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ABSTRACT

Context. Modeling core-collapse supernovae (SNe) with neutrino transport in three dimensions (3D) requires tremendous computing
resources and some level of approximation. We present a first comparison study of core-collapse SNe in 3D with different physics
approximations and hydrodynamics codes.
Aims. The objective of this work is to assess the impact of the hydrodynamics code, approximations for the neutrino, gravity treat-
ments, and rotation on the simulation of core-collapse SNe in 3D.
Methods. We use four different hydrodynamics codes in this work (ELEPHANT, FLASH, fGR1, and SPHYNX) in combination
with two different neutrino treatments, the isotropic diffusion source approximation (IDSA) and two-moment M1, and three different
gravity treatments (Newtonian, 1D General Relativity correction, and full General Relativity). Additional parameters discussed in this
study are the inclusion of neutrino-electron scattering via a parametrized deleptonization and the influence of rotation.
Results. The four codes compared in this work include Eulerian and fully Lagrangian (smoothed particle hydrodynamics) codes for
the first time. They show agreement in the overall evolution of the collapse phase and early post-bounce within the range of 10%
(20% in some cases). The comparison of the different neutrino treatments highlights the need to further investigate the antineutrino
luminosities in IDSA, which tend to be relatively high. We also demonstrate the requirement for a more detailed heavy-lepton neu-
trino leakage. When comparing with a full General Relativity code, including an M1 transport method, we confirm the influence
of neutrino-electron scattering during the collapse phase, which is adequately captured by the parametrized deleptonization scheme.
Also, the effective general relativistic potential reproduces the overall dynamic evolution correctly in all Newtonian codes. Addition-
ally, we verify that rotation aids the shock expansion and estimate the overall angular momentum losses for each code in rotating
scenarios.

Key words. supernovae: general – hydrodynamics

1. Introduction

Core-collapse supernovae (CCSNe) are violent stellar explo-
sions of massive stars with masses &8 M� at the end of their
stellar evolution. Recent observations provide many details on
CCSNe and their remnants, for example light curves, spectra,
large-scale asymmetry, and mixing (Aschenbach et al. 1995;
DeLaney et al. 2010; Milisavljevic & Fesen 2015; Boggs et al.
2015). However, there are many open questions in CCSN theory
and in particular the explosion mechanism still produces explo-
sions in numerical simulations that are sub-energetic when com-
pared to observations (see recent reviews of Foglizzo et al. 2015;
Mezzacappa et al. 2015; Janka et al. 2016; Mirizzi et al. 2016;
Müller 2016; Richers et al. 2017; Burrows et al. 2018).

While it is generally believed that the neutrino-driven con-
vection and multi-dimensional hydrodynamics instabilities are

key ingredients for successful explosions, modeling CCSNe in
three dimensions (3D) with Boltzmann transport is still numeri-
cally expensive (Sumiyoshi & Yamada 2012; Sumiyoshi et al.
2015; Nagakura et al. 2018) and the spatial resolution is not
enough to resolve hydrodynamic instabilities and turbulence
with current supercomputers (Couch & Ott 2015; Radice et al.
2016, 2018). Therefore, approximate schemes for the transport
of neutrinos in multiple dimensions are still necessary, although
they have to be sophisticated enough to capture the essential
macro- and micro-physics.

Several two-dimensional (2D) simulations with different
approximate schemes have recently been performed and inves-
tigated, however the results among different groups are less
consistent than expected. For instance, the same set of simu-
lations of the 12, 15, 20, and 25 M� progenitors shows clear
differences in the shock radius evolutions during the first

Article published by EDP Sciences A118, page 1 of 19

https://doi.org/10.1051/0004-6361/201833705
https://www.aanda.org
http://www.edpsciences.org


A&A 619, A118 (2018)

hundred milliseconds post-bounce between the CHIMERA code
from the Oak Ridge group (Bruenn et al. 2013, 2016) and
the PROMETHEUS-VERTEX code from the Garching group
(Summa et al. 2016), where the former uses flux-limited diffu-
sion for the neutrino transport and the latter uses two-moment
transport with a variable Eddington factor closure. The Oak
Ridge group and the Garching group use the so-called ray-by-
ray-plus approach, which allocates hundreds of radial rays in
the computational domain. On each ray, an independent spher-
ically symmetric neutrino transport problem is solved, while in
the optically thick regime, the neutrinos are additionally allowed
to laterally advect with the fluid between the rays. The CASTRO
and FORNAX simulations by the Princeton group, with flux-
limited diffusion (Dolence et al. 2015) and two-moment trans-
port (Skinner et al. 2016; Vartanyan et al. 2018) do not adopt the
ray-by-ray approach and they find that the “explodability” is sen-
sitive to the neutrino transport scheme and the detailed opacities
(Burrows et al. 2018).

Liebendörfer et al. (2001), Müller et al. (2012), O’Connor
& Couch (2018a) report that the higher neutrino luminosities
and root mean square (rms) energies in full general relativity
(GR) or effective GR calculations favor stronger supernova (SN)
explosions, and O’Connor & Couch (2018a) explicitly show that
the effective GR potential correction (Marek et al. 2006) could
turn failed SNe into explosions in both 1D and 2D. In addition,
the FLASH-M1 simulations by O’Connor & Couch (2018a) give
qualitatively similar results to those of the Garching group, but
ignore inelastic neutrino scattering processes. Furthermore, the
Newtonian calculations from the Japanese group (Suwa et al.
2016; Nakamura et al. 2015) and the Basel group (Pan et al.
2016) with the isotropic diffusion source approximation (IDSA;
Liebendörfer et al. 2009) also give different results on the shock
radius evolution and explodability.

It should be noted that not only are the progenitor stars,
the microphysics – such as neutrino interactions during collapse
and post-bounce-, and the nuclear equations of state (EOS) key
factors for the CCSN problem, but also the neutrino transport
schemes, the implementation of hydrodynamics, the dimension-
ality of the problem, and the spatial and temporal resolution are
crucial for reliable SN models. Therefore, the complexity of the
problem makes it difficult to conduct a detailed comparison of
SN codes among different groups, which requires computation-
ally demanding simulations to be re-run and large amounts of
3D data to be exchanged and analyzed.

Core-collapse supernova comparisons of neutrino trans-
port schemes were first performed for the collapse phase
(Mezzacappa & Bruenn 1993a,b) with a focus on neutrino-
electron scattering (NES), and were later continued to the
post-bounce phase by the comparison of the VERTEX and
AGILE-BOLTZTRAN codes (Liebendörfer et al. 2005). This
work has recently been extended to six CCSN codes by
O’Connor et al. (2018). The latter work found very consistent
results, but the comparison was limited to spherically symmetric
calculations. Recently, Just et al. (2018) presented a detailed 1D
and 2D code comparison between the ALCAR and VERTEX
codes. They discuss the influence of the ray-by-ray implemen-
tation and the impact of several different physical inputs, such
as neglecting the neutrino-electron scattering, velocity, and red-
shift effects. However, ALCAR and VERTEX codes share sim-
ilar discretization schemes and the comparison is limited to 1D
and 2D. Due to the larger amount of computing time required for
3D simulations, these have only been done with a few progeni-
tor models (Lentz et al. 2015; Kuroda et al. 2016, 2017; Melson
et al. 2015a,b; Takiwaki et al. 2012, 2016; Roberts et al. 2016;

Ott et al. 2017; Chan et al. 2018; O’Connor & Couch 2018b;
Summa et al. 2018). A comparison of 3D models has not yet
been documented. Nevertheless, the nature of CCSN is inher-
ently 3D (DeLaney et al. 2010; Couch & Ott 2013; Boggs et al.
2015; Müller & Janka 2015; Müller et al. 2016, 2017).

In this study, we present a detailed SN code comparison
in 3D. In particular, we compare the neutrino treatment with
the IDSA in three different hydrodynamics codes: the uni-
form Cartesian grid code ELEPHANT (Käppeli et al. 2011;
Liebendörfer et al. 2009), the adaptive mesh refinement (AMR)
code FLASH (Fryxell et al. 2000), and the smoothed particle
hydrodynamics (SPH) code SPHYNX (Cabezón et al. 2017). All
three codes share the same IDSA kernel and use the same set of
neutrino interactions and opacities. However, due to the differ-
ent discretizations of space and time in the three hydrodynamics
codes, the coupling of the IDSA to the hydrodynamic quanti-
ties had to be developed individually for each code (see Sect. 2).
In addition, we compare the results of these three codes with a
3D full GR code with two-moment M1 transport: fGR1 (Kuroda
et al. 2016). The 1D AGILE-BOLTZTRAN code with Boltz-
mann transport (Liebendörfer et al. 2004) is also used for ref-
erence calculations in spherical symmetry. Nevertheless, the dif-
ferences in the discretization of space and time of the four codes
in combination with the 3D degrees of freedom of the simulation
data do not allow us to attribute clearly distinguishable and quan-
tifiable effects in the results to particular code features. Rather
we aim to quantify a band of uncertainty into which the results
of 3D SN simulations may fall if they use different approaches
for the implementation of hydrodynamics and neutrino trans-
port. Our four methods differ most with respect to the compu-
tational domain (mesh refinement, box in a sphere, Lagrangian
particles), the choice and implementation of gravity (effective
GR potential for the monopole term, full GR), neutrino transport
(IDSA approximation, M1 transport) and parallelization (MPI,
OpenMP, or using graphics processing unit -GPU- acceleration).
The codes with full neutrino transport can switch on NES, while
the codes based on the IDSA cannot. The goal of this comparison
is not to single out a “best code” to be used in the future (it might
not be one of our four), but to further promote an approach where
different codes are simultaneously used for the same physical
problem. If the virtues and weaknesses of each code are well-
known from previous comparisons, their results can be weighted
accordingly in an uncertainty-aware interpretation of the simu-
lated physics.

This paper is organized as follows: We describe the four
SN codes and their implementations of neutrino radiation trans-
port in the following section. In Sect. 3, we define the runs that
are compared and summarize the simulation data. A detailed
comparison of the most relevant physical magnitudes is pre-
sented in Sect. 4. In Sect. 5, we summarize our results and
conclusions.

2. Methods and implementation

In the following section we present the four hydrodynamic codes
investigated in this work. We provide an overview of their main
characteristics focusing on their implementation of the Euler
equations, gravity evaluation, and their coupling with the neu-
trino treatment.

2.1. ELEPHANT

The ELEPHANT code (ELegant and Efficient Parallel Hydro-
dynamics with Approximate Neutrino Transport) models the
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collapse and post-bounce evolution of the innermost region of a
massive star in 3D. ELEPHANT is based on the 3D magneto-
hydrodynamics code FISH (Käppeli et al. 2011) and imple-
ments IDSA for the neutrino transport (Liebendörfer et al. 2009;
Berninger et al. 2013). The IDSA is based on two key ideas:
firstly, it treats trapped neutrinos and streaming neutrinos as if
they were separate particle species that are linked by a produc-
tion/annihilation rate Σ. Secondly, as with flux-limited diffusion,
the transition between diffusion and free streaming is handled
by interpolation. The main strength of ELEPHANT is its com-
putational simplicity and efficiency. The downside of this code is
an equidistant mesh that limits the computational domain to the
innermost ∼400 km of the star. The evolution of the outer lay-
ers of the progenitor star is handled by the code AGILE-IDSA
(Liebendörfer et al. 2002, 2009)1, which provides spherically
symmetric data for the accreting matter at the boundary of the
3D computational domain.

