 4.42 × 1052 2.01 × 1052 12.84 15.50 20.18
[3, 450] 4.56 × 1052 4.45 × 1052 2.05 × 1052 12.76 15.54 20.38
[3, 500] 4.44 × 1052 4.40 × 1052 2.02 × 1052 12.66 15.46 20.26
[3, 550] 4.55 × 1052 4.43 × 1052 2.04 × 1052 12.77 15.52 20.04
[3, 600] 4.54 × 1052 4.39 × 1052 2.05 × 1052 12.74 15.45 20.36
[10, 300] 4.03 × 1052 4.22 × 1052 1.96 × 1052 15.62 17.33 25.39
[15, 300] 2.84 × 1052 3.31 × 1052 1.84 × 1052 19.54 20.30 29.65
[25, 300] 9.38 × 1051 1.23 × 1052 1.52 × 1052 29.38 28.65 37.78

condition), i.e. �100 MeV. Moreover, we want to stress that our
convergence tests are performed over a snapshot, but the way the
selected energy interval affects the emission can change for different
stages of a dynamical evolution. Summarizing, a number of 20
energy bins for the neutrino spectrum is a reasonable choice despite
the assumed interval of energies, provided that there are neither cuts
in the spectrum at low energies nor at energies that would exclude
neutrinos of �100 MeV.

3 .2 A SL IN 3D APPLICATIONS

3.2.1 Comparison in spherical symmetry between 1D and 3D

To scrutinize our multi-D implementation, we start by taking the
snapshot analysed in Section 3.1, map the initial data on a 3D grid
with uniform resolution of 1 km and evolve the neutrino transport
part until equilibrium. Instead of mapping the whole radial profile
which extends up to 6832 km at densities below 106 g cm−3 and
temperatures of ∼0.1 MeV, we take the profile information only
up to 150 km and neglect the remaining part to save computational

time. Indeed, beyond such distances densities and temperatures are
low enough that the neutrino contribution to the outcome of the
simulations is negligible, � 1 per cent in the total luminosities and
average energies. We choose the energy interval [3, 300] MeV, see
Section 3.1. We show the mapped initial conditions on the y = 0
plane in the bottom panel of Fig. 1.

3D optical depth : To test our 3D implementation of the optical
depths, we first calculate the optical depth on the 3D grid as
explained in Section 2.2. We then create a 1D profile equivalent
to the one used in Section 3.1 but with uniform resolution of 1 km,
where we calculate the optical depth by doing a simple integration
over the radial path. We finally map such optical depth on the 3D
grid and calculate the relative error εν = τ1D−τ3D

τ1D
on the y = 0 plane.

In the left-hand panel of Fig. 7 we show our result. As reference
case we take the total optical depth for electron neutrinos of energy
Eνe

= 10.08 MeV, the other energies and neutrino species show
a similar behaviour. The differences between the 1D and the 3D
calculations are at the level of ∼ 8 per cent at the most, with the
3D implementation providing larger values overall. To get an idea
of the distribution of the neutrino surfaces at different energies, we
show the location of the total and energy neutrinosphere radii on
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4222 D. Gizzi et al.

