
HAL Id: hal-01267345
https://hal.archives-ouvertes.fr/hal-01267345v3

Submitted on 11 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient acyclic contact planner for multiped robots
Steve Tonneau, Andrea del Prete, Julien Pettré, Chonhyon Park, Dinesh

Manocha, Nicolas Mansard

To cite this version:
Steve Tonneau, Andrea del Prete, Julien Pettré, Chonhyon Park, Dinesh Manocha, et al.. An efficient
acyclic contact planner for multiped robots. IEEE Transactions on Robotics, Institute of Electrical
and Electronics Engineers (IEEE), 2018, 34 (3), pp.586-601. �10.1109/TRO.2018.2819658�. �hal-
01267345v3�

https://hal.archives-ouvertes.fr/hal-01267345v3
https://hal.archives-ouvertes.fr

1

An efficient acyclic contact planner for multiped

robots
Steve Tonneau, Andrea Del Prete, Member, IEEE, Julien Pettré, Member, IEEE, Chonhyon Park, Student

Member, IEEE, Dinesh Manocha, Member, IEEE, and Nicolas Mansard, Member, IEEE,

Abstract—We present a contact planner for complex legged
locomotion tasks: standing up, climbing stairs using a handrail,
crossing rubble and getting out of a car. The need for such a
planner was shown at the Darpa Robotics Challenge, where such
behaviors could not be demonstrated (except for egress).

Current planners suffer from their prohibitive algorithmic
complexity, because they deploy a tree of robot configurations
projected in contact with the environment.

We tackle this issue by introducing a reduction property:
the reachability condition. This condition defines a geometric
approximation of the contact manifold, which is of low dimension,
presents a Cartesian topology, and can be efficiently sampled
and explored. The hard contact planning problem can then be
decomposed into two sub-problems: first, we plan a path for the
root without considering the whole-body configuration, using a
sampling-based algorithm; then, we generate a discrete sequence
of whole-body configurations in static equilibrium along this path,
using a deterministic contact-selection algorithm.

The reduction breaks the algorithm complexity encountered in
previous works, resulting in the first interactive implementation
of a contact planner (open source). While no contact planner has
yet been proposed with theoretical completeness, we empirically
show the interest of our framework: in a few seconds, with high
success rates, we generate complex contact plans for various
scenarios and two robots, HRP-2 and HyQ. These plans are
validated either in dynamic simulations, or on the real HRP-
2 robot.

Index Terms—Multi contact locomotion, centroidal dynamics,
Humanoid robots, legged robots, motion planning

I. INTRODUCTION

LEGGED robots move by sequentially creating contacts

with the environment. After years of research, such robots

can autonomously walk on flat ground, but struggle to navigate

more complex environments. Deciding where to create a

contact with its feet and possibly its hands is nontrivial, e.g.

to climb stairs using a handrail.

Most of the complexity of this problem lies in the contact

planning, i.e. the underlying decomposition of the trajectory

into contact phases where specific points of the robot body

are exerting forces on specific locations of the environment.

Tackling this complexity is the main objective of this paper.

Once the contact plan is known, efficient approaches exist

to generate a dynamically feasible motion [1]. In the specific

(and simple) case of gaited biped locomotion on flat ground,

choosing the effector with which to create a contact is trivial

because walking follows a cyclic pattern (the left foot always

S. Tonneau, A. Del Prete and N. Mansard are with LAAS-CNRS /
Université de Toulouse, France e-mail: (pro@stevetonneau.fr)

J. Pettré is with Inria, Rennes, France
C. Park and D. Manocha are with UNC, Chapel Hill, USA

follows the right foot). Efficient tools such as the capture

point [2] can be used to compute the next contact location.

In the general case planning complex contact interactions is

extremely challenging: At any given time a contact must be

chosen between infinitely many possibilities (often a combina-

torial discrete choice for the effector and contact surface, and

a continuous choice for the contact location). Furthermore, a

contact choice constrains kinematically and dynamically the

possible motions, and there is no analytical way to verify

whether this choice brings the robot one step closer to the

desired goal or to a dead end, especially in the presence of

obstacles; we say that the contact manifold is foliated [3]. The

foliation prevents the use of efficient sampling-based planners

for two reasons. (i) First, each sub-manifold of the foliation

has a zero measure and cannot be directly sampled. A sample

is rather obtained by sampling a free flying configuration and

explicitly projecting it in contact (which is a costly numerical

operation). (ii) Second, the foliated topology turns the explo-

ration by spreading a graph of configurations (probabilistic

road-map, rapidly exploring random trees) into an inefficient

random process, where many useless nodes are sampled on

parallel sub-manifolds. The total algorithmic complexity of

classical contact planners comes from both the number of

graph nodes sampled during exploration (ii) and the cost of

the projection when sampling new configurations (i).

For this reason previous contributions having demonstrated

acyclic contact locomotion on a real robot are too computa-

tionally expensive [4]. As a result at the DARPA Robotics

Challenge, the participants stated that except for egress, the

robots did not use multi contact strategies: they relied on

unsafe bipedal walking to climb stairs, instead of using the

provided handrails to facilitate the motion [5].

Our work aims at breaking the complexity of the acyclic

contact planning problem. To do so we deal sequentially

with the two main issues associated to our problem: the

null measure of the contact manifold, and the combinatorics

of the contact selection problem. First we introduce a low-

dimensional space, called the contact reachable space, that

can be sampled and mapped efficiently to the contact manifold.

Then, given a path computed in the contact reachable space,

we propose a deterministic algorithm to generate a contact

sequence along the path. This decoupling presents pros and

cons discussed in previous related literature, summarized in

the following.

2

P1 P2

a b c

Fig. 1. Overview of our two-stage framework. Given a path request between start and goal positions (left image), P1 is the problem of computing a guide
path in the space of equilibrium feasible root configurations. We achieve this by defining a geometric condition, the reachability condition (abstracted with the
transparent cylinders on the middle image). P2 is then the problem of extending the path into a discrete sequence of contact configurations using an iterative
algorithm (right image).

A. State of the art

Additionally to robotics, acyclic motion planning is also

a problem of interest in neurosciences, biomechanics, and

virtual character animation. Early contributions in the latter

field rely on local adaptation of motion graphs [6], or ad-hoc

construction of locomotion controllers [7]. These approaches

are by definition not able to discover complex behaviors in

unforeseen contexts.

The issue of planning acyclic contacts was first completely

described by Bretl [4]. The issue requires the simultaneous

handling of two sub-problems, P1: planning a guide path for

the root of the robot in SE(3); and P2: planning a discrete

sequence of equilibrium configurations along the path. A third

nontrivial problem, P3, then consists in interpolating a com-

plete motion between two postures of the contact sequence. A

key issue is to avoid combinatorial explosion when considering

at the same time the possible contacts and the potential paths.

Bretl’s seminal paper proposes a first effective algorithm,

able to handle simple situations (such as climbing scenarios),

but not applicable to arbitrary environments. Following it,

several papers have applied this approach in specific situations,

limiting the combinatorial by imposing a fixed set of possible

contacts [8], [9].

Most of the papers that followed the work of Bretl have

explored alternative formulations to handle the combinatorics.

Two main directions have been explored. On the one hand,

local optimization of both the root trajectory P1 and the

contact positions P2 has been used, to trade the combinatorial

aspect of the complete problem for a differential complexity,

at the cost of local convergence [10]. A complete example of

the potential offered by such approaches was proposed by [11]

and successfully applied to a real robot [12]. To get reasonable

computation times, the method uses a simplified dynamic

model for the avatar. Still, the method is far from real-time

(about 1 minute of computation for 20 contacts). A similar

approach has been considered for manipulation by [13]. Deits

and Tedrake proposed to solve contact planning globally as

a mixed-integer problem, but only cyclic, bipedal locomotion

is considered, and equilibrium is not considered [14]. Dai et

al. [15] extended the work of Posa et al. [16] to discover

the contact sequence for landing motions, but need to specify

the contacts manually for complex interactions. In addition to

the limits of the current implementations, optimization-based

approaches only converge locally.

On the other hand, the two problems P1 and P2 might

be decoupled to reduce the complexity. The feasibility and

interest of the decoupling has been shown by Escande et

al. [17] who manually set up a rough root guide path (i.e.

an ad-hoc solution to P1), and then addressed P2 as the

combinatorial computation of a feasible contact sequence in

the neighborhood of the guide. A solution could then be

found, but at the cost of prohibitive computation times (up

to several hours) for constraining scenarios. This approach

is suboptimal because the quality of the motion depends

on the quality of the guide path. Bouyarmane et al. [18]

precisely focused on automatically computing a guide path

with guarantees of equilibrium feasibility, by extending key

frames of the path into whole-body configurations in static

equilibrium. Randomly-sampled configurations are projected

to the contact manifold using an inverse-kinematics solver, a

computationally-expensive process (about 15 minutes to com-

pute a guide path in the examples presented). Moreover this

explicit projection is insufficient to guarantee the feasibility

between two key postures in the path. Chung and Khatib [19]

also proposed a decoupled approach, with a planning phase

based on the reachable workspace of the robot limbs, used

to judge the ability to make contact with a discretized envi-

ronment. This planning phase does not account for collisions,

implying that re-planning is required in case of failure. In

highly-constraining cases such as the car egress scenario we

address, we believe that including collision constraints in the

planning is a requirement [20], [21]. A limitation with these

approaches (including our method) is that the existing planners

only address a subset of the problem, because their ability

to find a solution depends on the existence of quasi-static

equilibrium configurations along a feasible path, which is too

restrictive in the general case. Other contributions to legged

locomotion, not directly related to multi-contact motion, are

worth mentioning, as they rely on a similar decomposition

of the problem. First a discrete sequence of contact sets is

planned (at the so-called footstep planning phase), using a

low-dimensional abstraction of the robot to account for its

kinematic constraints [22], [23]. In [23], a “pose certificate”

is obtained by generating a whole-body configuration for each

set through inverse kinematics, as done in P2. Then a motion is

generated along the sequence through the use of optimization

techniques. The solutions proposed are designed for cyclic

locomotion in quasi-flat scenarios, where the support polygon

is a relevant method for equilibrium checks. They thus cannot

be generalized to multi contact locomotion. However, some

3

contributions on specific parts of the problem could be applied

directly in our case. For instance, learning “terrain costs”,

based on expert knowledge as proposed in [24], could define

good heuristics to compute the next contact location for an

effector. Although we did not try to include such formulation

in this paper, it would be straightforward to integrate such

heuristic in our planner.