With respect to the input physics, ELEPHANT only
implements the basics: the Lattimer-Swesty equation of state
(Lattimer & Swesty 1991) with an incompressibility parame-
ter K = 220 MeV and the neutrino interaction rates defined
in Bruenn (1985). In comparison to full Boltzmann neutrino
transport in spherical symmetry (Liebendörfer et al. 2004), we
found that neutrino-electron scattering of electron flavor neutri-
nos plays a significant role in the collapse phase, but becomes
less significant during the post-bounce phase. This is consis-
tent with the findings of Bruenn (1989), Myra & Bludman
(1989), and Pan et al. (2016), however the findings of Lentz
et al. (2012b) show that more modern electron capture rates
on nuclei outperform neutrino-electron scattering in the col-
lapse phase. During the collapse phase, we take the accelerated
deleptonization effectively into account by using a parameterized
deleptonization scheme (Liebendörfer 2005). In the post-bounce
phase, we use the IDSA and neglect neutrino-electron scatter-
ing. The energy loss caused by the emission of µ/τ-neutrinos is
handled by a gray leakage scheme (Sect. 2.5.2).

The hydrodynamics part of ELEPHANT solves the follow-
ing set of 3D conservation equations with gravitational source
terms:

∂ρ

∂t
+

∂

∂x j

(
ρν j

)
= 0, (1)

∂

∂t
(ρνi) +

∂

∂x j

(
ρνiν j + bib j + pδi j

)
= −ρ

∂ϕ

∂xi
,

∂E
∂t

+
∂

∂x j

[
(E + p) ν j

]
= −ρνi

∂ϕ

∂xi
,

∂

∂t
(ρYe) +

∂

∂x j

(
ρYeν j

)
= 0,

∂

∂t

(
ρY t

ν

)
+

∂

∂x j

(
ρY t

νν j

)
= 0,

∂

∂t

[(
ρZt

ν

) 3
4
]

+
∂

∂x j

[(
ρZt

ν

) 3
4 ν j

]
= 0, (2)

∂

∂xi

(
∂ϕ

∂xi

)
= 4πGρ. (3)

The calculated unknowns, as functions of time t and space xi,
are the baryonic mass density ρ, the velocity νi, the electron
fraction Ye, the gravitational potential ϕ, and the temperature T ,
this latter entering the equations via the specific internal energy

1 https://astro.physik.unibas.ch/agile-idsa

e (ρ,T,Ye) and the total energy E = ρe + ρν2/2. The pres-
sure p (ρ,T,Ye) is provided by the equation of state. We mod-
ify the gravitational potential by general relativistic corrections
following Marek et al. (2006) in order to obtain a more realis-
tic compactness of the proto-neutron star (PNS). The factor G is
the gravitational constant. As a part of the IDSA, the hydrody-
namics equations additionally include equations that advect the
trapped electron neutrino fractions Y t

ν and a multiple of the neu-
trino entropies,

(
ρZt

ν

) 3
4 , where Zν represents the mean neutrino

specific energy. Analogous equations are solved for the corre-
sponding quantities of the electron antineutrinos. ELEPHANT
additionally includes the operator split evolution of a magnetic
field Bi = 4πbi in the hydrodynamics part,

∂b
∂t
− ∇ × (ν × b) = 0.

However, magnetic fields were ignored in the present compari-
son because there were no data to compare with. The neutrino
transport equation is approximated by the IDSA; it separates
the neutrino number density into a trapped neutrino distribution
function f t

ν and a streaming neutrino distribution function f s
ν , and

evolves these two components separately. Based on Y t
ν and Zt

ν we
first construct the neutrino distribution functions f t

ν assuming an
equilibrium spectrum for the trapped component. Then, the dif-
fusion equation

∂ f t
ν

∂t
= jν − ( jν + χν) f t

ν − Σν,

Σν = min
{

max
[
αν + ( jν + χν)

1
2

∫
f s
ν dµ, 0

]
, jν

}
,

αν = ∇ ·

(
−1

3 ( jν + χν + φν)
∇ f t

ν

)
, (4)

is solved in 3D based on the angular integral 1
2

∫
f s
ν dµ of the

streaming neutrinos from the previous time step. In these equa-
tions, jν is the spectral neutrino emissivity, χν the neutrino
absorptivity and φν includes isoenergetic scattering in the mean
free path (see e.g., Bruenn 1985). The non-local diffusion term
αν is evaluated by explicit finite differencing. All other (local)
variables are iterated to convergence by an implicit Newton-
Raphson scheme in each zone of the computational domain:
Eq. (4) sets the net interaction rates sν between matter and the
radiation particles, which in turn determine the updates of the
electron fraction Ye and the specific internal energy e,

sν =
∂ f t

ν

c∂t
+ Σν − ( jν + χν)

1
2

∫
f s
ν dµ, (5)

∂Ye

c∂t
= −

mb

ρ

4πc
(hc)3

∫ (
sνe − sν̄e

)
E2dE, (6)

∂e
c∂t

= −
mb

ρ

4πc
(hc)3

∫ (
sνe + sν̄e

)
E3dE. (7)

The rates jν, χν and φν in Eq. (4) can then be adjusted to the
changes in Ye and e until convergence is achieved. In these equa-
tions mb is the mass of a baryon, c the light speed, and h is
Planck’s constant.

Assuming a stationary-state solution and neglecting observer
corrections (see Liebendörfer et al. 2009 for a more detailed dis-
cussion of these assumptions) we find that the integration of the
net rate over the interior of a sphere with radius R delivers a use-
ful approximation for the neutrino number luminosity 4πR2qν at
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the surface of the sphere. Hence, for the streaming neutrino flux
we obtain

qν =
1

4πR2

∫ R

0

(
1
2

∫ [
− ( jν + χν) f s

ν + Σν
]
dµ

)
4πr2dr. (8)

In the end, we are interested in the streaming neutrino density
rather than the flux. The spectral neutrino density is derived from
the neutrino flux by an analytically estimated flux factor F (E)
(Liebendörfer et al. 2009),

1
2

∫
f s
ν dµ =

qν (E)
F (E)

·

This spectral neutrino density enters the diffusion Eq. (4) of the
next time step. Finally, the trapped neutrino fraction Yν and mean
energy Zν are updated by integrating the resulting spectral f t

ν
over energy. Moreover, the acceleration of matter by trapped
neutrino pressure differences is applied to the velocity field,

∂ν

∂t
= −

1
ρ

∂

∂r

(
ρZt

ν

3mb

)
·

A mathematically rigorous analysis of the IDSA with all
its limiting cases is given in Berninger et al. (2013). The
approximations are chosen with care and always in comparison
with the more comprehensive solution of AGILE-BOLTZTRAN
(Liebendörfer et al. 2004). We note that ELEPHANT includes
the crucial compressional heating of the trapped neutrino gas
in Eq. (2), that is an O(ν/c) observer correction in the original
Boltzmann equation. Without this term, the trapped neutrino gas
would not even fulfill the hydrodynamic limit.

The computational domain of ELEPHANT is decomposed
into n rectangular blocks of dimension nx · ny · nz zones. Each
block is assigned to one MPI-task with distributed memory
and enveloped by ghost zones to support the largest stencil on
the boundary zones. Moreover, the block is sliced into sheets.
Depending on a flag, the operations on a sheet are either paral-
lelized by OpenMP or sent to a GPU by OpenACC statements.
The OpenACC option currently is about a factor of two faster
than the OpenMP option, and is therefore the default option used
in this work. Additional implementation details for ELEPHANT
are given in Käppeli et al. (2011) and Liebendörfer et al. (2009).

2.2. FLASH

The IDSA solver is also implemented in the publicly available
FLASH code2 version 4 (Fryxell et al. 2000; Dubey et al. 2008).
FLASH is a parallel, multi-dimensional hydrodynamic code
based on block-structured adaptive mesh refinement (AMR).
Our general setup is similar to that implemented by Couch &
O’Connor (2014), but we replace the radiation transfer solver
with our multi-dimensional IDSA solver that is described in the
previous section and in Pan et al. (2016, 2018). In FLASH, the
IDSA solver uses a similar strategy as in ELEPHANT, where
we solve the diffusion source in multiple dimensions but keep
the streaming component isotropic.

We use the third-order piecewise parabolic method (PPM;
Colella & Woodward 1984) for spatial reconstruction, and the
HLLC Riemann solver and the Hybrid slope limiter for shock-
capture. The nuclear equation of state unit in FLASH incorpo-
rates the finite temperature EOS routines from O’Connor & Ott
(2010) and Couch & O’Connor (2014)3.

2 http://flash.uchicago.edu
3 http://www.stellarcollapse.org

Our current setup supports simulations in 1D spherical coor-
dinates, in 2D cylindrical coordinates, and in 3D Cartesian coor-
dinates. Self-gravity is calculated by the multipole solver from
Couch et al. (2013) with lmax = 16 including the same effective
GR potential correction as the other codes in this work.

In addition to the GR potential correction, the main differ-
ence between the FLASH-IDSA in this paper and the IDSA
implemented in Pan et al. (2016) is that we have improved the
ray sampling by performing a smoother grid-ray interpolation
and have improved the IDSA ray resolution from 600 zones
to 1000 zones. Furthermore, in the current version of FLASH-
IDSA, we disable the ray iteration in the streaming solver, but
use a smaller neutrino time step (dtν = 4×10−7 s). By doing this,
we obtain results that are more consistent with other SN groups
(e.g., the s15 and s20 progenitor from Woosley & Heger 2007
failed to explode in 2D in Newtonian cases; Dolence et al. 2015;
Summa et al. 2016; Suwa et al. 2016; Pan et al. 2017; O’Connor
& Couch 2018a).

Graphics processing unit acceleration on the IDSA solver
with OpenACC is also implemented in FLASH, but the paral-
lelization strategy is different from that of ELEPHANT. Instead
of sending a sheet of data, we send the whole AMR block with
one layer of guard cells to a GPU all at once. While doing the
calculation on GPUs, we transfer the next AMR block from host
(central processing unit – CPU) to device (GPU) to avoid trans-
fer overheads. With a block size, NXB = NYB = NZB = 16 and
NE = 20, we achieve an overall speedup of 2.3 with OpenACC,
where NXB, NYB, NZB are the block size in each dimension
without guard cells and NE is the number of energy bins.

Analysis and visualization of FLASH simulation data are
provided by the yt toolkit (Turk et al. 2011).

2.3. fGR1

The fGR1 code consists of three parts, where the evolution equa-
tions of the metric, hydrodynamics, and neutrino radiation are
calculated. Each of them is solved in an operator-splitting man-
ner, but the system evolves self-consistently as a whole, satis-
fying the Hamiltonian and momentum constraints. We briefly
explain basic equations to be solved. We note that a geometrized
unit system is used in this subsection, that is, the speed of light,
the gravitational constant, and the Planck constant are set to
unity: c = G = h = 1.

The space-time metric is expressed in the standard (3+1)
form: ds2 = −α2dt2 + γi j(dxi + βidt)(dx j + β jdt), with α and βi

being the lapse and shift, respectively. The spatial metric γi j and
its extrinsic curvature Ki j are evolved using the BSSN formu-
lation (Shibata & Nakamura 1995; Baumgarte & Shapiro 1999)
expressed in terms of the standard variables γ̃i j, W, K, Ãi j and Γ̃i,
where γ̃i j = ψ−4γi j, with ψ being the conformal factor, W(= ψ−2)
the inverse square of the conformal factor, K = γi jKi j the trace of
the extrinsic curvature, Ãi j = ψ−4(Ki j − Kγi j/3), and Γ̃i = −∂ jγ̃

i j

(see Kuroda et al. 2012 for more details).
In the radiation hydrodynamics part, we solve the spectral

neutrino transport equations, where the source terms are treated
self-consistently following a procedure applying the M1 closure
scheme (Shibata et al. 2011).