Figure 7. Left-hand panel: Relative error εν = τ1D−τ3D
τ1D

of the total optical depth for electron neutrinos of energy 10.08 MeV. The 1D values of the optical
depth on the plane are obtained by creating a similar 1D profile to the one of Section 3.1 but with uniform resolution of 1 km, by integrating over this path, and
by mapping the resulting values on the plane itself. For the 3D calculations we use the approach explained in Section 2.2. The 3D implementation generally
overestimates the optical depths by ∼ 8 per cent at the most. Right-hand panel: Total optical depth along the radius from the centre for electron neutrinos
of 10.08 MeV. Unlike the 1D profile of uniform resolution adopted in the left panel to obtain the relative error, the blue line corresponds to an integration
performed over the 1D profile of variable resolution of Section 3.1, while the dots correspond to a selection of radial paths on the 3D grid. ‘x < 0’,‘y < 0’,
and ‘z < 0’ are the paths along the x < 0, y < 0, and z < 0 axis. ‘x < 0, y < 0’ is the diagonal path on the z = 0 plane with negative x and y coordinates and
x = y, ‘x < 0, z < 0’ is the diagonal path on the y = 0 plane with negative x and z coordinates and x = z, ‘y < 0, z < 0’ is the diagonal path on the x = 0
plane with negative y and z coordinates and y = z, ‘x < 0, y < 0, z < 0’ is the diagonal path with negative x, y, and z coordinates and x = y, x = z, and y =
z. The calculation of the optical depth along the 1D profile of variable resolution leads to a � 10 per cent larger optical depth at ∼40−60 km from the centre
compared to the 3D implementation.

the density map at y = 0 in Fig. 8. The selected set of energies
are the same used to show the plots in Figs 3 and 4. The neutrino
surfaces are almost perfectly spherical, suggesting that our optical
depth algorithm overall captures the actual path that minimizes the
optical depth and that neutrinos preferentially cross, i.e. the radial
path. Obviously the larger the energy the larger the radius of the
neutrinosphere, since τν ∼ E2

ν . Comparing between species, heavy-
lepton neutrinos have smaller energy neutrinospheres because the
only interactions where they exchange energy with the fluid are pair
processes and bremsstrahlung. On the contrary, elastic scattering on
nucleons and nuclei makes the total neutrino surfaces comparable
with the other species. Electron neutrinos and antineutrinos show
similar energy and total neutrinospheres as a result of the com-
parable amount of emission and absorption interactions involving
both species at this time of the post-bounce phase. Moreover,
for each of these neutrino species we notice comparable radii of
total and energy neutrino surface at each energy, indicating that
neutrino emission and absorption reactions, efficient in thermalizing
neutrinos, provide also an important opacity contribution to the
total optical depth. Overall, the total neutrino surfaces extend from
∼27 to ∼121 km for electron neutrinos, from ∼25 to ∼121 km
for electron antineutrinos, and from ∼25 to ∼118 km for heavy-
lepton neutrinos. Accordingly, the energy surfaces extend from ∼26
to ∼121 km for electron neutrinos, from ∼24 to ∼121 km for
electron antineutrinos, and from ∼23 to ∼69 km for heavy-lepton
neutrinos.

Heating: Calculation of the absorption rates on the grid is done
by applying equation (6). Computation of the neutrino density is
performed by means of equation (34) with βν = 0 (i.e. equation 8)
and of equation (9). Given the spherical symmetry (see Fig. 8)
the value of lν(E, R) over the grid is approximately recovered by
integrating equation (9) over a reference radial path from the origin,
and by mapping the obtained values on the path over the rest of
the grid. Fig. 9 shows the heating rate for electron neutrinos and
antineutrinos on the plane y = 0 with the new flux factor prescription
in units of 1020 erg g−1 s−1, resembling the values from Fig. 6.

Moving outwards from the centre, the net rate decreases and reaches
its minimum at ∼50−60 km from the centre, then increasing and
getting to positive values where neutrino heating dominates between
80 and 120 km. Unlike Fig. 6 we notice a slightly lower minimum
that goes below −17.5 × 1020 and −15 × 1020 erg g−1 s−1 for
electron neutrinos and antineutrinos, respectively, and a larger
maximum above ∼ 2.5 × 1020 erg g−1 s−1 for the heating. This is
expected because the original profile of Section 3.1 has decreasing
resolution with increasing distance from the centre, leading to larger
optical depths in the transition between the optically thick and the
optically thin regime. This is clearly visible in the right-hand panel
of Fig. 7, where we plot the total optical depth for electron neutrinos
of energy 10.08 MeV (taken as reference) calculated by integrating
along the profile of Section 3.1 (blue line), together with values of
the optical depth calculated along several paths of the 3D grid. In
the range ∼40−60 km the 1D optical depth is � 10 per cent larger
than the 3D ones. The lower values from the 3D calculations lead to
lower diffusion time-scales and therefore to stronger emission and
absorption rates.