As far as robotics applications are concerned, none of

the existing multi-contact planners is interactive1. However,

recent contributions to the interpolation between contact poses

(problem P3) have brought promising preliminary solutions

[25], [26], [27], [1]. In particular, our algorithm proposed in

[1] is interactive. Therefore, a planner capable of efficiently

solving P1 and P2 could outperform all existing planners if

coupled with an interpolation method solving P3. The main

contribution of this paper is exactly this planner.

B. Contributions

Our solution belongs to the class of decoupled approaches,

i.e. we propose specific algorithms to efficiently solve both

P1 and P2 while relying on state-of-the-art solution to P3

to obtain the whole movement. Our main contribution is the

definition of a reduction property, the reachability condition.

Compared to previous approaches, our solution has two

main novelties:

Regarding P1, we propose a fast guide path planning algo-

rithm. The key to its efficiency is that it does not sample

directly the contact manifold, but an approximation of the

contact reachable space. The contact reachable space is a

low-dimensional space for which there exists a mapping to

the contact manifold.

Regarding P2, we propose a fast method to extend a contact

reachable path into a sequence of whole-body configurations

in static equilibrium. This requires the explicit computation of

contact configurations. It is guided by dedicated heuristics that

quickly synthesize feasible configurations.

The reachability condition is the key to the strict separa-

tion between P1 and P2, hence to the low complexity of

our planner. However the reduction can result in failures.

We demonstrate empirically its interest, through an extensive

experimental validation with real robot models on a dynamic

simulator. The high success rate and low computation times

we obtain allow us to plan (and re-plan upon failure) multi-

contact sequences at interactive rates.

To further demonstrate the validity of our approach, we

show that the generated contact plans can be successfully

executed (problem P3), either in simulation or on the real

HRP-2 robot. For HRP-2, we detail the complete computation

times to address sequentially the three problems, and compare

them to related work, demonstrating that our method is orders

of magnitude faster.

Finally, we provide an extensive discussion on the

consequences of our approach in terms of efficiency and

1We define an interactive planner as one for which the time to plan a motion
is in the same order of magnitude as the time to execute it. For instance,
computing one contact change should take about one or two seconds.

completeness regarding the contact planning problem.

Comparison with our previous work: The present paper is

an extension of our ISRR conference paper [20]. As such, our

solution to address P1 and P2 is the same motion planner

as the one presented at ISRR (reformulated in Section IV

and V). However three important novelties have been added to

the planner: the pseudo-code of the algorithm (Section V-B2),

a novel criterion for static equilibrium (Section VI), and the

release of the source code of the planner (Section VII).

The other novelty of the paper is a rigorous experimental

validation of the approach on actual robot models (Sec-

tion VIII). To validate our contact plans we introduced a

complete framework for multi-contact motion synthesis. This

framework additionally comprises an interpolation method

to solve the problem P3, based on a reformulation of our

previous work [1]. Our solution to P3 allows us to verify that

the synthesized motions are physically consistent, using our

implementation of a state-of-the-art simulation algorithm [28].

These aspects of the framework are presented in details in the

paper, but are not novel per se. The novelty lies in the complete

validation of the contact planner with real robot models, for

which the planning is much harder with respect to the avatars

used in [20], because of more restrictive kinematic constraints.

II. OVERVIEW

Figure 1 illustrates our work flow. P1 and P2 are addressed

sequentially: From a given problem (a) we first plan a root

guide path (b), before extending it into a sequence of static

equilibrium configurations (c). In the case where step (c)

fails, our framework invalidates the computed guide path, and

restarts the planning from (b).

A. Computation of a guide path — P1 (Section IV)

We first consider the problem of planning a root guide path

(Figure 1–P1). The dimension of the path is equal to the

number of degrees of freedom (DoFs) of the root of the robot.

Similarly to previous work [18] the path must be equilibrium

feasible: there must exist a joint configuration that results in

static equilibrium for each root configuration2. Previous works

verify equilibrium feasibility by explicitly computing such

a configuration. We preserve the low dimensionality of the

problem by approximating equilibrium feasibility with contact

reachability, illustrated in the following.

An intuitive description of contact reachable configurations

is “close, but not too close” to the environment: close, because

a contact surface must be partially included in the reachable

workspace of the robot to allow contact creation; not too close,

because the robot must avoid collision. More precisely, a root

configuration is contact reachable if the root scaled by a user-

defined factor s ≥ 1 is not in collision (Figure 2 - red shape),

while the reachable workspace is in collision (Figure 2 - green

shapes). To plan a root path, we then use an RRT planner

2Enforcing static equilibrium is a classical, conservative approach to reduce
the search space and considering states with non-zero accelerations and
velocities, which can’t be connected trivially. This does not mean that the
final motion will necessary be quasi-static.

4

Fig. 2. The reachability condition is verified by the right configuration: the
trunk (red) is free of collisions while the limbs reachable workspace (green)
intersect the environment.

where, instead of checking collision to validate a configuration,

we verify the reachability condition.

In the remainder of this paper, we use the terms contact

reachable and equilibrium feasible to qualify either a root or

a whole-body configuration, or a set of such configurations.

B. Generating a discrete sequence of contact configurations

— P2 (Section V)

The second stage extends the guide path into a sequence

of contact configurations (Figure 1–P2). To achieve this the

root path is first decomposed into a sequence of discrete

root configurations, according to a user-defined discretization

step. Each root configuration is then extended into a whole-

body configuration in static equilibrium. The algorithm thus

proceeds iteratively, starting from the whole-body initial con-

figuration of the robot. It takes advantage of the fact that

each root configuration is fixed to generate the contact by

considering each limb individually.

III. NOTATION AND DEFINITIONS

A vector x is denoted with a bold lower-case letter. A matrix

A is denoted with a bold upper-case letter. A set C is denoted

with an upper-case italic letter. Scalar variables and functions

are denoted with lower-case italic letters, such as r or f(x).

A robot is a kinematic tree R composed of: a root R0, and

l limbs Rk, 1 ≤ k ≤ l, attached to the root. The root has

r ≥ 6 DoFs: for instance, HRP-2 has two extra DoFs in the

torso, such that we have r = 8. Thus R is fully described by

a configuration (a vector of joint values) q ∈ R
r+n, with n

the number of joint DoFs. q is decomposed as follows:

• qk is a configuration of the limb Rk;

• qk is a vector of joint values of R not related to Rk. We

define for convenience q = qk ⊕ qk;

• q0 ∈ R
r is the world coordinates vector of R0.

We then define a set of 3d volumes W i, 0 ≤ i ≤ l, each

attached to one joint of the root, such that W i(q0) describes

the world position of W i for the root configuration q0.

W 0 is a volume encompassing R0 (Figure 3), or equal to it3.

W k is the reachable workspace of a limb Rk:

W k =
{
x ∈ R

3 : ∃qk ∈ Ck
j.lim,pk(qk) = x

}
(1)

3W 0 is typically a low-polygonal bounding shape of R0 for performance.

Fig. 3. Reachable workspace and torso bounding box of HyQ. Each green
shape represent a reachable workspace Wk of a limb. The red shape is W 0.

where pk denotes the end-effector position (in the root frame)

of Rk (translation only) for q0 = 0 being the null dis-

placement, and Ck
j.lim is the space of admissible limb joint

configurations. We also define W =
⋃l

k=1 W
k.

The environment O is defined as the union of the obstacles

Oi that it contains. O is represented as a polygon soup (or

mesh), where the normal of each surface is known. No further

requirement is needed by our approach. In this work, we

assume the environment is fully known. State uncertainty is

out of the scope of the paper.

Finally we define some relevant subsets of the configuration

space C. CContact is the set of whole body-configurations in

contact and collision-free. Ck
Contact ⊂ CContact is the set of

whole body-configurations where at least Rk is in contact.

CEquil ⊂ CContact is the set of whole body-configurations

in static equilibrium and collision-free.

For any set CX , we define C0
X :

C0
X =

{

q0, ∃q0 : q0 ⊕ q0 ∈ CX

}

IV. ROOT PATH PLANNING IN THE CONTACT REACHABLE

SPACE

During the root path planning we only consider the root

configuration q0 defined in the previous Section, as well as

the environment O.