The total stress-energy tensor Tαβ
(total) is expressed as

Tαβ
(total) = Tαβ

(fluid) +

∫
dε

∑
ν∈νe,ν̄e,νx

Tαβ
(ν,ε), (9)

where Tαβ
(fluid) and Tαβ

(ν,ε) are the stress-energy tensor of fluid and
energy-dependent neutrino radiation field, respectively. We note

A118, page 4 of 19

http://flash.uchicago.edu
http://www.stellarcollapse.org


R. M. Cabezón et al.: CCSNe in the hall of mirrors. A 3D code-comparison project

that in the equation above, summation is taken over all species
of neutrinos (νe, ν̄e, νx) with νx representing heavy-lepton neutri-
nos (i.e., νµ, ντ and their anti-particles). ε represents the neutrino
energy measured in the comoving frame with the fluid. For sim-
plicity, the neutrino flavor index is omitted below.

Introducing the radiation energy (E(ε)), radiation flux (Fµ
(ε))

and radiation pressure (Pµν
(ε)), measured by an Eulerian observer

or (J(ε), Hµ
(ε) and Lµν(ε)) measured in a comoving frame, T µν

(ε) can
be written in covariant form as

T µν
(ε) = E(ε)nµnν + Fµ

(ε)n
ν + Fν

(ε)n
µ + Pµν

(ε), (10)

= J(ε)uµuν + Hµ
(ε)u

ν + Hν
(ε)u

µ + Lµν(ε). (11)

In the above equations, nµ = (1/α,−βk/α) is a unit vec-
tor orthogonal to the space-like hypersurface and uµ is the four
velocity of the fluid. In the truncated moment formalism (Thorne
1981; Shibata et al. 2011), the radiation energy (E(ε)) and radi-
ation flux (Fα

(ε)) are evolved in a conservative form and Pµν
(ε) is

determined by an analytic closure relation (e.g., Eq. (14)). The
evolution equations for E(ε) and Fα

(ε) are given by

∂t
√
γE(ε) + ∂i

√
γ(αF i

(ε) − β
iE(ε)) +

√
γα∂ε

(
εM̃µ

(ε)nµ
)

=

√
γ(αPi j

(ε)Ki j − F i
(ε)∂iα − αS µ

(ε)nµ), (12)

and

∂t
√
γF(ε)i + ∂ j

√
γ(αP(ε)

j
i − β

jF(ε)i) −
√
γα∂ε

(
εM̃µ

(ε)γiµ
)

=

√
γ[−E(ε)∂iα + F(ε) j∂iβ

j + (α/2)P jk
(ε)∂iγ jk + αS µ

(ε)γiµ], (13)

respectively.
Here, γ is the determinant of the three metric, γ ≡ det(γi j),

S µ
(ε) is the source term for neutrino matter interactions, and M̃µ

(ε)

is defined by M̃µ
(ε) ≡ Mµαβ

(ε)∇βuα, where Mµαβ
(ε) denotes the third

rank moment of neutrino distribution function (see Shibata et al.
2011 for the explicit expression).

By adopting the M1 closure scheme, the radiation pressure
can be expressed as

Pi j
(ε) =

3χ(ε) − 1
2

Pi j
thin(ε) +

3(1 − χ(ε))
2

Pi j
thick(ε), (14)

where χ(ε) represents the variable Eddington factor, and Pi j
thin(ε)

and Pi j
thick(ε) correspond to the radiation pressure in the optically

thin and thick limit, respectively. They are written in terms of
J(ε) and Hµ

(ε) (Shibata et al. 2011). Following Minerbo (1978),
Cernohorsky & Bludman (1994), and Obergaulinger & Janka
(2011), we take the variable Eddington factor χ(ε) as

χ(ε) =
5 + 6F̄2

(ε) − 2F̄3
(ε) + 6F̄4

(ε)

15
, (15)

where,

F̄2
(ε) ≡

hµνH
µ
(ε)H

ν
(ε)

J2
(ε)

· (16)

In Eq. (16), hµν ≡ gµν + uµuν is the projection operator. By
the definition of F̄(ε) in Eq. (16), we can appropriately repro-
duce several important neutrino behaviors; for example, neu-
trino trapping in the rapidly collapsing opaque core (Kuroda
et al. 2016). We simultaneously solve Eqs. (15)–(16) using the
Newton method to find a converged solution of χ(ε).

The hydrodynamic equations are written in a conservative
form as

∂tρ∗ + ∂i(ρ∗νi) = 0, (17)

∂t
√
γS i + ∂ j

√
γ(S iν

j + αPδ j
i ) =

−
√
γ
[
S 0∂iα − S k∂iβ

k − 2αS k
k∂iφ

+αe−4φ(S jk − Pγ jk)∂iγ̃
jk/2 + α

∫
dεS µ

(ε)γiµ

]
,

(18)
∂t
√
γτ + ∂i

√
γ(τνi + P(νi + βi)) =

√
γ
[
αKS k

k/3 + αe−4φ(S i j − Pγi j)Ãi j

−S iDiα + α

∫
dεS µ

(ε)nµ
]
, (19)

∂t(ρ∗Ye) + ∂i(ρ∗Yeν
i) =

√
γαmu

∫
dε
ε

(S µ
(νe,ε) − S µ

(ν̄e,ε))uµ,

(20)

where ρ∗ = ρ
√
γW, S i = ρhWui, S i j = ρhuiu j + Pγi j, S k

k =

γi jS i j, S 0 = ρhW2 − P, and φ = log(γ)/12. The magnitude ρ is
the rest mass density, W is the Lorentz factor, h = 1 + e + P/ρ is
the specific enthalpy, νi = ui/ut, τ = S 0 − ρW, Ye ≡ ne/nb is the
electron fraction (nX is the number density of X), e and P are the
specific internal energy and pressure of matter, respectively, and
mu is the atomic mass unit. P(ρ, s,Ye) and e(ρ, s,Ye) are given
by an EOS with s denoting the entropy per baryon. On the right-
hand side of Eq. (19), Di represents the covariant derivative with
respect to the three metric γi j.

fGR1 employs a pure MPI parallelization scheme and
enforces a refluxing procedure at the refinement boundary to
ensure conservation laws.

2.4. SPHYNX

The application of SPH to simulate CCSNe is not new. As early
as in 1992, SPH was used to perform 2D simulations (Herant
et al. 1992), highlighting the roles of the convective overturn and
hydrodynamical instabilities in aiding the explosion. In 2002,
SPH was used to perform the very first 3D simulations of CCSNe
(Fryer & Warren 2002) and in 2004 again, this time including
rotation (Fryer & Warren 2004). These works were undoubtedly
remarkable landmarks and the use of SPH helped to achieve
this outcome for three main reasons: firstly, SPH is intrinsi-
cally devised for 3D simulations without boundaries (Lucy 1977;
Gingold & Monaghan 1977); secondly, it has an adaptive spatial
resolution that, in general terms, follows mass density, allowing
a highly resolved PNS without presenting an unaffordable com-
putational burden; and finally, it conserves energy and momen-
tum (both linear and angular) by construction, which makes it
very suitable for simulating rotating models, where momentum
transfer is critical.

In our previous work (Perego et al. 2016) we proved the
capabilities of using SPH to simulate CCSNe employing a novel
spectral leakage treatment (ASL). To our knowledge, this was
the first time since the early works of Herant et al. and Fryer
et al. that SPH had been used to simulate this scenario, and the
very first time that it was done using a spectral treatment of the
neutrino component within the SPH framework. In this work, we
extend the neutrino treatment, coupling the IDSA with our SPH
code, SPHYNX4.
4 Available at http://astro.physik.unibas.ch/sphynx
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SPHYNX includes some of the latest upgrades that have
enabled a remarkable advancement in this numerical technique
during recent years. Among them are: calculating gradients using
an integral approach to derivatives (IAD), which has been proven
to provide more accurate derivatives (García-Senz et al. 2012;
Cabezón et al. 2012; Rosswog 2015; Valdarnini 2016); using
a high-order, paring-resistant family of kernels (sinc-kernels),
which provides higher flexibility (Cabezón et al. 2008); and
implementing novel generalized volume elements, which prevent
the emergence of the tensile instability and facilitate the develop-
ment of hydrodynamical instabilities (Cabezón et al. 2017).

SPHYNX solves the Euler equations, derived from a vari-
ational principle (see Rosswog 2009 and references therein). It
also evaluates 3D gravity with a multipolar approximation calcu-
lated via a hierarchical tree structure that is based on the Barnes-
Hut algorithm (Hernquist & Katz 1989). We have additionally
included the same effective GR potential correction (Marek et al.
2006) as in ELEPHANT and FLASH to replace the monopolar
term of the gravitational force. Neutrinos are handled with the
IDSA treatment (Liebendörfer et al. 2009). Neutrino-electron
scattering effects during collapse are taken into account by
evolving the electron fraction and entropy with the parametrized
deleptonization scheme of Liebendörfer (2005).

To evolve the system with SPHYNX we solve the hydrody-
namical equations in Lagrangian form:

dρ
dt

= −ρ∇·v, (21)

dv
dt

=
−∇Ptot

ρ
+ g, (22)

du
dt

=
−Pgas

ρ
∇·v + ėν,I , (23)

dZνk

dt
=
−Pνk

ρ
∇·v + Żνk ,I , (24)

dYνk

dt
= Ẏνk ,I , (25)

dYe

dt
= Ẏe,I , (26)

where v is the velocity vector, Ptot = Pgas + Pν, and

Pν =
∑

k

Pνk = ρ
∑

k

Zνk/ (3mb) . (27)

The index k runs over all (anti)neutrino species. As a result,
Eq. (22) includes the extra contribution of the neutrino radiation
field, and therewith, the stress provided by the trapped neutrinos
is directly taken into account.

From the position of the SPH particles and the equation
of state, we compute the local density (ρ), the gradient of the
pressure (P), the gravitational acceleration (g), and the internal
energy (u). Moreover, each particle carries information regarding
the electron fraction (Ye), the neutrino abundances and energies
related to the neutrino trapped component, (Yν,Zν), for all neu-
trino flavors. The IDSA ultimately provides the rates of change
for these quantities, (Ẏe,I , Ẏν,I , Żν,I), and for the internal energy,
(ėν,I), as denoted by the subscript I.

The abundances of electrons and neutrinos are evolved
explicitly from Eqs. (25) and (26). It is worth noting that, as
can be seen in Eq. (24), we implement an additional energy-like
equation to evolve the energy of the trapped component of the
neutrinos. In this way, we can take into account both the contri-
bution due to the compression of the neutrino field and the rate

of change provided by the IDSA, in a consistent and robust way.
The details on the implementation of Eq. (24) can be found in
Appendix C of Perego et al. (2016).

The IDSA is primarily a local treatment of the neutrinos.
Nevertheless, it requires the spectral optical depth and the dis-
tribution function of streaming neutrinos, which are non-local
quantities. Additionally, a diffusion equation for the distribution
function of trapped neutrinos has to be solved. For the first two,
we employ the same approach as in ELEPHANT and FLASH:
we assume that the streaming component is isotropic and use
spherically averaged mean free paths to integrate the optical
depth. Regarding the solution of a diffusion equation, which
implies second derivatives, we use the approach of Brookshaw
(1985), which is less sensitive to particle distribution and has
been widely used in SPH simulations with radiative transfer (see
e.g., Whitehouse & Bate 2004 and Jubelgas et al. 2004 for a
reformulation):

αi =
d f t

i

dt
=

c
3

∑
j

m j

ρiρ j

(
λi + λ j

) (
f t

j − f t
i

)
∣∣∣ri j

∣∣∣2 ri j · ∇iWi j, (28)

where f t is the distribution function of the trapped component of
neutrinos, λ is the mean free path, while subscripts i and j refer
to a particle and its corresponding neighbors, respectively. In this
way, we obtain αi, the diffusion source for each SPH particle, as
defined in Eq. (7) from Liebendörfer et al. (2009).