Neutrino luminosities and average-rms energies: Given the heat-
ing rate, we calculate the total neutrino luminosities and average
energies. The results are shown in the third row of Table 1.
Differences with respect to the 1D case (Section 3.1) are of the
order of ∼ 7–8 per cent for the electron neutrino and antineutrino
luminosities, and of ∼ 1 per cent for the heavy-lepton neutrinos.
Average energies all differ by � 1 per cent. Considering the results
with the old flux factor prescription, differences in the luminosities
compared to the 1D case are of the order of ∼ 10 per cent for elec-
tron neutrinos and antineutrinos and ∼ 1 per cent for heavy lepton
neutrinos. In addition, we repeat the calculation for the case of a 1D
radial profile with uniform resolution of 1 km. Results are shown
in the second row of Table 1. Errors in the luminosities between
the 3D and the 1D implementation reduce to ∼ 3–4 per cent and
to ∼ 1–2 per cent with the old and new flux factor prescription,
respectively, confirming that the resolution contributes as source of
variability to the outcome of the simulations. As we have similarly

MNRAS 490, 4211–4229 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/3/4211/5594017 by U
niversita' degli studi di Trento - Biblioteca user on 12 M

arch 2021
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Figure 8. Location of the neutrino surfaces on the density map at y = 0 for the same sets of neutrino energies used in Figs 3 and 4. Top row: total optical
depth. Bottom row: energy optical depth. For each row, we show electron neutrino (left-hand panel), electron antineutrino (middle panel), and heavy-lepton
neutrino (right-hand panel). The location of the neutrinosphere is shown in green circles, starting from the inner one at E = 3 MeV to the outer one at E =
300 MeV, i.e. neutrino surface radii increase with neutrino energy. While electron neutrinos and antineutrinos have similar neutrinosphere radii at all energies
both in the total and in the energy optical depths, heavy-lepton neutrinos show smaller energy neutrinospheres than the other species because the only inelastic
contribution comes from pair processes and bremsstrahlung. On the other hand, elastic scattering on nuclei and nucleons extends the heavy lepton total surfaces
to radii comparable with the other species. Comparable radii of total and energy neutrino surfaces for electron neutrinos and antineutrinos indicate that neutrino
emission and absorption reactions, efficient in thermalizing neutrinos, provide also an important opacity contribution to the total optical depth.

Figure 9. Estimate of the heating rate on the y = 0 in units of 1020 erg g−1 s−1 with the new flux factor prescription used for the modelling of the heating, for
electron neutrinos (left) and antineutrinos (right). The values are in agreement with Fig. 6, with a positive rate between ∼80 and ∼120 km from the origin.
However, a stronger neutrino emission and absorption are observed with respect to the 1D implementation as a result of lower optical depths leading to stronger
diffusion rates in the transition from diffusion to free streaming.
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seen already in Section 3.1, the choice of the new flux factor in
our 3D simulations provides luminosities � 6–7 per cent lower
respect to the old prescription, while average energies are less
affected with discrepancies of � 2 per cent. Overall, we state that
the modification adopted to the standard ASL of Perego et al. (2016)
perform well in the context of core-collapse supernova, although
more precise assessments require full dynamical evolutions.