Given start and goal configurations, we aim at computing a

guide path q0(t) : [0, 1] −→ R
r verifying:

∀t ∈ [0, 1],q0(t) ∈ C0
Equil

This means that any root configuration must be extended into

a whole-body, static equilibrium configuration. C0
Equil cannot

be described analytically.

The main hypothesis of this work is that for a large

variety of locomotion tasks, we can define a space C0
Reach ≃

C0
Contact, such that

∀t ∈ [0, 1],q0(t) ∈ C0
Reach ⇒ q0(t) ∈ C0

Equil (2)

We call C0
Reach the contact reachable workspace, and detail its

construction in the following. The validity of this hypothesis

is discussed in depth in Section IX.

5

A. Conditions for contact reachability

The contact reachable workspace is defined as a compro-

mise between two necessary and a sufficient condition for

contact creation.

necessary conditions: For a contact to be possible, an ob-

stacle Oi ⊂ O necessarily intersects the reachable workspace

W (q0) of the robot. Also the torso of the robot W 0(q0) must

necessarily be collision-free. Therefore we can define an outer

approximation C0
Nec ⊃ C0

Contact as:

C0
Nec = {q0 : W (q0) ∩O 6= ∅ and W 0(q0) ∩O = ∅} (3)

sufficient condition: Similarly we can define an inner

approximation C0
Suf ⊂ C0

Contact by considering a bounding

volume BSuf encompassing the whole robot in a given pose,

except for the effector surfaces.

C0
Suf = {q0 : W (q0) ∩O 6= ∅ and BSuf(q0) ∩O = ∅} (4)

B. The compromising reachability condition

The ideal shape B∗,W 0 ⊂ B∗ ⊂ BSuf would define

a necessary and sufficient condition for contact creation. It

would guarantee that any root configuration q0 ∈ B∗ would

result in a contact configuration, while any q0 /∈ B∗ could not.

To our knowledge B∗ has no explicit definition. Therefore, we

approximate B∗ to define the contact reachable space C0
Reach.

We define W 0
s as the volume W 0 subject to a scaling

transformation by a factor s ∈ R
+. We then consider the

spaces C0
s

C0
s = {q0 : W (q0) ∩O 6= ∅ and W 0

s (q
0) ∩O = ∅} (5)

The parametrization of s defines a trade-off: If s = 1, then

W 0
s = W 0, such that C0

1 = C0
Nec. By increasing s, the condition

can become sufficient, but less and less necessary. Eq. 5 thus

defines the reachability condition. We fix a value s∗ for s and

define C0
Reach = C0

s∗ . The computation of s∗ is detailed in

Section VIII-C1. In Appendix A, we give a generic method to

compute the W volumes appearing in the definition of C0
Reach.

C. Computing the guide path in C0
reach

C0
Reach can be sampled efficiently thanks to Eq. 5, and can

thus be used with any standard motion planner. Our current

implementation uses the Bi-RRT planner [29] provided by the

HPP software [30]. Our implementation is exactly the same

as the pseudo-code of the original planner (which does not

detail the configuration validation method). With respect to a

“classic” implementation, the only difference is that instead

of validating a configuration using collision detection, we

validate it with the reachability condition.

This Section has presented a guide path planner for the

geometric root of a robot, implemented as a low-dimensional

sampling-based algorithm. Given start and goal configurations,

it outputs a continuous path for the robot’s root.

V. FROM A GUIDE PATH TO A DISCRETE SEQUENCE OF

CONTACT CONFIGURATIONS (P2)

In the second phase, we compute a discrete sequence

of static equilibrium configurations Q0 given a root path

q0(t) : [0, 1] −→ C0
Reach. This contact planner uses a contact

generator, used to generate static equilibrium configurations.

We first describe the contact planning algorithm, before de-

scribing the contact generator.

A. Definition of a contact sequence

In previous contributions [17], a contact plan is defined as

a sequence of quasi-static equilibrium configurations for each

contact phase. For instance, a walk cycle would be described

by three key configurations: a double-support configuration,

a single-support configuration (a contact is broken), and an-

other double-support configuration (a contact is created). Our

definition of contact plan differs: between two consecutive

configurations we allow both a contact break and a contact

creation—if they are on the same effector. In the previous

example, our contact plan would simply consist of the two

double-support configurations. This representation is sufficient

to describe all the contact phases, because the single support

phase is implicitely described. Furthermore it removes the

need to compute a single-support quasi-static configuration

as in the example. Indeed, there might be a case where

no quasi-static solution exists for the single support phase

(because of the environment), but there exists a dynamic

motion connecting the two double support states. Such motion

will be computed by our framework, because the quasi-static

constraint is only required at the contact planning phase; as

shown in the companion video, and explained in Appendix C,

our framework is able to produce dynamic motions.

B. Contact planning algorithm

Starting from an initial whole-body configuration, we com-

pute a sequence of whole-body configurations Q0 along the

root path q0(t). We first give an intuition of the algorithm,

before providing its complete pseudo-code.

1) Algorithm overview: First, the root path q0(t) is dis-

cretized into a sequence of j key configurations:

Q0 = [q0
0;q

0
i ; ...,q

0
j−1]

where q0
0 and q0

j−1 are the start and goal configurations.

j depends on a user-defined variable, called the discretization

step. It corresponds to the ratio between the length of the path

q0(t)4, and the number of configurations selected along it to

create the contact configurations. Each root configuration of

Q0 is then extended into a whole-body configuration such that:

• At most one contact is not maintained (broken) between

two consecutive configurations.

• At most one contact is added between two consecutive

configurations.

• Each configuration is in static equilibrium.

• Each configuration is collision-free.

4The length of the path is computed as the weighted 6D Euclidian distance
travelled along the it, with a weight of 0.7 for the translation part, and 0.3

for the orientation part.

6

1 2 3 4

Fig. 4. Contacts are maintained if joint limits and collisions constraints are
respected (2). They are broken otherwise(3,4). The green line represents the
root path. The blurred character represents the previous contact configuration.

a) Maintaining a contact in the sequence: If kinemati-

cally possible, a limb in contact at step i−1 remains in contact

at step i (Figure 4). Otherwise the contact is broken and a

collision-free configuration is assigned to the limb. If two or

more contacts can’t be maintained between two consecutive

configurations, one or more intermediate configurations are

added, to ensure that at most one contact is broken between

two sequential configurations.

b) Creating contacts: Contacts are created using a FIFO

approach: we try first to create a contact with the limb that

has been contact-free the longest. If the contact creation does

not succeeds, the limb is pushed on top of the queue, and

will only be tried again after the others.

2) Pseudo-code of the Algorithm: First, we define an

abstract structure State, that describes a contact configuration.

The use of queues allows a FIFO approach regarding the order

in which contacts are tested: we try to replace older contacts

first when necessary. Thus the algorithm is deterministic even

though it can handle acyclic motions.

S t r u c t Limb

{
/ / Limb C o n f i g u r a t i o n

C o n f i g u r a t i o n qk ;

/ / E f f e c t o r p o s i t i o n i n

/ / wor ld c o o r d i n a t e s

v e c t o r 6 pk ;

} ;

S t r u c t S t a t e

{
/ / r o o t l o c a t i o n

C o n f i g u r a t i o n q0 ;

/ / L i s t o f l i m b s n o t i n c o n t a c t

queue<Limb> f r e e L i m b s ;

/ / L i s t o f l i m b s i n c o n t a c t

queue<Limb> c o n t a c t L i m b s ;

} ;

From the start configuration, given as an input by the user,

we create the initial state s0. Algorithm 1 is then called with

s0, as well as the discretized path Q0, as input parameters.

At each step, GENFULLBODY is called with the previous

state as a parameter, as well as a new root configuration.

GENFULLBODY returns a new contact configuration, if it

succeeded in computing a configuration with only one contact

Algorithm 1 Discretization of a path

1: function INTERPOLATE(s0,Q0, MAX TRIES)

2: list <State> states = [s0]
3: nb fail = 0
4: i = 1; /*Current index in the list*/

5: while i < length(Q0) do

6: State pState = last element(states)
7: State s = GENFULLBODY(pState,Q0[i])
8: if s! = NULL then

9: nb fail = 0
10: i+ = 1
11: return q0

12: else

13: nb fail+ = 1
14: if nb fail == MAX TRIES then

15: return FAILURE
16: s =INTERMEDIATECONTACTSTATE(pState)

17: push back(states, s)

18: return states

Algorithm 2 Full body contact generation method

1: function GENFULLBODY(pState,q0)

2: State newState
3: newState.q0 = q0

4: newState.freeLimbs = pState.freeLimbs
5: /*First try to maintain previous contacts*/

6: nbContactsBroken = 0
7: for each Limb k in pState.contactLimbs do

8: if !MAINTAINCONTACT(pState,q0, k) then

9: nbContactsBroken+ = 1
10: if nbContactsBroken > 1 then

11: return NULL
12: push(newState.freeLimbs, k)
13: else

14: push(newState.contactLimbs, k)

15: for each Limb k in pState.freeLimbs do

16: if GENERATECONTACT(q0, k) then

17: push(newState.contactLimbs, k)
18: remove(newState.freeLimbs, k)
19: return newState
20: if ISINSTATICEQUILIBRIUM(newState) then

21: return newState
22: else

23: return NULL

switch occurring. Otherwise, the method INTERMEDIATE-

CONTACTSTATE is called. It repositions one end effector

(either a free limb, or the oldest active contact) towards a

new contact position if possible. This repositioning allows to

increase the odds that the contact can be maintained at the next

step. Algorithm 2 gives the pseudo code for GENFULLBODY.