SPHYNX uses a hybrid MPI+OpenMP parallelization
scheme. Its capabilities, implementation, and results in several
tests can be found in Cabezón et al. (2017).

2.5. Implementation details

In this section we discuss the setup of the simulations in the
framework of every code. We also point to the similarities and
differences regarding the physics implementation, domain dis-
cretization, and spatial resolution, among the different codes.

2.5.1. Initial conditions and equation of state

In order to link to both legacy models and newer ones,
we start from 1D progenitor models s15s7b2 and s15 from
Woosley & Weaver (1995) and Woosley & Heger (2007), respec-
tively. All codes begin with the same initial conditions: the
onset of the collapse of a massive star with 15 M� at zero
age main sequence. We map the density, temperature, elec-
tron fraction, and radial velocity profiles to the 3D compu-
tational domain. This process is adapted to each code, but
the resulting initial 3D radial profiles are very similar in all
codes.

In this study all codes use the Lattimer–Swesty EOS
(Lattimer & Swesty 1991) with incompressibility K = 220 MeV
(LS220). Although recent studies have shown that the LS220
EOS does not fulfill some theoretical and experimental nuclear
constraints (Krüger et al. 2013), this is one of the most pop-
ular EOS in the SN community and has been widely used in
many CCSN simulations. Moreover, the study of the effect of
different EOSs in CCSN simulations is not the objective of this
work.

2.5.2. Additional physics, discretization, and spatial
resolution

All three Newtonian codes (ELEPHANT, FLASH, and SPH-
YNX) have a 3D gravity solver that has a corrected monopolar
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term to use the effective GR potential of Marek et al.
(2006). Additionally, depending on the run, they can use the
parametrized deleptonization (PD) scheme during the collapse
phase to mimic the effects from neutrino-electron scattering
(NES; Liebendörfer 2005). In this case, during the collapse
phase, the IDSA solver is only used to update the background
neutrino fraction and energies. After core bounce, the PD
scheme is always turned off and the IDSA takes over. In con-
trast to this approximation, fGR1 calculates true NES rates and
includes this process in its two-moment M1 neutrino transport
scheme.

An effective GR potential correction (Case A in Marek et al.
2006) is used in all Newtonian codes to replace the monopole
term in their respective gravity solvers,

ΦGR(r) = ΦNW(r) − ΦNW, l=0(r) + Φeff.GR, l=0(r), (29)

where ΦGR and ΦNW are the GR and Newtonian gravitational
potentials, respectively, Φeff.GR stands for the effective GR cor-
rection, and l = 0 denotes the monopole term.

The modeling of µ/τ neutrinos in the IDSA runs is
handled by an inexpensive gray leakage scheme largely
based on the scheme presented in the appendix of Rosswog &
Liebendörfer (2003). Nevertheless, it is worth mentioning that
electron neutrinos and heavy neutrinos are in fact coupled, for
example by direct annihilation/creation processes, but because
these cross-flavor processes are not included in our present IDSA
version, electron neutrinos are decoupled from heavy neutri-
nos in our simulations. More generally however, caution with
respect to the results of the leakage scheme is in place, espe-
cially for the longer-term evolution of the post-bounce phase.
But this is not the focus of this comparison and so we feel
safe to evolve them using different numerical algorithms. In our
scheme, the energy loss caused by the emission of heavy fla-
vor neutrinos is computed as smooth interpolation between dif-
fusion and production rates. The former are valid in optically
thick regions, the latter in free-streaming conditions. Neutrino
elastic scattering off nucleons (Bruenn 1985) is employed as an
opacity source to compute the relevant energy-averaged optical
depth along the radial path. Electron-positron annihilation rates
integrated over the relevant phase space are considered as the
dominant production channel and are implemented according to
Itoh et al. (1996). The relevant diffusion rate is calibrated against
post-bounce results obtained with detailed Boltzmann neutrino
transport (AGILE-BOLTZTRAN code) for a 15 M� progenitor
(s15s7b2).

Regarding the energy resolution, all four codes use loga-
rithmically spaced energy bins. The three IDSA implementa-
tions cover 3–300 MeV with 20 energy bins, while fGR1 covers
1–300 MeV with 12 energy bins. The difference in energy res-
olution is basically due to the more detailed neutrino transport
of fGR1. Being more costly than IDSA, it partially compensates
the computational load with less energy bins. Neutrino energies
in fGR1 are measured in the comoving frame.

For this comparison we use a resolution of the equidistant
mesh in ELEPHANT of 1 km. The 3D computational domain
extends to (300 km)3 and is embedded in a larger spherically
symmetric computational domain that is evolved by the spheri-
cally symmetric implicitly finite differenced code AGILE-IDSA.
AGILE-IDSA provides the boundary conditions for the 3D
domain at 300 km radius and is used as a limiter for the entropy
at densities larger than 1014 g cm−3, at the very center of the
PNS. The latter measure was necessary to prevent an unphysi-
cal updrift of the central entropy due to the numerical dispersion
of the steep entropy gradient between the unshocked innermost

part and the shock-heated outer part of the PNS in the 3D hydro-
dynamics code.

In FLASH, we use 3D Cartesian grids for this study. The
center of the progenitor star is located at the origin of the simula-
tion box, which includes ±5000 km in each spatial direction. The
central region r ≤ 32 km has the smallest zone size of 0.488 km.
Additional AMR decrements based on the distance to the ori-
gin are imposed to save computational time, giving an effective
angular resolution of 0.9◦−1.7◦.

All SPHYNX simulations presented here use 200 000 SPH
particles and cover the inner ∼1.8 M� of the progenitor star,
which includes the whole iron core and part of the silicon layer.
As it is characteristic for SPH codes, the spatial resolution auto-
matically follows the density, reaching 0.477 km in the PNS.
Outer layers are taken into account via an external pressure that
is applied to the whole domain. The value of this pressure is
taken from the 1D initial profile and it affects only the most
external SPH particles.

In fGR1, the 3D computational domain is a cubic box of
15 000 km in width where nested boxes with nine refinement
levels are embedded in Cartesian coordinates. To save compu-
tational time however, the initial refinement level is set to five
which is increased when the maximum density reaches 5× 1010,
1012, 1013, and 3 × 1013 g cm−3 during the collapse phase. Each
box contains 643 cells and the minimum grid size near the origin
is ∆x = 458 m. The PNS core surface (∼10 km) and stalled shock
(∼110−220 km) are resolved by ∆x = 458 m and ∆x = 7.3 km,
respectively.

When rotation is included in the calculation, we implement a
shellular profile, following the setup of Yokozawa et al. (2015).
We discuss further details of the rotating models in Sect. 4.4.

3. Data summary, definition of acronyms of runs,
and abbreviation table

CCSN simulations rely on many different aspects. For this rea-
son, making a detailed comparison of all of them is out of the
scope of this work. Nevertheless, we focus on three main pil-
lars to compare the outcomes of our simulations: the neutrino-
transport method, the gravity treatment, and the inclusion of
rotation. Our runs include different combinations of these three
aspects for each of the hydrodynamical codes of Sect. 2. Here
we give an overview of the performed runs as well as an expla-
nation of their names and abbreviations for ease of reference in
the different comparisons.

The name of a run gives information on the aforementioned
pillars and codes. To easily distinguish which code and progen-
itor has been used with which settings, the name of a run is
twofold: the first part indicates the code and progenitor, and the
second part shows the chosen setting of gravity, rotation, and
(with the exception of AGILE-BOLTZTRAN) the ν-transport
method. The structure of the resulting abbreviations of the per-
formed simulations is given by

(Name of run) = [(Code)(Progenitor)]
− [(ν − Transport)(Gravity)(Rotation)]. (30)

The bracket on the RHS depends on the specific setting of
a run and is set as given in Table 1. Below, an example is pro-
vided to illustrate the naming generated by Eq. (30). It describes
an ELEPHANT run using the s15s7b2 progenitor from Woosley
& Weaver (1995) with IDSA as neutrino transport, Newtonian
gravity and no rotation. The dash thereby indicates that no letter
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Table 1. Summary of abbreviations used for the naming of runs.

Code ν-Transport method NES Gravity Rotation Progenitor

E . . . ELEPHANT I . . . IDSA (−) . . . w/o NES (−). . . Newt. (−) . . . No 95 . . . s15s7b2(W95)
F . . . FLASH P . . . IDSA+PD S . . . w NES G . . . GR R . . . Rapid 07 . . . s15(W07)
S . . . SPHYNX M . . . M1
G . . . fGR1
X . . . All codes
B . . . AGILE-BOLTZTRAN

Notes. A dash means that no letter is added.

Table 2. Overview of the combinations of hydrodynamic codes and physics included in our runs, with their corresponding names.

Code ν−Transport Gravity Rotation Progenitor model Name of run

ELEPHANT
IDSA

Newt. No s15s7b2 (W95) E95-I
GR E95-IG

Newt. Yes s15 (W07) E07-IR

IDSA+PD

Newt. No s15s7b2 (W95) E95-P
GR E95-PG

Newt. Yes s15 (W07) E07-PR
No E07-P

FLASH
IDSA

Newt. No s15s7b2 (W95) F95-I
GR F95-IG

Newt. Yes s15 (W07) F07-IR

IDSA+PD

Newt. No s15s7b2 (W95) F95-P
GR F95-PG

Newt. Yes s15 (W07) F07-PR
No F07-P

SPHYNX

IDSA
Newt. No s15s7b2 (W95) S95-I

GR S95-IG
Newt. Yes s15 (W07) S07-IR

IDSA+PD

Newt. No s15s7b2 (W95) S95-P
GR S95-PG

Newt. Yes s15 (W07) S07-PR
No S07-P

fGR1 M1−NES GR No s15s7b2 (W95) G95-MG
M1+NES G95-MSG

AGILE-BOLTZTRAN
Boltzmann−NES Newt. No s15s7b2 (W95) B95

GR B95-G

Boltzmann+NES Newt. No s15s7b2 (W95) B95-S
GR B95-SG

is added to the run name.

E95 − I = [(E)(95)] − [(I)(−)(−)]

Table 1 shows an overview of abbreviations. The four 3D
hydrodynamical codes (ELEPHANT, FLASH, SPHYNX and
fGR1) are abbreviated by using their first capital letter. An X as
code name is used as a wildcard, stating all codes with a specific
configuration. We use four neutrino treatments: IDSA, IDSA
with parametrized deleptonization (PD), and the M1 scheme
with and without NES.

General relativity and fast rotation are only considered by
their first letter in the naming code, if applied. As progenitors,
we use two 15 M� models (s15s7b2 and s15) from Woosley &
Weaver (1995) and Woosley & Heger (2007), respectively, refer-
ring to them by the last two digits of their publication year.

Table 2 gives a complete overview of the runs performed and
shall be a guide to the many run names used in this work.