3.2.2 Neutron star merger remnants in 3D

As a final 3D test we apply our new scheme to the remnant of a
neutron star merger. We start from a snapshot of a merger remnant (t
= 38 ms after merger; Rosswog et al. 2017) that has been obtained
using the SPH method with the grey leakage scheme of Rosswog
& Liebendörfer (2003). For general reviews of the SPH method we
refer to recent reviews (Monaghan 2005; Rosswog 2009, 2015). We
use the snapshot as a background on which to evolve the neutrino
properties until a steady state is reached. Unlike the core-collapse
supernovae case, we do not have any information on the neutrino
trapped components at this time and therefore we perform our tests
by assuming Yν = Zν = 0 as initial condition for neutrinos. Although
strictly speaking inconsistent as in the configuration trapped neutri-
nos should already be present, our choice of such initial condition
is justified by several arguments. First, the role of the neutrino
trapped components is mainly important when doing full dynamical
evolutions and in particular it has been shown recently (Perego
et al. 2019) that they only marginally affect the thermodynamical
properties of the remnant, and only close to the merger time where
neutrinos are produced in the first place. Secondly, setting Yν = Zν =
0 implies a remnant configuration out of equilibrium, and given the
large temperature dependence of the neutrino-matter cross-sections
(Bruenn 1985; Burrows & Thompson 2004) the system rapidly
reaches a new state by refilling the neutrino fractions over a time-
scale Yν/Ẏν � 10−6 s, which is much less than the typical dynam-
ical time-scale of the remnant ∼ (Gρ̄)−1/2 ≈ 2 × 10−4 s. Thirdly,
absorption under optically thin conditions (that we are modelling
here) is led by non-trapped neutrinos. For all the above reasons,
we do not expect the modelling of the trapped neutrinos to have a
significant impact on our calculations. The neutron stars have been
discretized with N ∼1 million particles and the initial conditions
are mapped on a 3D grid whose borders are defined when densities
go below ∼ 108g cm−3. Fig. 10 shows the density, temperature and
electron fraction on the planes y = 0 and z = 0. The central object
has a mass ≈2.3 M�, densities ρ ∼ 3 × 1014g cm−3, temperatures
T ∼ 20 MeV and electron fractions Ye ∼ 0.1. Around it is a torus
with Ye < 0.1, an inner region with densities ρ ∼ 1012–1013g cm−3

and temperatures T ∼ 3–5 MeV, and an outer region with densities
ρ ∼ 1010–1011g cm−3 and temperatures T ∼ 1 MeV. Electron frac-
tions Ye ∼ 0.2–0.3 are located along the low-density polar region.

3D optical depth: Computation of the neutrino properties requires
the calculation of the optical depth on the grid as explained in
Section 2.2. Fig. 11 shows the location of the total and energy
neutrino surfaces for the same sets of energies used for the core-
collapse supernovae tests (see Figs 3 and 4). Overall, we see an
agreement with the distribution of the surfaces described in Perego
et al. (2014). As already noticed for the core-collapse supernovae
case, the higher the energy of neutrinos the more extended the
neutrino surface. Accordingly, the heavy-lepton neutrinos have
less extended energy than total neutrino surfaces because they
can only exchange energy by pair processes and bremsstrahlung.
Elastic scattering on nuclei and nucleons make the heavy lepton
total neutrino surfaces comparable with the ones of the other

species. Electron neutrinos again show comparable energy and total
neutrino surfaces due to the neutron-rich environment that favours
energy exchange in processes like neutrino absorption on neutrons.
However, we notice that compared to the core-collapse supernova
case electron antineutrinos show less extended total and energy
neutrino surfaces compared to the corresponding electron neutrino
ones as a consequence of the low abundance of free protons.

Heating: The heating is modelled by equations (6) and (34) and
by estimating βν as described in Section 2.2. To save computational
time, we limit our transport calculation to those regions where
density is above 109g cm−3. Indeed, we find that the contribution at
lower densities affect the transport quantities by less than 1 per cent.
For the computation of lν(E, x) we create a 1D profile of 1 km of
resolution where to each bin of radius Rbin we assign a neutrino
emission by summing up the contribution of all grid points with
radial distance from the centre within that bin. We then solve
equation (9) and assign the same lν(E, Rbin) to all grid points inside
that bin. In this way we create a spherically symmetric neutrino
emission by coupling fluid points from the torus with fluid points
along the poles, and we then leave to βν the task of approximately
recovering the degree of anisotropy of the system and consequently
the degree of decoupling between points at same distance from
the centre but at different polar angles. The determination of the
exponent b in equation (34) is performed by comparing with an M1
calculation of the heating from FLASH. In particular, we find b =
8 to overall best recover the electron neutrino contribution to the
heating (which constitutes more than 50 per cent of the total) and we
therefore assume the same value for the corresponding antineutrinos
as well. In Fig. 12 we show the angular dependence of the neutrino
flux, i.e. �ν(θ ) versus θ , calculated from equation (2.2.3) with θ