The method MAINTAINCONTACT(pState,q0, k) performs

inverse kinematics to reach the previous contact position for

the Limb. If it succeeds, the new limb configuration is assigned

to k. If it fails, a random collision free configuration is

assigned to k.

7

Algorithm 3 Adds or repositions a contact for one limb

1: function INTERMEDIATECONTACTSTATE(state)

2: i = 0
3: while i < length(states.freeLimbs) do

4: Limb k = pop(states.freeLimbs)
5: if GENERATECONTACT(state.q0, k) then

6: push(newState.contactLimbs, k)
7: return

8: else

9: i+ = 1
10: push(states.freeLimbs, k)

11: i = 0
12: while i < length(states.contactLimbs) do

13: Limb k = pop(states.contactLimbs)
14: Limb copy = k
15: i+ = 1
16: if GENERATECONTACT(state.q0, k) then

17: push(newState.contactLimbs, k)
18: return

19: else

20: push(newState.contactLimbs, copy)
/*Fails if impossible to relocate any effector*/

21: return FAILURE

The method ISINSTATICEQUILIBRIUM returns whether a

given state is in static equilibrium.

The pseudo code for the method INTERMEDIATECONTACT-

STATE is given by Algorithm 3.

GENERATECONTACT(q0, k) is a call to the contact gen-

erator presented in the following Section V-C. It generates

a contact configuration in static equilibrium, and assigns

the corresponding configuration to k. If it fails, k remains

unchanged if it is collision free, otherwise it is assigned a

random collision free configuration.

C. Contact generator

Given a configuration of the root and the list of effectors

that should be in contact, the contact generator computes the

configuration of the limbs such that contacts are properly

satisfied and the robot is in static equilibrium:

qk −→ qk, (qk ⊕ qk) ∈ CEquil and qk ∈ Ck
Contact (6)

In previous works [17], [18], the generation of contact is

typically implemented by randomly sampling configurations

and projecting the whole robot configuration onto the closest

surfaces with an inverse kinematics solver. In case of failure

of the projection, the process would randomly iterate.

We propose two modifications of this general algorithm

principle. First our contact generator handles each limb Rk

independently. By handling each limb separately, we reduce

the complexity of the generation of contact configurations.

This is made possible thanks to the reachability condition

in P1 that produces a root path that we can afford not to

modify in P2, and because we allow both a contact break and

a contact creation between two consecutive configurations of

the contact sequence. Second, we rely on off-line generation

of configuration candidates.

We define Cǫ
Contact ⊃ CContact as the set of configurations

such that the minimum 3D distance between an effector and

an obstacle is less than ǫ ∈ R. We then apply the following

steps:

1) Generate off-line N valid sample limb configurations

qk
i , 0 ≤ i < N (We choose N = 104);

2) Using the end-effector positions p(qk
i) as indices, store

each sample in an octree data structure;

3) At runtime, when contact creation is required, intersect

the octree and the environment5 to retrieve the list of

samples S ⊂ Cǫ
Contact close to contact (Figure 5 (b)

and (c));

4) Use a user-defined heuristic h to sort S;

5) If S is empty, stop (failure). Else select the first con-

figuration of S. Project it onto contact using inverse

kinematics. (Figure 5 (d) and (e));

6) If Eq. 6 is verified, stop (success). Otherwise remove

the element from S and go to step 5.

Because the distance ǫ does not account for the variation

in orientation, several samples of Cǫ
Contact may turn out to

be unfeasible at the time of projection. One could consider

additionally filtering Cǫ
Contact based on the orientation with

respect to the obstacle normal, but in our experience we did

not notice any significant improvement in the computational

performances of the planner, so we do not perform this

additional step.

In all our experiments, the heuristic h is implemented

as a variation of a manipulability-based heuristic [31]. The

manipulability is a real number that quantifies how “good” a

configuration is to perform a given task, based on the analysis

of the Jacobian matrix. With such heuristics, a configuration

can be chosen because it is far from singularities, and thus

allows mobility in all directions. On the contrary, it can be

chosen because it is particularly efficient to exert a force in

a desired direction. In our experiments, the former solution is

usually chosen for computing leg contacts, while the latter is

used for computing hand contacts. We recall the manipulability

measure and its derivatives in Appendix B.

Finally, to verify that a configuration is in static equilibrium,

we use a new robust LP formulation. It replaces the compu-

tationally inefficient double description approach used in our

previous work [20], and presented in the following Section VI.

VI. A CRITERION FOR ROBUST STATIC EQUILIBRIUM

We first give a linear program (LP) that verifies whether a

contact configuration allows for static equilibrium. This LP is

the same that was proposed in [32]. From this formulation

we derive a new LP that quantifies the robustness of the

equilibrium to uncertainties in the contact forces. In turn, from

this value we can either choose the most robust candidate, or

set a threshold on the required robustness.

5this operation is achieved natively by the fcl library https://flexible-
collision-library.github.io/

8

a b c d e

Fig. 5. Generation of a contact configuration for the right leg of HRP-2. (a): Selection of reachable obstacles. (b): Entries of the limb samples database
(with N = 4). (c): With a proximity query between the octree database and the obstacles, configurations too far from obstacles are discarded. (d): The best
candidate according to a user-defined heuristic h is chosen. (e): The final contact is achieved using inverse kinematics.

1) Conditions for static equilibrium: We first define the

variables of the problem, for e contact points, expressed in

world coordinates:

• c ∈ R
3 is the robot center of mass (COM);

• m ∈ R is the robot mass;

• g = [0, 0,−9.81]T is the gravity acceleration;

• µ is the friction coefficient;

• for the i-th contact point 1 ≤ i ≤ e:

– pi is the contact position;

– fi is the force applied at pi;

– ni, γi1, γi2 form a local Cartesian coordinate system

centered at pi. ni is aligned with the contact surface

normal, and the γis are tangent vectors.

According to Coulomb’s law, the non-slipping condition is

verified if all the contact forces lie in the friction cone defined

by the surface. As classically done, we linearize the friction

cone in a conservative fashion with a pyramid included in it,

described by four generating rays of unit length. We choose

for instance:

Vi =
[
ni + µγi1 ni − µγi1 ni + µγi2 ni − µγi2

]T

Any force belonging to the linearized cone can thus be

expressed as a positive combination of its four generating rays.

∀i ∃βi ∈ R
4 : βi ≥ 0 and fi = Viβi,

where βi contains the coefficients of the cone generators. We

can then stack all the constraints to obtain:

∃β ∈ R
4e,β ≥ 0 and f = Vβ, (7)

where V = diag({V1, . . . ,Ve}), and f = (f0, ..., fe).
From the Newton-Euler equations, to be in static equilib-

rium the contact forces have to compensate the gravitational

forces:

[
I3 . . . I3
p̂1 . . . p̂e

]

V

︸ ︷︷ ︸

G

β,=

[
03×3

mĝ

]

︸ ︷︷ ︸

D

c+

[
−mg

0

]

︸ ︷︷ ︸

d

(8)

where x̂ ∈ R
3×3 is the cross-product matrix associated to x.

If there exists a β∗ satisfying (7) and (8), it means that the

configuration is in static equilibrium. The problem can then

be formulated as an LP:

find β ∈ R
4e

subject to Gβ = Dc+ d

β ≥ 0

(9)

2) Formulation of a robust LP: Let b0 ∈ R be a scalar

value. We now define the following LP:

find β ∈ R
4e, b0 ∈ R

minimize − b0

subject to Gβ = Dc+ d

β ≥ b01

(10)

We observe that if b0 is positive then (9) admits a solution,

and b0 is proportional to the minimum distance of the contact

forces to the boundaries of the friction cones. If b0 is negative,

the configuration is not in static equilibrium, and b0 indicates

“how far” from equilibrium the configuration is. We thus use

b0 as a measure of robustness. A simple approach to robustness

consists in choosing a smaller friction coefficient, to constrain

the forces to lie away from the boundaries of the real cone.

However, this would result in a small safety margin for forces

of low magnitude, and an excessively large safety margin for

large forces as the boundaries grow more and more apart.

In comparison, our margin b0 is constant, and provides a

helpful mean to compare the robustness of different contact

configurations.

In our implementation, rather than solving directly (10),

we solve an equivalent problem of smaller dimension that we

get by taking the dual of (10) and eliminating the Lagrange

multipliers associated to the inequality constraints:

find ν ∈ R
6

maximize − (Dc+ d)Tν

subject to GTν ≥ 0

1TGTν = 1

(11)

Indeed, from Slater’s conditions [33], we know that the

optimal values of an LP and its dual are equal. Therefore

the optimal value ν∗ gives the optimal value b∗0 through the

equality b∗0 = (Dc+ d)Tν∗.