4. Comparison

We present here the results of our simulations with the codes
introduced in Sect. 2 and compare them to each other. In
order to ease the reading of the plots, we kept the same
color for the same code among all plots independently of
the implemented physics or used progenitor, unless stated
otherwise. Namely, ELEPHANT results are always presented
in blue, FLASH in green, SPHYNX in red, and fGR1 in
magenta. To show the neutrino treatment, progenitor, and grav-
ity evaluation we follow the naming formalism introduced in
Sect. 3.
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4.1. Neutrino transport

The nature of the following comparison is twofold: on the one
hand, we compare different approximations to neutrino transport
(spherically symmetric Boltzmann solver (Liebendörfer et al.
2004) versus M1 in general relativity (Kuroda et al. 2012)
versus the isotropic diffusion source approximation (IDSA;
Liebendörfer et al. 2009) in FLASH, SPHYNX and ELE-
PHANT). On the other hand, we compare three different imple-
mentations of the same IDSA equations in the three latter codes.
While we succeed to a large extent in using the same progen-
itor star, equation of state, and reaction rates as input physics,
the implementations of the hydrodynamics equations in the three
codes differ significantly. It therefore remains difficult to clearly
attribute differences in the results to either the neutrino transport
or the hydrodynamics part.

The differences between the results of simulations that
implement the same set of equations should converge to zero
if the resolution of the simulation is increased. Global astro-
physical simulations however, span a dynamical range of many
orders of magnitude. Thus, high resolution is excessively exp-
ensive. Often, it is neither possible nor reasonable to obtain
sufficient computational resources to perform simulations that
are “converged” throughout the computational domain in a
mathematical sense. It is much more important to limit the
deviations from an exact solution in under-resolved regimes
by forcing the simulation to obey fundamental conservation
laws and space- or time-averaged interaction rates, even if
the spatial or temporal resolution is not sufficient through-
out thus allowing a mathematically converged solution to be
obtained.

Additionally, one cannot even be sure that a mathematically
converged solution exists. The SN scenario involves large-scale
convection of eddies between the surface of the PNS and the
shock front. Small-scale turbulence connected to magnetic fields
might also play a significant role. Therefore, it is likely that there
always remain regions in a simulation where the evolution of
small-scale features is by principle unpredictable, although it
remains macroscopically constrained by conservation laws and
average interaction rates. In this sense it might be in vain to
strive for mathematical convergence with respect to all quanti-
ties in a simulation. Nonetheless, based on the observation of
SNe one can expect that some overall physics features of the
explosion remain robust with respect to perturbations: for exam-
ple, the occurrence of the collapse of the stellar core, the occur-
rence of bounce at nuclear density, the formation of an initially
rather spherical standing accretion shock, the occurrence of fluid
instabilities, the expansion of the shock, the development of
asymmetries, the explosion, and important features of the nucle-
osynthesis.

Hence, we believe that it is justifiable that astrophysics codes
show slightly different results even if they are “solving” the
same set of equations. They should, however, agree overall on
all features that are observable and common to the majority of
observed SNe.

4.1.1. Stationary state approximation in the IDSA

Matter in the gravitational collapse of a massive star has a low
entropy around 1 kB per baryon. Neutron-rich heavy nuclei dom-
inate the scattering opacity. Due to the low ratio of neutrino
energy versus the mass of a representative heavy nucleus, the
scattering of trapped neutrinos is nearly elastic. A downward
shift of the mean neutrino energies can still occur via inelas-
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Fig. 1. Rest mass density (left column) and electron/lepton fraction pro-
files as a function of the enclosed baryon mass for various models at
bounce. Upper and lower rows are without and with taking into account
the NES effect, respectively.

tic neutrino-electron scattering, where both scattering partners
have more similar energies. Scattering off electrons happens at a
much lower rate than scattering off nuclei, but for trapped neu-
trinos it is efficient enough to allow more neutrinos to escape
from the collapsing core due to their down-scattered energy (see
e.g., Cooperstein 1988; Bruenn 1989; Bethe 1990 for a more
detailed explanation). This process cannot be modeled consis-
tently with the stationary state assumption of the IDSA. The
IDSA neglects the time that neutrinos need to propagate from
a location A of creation to another location B of further inter-
action (Liebendörfer et al. 2009). In a more recent implementa-
tion of the IDSA with time-dependent propagation of streaming
neutrinos it was possible to include neutrino-electron scatter-
ing (Takiwaki et al. 2014). For similar reasons, the original
implementation of the IDSA cannot adequately take into con-
sideration the propagation of heavy neutrinos through the stellar
core.

We solve these problems pragmatically, using a simple
and (currently) popular method to parameterize the effects
of neutrino-electron scattering during the collapse phase
(Liebendörfer 2005) and a gray leakage scheme for the emis-
sion of mu-neutrinos and tau-neutrinos (see Sect. 2.5.2). Such
effective treatment, once calibrated against more detailed trans-
port schemes, can capture the most relevant cooling effect pro-
vided by the emission of heavy flavor neutrinos and the related
evolution of the PNS radius with reasonable accuracy. Neverthe-
less, we stress that the investigation of more subtle effects related
for example to the detailed treatment of neutrino-matter opaci-
ties would require a more sophisticated treatment for mu and tau
neutrinos as well.

After core-bounce, the nuclei in the trapped regime become
shock-dissociated. Then, the emission and absorption of neu-
trinos on free nucleons dominate possible effects of neutrino-
electron scattering such that the approximations of the IDSA
should become adequate to model the post-bounce evolution,
whether neutrino-electron scattering is included or not.

The results of the collapse phase with and without parameter-
ized deleptonization are compared in Sect. 4.2. In this section we
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focus on the post-bounce evolution where both transport meth-
ods, the IDSA, and full transport can be compared.

4.1.2. Comparison of data with respect to neutrino transport

In Fig. 1 the rest mass density and composition is shown at the
time of bounce. The figure documents that the models start into
the post-bounce phase with reasonably small initial deviations.
From this point on, it is only the accretion of matter from the
outer layers that controls the further evolution of the post-bounce
phase. The mass accretion rate as a function of time is shown in
Fig. 2 at a radius of 200 km. The accretion rate acts like a bound-
ary condition for the evolution of the early post-bounce phase.
In the Newtonian runs, the two grid-based codes show a ∼10%
larger accretion than the two Lagrangian codes. However, this
grouping breaks up in the general relativistic runs: SPHYNX, in
GR, shows a slightly higher accretion rate than in the Newto-
nian case, while fGR1 seems to struggle with resolution in the
early collapse phase. We note that the accretion rate evolution
in SPHYNX changes slightly at 200 km when comparing New-
tonian and GR-corrected simulations. This is related with the
gravitational softening that is used to prevent divergences when
two particles get too close. When we replace the monopolar term
with the GR potential this softening is partially removed, effec-
tively making the gravitational potential slightly stronger.

A broad overview of the time evolution of several key quan-
tities during the post-bounce phase is shown in Fig. 3. The first
row shows Newtonian runs with reduced input physics (labeled
I in Table 1). The second row shows Newtonian runs with the
effect of neutrino-electron scattering (labeled S or P in Table 1).
The third and fourth rows show the corresponding general rela-
tivistic runs (labeled IG or MG with reduced physics and SG,
PG or MSG with neutrino-electron scattering). The panels in
the left column of the figure show the shock position as a func-
tion of time. All four panels demonstrate that within 10 ms the
shock expands from a radius of a few kilometers to one of about
100 km.

However, the four panels in the left column also show clear
differences between the runs. We believe that they are consis-
tent with the following arguments: In the top panel it can be
seen that run B95 reaches a larger shock radius than the other
codes, as well as in the third panel from above, B95-G and
G95-MG reach a larger shock radius than the other codes. This
can be expected because in the IDSA, neutrinos are assumed to
propagate instantly through the stellar core due to the steady-
state approximation for streaming neutrinos. In the true transport
codes B95-G and G95-MG this is not the case. There, the neutri-
nos require a few milliseconds to move away from the location
where they are produced. During these 5−10 ms they block the
phase space for further neutrinos to be created. Hence, the shock
in runs B95-G and G95-MG suffers less from instantaneous neu-
trino loss than the shock in the IDSA runs. This explanation is
consistent with the fact that B95 also reaches the largest shock
position in the topmost panel (there is no corresponding G95-M
run). It is also consistent with the observation that this difference
in the early evolution of the shock radius is not seen in the sec-
ond and fourth panel from the top. These panels show graphs for
runs that implement the effects of neutrino-electron scattering. In
these runs, the neutrino energy is lowered by down-scattering.
Thus, the neutrinos are emitted earlier. In this case, the codes
produce a weaker shock from the beginning and a relatively con-
sistent shock expansion up to 10 ms for all runs.

Further deviations appear at ∼15 ms post-bounce. ELE-
PHANT produces a broad hump in the top panel, which can also

be seen in the FLASH data, but to a much smaller extent. In the
second panel from the top, both ELEPHANT and FLASH show
a similar hump at a slightly earlier time. This is also present in
the third panel, albeit again smaller, but cannot be distinguished
in the fourth panel. We explain this hump with an early opti-
mistic expansion of matter supported by grid alignment effects.
After this first matter overturn, the alignment benefit vanishes
and the shock falls back to a more steady position. In earlier,
slowly rotating models these humps are less visible (compare
also to runs IR and PR in Fig. 8). In SPHYNX runs, the shock
evolution shows smaller humps or no humps at all. As SPH codes
have no underlying structured mesh, alignment effects are sup-
pressed. Shock oscillations, such as those present in runs S95-I
and S95-P, can be linked to early prompt convection. After this
first overshoot, the shocks in all models reach consistent posi-
tions with deviations below 10% between B95, E95, F95 and
S95.

The second column of the panels in Fig. 3 presents the lumi-
nosity as a function of time for the electron flavor neutrinos
(solid lines) and antineutrinos (dashed lines). After the peak
luminosity in the neutrino burst has occurred at ∼5 ms after
bounce, all luminosities decay to a value between 4 × 1052 erg
and 6 × 1052 erg at 50 ms post-bounce. At first glance, the neu-
trino luminosities seem to oscillate without correlation during
this decay. Closer inspection reveals that there is a strong cor-
relation between the dynamics of the shock front discussed in
the previous paragraph and the evolution of the electron neu-
trino luminosity. For example, run E95-I shows a prominent
recession of the shock at 24 ms post-bounce. At exactly this
time the corresponding neutrino luminosity exhibits an equally
prominent peak that is emitted by electron capture when the
hot matter behind the shock is compressed as it slams into the
surface of the PNS. The same feature appears in runs E95-P
and S95-P at 16 ms post-bounce, in run S95-I at 20 ms post-
bounce, in run F95-P at 18 ms post-bounce, and in run G95-MG
at 24 ms post-bounce. Most features in the neutrino luminosity
can be explained in this way by the different dynamics of the
shock.

One exception is perhaps the luminosity of run B95: the
prominent recession of the shock at 12 ms post-bounce would
suggest a rather high neutrino luminosity at that time. The lumi-
nosity of B95 does show a local maximum, but it does not exceed
the luminosity of E95-I and F95-I. Here one should addition-
ally consider the PNS radius (dashed lines in the leftmost pan-
els), which initially shows a small PNS radius and a large shock
radius. In this most optimistic run, a substantial mass hovers
between these radii and has not yet settled on the PNS. At 26 ms
post-bounce, the situation is reversed: as soon as the shock has
receded after 14 ms post-bounce the PNS radius becomes even
larger than in the other runs. At this time, the luminosity of
E95-I consistently exceeds the luminosities of the other runs.
The luminosity of run S95-I remains mostly below the lumi-
nosities of the other runs because the shock expands slowly and
exhibits no recession except once around 20 ms post-bounce.