= 10◦.5 We notice that the modulation of the flux with the polar
angle is more pronounced for electron neutrinos than for electron
antineutrinos. This is due to the fact that the neutron-rich torus is
more opaque to electron neutrinos than to electron antineutrinos.
Therefore, the electron neutrino flux points mostly along the z-
direction. In terms of neutrino emission, the largest contribution
to the cooling for the electron neutrinos (∼ 1021 erg g−1 s−1) is
confined within radii �20 km from the centre, and the remaining
subdominant part (∼ 1019–1020 erg g−1 s−1) occurs inside the torus.
We find that electron antineutrinos in contrast are mostly emitted
in the torus (cooling ∼ 1020 erg g−1 s−1) and no relevant emission
is found at radii �20 km from the centre. We obtain βνe

≈ 16 and
βν̄e

≈ 2. In the first row of Fig. 13 we show 2D maps of the resulting
heating rate on the plane y = 0. In the second row we show the same
maps for calculations performed with the M1 scheme implemented
in FLASH. The major contribution to the heating is located within
∼45◦ from the pole for both species. The largest differences of the
ASL compared to M1 are in the region with θ � 45◦, and in particular
above the central object at θ � 15◦, where the electron neutrino and
antineutrino heating are respectively lower by a factor of ∼1.5 and
larger by a factor of ∼2. Moreover, unlike the M1 implementation
our ASL algorithm provides a residual electron neutrino heating
(∼ 1019–1020 erg g−1 s−1) at θ ∼ 60◦−90◦ in regions where τ tot

≤ 1. We notice that both ASL and M1 provide an electron
neutrino heating larger by one order of magnitude compared to
electron antineutrinos. This is due to two effects: first, our snapshot
calculations show an electron antineutrino cooling which is at the
most ∼ 1020erg g−1 s−1, i.e. one order of magnitude lower than the

5We have tested different θ and no appreciable variations appears in the
computation of βν , therefore we set θ = 10◦.
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Figure 10. Density (left-hand panels), temperature (middle panels), and electron fraction (right-hand panels) distribution of a 1.4–1.4 M� binary neutron star
merger configuration at 38 ms after merger. Top row: plane y = 0, Bottom row: plane z = 0. The hot central object is confined within a region of ∼20 km
from the centre and has a mass ≈2.3 M�, densities ρ ∼ 3 × 1014 g cm−3, temperatures T ∼ 20 MeV and electron fractions Ye ∼ 0.1. The surrounding torus
has electron fractions Ye < 0.1 and can be divided in an inner region with densities ρ ∼ 1012–1013g cm−3 and temperatures T ∼ 3–5 MeV confined within
∼100 km from the centre, and an outer region up to ∼200 km with densities ρ ∼ 1010–1011g cm−3 and temperatures T ∼ 1 MeV. Larger electron fractions
Ye ∼ 0.2–0.3 are located along the z-axis with a maximum of Ye ∼ 0.35 right above the central object, densities ρ ∼ 108g cm−3 and temperatures T � 1 MeV.