VII. SOURCE CODE OF OUR PLANNER

Our planner is implemented using the Humanoid Path

Planner (HPP) software, introduced in [30]. HPP is an open

9

source motion planning framework developed by the Gepetto

team at LAAS-CNRS. HPP implements the standard tools

and algorithms used in motion planning, such as the Bi-RRT

planner from which RB-RRT is derived.

The robot models used in our experiments are described

using the standard urdf file format, compatible with HPP.

Our implementation of the planner is also open

source. Both HPP and our planner can be simply

downloaded and compiled by following the instructions on

https://humanoid-path-planner.github.io/hpp-doc/download.

html?branch=rbprm.

VIII. RESULTS

In this section we present some of the results obtained

with our planner. The complete sequences are shown in the

companion video. Specifically, we demonstrate the planner for

two legged robots, in a large variety of environments: the

humanoid HRP-2 and the quadruped HyQ.

Our contact plans are then interpolated with a dedicated

solution to the interpolation problem P3. This allows us to

validate the obtained motions in a dynamic simulator. This

validation is an important contribution as it increases the

confidence that the contact plans we compute can effectively

result in feasible motions on the real robot. One motion is

demonstrated on the real HRP-2 robot.

At the end of this section, we discuss the role of the

parameters of our framework. We then provide the interactive

computation times obtained in each case. We also compare the

times obtained with HRP-2 with respect to previous works.

A. Experimental validation of the contact plans

To generate continuous movements from our contact plans

we used either the framework proposed in [1], or our own

implementation of a P3 solver (Appendix C). The resulting

movements have been validated either on the real HRP-2

robot (details can be found in [1]), or with our dynamic

simulator, based on a state-of-the-art algorithm [28]. In the

simulations we controlled the robot with a standard inverse-

dynamics controller [34]. The code source of the simulator is

available at https://github.com/andreadelprete/pinocchio inv

dyn/releases/tag/rbprm. This controller tries to follow the given

whole-body trajectories, giving higher priority to the center-

of-mass and end-effectors tracking with respect to the joint

tracking. The controller also makes sure that the resulting

contact forces lie inside the specified friction cones (we used a

friction coefficient of 0.3), and that the joint position, velocity

and torque limits are satisfied. The companion video shows

the obtained motions.

B. Description of the scenarios

In all the scenarios considered, the formulation of the

problem is always the same: a start and goal root config-

uration are provided as input (except in the stair climbing

scenario where the start whole body configuration is given).

The framework computes the initial contact configuration, and

outputs a sequence of contact configurations connecting it to

Fig. 6. HRP-2 in the standing scenario.

Fig. 7. Selected frames from the car egress scenario.

the goal. In each scenario we detail the contacts involved and

the heuristics chosen (either hEFORT, hvel or hw, all of which

are defined in the Appendix B).

1) HRP-2 – Standing up (Figure 6): From a bent configu-

ration, the robot has to stand up using a wall as support, and

climbing a 25-cm high step.

Contacts involved: All (both feet and hands).

Heuristics: hw for the feet, hEFORT for the hands.

2) HRP-2 – Car egress (Figure 7): In this scenario inspired

from the DRC car egress HRP-2 has to step out of a car.

Contacts involved: All (both feet and hands).

Heuristics: hw.

3) HRP-2 – Staircase with high steps (Figure 8): The goal

is to climb three 15-cm high steps.

Contacts involved: Feet and right arm.

Heuristics: The manipulability hw is chosen for the feet;

hEFORT is chosen for the right arm.

4) HyQ – DRC-style rubble (Figure 9): The quadruped

robot must cross a rubble composed of bricks rotated at

different angles and directions.

Contacts involved: All (the 4 legs).

Heuristics: hw for all legs. The robustness threshold b0 is set

to 20.

https://humanoid-path-planner.github.io/hpp-doc/download.html?branch=rbprm
https://humanoid-path-planner.github.io/hpp-doc/download.html?branch=rbprm
https://github.com/andreadelprete/pinocchio_inv_dyn/releases/tag/rbprm
https://github.com/andreadelprete/pinocchio_inv_dyn/releases/tag/rbprm

10

Fig. 8. HRP-2 in the stair climbing scenario.

Fig. 9. Robust crossing of rubbles by HyQ.

Fig. 10. HyQ crossing a narrow bridge.

5) HyQ – Obstacle race (Figure 10 and 11): In this long

scene, HyQ has to cross a 55-cm large hole, followed by a

narrow “bridge”, only 25-cm large.

Contacts involved: All (the 4 legs).

Heuristics: hw for all legs. The robustness threshold b0 is set

to 10.

6) HRP-2 – Path re-planning (Figure 12): In this long

scene, HRP-2 plans a path through several obstacles. The

scene is edited during the execution of the motion: a stair

is added, some stepping stones are removed, and part of the

final staircase is deleted. All these modifications require re-

planning.

Contacts involved: Feet and the right arm.

Heuristics: hw for all legs. hEFORT for the right arm. The

robustness threshold is set to 2.

Fig. 11. Crossing a hole contact sequence for HyQ.

Fig. 12. HRP-2 in the re-planning scenario. After the red step stones are
removed, a new sequence of contacts is re-planned. Hand contacts are not
presented here for readability.

11

Value of s Sensitivity Specificity

1 76% 100 %
1.1 88% 96%
1.15 93% 94%
1.2 97% 92.5%
1.25 98% 91.7%
1.5 99% 90.5%

TABLE I
SENSITIVITY AND SPECIFICITY VALUES OF THE REACHABILITY

CONDITION, DEPENDING ON THE SCALING VALUE s OF W 0 .

C. Role of the main parameters

We discuss the factors that influence the outcome of our

planner: the root scaling factor s (Section IV-B), the heuristics

for contact generation (Appendix B), and lastly, the discretiza-

tion step for the guide path. The appropriate value for these

parameters is computed empirically based on use-case analysis

or trials and errors.

1) Choosing the scaling factor s: For several values of

s, we generated 10000 configurations. We then computed

the sensitivity and specificity of the reachability condition.

In this context, the sensitivity refers to the percentage of

configurations in C0
Reach, effectively belonging to C0

Contact.

If a sampled configuration is in C0
Reach, but our method is

unable to generate a contact configuration from it, as a result

the sensitivity decreases. The sensitivity thus illustrates the

confidence we have that any configuration in C0
Reach will

effectively lead to a contact configuration. Conversely, the

specificity refers to the percentage of configurations not in

C0
Reach, effectively not belonging to C0

Contact. If a sampled

configuration is not in C0
Reach, but our method is able to

generate a contact configuration from it, as a result the speci-

ficity decreases. The specificity thus illustrates the confidence

we have that all configurations that allow contact creation

belong to C0
Reach (or informally, the confidence that we are

not missing valid solutions). We thus look for a compromise

between sensitivity and specificity.

The obtained results for HRP-2 are shown in Table I,

averaged over all scenes (except for the car egress: in this

scenario, statistical tests are not really conclusive since we

are only interested in a small area of the environment).

As it can be expected, the scaling results in a high increase

of the sensitivity, with a decrease of the specificity. For HRP-2

we decided to set s∗ = 1.2.

2) Choosing the heuristics: In our conference paper [20],

the computed motions were generated using the EFORT

heuristic. EFORT is designed for tasks requiring large magni-

tude contact forces (such as pushing / pulling / climbing). In

locomotion tasks, such as the stair scenario, one issue with

EFORT is that it tends to generate configurations close to

singularities (and joint limits). While this did not significantly

impact the generation of the plan, the resulting interpolation

turned out to be harder. For this reason, we prefer to use our

manipulability-based heuristic for the legs of the robot, but we

still use EFORT for the arms, which results in fewer contact

repositionings.

3) Discretization of the guide path: The discretization step

is a user-defined, fixed parameter. The step has an influence

Path planning success rate

Stairs 100%
Standing 68%
Car 77%
Rubble 97%
Race 88.0%

TABLE II
PERCENTAGE OF SUCCESSFUL COMPLETE CONTACT PLANNING RATES FOR

EACH SCENARIO, ROUNDED TO THE FIRST DECIMAL.

Equilibrium
success rate

Kinematic
failure

Equilibrium
failure

High stairs 99.5% 0.1% 0.4%

Standing up 87.8% 6.1% 6.1%

Car egress 66.2% 15.9% 17.9%

Rubble 97.54% 0.16% 2.3%

Obstacle race 92.4% 0.15% 7.45%
TABLE III

SUCCESS RATES OBTAINED FOR THE GENERATION OF STATIC

EQUILIBRIUM CONTACT CONFIGURATIONS FOR EACH SCENARIO,
ROUNDED TO THE FIRST DECIMAL. COLUMN 1 INDICATES INDICATES THE

RATE OF CONTACT GENERATION THAT SUCCEEDED. IN THE CASES WHERE

THE GENERATION FAILS, IT CAN BE EITHER A KINEMATIC ISSUE (COLUMN

2), OR BECAUSE NO CONTACT CONFIGURATION LED TO A STATIC

EQUILIBRIUM CONFIGURATION (COLUMN 3). NOTE THAT A FAILURE IN

THE CONTACT GENERATION IS NOT EQUIVALENT TO A FAILURE OF THE

CONTACT PLANNING ALGORITHM.

on the output of the planner: if too large steps are taken, the

planner may fail since we impose the constraint that only one

contact change might occur between two consecutive steps. On

the other hand, a small step will not impact the success rate

of the planner, but may generate unnecessary states. In most

scenarios the torso of HRP-2 moves about 15 cm between two

postures, but only 3 cm for the car egress scenario to handle

the geometry of the car. For future work, we would like to

automatically adapt the size of the discretization step to the

complexity of the environment.