The antineutrino luminosities depend much less on the
accretion rate. We find agreement of about 10% between the
runs that use the IDSA and agreement after ∼20 ms post-
bounce between the two runs that implement more sophisticated
neutrino transport. However, the IDSA-runs show consistently
higher antineutrino luminosities than the transport-runs. We note
that a similar deviation of the antineutrinos in the IDSA has
been noticed independently in O’Connor et al. (2018), but not in
Liebendörfer et al. (2009). We also do not yet know why the
antineutrino luminosities calculated by the two transport codes

A118, page 10 of 19



R. M. Cabezón et al.: CCSNe in the hall of mirrors. A 3D code-comparison project

−20−10 0 10 20 30 40 50

t [ms]

−25

−20

−15

−10

−5

0

Ṁ
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Fig. 2. Time evolution of mass accretion rates measured at R = 200 km. Different colors represent simulations with different codes. Each column
shows a set of simulations (see Table 2).
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Fig. 3. Time evolution of averaged shock radius, PNS radius, neutrino luminosities, and mean energies for different runs. Each row describes a
comparison of different physics input as described in Table 2. Different color represents a simulation with a different hydrodynamics code.

B95 and fGR1 differ by about a factor of two between 10 ms
and 20 ms post-bounce. These questions certainly merit further
investigation and demonstrate how important such comparisons
are.

The mean energy of the neutrino flux, calculated by dividing
the energy luminosity by the number luminosity, is shown in the
rightmost column of the panels. In runs X95-I and X95-IG we
find satisfactory agreement with deviations of the order of 20%
during the most dynamic phase and of the order of 10% after the

shock has assumed a more steady expansion. The longer-term
neutrino and antineutrino energies in ELEPHANT are consis-
tently higher than in FLASH and SPHYNX while the neutrino
and antineutrino luminosities in fGR1 are significantly lower
than in the other codes. The neutrino energies of ELEPHANT
agree well with those of AGILE-BOLTZTRAN in the runs with-
out neutrino-electron scattering and are higher than those of
AGILE-BOLTZTRAN in the runs that include neutrino-electron
scattering. This is consistent with the fact that with the IDSA
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Fig. 4. Central density evolution in all codes within a Newtonian (left
panel) and GR (right panel) framework. The dashed line shows AGILE-
BOLTZTRAN data before the extrapolation to the center (cf. text).

the (anti-)neutrinos leave the star with unchanged mean energy,
while they are able to downscatter in the runs with AGILE-
BOLTZTRAN and fGR1, which both implement full neutrino-
electron scattering.

We discover the most prominent differences between the
codes in the luminosities of the µ- and τ-neutrinos. The energy
loss due to the emission of heavy neutrinos in the Newto-
nian runs, which are based on a gray leakage scheme for the
heavy neutrinos, is smaller than the corresponding energy loss
calculated in AGILE-BOLTZTRAN with full neutrino trans-
port by almost a factor two. Because the AGILE-BOLTZTRAN
results assume similar values to those of an earlier comparison
(Liebendörfer 2005), we assume that the AGILE-BOLTZTRAN
data are correct and that the gray leakage scheme is too sim-
ple for the conditions that prevail in Newtonian runs. This is
consistent with the observation that the results of fGR1 are
closer to the results of AGILE-BOLTZTRAN than to the results
of the leakage scheme. In the more compact PNS of the gen-
eral relativistic runs, where higher temperatures are reached,
the leakage scheme performs better and approaches the AGILE-
BOLTZTRAN results to around 20% accuracy.

The differences in the energy loss rate by the emission of
heavy neutrinos points to the possibility that some differences
in Fig. 3 could be caused by a different evolution of the PNS.
Figure 4 shows the central density as a function of time. At
first we note that the central density of AGILE-BOLTZTRAN
(orange dashed line) appears to have relatively low values. This
is a result of the adaptive mesh, which pulls grid points from
the center of the PNS away to the shock front. The center of the
PNS is then less resolved than in the other codes. As the inner-
most value in AGILE-BOLTZTRAN is a cell-centered cell aver-
age, it is lower than the actual central density at the inner edge
of the cell. In order to cure this inconsistency in the compari-
son, we extrapolate the density profile of AGILE-BOLTZTRAN
to the center of the computational domain using the constraints
that the density profile around the center be quadratic with zero
derivative at r = 0. Furthermore, it must exactly reproduce the
density averages in the first and second cells given by the out-
put files of AGILE-BOLTZTRAN. After the extrapolation to
the center, the density of AGILE-BOLTZTRAN (orange solid
line) shows better agreement with the central density of the other
codes.

In the Newtonian runs (left panel) we find an agreement
to better than 5% among all codes. However, the agreement in
the general relativistic runs is less perfect. E95-PG produces
the most compact PNS with the largest central density. G95-
MSG produces the PNS with the lowest central density. The
central density depends on the self-gravity of the neutron star,
the central entropy and the central electron fraction. We find
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Fig. 5. Central entropy as a function of central density (left panel) and
as a function of time (right panel) for GR models including NES.

good agreement with respect to the electron fraction. The Ye
is set by the parameterized deleptonization scheme and evolves
in all models in a similar fashion. Differences are found in the
central entropy. Consistent with the density differences, E95-
PG shows the lowest entropy of 1.2 kB per baryon while G95-
MSG produces 1.4−1.5 kB per baryon. Figure 5 shows the evo-
lution of the central entropy as a function of density during col-
lapse (left panel) and as a function of time (right panel). The
left panel shows that the main entropy difference is induced dur-
ing the collapse phase when the density crosses ∼1012 g cm−3.
The right panel shows an unphysical slight entropy increase
after bounce in the multidimensional codes that is most likely
due to advection of entropy from the shock-heated layers of
the PNS towards the cold center. This effect is not visible in
the data of AGILE-BOLTZTRAN because the core in spheri-
cal symmetry does not require substantial advection. It is also
not visible in the data of SPHYNX because advection is not an
issue in the inherently Lagrangian code. The effect is smaller in
ELEPHANT than in the two other 3D grid-based codes simply
because the central entropy in ELEPHANT is limited by the cen-
tral entropy of AGILE-IDSA to mitigate this undesired central
entropy increase.

If we now go back to Fig. 3 with these central entropy differ-
ences in mind, we confirm in the lower left panel that the PNS
radius of G95-MSG is indeed larger than the one of E95-PG.
Also the shock radius of G95-MSG is larger than the one of
E95-PG. As expected, we find the inverse ordering in the neu-
trino luminosities: the electron flavor luminosities of G95-MSG
are significantly lower than those of E95-PG. The difference of
the mean energies between these two runs can be explained by
the same difference of the PNS structure: the more compact PNS
of E95-PG has neutrinospheres deeper in the gravitational well
and produces higher mean energies than the less compact PNS
of G95-MSG.

In summary, we find a consistent overall evolution in all runs.
Differences during the collapse phase lead to slight differences in
the entropy and compactness of the PNS. The implementations
of hydrodynamics in our four codes optimize different aspects of
the SN dynamics: avoidance of grid-effects in SPH, high resolu-
tion and efficiency at the shock front, adaptive capabilities and
improved resolution of the PNS, and last but not least, the pos-
sibility to include full GR. These differences lead to deviations
in the details of the early shock expansion. Many differences in
the evolution of the neutrino luminosities can directly be linked
to these hydrodynamic differences. Some deviations, nota bene,
require further investigation before we can extend this compar-
ison to later post-bounce times: Why are the electron antineu-
trino luminosities produced by the IDSA rather large? And under
which PNS conditions is the leakage scheme for the µ- and τ-
neutrinos sufficient – or insufficient?
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Fig. 6. Central evolution of the electron (thick line) and lepton (thin line)
fraction as a function of central density for various models. The left and
right panels show this evolution without and with the NES effect being
taken into account, respectively.

4.2. Neutrino electron scattering

Inelastic scattering of neutrinos off electrons plays an important
role in helping neutrinos to escape more freely from the center of
the star as a consequence of down-scattering; it enhances delep-
tonization of the central core and thus leads to lower electron
fraction Ye. The electron fraction is the most important quan-
tity to determine the stability and the size of the inner core
during stellar collapse. The latter is crucial, since it defines
the location of the shock at core bounce and affects the subse-
quent evolution of the neutrinospheres, which may be associated
with the neutrino heating efficiency. The deleptonization process
is mainly controlled by electron captures on free protons and
elastic/inelastic scattering of electron neutrinos. In this section,
we compare its treatment used in each code and discuss their
properties.

In Fig. 6, we plot the central evolution of the electron Ye
(thick line) and total lepton Yl (thin) fractions as a function of
central density for various models including GR. Left and right
panels are without and with the NES effect, respectively. In the
left panel, we see that the evolution of both Ye and Yl shows
relatively good agreement among all models. Differences in both
Ye and Yl are ∼0.01 at most. In addition, all numerical codes
reproduce the neutrino trapping at nearly the same density of
ρ ∼ 1012 g cm−3 and Yl stays nearly constant afterward.

In the panel on the right, we see the role of NES. Because
of the downscattering of neutrinos off the electrons, lower-
energy neutrinos escape more efficiently and the lepton frac-
tion Yl becomes smaller compared to the model without NES.
The parametrized deleptonization (PD) scheme enables Ye to
be nearly an identical value with the one in B95-SG. In G95-
MSG, the upper envelope of Ye shows a consistent value with
the other models but with an oscillating behavior. Such oscilla-
tions are typical for simulations based on 12 energy groups. In
corresponding spherically symmetric simulations (Mezzacappa
& Bruenn 1993c; Liebendörfer et al. 2004) these oscillations
are explained by an insufficient resolution of the Fermi-energy
of the degenerate electron neutrinos in the late collapse phase,
which does not affect the overall evolution of the dynamics. In
the present 3D study, however, we did not have the resources
to prove this using a corresponding simulation with 20 energy
groups. In models G95-MSG and B95-SG, neutrino trapping is
appropriately reproduced which can be seen from the constant
Yl evolution for ρ & 1012 g cm−3. The value of Yl varies in mod-
els with PD scheme after neutrino trapping. This is because Yν
is updated through the IDSA solver, but Ye is taken from the PD
formulation. Thus, the lepton number is not fully conserved with
the PD scheme after neutrino trapping, but we consider that the
overall picture is consistent with B95-SG/G95-MSG.

Table 3. Summary of the parameter set for the parametrized delep-
tonization scheme.

Progenitor ρ1 ρ2 Y1 Y2 Yc
(g cm−3) (g cm−3)

s15s7b2 3 × 107 2 × 1013 0.5 0.278 0.035
s15 2.2 × 108 9.5 × 1012 0.5 0.279 0.022

Notes. Model s15s7b2 (Woosley & Weaver 1995) is used for Newtonian
and GR calculations. Model s15 (Woosley & Heger 2007) for Newto-
nian calculations.

From the left panels of Fig. 1, the enclosed baryon mass
with rest mass density larger than the neutrino trapping density
(ρ ∼ 1012 g cm−3) is larger (∼0.95 M�) for models without NES
(top-left panel) than for those (∼0.9 M�) with NES (bottom-left
panel). This can also be seen in the second column of panels,
where we can see that the enclosed baryon mass of the central
core is ∼0.05 M� larger for models without NES (∼0.65 M�, top-
right panel) compared to models with NES (∼0.60 M�, bottom-
right panel). This is because the additional pressure support from
leptons leads to a more outward shock formation at bounce.
It should, however, be noted that the impact of this scattering
process depends also on the electron capture rate. Lentz et al.
(2012b) reported that the down scattering can be blocked due
to the production of lower-energy neutrinos when the up-to-date
electron capture rate is used. Consequently, those models lead
to the same results for the collapse phase, regardless of whether
NES is included or not.