Figure 11. Location of the neutrino surfaces for the same sets of neutrino energies used in Figs 3 and 4. Top row: total optical depth. Bottom row: energy
optical depth. For each row, we show electron neutrino (left-hand panel), electron antineutrino (middle panel), and heavy-lepton neutrino (right-hand panel).
The location of the neutrino surface is shown in green, starting from the inner one at E = 3 MeV to the outer one at E = 300 MeV. Note the shape resembling
the presence of a torus around the central object and therefore of a non-spherical geometry. Similarities with Fig. 8 are visible, both in the distribution of the
surfaces with increasing neutrino energy and in the comparison of total and energy optical depths of each species. However, with respect to the core-collapse
supernova case, the low abundance of free protons makes the electron antineutrino total and energy neutrino surfaces less extended with respect to the electron
neutrino ones.
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Figure 12. �ν (θ ) as function of θ for electron neutrinos (blue) and
antineutrinos (red). Electron neutrinos show a more pronounced anisotropy
compared to the corresponding antineutrinos, with βνe ≈ 16 and βν̄e ≈ 2.

electron neutrino one, which reaches ∼ 1021 erg g−1 s−1 close to
the central remnant where the antineutrino emission is negligible
in comparison. Secondly, the neutron-rich environment favours the
electron neutrino absorption over the corresponding antineutrinos.

Neutrino luminosities and average-rms energies: The overall low
antineutrino cooling leads to almost equal electron neutrino and
antineutrino total luminosities and average energies, contrarily to
what is typically expected from merger simulations (Rosswog &
Liebendörfer 2003; Dessart et al. 2009; Perego et al. 2014; Foucart
et al. 2016). In particular, a summary of these values is reported in
Table 4. The reason for this is most likely due to the application of a
different neutrino transport than the one adopted for generating the
snapshot. In fact, we further calculate the neutrino cooling with our
ASL for a similar snapshot of the merging of two 1.4 M� neutron
stars taken from the simulations of Perego et al. (2014) at ∼66 ms
after the first contact of the two stars. The ASL of Perego et al.
(2014) is similar to ours, and in particular is spectral. In this case
we get Lcool

νe
= 1.45 × 1052 erg s−1, Lcool

ν̄e
= 1.85 × 1052 erg s−1,

Lcool
νx

= 1.34 × 1052 erg s−1 , 〈Eνe
〉 = 10.81 MeV, 〈Eν̄e

〉 = 14.97
MeV, 〈Eνx

〉 = 16.00 MeV, Erms,νe = 12.02 MeV, Erms,ν̄e = 16.77
MeV, Erms,νx = 19.74 MeV, that is, the largest cooling is from
the electron anti neutrinos being the most luminous, and we also
clearly recover the expected hierarchies, i.e. Lcool

ν̄e
> Lcool

νe
> Lcool

νx
,

〈Eνx
〉 > 〈Eν̄e

〉 > 〈Eνe
〉, Erms,νx > Erms,ν̄e > Erms,νe .6 In particular,

we observe that the configuration at ∼66 ms shows larger densities
and temperatures at radii � 20 km from the centre compared to the
∼38 ms one, producing a dominant electron antineutrino cooling
∼ 1021 erg g−1 s−1 (see Fig. 14 for a comparison done with ASL
along θ = 0◦) that is instead missing in the configuration at ∼38 ms.
Moreover, the two snapshots have been previously evolved with
different neutrino transport schemes: the one at ∼66 ms with the
scheme of Perego et al. (2014) which is similar to our version of
the ASL, the ∼38 ms one with the grey scheme of Rosswog &
Liebendörfer (2003). Applying a different neutrino transport than
the one used for generating the snapshot introduces inconsistencies
that are likely to be the reason for our luminosity values. From
Table 4 we notice that the ASL provides electron neutrino and

6Although we recover the expected hierarchies, we do not find the same
values of Perego et al. (2014) as they perform a dynamical simulation
assuming neither blocking nor thermalization corrections in equation (5).

antineutrino luminosities lower by ∼ 35 per cent and ∼ 25 per cent
respectively in comparison to M1. Average-rms energies agree
within 5–15 per cent. The lower luminosity values from the ASL
can be due to several reasons. First, the ASL has excess heating at θ