D. Performance analysis

To analyze performance, we ran the planner 1000 times for

each scenario. We measured the computation time spent in

each part of the algorithm, and analyzed success rate.

1) Success rates (Table II): Despite the complexity of the

scenarios and the approximations made in our formulation, our

planner succeeded in the large majority of cases.

Table III presents the rate of successful contact generation.

Note that a failure in contact generation for a root configura-

tion is not equivalent to a failure in the contact plan. It simply

means that another limb was tested for contact generation for

the same root configuration. As expected, a more constrained

scenario such as the car egress provides less satisfying results,

despite the high success rate of the planner.

2) Computation times (Table IV): For HRP-2, most of the

time was spent performing inverse kinematics. This is not

surprising considering the number of calls to the methods: IK

projection is used intensively to maintain contact continuity

between two postures; it is also applied every time a new

candidate needs to be evaluated. In particular for the car

egress scenario, the kinematic constraints are very demanding

to avoid collisions.

12

Scenario
(nb steps)

Complete guide
generation (ms)

Static equilibrium
(ms)

Collision (ms)
Inverse Kinematics

(ms)
Total generation time

(ms)

Time
per
step
(ms)

Stairs (18) 5 – 6 – 18 13 – 32 – 329 1 – 4 – 38 26 – 127 – 1345 92 – 261 – 2174 15

Standing
(24)

65 – 1086 –
5227

27 – 144 – 338 2 – 12 – 37 144 – 1046 – 2374 371 – 2257 – 7671 94

Car (86)
320 – 6971 –

44002
409 – 1766 –

14752
297 – 1187 – 8483

3154 – 15323 –
165541

5834 – 31391 – 281000 365

Rubble
(82)

37 – 573 – 1685 583 – 2714 – 9459 491 – 1971 – 6273 269 – 706 – 3118 1811 – 7195 – 23241 86

Race (134) 14 – 51 – 125
455 – 1359 –

21045
397 – 923 – 9924 228 – 471 – 5415 1436 – 3343 – 41446 25

TABLE IV
MINIMUM, AVERAGE AND WORST TIME (IN MS) SPENT IN THE GENERATION PROCESS FOR EACH SCENARIO AND EACH CRITICAL PART OF THE

GENERATION PROCESS (NOT ALL PARTS ARE TIMED, THUS THE AVERAGE TOTAL COMPUTATION TIME IS HIGHER THAN THE SUM OF EACH PART). THE

LAST COLUMN INDICATES THE AVERAGE TIME NECESSARY TO COMPUTE ONE CONTACT TRANSITION. THE COLLISION COLUMN TIMES INCLUDES THE

(NEGLIGEABLE) OCTREE INTERSECTION OPERATION NECESSARY TO RETRIEVE THE CANDIDATE SAMPLES.

Scenario Method Computation time

Stair 20 cm
Hauser [8] 5.42 min

Mordatch et al.[11] 2 to 10 min
Ours + [1] < 2s

Stair 30 cm
Hauser [8] 4.08 min

Mordatch et al.[11] 2 to 10 min
Ours < 2s

Stair 40 cm
Hauser [8] 10.08 min

Mordatch et al.[11] 2 to 10 min
Ours < 5s

Table (car) egress
Bouyarmane et al. [18], [17] 3.5 hours

Ours < 60 s
TABLE V

COMPARISON BETWEEN THE COMPUTATION TIMES OBTAINED BY OUR

METHOD AND PREVIOUS ONES FOR ADDRESSING THE WHOLE PROBLEM.

On the other hand for HyQ most of the time is spent testing

the static equilibrium of the candidate configurations.

In all scenarios, one can observe that the average compu-

tation time for one single step is largely below one second,

thus enabling interactive applications and online autonomous

planning of the robot motion.

Conclusion: These results confirm that our approach pro-

vides a satisfying compromise between completeness and

efficiency, thus enabling online planning while controlling the

robot. Indeed, when the contact planning fails, it fails rapidly.

This allows us to rapidly re-plan with a reasonable chance

of success. The most efficient (and immediate) approach to

obtain a valid contact plan as fast as possible would be to

launch in parallel several instances of the planner (our current

implementation is single-threaded) and to use any successful

result as a plan for solver P3.

E. Comparison with previous work

We did our best to provide a fair comparison of the

computation complexity of our method with the state of the

art. However existing benchmarks for motion planning algo-

rithms [35] do not yet encompass contact planning. Moreover,

the source code of the previous methods of the state of the

art is often not available. Providing a fair comparison with

the algorithms performing on the same computer and on the

same scenarios is yet out of reach. A step in this direction is

the open-source release of our source code (see Section VII)

that allows any reader to reproduce our results. Furthermore,

P3 remains challenging in the presence of obstacles. The only

valid scenarios addressed completely in previous works are

thus the stair-climbing scenarios of different heights proposed

by Hauser in [8], and the table-egress scenario by Escande

et al. in [17], which we consider to be of similar complexity

with respect to the car-egress scenario (we did not consider

the stairs in the scene). Both scenarios are tested with HRP-2.

Table V presents the computation times for these scenarios,

clearly demonstrating that our approach is order of magnitude

faster than previous works.

IX. DISCUSSION: VALIDITY AND PURPOSE OF OUR

CONTACT PLANNER

As demonstrated in the results section, the main purpose

of our method is the reduction of the algorithmic complexity

of the problem, which leads to an interactive application.

This property is critical for online applications with the robot

and was not proposed by any of the previous contributions.

Our method addresses highly constrained environments while

improving the search time by orders of magnitude. This high

performance is reached at the cost of some approximations

that we discuss here.

The first approximation is the verification of contact reach-

ability (q0 ∈ C0
Contact). Our reachability condition (q0 ∈

C0
Reach) is computationally efficient and provides an accurate

approximation of C0
Contact (Section IV-B). This is demon-

strated by the second column of Table III, and illustrated

by Figure 13. Indeed, in the large majority of cases, (84%

in the worst car egress case), we are able to find a contact

configuration for any configuration in C0
Reach.

Another source of computational cost identified in previous

works is the verification of equilibrium feasibility. The main

assumption of our work is that for the class of problems we

consider contact reachability implies equilibrium feasibility.

Our scenarios show that the assumption is verified in the

majority of cases when at least one contact surface is quasi

flat [32], that is when the friction cone of the contact surface

contains the direction opposite to the gravity. Figure 13

illustrates this observation, demonstrated empirically by the

third column of Table III. In the worst case, in our experiment

13

C0
Equil ⊂ C0

Contact ≈ C0
Reach

Fig. 13. Illustration of several root configurations sets used in this paper
in a 2D scene. Obstacles are violet, and units are in meters. To show the
sets in a 2D representation, all the rotational joints of HRP-2 are locked in
the shown configuration, such that a torso configuration is only described
by two positional parameters (x and y). The root of the robot is indicated
with a black cross. To compute the reachable workspace, the point on the
ankle indicated by a green cross was used. C0

Equil
is included in C0

Contact
.

C0

Reach
approximates C0

Contact
. Depending on a parametrization, we can

obtain C0

Contact
⊂ C0

Reach
. Considering the configurations around the top

obstacle, we can observe a similarity between C0

Equil
and C0

Contact
when

the reachable workspace of the legs includes quasi-flat surfaces.

the assumption was verified for 82% of the total amount

of trials that verified contact reachability. In the example

of [18], the verification of equilibrium feasibility implies a

constructive demonstration by exhibiting a valid q0, requiring

several minutes of planning. Our method, in comparison, takes

from a few milliseconds to several seconds.

These results clearly justify our pragmatic approach.

X. CONCLUSION

In this paper we consider the multi-contact planning prob-

lem, formulated as three sub-problems P1, P2, P3, addressed

sequentially. While we propose a global framework that han-

dles all these problems, our contribution focuses on P1 and

P2. The first problem P1 consists in computing an equilibrium

feasible guide path for the root of the robot; the second

problem P2 is the computation of a discrete sequence of

whole-body configurations along the root path. We believe that

this decomposition is currently the most promising approach

towards a global resolution of the problem. We also claim to

have achieved a significant step towards this objective thanks

to the dimensionality reduction provided by the reachability

condition. With our results and the release of our source code,

we hope to inspire further research in this direction.

Our contribution to P1 is the introduction of a low-

dimensional space C0
reach, an approximation of the space

of equilibrium feasible root configurations. C0
reach can be

efficiently sampled and has a low-dimension. For these reasons

we are able to solve P1 much faster than previous approaches.

Our contribution to P2 is a fast contact generation scheme

that can optimize user-defined criteria.

Our results demonstrate that our method allows a pragmatic

compromise between three criteria that are hard to reconcile:

generality, performance, and quality of the solution, making

it the first acyclic contact planner compatible with interactive

applications.

Regarding generality, the reachability condition, coupled

with an approach based on limb decomposition, allows the

method to address automatically arbitrary legged robots. Re-

garding performance, our framework is efficient in address-

ing both P1 and P2. This results in interactive computation

times. Regarding the quality of the paths, we are able

to compute equilibrium feasible paths in all the presented

scenarios, with high success rates. As for [18], failures can

still occur, due to the approximate condition used to compute

the guide path. The low computational burden of our frame-

work however allows for fast re-planning in case of failure.