After bounce, we do not see any remarkable effects of NES.
Although the shock evolution and heavy lepton-type neutrino
luminosity show minor differences during the first ∼10 ms after
bounce (see bottom two rows in Fig. 3) due to different shock
position at bounce, the overall evolution shows no significant
dependency on NES in time. We, however, note that the lack of
visible effects of NES in the post-bounce phase might be due to
the shortness of our simulation times. Just et al. (2018) recently
reported, through their various models, that NES can turn a non-
exploding model into a successful explosion. Nevertheless, such
a noticeable effect appears at times (tpb & 300 ms) that are far
beyond the end point of our simulations.

Calibration of parametrized deleptonization. Before more
modern rates for electron captures can be implemented in the
IDSA, the still missing implementation of NES in the IDSA
would be important for the collapse phase. In combination with
traditional electron capture rates, the inelastic scattering of neu-
trinos with electrons lowers the neutrino energy and accelerates
deleptonization. In Lentz et al. (2012a), Pan et al. (2016), it has
been shown that the central Ye at core bounce is overestimated
by about 10−15% if NES is not taken into account during the
collapse. To effectively include NES, we follow the PD scheme
described in Liebendörfer (2005), where the Ye is parametrized
by the baryon density and the chemical potential. Table 3 sum-
marizes the parameters that we used in this paper. In Fig. 1, the
PD scheme in X95-PG runs could lower the Ye from 0.31 in X95-
IG to 0.28, closely matching model G95-MSG, which includes
NES.

In addition to electron fraction, neutrino stress is another
important quantity that could affect the core size. The contri-
bution of neutrino pressure is not only included in the IDSA
solver, but also implemented in the PD scheme Liebendörfer
2005. The left panel of Fig. 7 shows a comparison of our 3D
IDSA simulations with AGILE-BOLTZTRAN simulations with-
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Fig. 7. Influence of the neutrino stress in the Ye profiles at bounce. When
neutrino stress is not included (dashed lines, i.e., N-labeled models) the
inner core is ∼30% smaller. Left panel: IDSA Newtonian calculations,
right panel: GR calculations including neutrino-electron scattering.

out NES (orange lines). The nearly identical electron fraction
profiles at core bounce indicate that the IDSA could capture the
deleptonization correctly when the NES is off. Although the neu-
trino pressure contributes only a small fraction of the baryonic
pressure, it could enlarge the inner core size by ∼30% (Fig. 7).
Moreover, the right panel of Fig. 7 demonstrates that the PD
scheme could mimic the NES effects and gives reasonable results
compared to the AGILE-BOLTZTRAN simulation (the thick
orange line; B95-SG). Furthermore, dashed lines present simu-
lations of B95, F95-I, and F95-PG without the contribution from
neutrino stress (with label “N”), leading to an inner core that is
smaller by ∼30%, consistent with the expected value.

4.3. The role of general relativity

General relativity plays an essential role in CCSNe. The most
detailed 1D simulations to date, in which the GR Boltzmann
transport equation was solved in spherical symmetry, were per-
formed by Wilson (1971), Mezzacappa & Matzner (1989),
Yamada (1997), Liebendörfer et al. (2001), Sumiyoshi et al.
(2005), Lentz et al. (2012a), and their 3D counterparts, with the
multi-angle and multi-energy neutrino transport, by Sumiyoshi
& Yamada (2012). Although it is not a full Boltzmann trans-
port scheme, the variable Eddington factor (VEF) method has
been coupled to a full GR hydro solver (e.g., Müller et al. 2012,
and references therein). In this method, one can self-consistently
determine the closure relation from a model Boltzmann equation
that is integrated to iteratively obtain the solution up to the higher
moments (i.e., the Eddington tensor) until the system converges.

Bruenn et al. (2001), Liebendörfer et al. (2001), with base-
line neutrino opacities, and Lentz et al. (2012a), with the cur-
rently best available ones, presented evidence that the average
neutrino energy of any neutrino flavor during the shock reheat-
ing phase increases when switching from Newtonian to GR
hydrodynamics. They also pointed out that the increase is larger
in magnitude compared to the decrease due to redshift effects
and gravitational time dilation. In addition, Lentz et al. (2012a)
showed that the omission of observer corrections in the transport
equation lessens the triggering of neutrino-driven explosions. In
these fully fledged 1D simulations, a commonly observed disad-
vantageous aspect of using GR to trigger neutrino-driven explo-
sions is that the residency time of material in the gain region
becomes shorter due to the stronger gravitational pull. As a result
of these competing ingredients, in the end GR works against the
triggering of the neutrino-driven explosions in 1D. In fact, the
maximum shock extent in the post-bounce phase is shown to be
∼20% smaller when switching from Newtonian to GR hydrody-
namics (Bruenn et al. 2001; Liebendörfer et al. 2001; Sumiyoshi
et al. 2005; Lentz et al. 2012a).

From Fig. 3, we can see that the mean PNS radii are ∼10%
smaller in (effective-)GR models compared to Newtonian ones
(see, e.g., the second and fourth panels from the top in the left-
most column), confirming the same effect also in 3D simula-
tions. GR also affects the shock evolution. Irrespective of NES,
the shock front appears ∼10 km more inward in (effective-)GR
models. Furthermore, because of the more compact and hotter
PNS, neutrino luminosities in all flavors become ∼20 % higher.
AGILE-BOLTZTRAN takes into account both the gravitational
redshift and Doppler shift terms. Therefore, we can explore the
influence of GR on the emergent neutrino energies by compar-
ing B95-S and B95-SG. As a consequence of the competition
between the gravitational red-, Doppler-shift, and hotter PNS
surface, the mean neutrino energies are higher in B95-SG than in
B95-S by ∼0.5 MeV. This simply reflects the effect of GR, lead-
ing to a more compact PNS core, which can also be confirmed in
Fig. 4. This figure shows a comparison of the central density evo-
lution between Newtonian (left) and GR (right) models. In GR
models, the central density shows values that are systematically
higher by ∼20−30%. To see if these GR effects work advanta-
geously on the shock revival, we need to perform simulations
that cover more of the post-bounce phase.

4.4. The role of rotation

With the advent of multidimensional SN simulations the role
of rotation is gaining increased attention from the community
(Marek & Janka 2009; Suwa et al. 2010; Yokozawa et al. 2015;
Takiwaki et al. 2016; Janka et al. 2016; Gilkis 2018; Summa
et al. 2018), as it can have sizable effects on the emergence of an
explosion as well as on important SN observables. For example,
gravitational waves produced from the development of triaxial
instabilities triggered by rotation will carry information about
the supernuclear EOS that is encoded in their waveform. From
these, we could impose constraints on rotation rates of the iron
core and the PNS, which are not well known.

Following the setup presented in Yokozawa et al. (2015)
we implemented a shellular rotation (Eriguchi & Mueller 1985)
assigning an angular velocity Ω at each cylindrical radius r in
the form of

Ω(r) =
Ω0r2

0

r2 + r2
0

, (31)

where Ω0 is the angular velocity at the center and r0 is a character-
istic distance that controls the amount of differential rotation. For
the limit of small values of r0, Eq. (31) approaches a configuration
with constant specific angular momentum, while for large values
it tends to a rigidly rotating model. We chose r0 = 1000 km and
Ω0 = π rad s−1. The former ensures a nearly rigid rotation of the
core of the star, while the latter corresponds to a spin period of 2 s.
We note that this is roughly a factor 50 more rapid than the pre-
dictions by detailed stellar evolution models (Heger et al. 2005)
that include angular momentum transfer by magnetic processes.
Nevertheless, many publications employ such a rapid rotation
profile, even if it is probably only compatible with a differentially
rotating core in hypernovae (Burrows et al. 2007) and/or a fast
rotating black hole at the origin of gamma-ray bursts (MacFadyen
& Woosley 1999). In order to be able to compare with the litera-
ture we kept the same rotational profile. We also highlight here that
Eq. (31) generates a rotational profile in cylindrical shells, which
was not applicable in ELEPHANT. As explained in Sect. 2.1, this
code simulates the inner region of the star with a 3D Cartesian
mesh while its boundary conditions are provided by a simultane-
ous calculation with the 1D code AGILE-IDSA. This leads us to
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Fig. 8. Similar to Fig. 3 but for rotating models X07-IR (first row) and X07-PR (second row). Non-rotating models X07-P (third row) are shown
here for comparison purposes.
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Fig. 9. Central density evolution for rotating models without (left panel)
and with (right panel) parametrized deleptonization.

impose only spherical rotational profiles for the 3D inner region.
Therefore,ELEPHANTappliesEq. (31)withr andr0 representing
spherical radii instead of cylindrical radii. As a consequence, the
initial rotational profile of ELEPHANT is different from those of
SPHYNX and FLASH as it rotates more slowly (∼6%).

Figure 8 presents an overview of the average shock posi-
tion and PNS radius (left column), electron-neutrino luminos-
ity (second column), heavy-lepton neutrino luminosity (third
column), and mean energies for all neutrino species (last col-
umn) for the calculated rotating models without (IR) and with
(PR) parametrized deleptonization. In order to clearly see the
influence of rotation, we added a third row to Fig. 8 with the
results of X07-P models, which include the same physics as
the rotating models but without rotation. Overall, there is good
agreement among the codes for the rotating models. All three do
not show signs of a rapidly stalled shock within the simulated
time, in contrast to the non-rotating models where the shock
halts at about 100–150 km within the first 20 ms. As expected,

rotation helps the expansion of the shock due to the deposition
of angular momentum in outer layers (Fryer & Warren 2004;
Suwa et al. 2010; Nakamura et al. 2014). There is good agree-
ment in the neutrino and anti-neutrino luminosities among all
thee codes, although SPHYNX tends to be slightly less lumi-
nous than the other two codes for anti-neutrinos (second col-
umn), which correlates with the lower mean energy deposited
in that neutrino species (fourth column). Nevertheless, the main
difference among codes can be seen in the heavy-lepton neutrino
luminosity (third column), where SPHYNX and FLASH show
good agreement, but ELEPHANT produces ∼40% more lumi-
nosity. The reason for this is the different rotational profile of
ELEPHANT, which produces a more compact PNS, consistent
with its central density evolution shown in Fig. 9. As expected,
ELEPHANT simulations tend to form more compact objects
than those of FLASH. SPHYNX obtains intermediate results,
where the biggest differences are ∼15%.

The angular momentum transfer is crucial in rotating scenar-
ios. We note that the angular momentum transport is strongly
enhanced after bounce, where the shock launch aids the transfer
of fast-rotating matter to larger radii, driving a rapid decrease of
the angular momentum of the inner core, as it is transported to
the surface of the neutron star. This mechanism excites the m = 1
spiral-arm modes, leaving a signal in the fluid that we can see in
Figs. 10 (for IR models). In this latter figure, at tpb = 50 ms,
we plot the deviation from the spherical average of the den-
sity (left), pressure (center), and radial velocity (right) in a thin
slice of the 3D domain along the equatorial plane. We can see in
all three codes that a spiral, high-density, high-pressure wave is
moving outwards from the center of the system. SPHYNX and
FLASH produce very similar results, both in magnitude and size
of the spiral perturbation at the same time. Due to the different
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Fig. 10. Deviations from the spherical average of density (left panels), pressure (center panels), and radial velocity (right panels) profiles for
rotational models X07-IR at 50 ms.

rotational profile, ELEPHANT results are not directly compara-
ble to those of the other two codes. Nevertheless, a spiral shape is
still visible on all three magnitudes, albeit ∼15% more extended.
Our results are similar to those of Takiwaki et al. (2016; see their
Fig. 3).