∼ 60◦−90◦ for the electron neutrino and at θ ∼ 15◦ for the electron
antineutrinos compared to M1. Secondly, we have kept the values of
the ASL parameters entering equation (5) to the ones calibrated for
core-collapse supernovae simulations. New calibrations are crucial
as they might impact the neutrino cooling and consequently the
amount of neutrino heating. In particular, the comparison with M1
suggests a lower αν,blk. This can be explained in the following way.
While in core-collapse supernovae the quasi-spherical symmetry
implies that neutrinos move preferentially along the radial direction,
in binary mergers neutrinos have more directional freedom in
escaping the system and consequently the blocking is expected to
be less effective. Third and above all, a more consistent comparison
between two neutrino transport approaches would require dynami-
cal evolutions rather than snapshot calculations. Putting together all
these uncertainties we find our ASL-M1 luminosity discrepancies,
lower than a factor of 2, a promising initial step toward future
developments. We also want to stress that the choice we have
made for the flux modulation ∼ cos8(θ ) is only meant to be a
preliminary step toward explorations in full dynamical evolution
of binary mergers. Finally, we stress the fact that we have based our
heating calculations on the comparison with a moment approach
with analytical closure. However, as pointed out by Foucart et al.
(2018) the M1 closure can overestimate the neutrino density by up to
∼ 50 per cent along the polar regions, thus limiting the possibility of
properly modelling the neutrino-driven winds. Future simulations
of binary mergers will definitely need improvements in moment
schemes as well for more reliable assessments of the neutrino
physics in such systems.

4 SU M M A RY

In this paper we have presented an extension of the ASL scheme
originally introduced by Perego et al. (2016). Our main goal was to
adapt the scheme so that it can be conveniently used for neutron star
merger simulations. The main advantage compared to simpler leak-
age schemes is that the ASL includes neutrino heating processes and
can therefore, with a reasonable computational effort, also model
the emergence of neutrino-driven winds in a 3D merger simulation.
The main novelty compared to the original approach is the usage
of an optical depth-dependent flux factor, and a modification to the
equation of the neutrino density in the semitransparent regime, both
designed for the multi-dimensional modelling of compact binary
mergers. We scrutinized the new scheme on the case of a 15 M�
core-collapse supernova snapshot taken from Perego et al. (2016)
at 275 ms after bounce. For this spherically symmetric case we
first tested in 1D our new flux factor and found that it agrees well
with the original choice (� 2 per cent for the average energies and
� 5 per cent in the neutrino luminosities). As a further 1D test,
we have compared the new scheme to the M1 implementation of
the GR1D code (O’Connor & Ott 2010; O’Connor 2015) and here
we found agreement, beside differences arising from the usage of
different transport schemes. We also mapped the 1D case on to a
spherically symmetric, but three-dimensional grid. Here the agree-
ment is slightly worse, but overall still very good: � 2 per cent for
the average energies and � 7 per cent for the neutrino luminosities.
We have finally explored the ASL for an SPH snapshot of a 1.4–
1.4 M� binary neutron star merger. As a reference we compared
against the results obtained with a M1 scheme that is implemented
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Figure 13. Top row: ASL. Bottom row: M1 heating rate maps on the plane y = 0 in units of 1020 erg g−1 s−1 for electron neutrinos (right-hand panels) and
electron antineutrinos (left-hand panels). In both ASL and M1 the electron neutrino cooling occurs mainly close to the central object at distances �20 km
from the centre, while for the electron antineutrinos it is mostly located in the torus, where isolated spots of neutrino emission are visible. For both species, the
main contribution to the heating is located into a funnel ∼45◦ from the pole. Moreover, the electron neutrino heating is generally up to one order of magnitude
larger than the electron antineutrino one. Compared to M1, the ASL provides an electron neutrino heating rate above the central object at θ � 15◦ lower by a
factor ∼1.5 and a residual contribution at θ ∼ 60◦−90◦ of about 1019–1020 erg g−1 s−1 (not appreciable in the figure), as result of the criterion τ tot ≤ 1, that
whenever satisfied triggers neutrino absorption. Furthermore, the electron antineutrino heating above the central object at θ � 15◦ is larger by a factor of ∼2.