Furthermore, because of this approximation, the guide search

is not complete. The choice is deliberate, because we believe

that it is necessary to trade completeness for efficiency at all

stages of the planner. However, one direction for future work is

to focus on a more accurate formulation of C0
reach to improve

the approximation.

Our method applies to any scenario where at least one

contact friction cone contains the direction opposed to the

gravity (i.e. quasi-flat). This class of scenarios include all

the problems proposed at the DARPA Robotics Challenge.

One way to further extend its range of application, which

we consider for future work, is to include the equilibrium

criterion when solving P1. Considering the set of obstacles

intersecting with the reachable workspace for a given root

configuration as candidate surfaces, we can use them to verify

the equilibrium criterion. This would give us a necessary

condition for equilibrium feasibility.

While we have exhibited complete multi-contact locomotion

obtained with our contact planner, our main concern for future

work is to address the interpolation between contact sequences

(P3), which remains an open issue in highly-constrained sce-

narios. Solving P3 requires addressing efficiently the collision

avoidance problem in the interpolation phase, an issue not

addressed by existing frameworks. We aim at providing our

plans with transition certificates, that would define constraints

on P3, under which the transition between two contact con-

figurations is feasible and collision-free. Finally, we aim at

performing kinodynamic planning to remove the constraint

that configurations be in static equilibrium. We believe that

the most promising direction in this regard is to integrate the

notion of Admissible Velocity Propagation [36]. Addressing

these two issues is essential to bridge the gap between the

planning and control aspects of legged locomotion.

APPENDIX A

GENERATING THE W VOLUMES FOR HRP-2

We detail our method to generate the volumes W used

in RB-RRT, with the example of HRP-2. The kinematic tree

is split into four limbs Rk. The arms are connected to the

14

Fig. 14. The W volumes computed for HRP-2. The red shapes are W 0. The
green shapes represent the Wk .

Fig. 15. Different approximations of the range of motion of the right arm of
HRP-2. Left: non convex-hull, computed with the powercrust algorithm [37].
Middle: convex hull of the reachable workspace. Right: Simplified hull used
in our experiments.

shoulders, and the legs to the root. The obtained volumes W
are shown in Figure 14.

A. Step 1: computing the reachable workspace W k of a limb

To generate a volume W k, we proceed as follows:

1) Generate randomly N valid limb configurations for Rk,

for N really large (say 100000);

2) For each configuration, store the 3D position of the end

effector joint relatively to the root of Rk; then compute

the convex hull of the resulting point cloud;

3) The resulting polytope can contain a very large number

of faces. A last step is thus to simplify it with the blender

decimate tool (http://wiki.blender.org/index.php/Doc:2.

4/Manual/Modifiers/Generate/Decimate). This tool re-

moves a user-defined amount of vertices (and faces) of

the polytope, thus resulting in a convervative approxi-

mation of the original shape. For HRP-2 we apply the

operator with a ratio of 0.06, resulting in a polytope of

38 faces for the arms and the legs.

Figure 15 illustrate the obtained W k for HRP-2. Regarding

the procedure, we can see that step 2 is conservative (Fig-

ure 15–right), which is acceptable, especially because the lost

set essentially relates to configurations close to singularity

(they are close to the boundaries of the reachable workspace,

Velocity ellipsoid Force ellipsoid (scale 0.5)

Fig. 16. Examples of velocity and force ellipsoids for a manipulator composed
of 2 DoFs and 2 segments. Only the horizontal and vertical speeds are shown
(not the rotation speeds).

and often not contact reachable, as illustrated in Figure 13,

where the exterior boundaries of the reachable workspace

appear red, thus not belonging to C0
Contact). We choose again

to be less complete but more efficient, regarding the number

of collision tests to be performed by RB-RRT. In step 1 on

the other hand, selecting the convex hull (Figure 15–middle)

instead of a minimum encompassing shape (Figure 15–left)

may introduce false positives. Concretely, because the false

positive set intersects with W 0, the scaling volume of the

robot torso, the induced error is compensated, as verified by

the results shown by Table III.

B. Step 2: computing the torso scaling workspace W 0 of the

robot

To define the volume W 0 of HRP-2, we proceed in an

empirical manner. First, we compute the bounding boxes of

the robot torso, head, and upper legs (Figure 14 – red shapes).

Then, we perform a scaling of these boxes by a factor s.

The higher s is, the more likely sampled configurations are

to be feasible, but the less complete is the approach. To

compute the appropriate value of s, we proceed as described

in Section VIII-C1, and choose empirically s∗ = 1.2 as the

appropriate value for HRP-2.

APPENDIX B

MANIPULABILITY-BASED HEURISTICS FOR CONTACT

SELECTION

This Section proposes two heuristics to select a contact

that optimizes desired capabilities. For instance, one can be

interested in configurations that allow to efficiently exert a

force in the global direction of motion, or to stay away from

singular configurations. We derive these heuristics from the

work by [31], recalled here.

1) The force and velocity ellipsoids: We consider: a limb

configuration qk; its end effector position pk; its Jacobian

matrix Jk(qk); a force f exerted by the end effector. For clarity

in the rest of the section we omit the k indices and write

Jk(qk) as J. Yoshikawa [31] defines the velocity(12) and

force (13) ellipsoids:

ṗT (JJT)−1ṗ ≤ 1 (12)

fT (JJT)f ≤ 1 (13)

http://wiki.blender.org/index.php/Doc:2.4/Manual/Modifiers/Generate/Decimate
http://wiki.blender.org/index.php/Doc:2.4/Manual/Modifiers/Generate/Decimate

15

They describe the set of end-effector velocities (respectively

forces) that can be reached under the constraint ||q̇||2 ≤ 1 for

the current configuration. The longer the axis of the ellipsoid

is, the more important the velocity (resp. force) of the end-

effector the direction of the axis can be (Figure 16).

2) Manipulability-based heuristics: From these definitions,

we can derive two useful heuristics, that all account for the

environment and the task being performed. The first one,

EFORT, was introduced by [38]; the second one derives the

manipulability measure proposed by Yoshikawa [31].

With EFORT, we define the efficiency of a configuration as

the ability of a limb to exert a force in a given direction. We

thus consider the force ellipsoid as a basis for our heuristic.

In a given direction ρ, the length of the ellipsoid is given by

the force-transmission ratio [39]:

fT(q, ρ) = [ρT (JJT)ρ]−
1

2

In our problem, to compare candidate configurations, we

include the quality of the contact surface, and choose ρ as the

direction opposite to the local motion (given by the difference

between two consecutive root positions):

hEFORT(q, ρ) = [ρT (JJT)ρ]−
1

2 (µnT
ρ) (14)

where µ and n are respectively the friction coefficient and the

normal vector of the contact surface.

hEFORT will favor contacts that allow large efforts. EFORT
in particular is useful for tasks such as standing up, pushing /

pulling. In other less demanding cases, manipulability can also

be considered to avoid singularities. To do so, we can consider

the manipulability measure hw, also given by Yoshikawa [31]:

hw(q) =
√

det(JJT) (15)

hw measures the “distance” of a given configuration to sin-

gularity. When hw is equal to 0, the configuration is singular;

the greater hw is, the further away the configuration is from

singularity.

APPENDIX C

ADDRESSING P3

The stair climbing and the standing up scenarios were

validated with the trajectory optimization scheme provided in

[1]. To address the other scenarios, we propose a new imple-

mentation, entirely open source (https://github.com/stonneau/

python sandbox/releases/tag/tro paper), which can be inte-

grated directly in our motion planner software. This for-

mulation uses the center of mass acceleration and angular

momentum as input variables, while previously the contact

forces were used. The center-of-mass trajectory resulting from

the optimization is then turned into a collision-free whole-body

trajectory.

We rewrite Eq. 8 in the general case:

Gβ =

[
m(c̈− g)

mc× (c̈− g) + L̇

]

︸ ︷︷ ︸

w

(16)

where L̇ is the angular momentum expressed at the com.

Eq. 16 defines a 6-dimensional cone K [40], [41]. For a

given set of contacts, this cone determines all the admissible

wrenches w that can be generated by contact forces inside

their friction cones. The face form of K can be computed using

the double description method [42], resulting in the following

linear inequalities:

K = {w,Aw ≤ b} (17)

The objective is then to plan a trajectory for the center of

mass such that the generated w always verifies Eq. 17. We

now consider two contact configurations q0 and q1 computed

by our planner: in the general case one contact is broken and

one created to get from q0 to q1. We manually define the

duration of each of the three contact phases. In each phase

s the centroidal wrench w is constrained to lie inside a cone

Ku, u = 0 . . . 2. We call the total duration of the motion T ,

and formulate the following optimization problem:

minimize
c̈(t),L̇(t)

2∑

u=0

∫ tu+∆tu

tu

ℓ(c̈(t), L̇(t))dt

subject to Auw(t) ≤ bu, ∀t ∈ [tu, tu +∆tu[, ∀u

Yuc(t) ≤ yu, ∀t ∈ [tu, tu +∆tu[, ∀u

c(0) = cq0

c(T) = cq1

c(0) = ċ(0) = c̈(0) = 0

c(T) = ċ(T) = c̈(T) = 0

(18)

The cost function ℓ is a weighted sum of the angular mo-

mentum and center-of-mass acceleration variation over the

whole trajectory. The center-of-mass positions and velocities

c(t), ċ(t) are internal variables, obtained through the double

integration of c̈(t). Then w(t) is obtained directly from these

variables. cq0
and cq1

are the center-of-mass positions for

configurations q0 and q1 respectively. Yu and yu denote

stacked kinematic constraints on the center of mass position,

determined by the active contact locations. The inequalities

for each contact are determined in the same way that the

reachable workspace is computed in Appendix A, with the

effector serving as root.