Additionally, we can also follow the transfer of angular
momentum directly during the whole evolution, plotting the dif-
ference of specific angular momentum with respect the initial
specific angular momentum distribution as a function of the
enclosed mass. This is represented in Fig. 11 for ELEPHANT,
FLASH, and SPHYNX (from top to bottom) at different stages
of the collapse (left column) and at different times after bounce
(right column). If we focus on the first column, we can see
that even during collapse, some angular momentum is lost in
the inner core for all three codes. This may be due to two fac-
tors that occur at the same time: the appearance of shear and
the lack of angular momentum conservation by the code. Some
shear might be expected during the collapse of a rotating star
due to the stronger centrifugal forces experienced by the material
with higher angular momentum (i.e., in the equatorial plane). As
a consequence, its collapse proceeds slower than material with
lower angular momentum (e.g., in the polar regions) and a cer-
tain quantity of shear appears, causing angular momentum to

pile up at larger radii (this is especially visible at tpb = 0 ms
in the SPHYNX run, in the small bump from M ∼ 0.8 M�
up to ∼1.3 M� in Fig. 11). Additionally, some angular momen-
tum is lost due to numerical diffusion. This is more relevant in
the mesh-based codes ELEPHANT and FLASH, while SPH-
YNX does conserve it better. This is an expected behavior of
an SPH code, which, being purely Lagrangian, is specially con-
structed to conserve momentum and energy. It is worth noting
though, that some angular momentum is also lost in SPHYNX
due to the calculation of the gravitational force, which, to some
extent, always breaks the perfect conservation properties of the
SPH formalism. We can estimate the total angular momentum
that is lost due to numerics and shear by integrating the losses
and gains of the specific angular momentum as separate func-
tions of the enclosed mass. If angular momentum is perfectly
conserved, both magnitudes should be equal and therefore their
difference should be zero. We found that, up to bounce, SPH-
YNX has a losses-to-gain difference below 1%, while the value
for FLASH is below 3%, and the value for ELEPHANT is below
4%. This percentage gives an upper limit to the angular momen-
tum losses at the (low) spatial resolution at which these simula-
tions have been performed. Increasing the resolution, this ratio
improves considerably for all three codes. Unfortunately we
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Fig. 11. Specific angular momentum differences with respect to the ini-
tial specific angular momentum distribution at different central densities
during collapse (left panels) and at different post-bounce times (right
panels). From top to bottom panels, the represented simulations corre-
spond to ELEPHANT, FLASH, and SPHYNX codes.

cannot clearly disentangle the undesired angular momentum loss
on the scale of the dimensions of the PNS from unavoidable
angular momentum loss due to dissipation of turbulence on
smaller scales. But in our investigation of the collapse phase and
bounce we consider the loss-to-gain difference as a reasonable
estimate for undesired angular momentum losses because our
simulations do not develop turbulence during the very short col-
lapse of our perfectly spherically symmetric progenitor models.

After bounce (second column) it is clear that angular
momentum is extracted from the inner core and transported to
the outer layers. The time and the regions at which angular
momentum changes differ among codes. The presence of con-
vection is the reason for the complex structure of these pro-
files. The different treatments of dissipative terms in the different
codes and the low spatial resolution may also have an impor-
tant impact. Despite these quantitative differences, it can be
seen in all three codes how angular momentum moves up along
the enclosed mass axis, and, in fact, reaches similar enclosed
masses, that is, ∼1.4 M� , in FLASH and SPHYNX at about the
same time (t ∼ 50 ms).

4.5. Computational resources

Using different codes with different levels of approximation
implies great differences in computational cost, which, in turn,
affect the spatial resolution that we can afford. In Table 4 we pro-
vide some details regarding the CPUh consumption, paralleliza-
tion methods, number of fluid elements, and resolution of each
code in this work in order to give some idea of the computational
costs. Some of the calculations were done in different facilities,
so the used resources presented in Table 4 are merely indica-

tive. Additionally, the computational efficiency of each code is
obviously highly dependent on its parallelization methods and
its implementation. Hence, the values presented in Table 4 reflect
the current state of development of these codes.

ELEPHANT provides (highly efficient) simulations with
constant spatial resolution (1 km), which is very good at the
shock position but coarse at the PNS. This is mitigated in
FLASH via the usage of adaptive mesh refinement (AMR). The
resolution at the PNS is greatly improved and a third-order
scheme is used at the price of increased computational resources.
fGR1 uses nested meshes of finer resolution, so there is no AMR
overhead. Nevertheless, the inclusion of full GR and M1 treat-
ments requires considerable computational resources. On the
other hand, SPHYNX reaches similar resolution in the PNS with
considerably less fluid elements, but, as in SPH codes resolu-
tion follows density, more diluted regions like that of the shock
are much coarser. In the case of ELEPHANT and SPHYNX,
the lack of resolution in some regions of the core collapse sce-
nario can be compensated with higher amounts of fluid elements.
Subsequently, the viability of the simulation relies on its compu-
tational efficiency and the scaling of the code in a parallel imple-
mentation. It is clear that the use of one code over another can
be beneficial depending on the focus of the study. For example,
increasing the amount of SPH particles up to more “production-
simulation-like” amounts (e.g., 2 × 107) will increase the spa-
tial resolution by a factor ∼4.6 reaching ∼100 m resolution in
the PNS. On the other hand, ELEPHANT can provide a very
high resolution (∼500 m) in the gain region and at the same time
include magnetic fields.

5. Conclusions

In this work, we studied the same core collapse scenario in
3D with four different hydrodynamics codes including, for the
first time, Eulerian and Lagrangian codes in the same study.
In addition, we also compared the four hydrodynamics codes
with a spherically symmetric code with Boltzmann transport.
Within this framework, we varied three parameters in order
to explore their different impacts on different hydrodynamics
codes, namely the neutrino-electron scattering, a monopole GR
correction, and rotation. Additionally, we discussed the differ-
ences between the approximate treatments and more detailed
calculations, that is, IDSA+Parametrized deleptonization versus
M1 neutrino transport, and the monopolar GR correction ver-
sus full GR.

The comparison of different neutrino transport methods in
a SN simulation revealed that all our codes are able to repro-
duce a reasonable overall evolution of the early post-bounce
phase in 3D. The strong coupling and feedback between the PNS
compactness, shock dynamics, neutrino luminosities, and mean
energies is in all cases consistent. Despite their different dis-
cretization methods of the Euler equations, including radically
different domain decompositions, parallelization approaches,
and the use of static or nested meshes, AMR or SPH, the devi-
ations of the results are of the order of 10%, and sometimes
20%. This comparison leads us to propose a requirement for
further investigation of the luminosities of antineutrinos in the
IDSA, which tend to be rather high. Furthermore, the leakage
scheme for the heavy neutrinos may not accurately represent
the corresponding energy loss under all conditions of the PNS.
Here, a better scheme would be desirable (e.g., Perego et al.
2014; Takiwaki et al. 2014). The most computationally expen-
sive full GR code still seems to struggle with resolution and per-
formance issues. The whole ensemble of codes however presents
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Table 4. Summary of the details and parallelization methods in each code, an estimation of the CPUh to calculate collapse and post-bounce until
50 ms for models X95-PG (ELEPHANT, FLASH, and SPHYNX) and model G95-MSG (fGR1), and maximal spatial resolution at t = 50 ms.

Code Type Discretization # Fluid elements Parallelization CPUh Max. resolution
(m)

ELEPHANT Eulerian Cartesian mesh 2.1 × 108 MPI+GPU 79 000 1000
FLASH Eulerian AMR 1.9 × 107 MPI+GPU 117 000 488

SPHYNX Lagrangian SPH particles 2 × 105 MPI+OpenMP 13 000 477
fGR1 Eulerian Nested mesh 3.5 × 106 MPI 245 000 458

many virtues if referred to in combination: excellent resolution
of the PNS and angular momentum conservation (SPHYNX),
flexibility and open accessibility for efficient 3D SN simulations
with GPU-acceleration (FLASH), superior shock resolution and
efficient inclusion of magnetic fields (ELEPHANT), fully GR
hydrodynamics and neutrino transport (fGR1). The results pre-
sented here verify the usefulness of these four codes with respect
to their coupling with the neutrino treatment and to the imple-
mentation of gravity as previously discussed.

We also checked the influence of neutrino-electron scat-
tering, which plays a significant role during collapse phase.
Whether we implement the inelastic scattering kernel explic-
itly in the source terms or control the deleptonization process
in a parametrized way, we confirm that the lepton profiles within
the inner core show converged results among all models. Fur-
thermore, the hydrodynamics and neutrino profiles post-bounce
show consistent evolution with deviations of ∼10%, which is
an acceptable level considering that we use totally independent
codes.

The effects of GR are investigated by comparing the
Newtonian and (effective-)GR models. Due to the stronger grav-
itational force, we see more compact PNS cores and shock posi-
tions in GR models. This is consistent with previous studies
(Bruenn et al. 2001; Liebendörfer et al. 2001; Sumiyoshi et al.
2005; Lentz et al. 2012a). From hotter and more compact PNS
cores, the emergent neutrinos show systematically higher neu-
trino energies and luminosities in all flavors, even after taking
into account the effect of gravitational redshift (e.g., comparing
B95-S and B95-SG). Within our simulation times, we do not
see any remarkable difference between full- and effective-GR
models, and therefore we consider the usage of an effective-GR
potential as justified. However, our simulation time is short and
longer simulations are required to see for how far the effective-
GR potential works properly and to determine the time when
those two methods diverge. Furthermore, it would also be inter-
esting to check under which conditions GR acts advantageously
on the shock revival compared to the Newtonian case.

The inclusion of rotation helps the expansion of the shock
in general. Even when using different rotation profiles (ELE-
PHANT vs. FLASH and SPHYNX), the shock position at 50 ms
can be 26−70% further than in models without rotation. We
confirmed the presence of a m = 1 spiral perturbation that
drives matter from the inner core into the gain region, aiding
the explosion. This is partially compensated by a less dense
and cooler PNS, but the net balance between both effects favors
the expansion of the sock. Additionally, we could evaluate the
performance of the different hydrodynamics codes with respect
to the angular momentum transport. With the present (low) res-
olution in this study the angular momentum conservation was
better than 4% .

Additionally, we were able to clearly demonstrate that an
SPH code with a spectral neutrino treatment produces results

comparable to those of Eulerian codes. Interestingly, this opens
the possibility to consider SPH as a competitive, efficient method
to simulate core-collapse SNe with adaptive resolution and open
boundaries. This is particularly useful when one aims to study
the PNS at very high resolution, when angular momentum con-
servation is capital, or when the PNS kick is the focus of
an investigation. We note, that there is remarkable agreement
between the results of SPHYNX and FLASH in many simulated
models. In particular when the effective GR potential is used.
Both codes provide a high spatial resolution at the PNS, which
is important for an accurate compactness of the PNS and thus
the overall evolution of the system.

It should be noticed that there are several multi-dimensional
effects that deserve further investigation, such as turbulence,
standing accretion shock instability, magnetic fields, and grav-
itational wave emission.

Additionally, extending this kind of comparison to other
progenitors and longer timescales is of utmost importance. How-
ever, this kind of simulation is extremely costly in terms of com-
putational resources and as a consequence has been relegated.
We think, though, that the time to perform detailed comparisons
among complex production codes and across many different sim-
ulations is getting closer. It is in this spirit that our work provides
the first outlook on SN code comparisons in 3D.
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