Table 4. Summary of the neutrino luminosities and average
energies for electron neutrinos, electron antineutrinos and
heavy-lepton neutrinos, calculated with ASL (second col-
umn) and M1 (third column), for the binary merger snapshot
at ∼38 ms after merger.

Quantity ASL M1

Lνe (erg s−1) 1.64 × 1052 2.56 × 1052

Lν̄e (erg s−1) 1.69 × 1052 2.28 × 1052

Lνx (erg s−1) 7.64 × 1051 7.50 × 1051

〈Eνe 〉(MeV) 13.10 15.46
〈Eν̄e 〉(MeV) 13.59 12.86
〈Eνx 〉(MeV) 14.09 15.50

in FLASH (Fryxell et al. 2000; O’Connor & Couch 2018). Here, in
ASL the anisotropy in the neutrino fluxes is taken into account by an
anisotropy parameter βν which is estimated from the ratio between
the neutrino fluxes at pole and equator in a similar way as it has
been done in Rosswog & Liebendörfer (2003). The neutrino density
is modelled ∝ cosb(θ ), where the value of b = 8 is obtained by a
comparison of the neutrino heating rate with the M1-FLASH results.
Overall, we find good agreement in the neutrino heating distribution
between both approaches. The average energies agree within 5–
15 per cent. The ASL total luminosities are lower by 25–35 per cent
compared to M1. This discrepancy may suggest that some of the
free parameters need to be calibrated more specifically for the case
of binary compact mergers. While specific questions may require

Figure 14. Cooling along the radius at θ = 0◦ in units of 1020 erg g−1 s−1

for electron neutrinos (blue) and electron antineutrinos (red), for the
snapshots at 38 ms and 66 ms, calculated with ASL. While the 38 ms
snapshot (solid lines) has negligible antineutrino emission in compar-
ison to electron neutrinos, the 66 ms snapshot (dashed lines) shows
a dominant antineutrino cooling ∼ 1021 erg g−1 s−1 over the electron
neutrinos.

more sophisticated neutrino transport methods, we are confident
that this enhanced ASL scheme delivers reasonably accurate bulk
neutrino properties. This will be applied and further tested in
future dynamical simulations. In the tests shown, relativistic effects
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were neglected. The inclusion of general relativity enhances the
gravitational well, leading to more compact and hotter remnants.
The energy of the radiation field measured by an observer at a given
distance from the emission region is redshifted as neutrinos climb
out of the gravitational well. In addition, for relativistic fluid motions
the neutrino energy is Doppler shifted depending on the relative
velocity between the source and the observer. Simulations of core-
collapse supernovae including relativistic effects show an increase
in the neutrino luminosities and average energies with respect to
the Newtonian case, as well as larger energy-deposition rates by
neutrino absorption (Lentz et al. 2012; Müller, Janka & Marek
2012; O’Connor & Couch 2018). In the context of compact binary
mergers, a larger heating can affect both the amount of neutrino-
driven wind ejecta and the reprocessing of the electron fraction in the
ejecta. At last, it is worth keeping in mind that most of the neutrino
emission in a merger remnant comes from the torus. The orbital
velocities of the matter inside of it can be mildly relativistic (e.g.
Foucart et al. (2015)). As a consequence, the angular distribution
of the neutrino fluxes emitted at the neutrino decoupling surfaces
can be sensitively affected by relativistic beaming. In particular, the
neutrino emission at the neutrino decoupling surface seen by the
observer will be concentrated in a cone directed toward the direction
of the fluid motion, rather than being isotropic as seen in the rest
frame of the fluid. This can reduce the amount of received flux along
the poles with respect to the Newtonian case. The inclusion of all
these effects will be the subject of future work.
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