This formulation can trivially be extended over the whole

contact sequence. In our implementation, the problem is

discretized using time steps of 100 ms.

The output of this optimization problem is an admissible

center-of-mass trajectory. To compute the whole body motion,

we use a two-step approach.

First, we plan a kinematic motion for the robot, subject to

the contact constraints. We also constrain the center of mass

to follow the computed trajectory. This is achieved using a

constraint-based RRT planner [30]. As a result we obtain a

collision-free whole-body motion.

The entire resolution takes approximatively 1.5 seconds for

a complete contact transition.

https://github.com/stonneau/python_sandbox/releases/tag/tro_paper
https://github.com/stonneau/python_sandbox/releases/tag/tro_paper

16

ACKNOWLEDGEMENTS

This research is supported by Euroc (project under FP7

Grant Agreement 608849); Entracte (ANR grant agreement

13-CORD-002-01); the ARO Contract W911NF-14-1-0437;

and the NSF award 1305286.

REFERENCES

[1] J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard,
“A versatile and efficient pattern generator for generalized legged
locomotion,” in Proc. of IEEE Int. Conf. on Robot. and Auto (ICRA),
Stockholm, Sweden, 2016.

[2] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture Point: A Step
toward Humanoid Push Recovery,” 2006 6th IEEE-RAS International

Conference on Humanoid Robots, 2006.

[3] T. Siméon, J. Laumond, J. Cortes, and A. Sahbani, “Manipulation plan-
ning with probabilistic roadmaps,” The Int. Journal of Robot. Research

(IJRR), vol. 23, no. 7-8, pp. 729–746, 2004.

[4] T. Bretl, “Motion planning of multi-limbed robots subject to equilibrium
constraints: The free-climbing robot problem,” The Int. Journal of Robot.

Research (IJRR), vol. 25, no. 4, pp. 317–342, Apr. 2006.

[5] C. G. Atkeson, B. P. W. Babu, N. Banerjee, D. Berenson, C. P. Bove,
X. Cui, M. DeDonato, R. Du, S. Feng, P. Franklin, M. Gennert, J. P.
Graft, P. He, A. Jaeger, K. K. J. Kim, L. Li, X. L. C. Liu, T. Padir,
F. Polido, G. G. Tighe, and X. Xinjilefu, “What happened at the darpa
robotics challenge, and why?” Carnegie Mellon University, Pittsburgh,
USA, Tech. Rep., 2015.

[6] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” in ACM Trans.

Graph., vol. 21, 2002, pp. 473–482.

[7] J. Pettré, J.-P. Laumond, and T. Siméon, “A 2-stages locomotion planner
for digital actors,” in Proc. of the 2003 ACM SIGGRAPH/Eurographics

symp. on Comp. animation, Granada, Spain, 2003, pp. 258–264.

[8] K. Hauser, T. Bretl, K. Harada, and J.-C. Latombe, “Using motion
primitives in probabilistic sample-based planning for humanoid robots.”
in WAFR, ser. Springer Tracts in Advanced Robot., S. Akella, N. M.
Amato, W. H. Huang, and B. Mishra, Eds., vol. 47. Springer, 2006.

[9] M. Stilman, “Global Manipulation Planning in Robot Joint Space With
Task Constraints,” IEEE Trans. on Robot., vol. 26, no. 3, Jun. 2010.

[10] K. Yunt and C. Glocker, “Trajectory optimization of mechanical hybrid
systems using sumt,” in 9th IEEE International Workshop on Advanced

Motion Control, 2006., 2006, pp. 665–671.

[11] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex be-
haviors through contact-invariant optimization,” ACM Trans. on Graph.,
vol. 31, no. 4, pp. 43:1–43:8, 2012.

[12] I. Mordatch, K. Lowrey, and E. Todorov, “Ensemble-CIO: Full-Body
Dynamic Motion Planning that Transfers to Physical Humanoids,” in
Proc. of IEEE Int. Conf. on Robot. and Auto (ICRA), Seattle, USA,
2015.

[13] M. Gabiccini, A. Artoni, G. Pannocchia, and J. Gillis, “A computational
framework for environment-aware robotic manipulation planning,” in
Int. Symp. Robotics Research (ISRR), Sestri Levante, Italy, 2015.

[14] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in Humanoid Robots (Humanoids),

14th IEEE-RAS Int. Conf. on, Madrid, Spain, 2014.

[15] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in Humanoid Robots

(Humanoids), 14th IEEE-RAS Int. Conf. on, Madrid, Spain, 2014, pp.
295–302.

[16] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” The Int. Journal of Robot.

Research (IJRR), vol. 33, no. 1, pp. 69–81, Jan. 2014.

[17] A. Escande, A. Kheddar, S. Miossec, and S. Garsault, “Planning Support
Contact-Points for Acyclic Motions and Experiments on HRP-2,” in
ISER, ser. Springer Tracts in Advanced Robot., O. Khatib, V. Kumar,
and G. J. Pappas, Eds., vol. 54. Springer, 2008, pp. 293–302.

[18] K. Bouyarmane, A. Escande, F. Lamiraux, and A. Kheddar, “Potential
field guide for humanoid multicontacts acyclic motion planning,” in
Proc. of IEEE Int. Conf. on Robot. and Auto (ICRA), Kobe, Japan, 2009,
pp. 1165 – 1170.

[19] S.-Y. Chung and O. Khatib, “Contact-consistent elastic strips for multi-
contact locomotion planning of humanoid robots,” in Proc. of IEEE Int.

Conf. on Robot. and Auto (ICRA), May 2015, pp. 6289–6294.

[20] S. Tonneau, N. Mansard, C. Park, D. Manocha, F. Multon, and J. Pettré,
“A reachability-based planner for sequences of acyclic contacts in
cluttered environments,” in Int. Symp. Robotics Research (ISRR), Sestri
Levante, Italy, 2015.

[21] M. X. Grey, A. D. Ames, and C. K. Liu, “Footstep and motion
planning in semi-unstructured environments using possibility graphs,” in
ICRA’17. IEEE International Conference on Robotics and Automation,

2017 (Submitted). IEEE, 2017, available at https://arxiv.org/pdf/1610.
00700v1.pdf.

[22] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast
humanoid robot collision-free footstep planning using swept volume
approximations,” IEEE Transactions on Robotics, vol. 28, no. 2, pp.
427–439, April 2012.

[23] M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J. A. Bagnell,
C. G. Atkeson, and J. Kuffner, “Optimization and learning for rough
terrain legged locomotion,” The International Journal of Robotics

Research, vol. 30, no. 2, pp. 175–191, 2011. [Online]. Available:
https://doi.org/10.1177/0278364910392608

[24] N. D. Ratliff, D. Silver, and J. A. Bagnell, “Learning to search:
Functional gradient techniques for imitation learning,” Auton. Robots,
vol. 27, no. 1, pp. 25–53, Jul. 2009. [Online]. Available: http:
//dx.doi.org/10.1007/s10514-009-9121-3

[25] K. Hauser, “Fast interpolation and time-optimization with contact,” The

Int. Journal of Robot. Research (IJRR), vol. 33, no. 9, pp. 1231–1250,
Aug. 2014.

[26] A. Herzog, N. Rotella, S. Schaal, and L. Righetti, “Trajectory gen-
eration for multi-contact momentum-control,” in Humanoid Robots

(Humanoids), 15h IEEE-RAS Int. Conf. on, Nov. 2015.
[27] C. Park, J. S. Park, S. Tonneau, N. Mansard, F. Multon, J. Pettré, and

D. Manocha, “Dynamically balanced and plausible trajectory planning
for human-like characters,” in To appear in Proc. of I3D ’16, Seatle,
USA, 2016.

[28] D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai, “Staggered pro-
jections for frictional contact in multibody systems,” ACM Transactions

on Graphics, vol. 27, no. 5, p. 1, 2008.
[29] S. LaValle and J. Kuffner, J.J., “Randomized kinodynamic planning,” in

Proc. of IEEE Int. Conf. on Robot. and Auto (ICRA), vol. 1, Detroit,
Michigan, USA, 1999, pp. 473–479 vol.1.

[30] J. Mirabel, S. Tonneau, P. Fernbach, A. K. Seppl, M. Campana,
N. Mansard, and F. Lamiraux, “Hpp: A new software for constrained
motion planning,” in 2016 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), Oct 2016, pp. 383–389.
[31] T. Yoshikawa, “Manipulability of robotic mechanisms,” The Int. Journal

of Robot. Research (IJRR), vol. 4, no. 2, pp. 3–9, 1985.
[32] A. Del Prete, S. Tonneau, and N. Mansard, “Fast Algorithms to Test

Robust Static Equilibrium for Legged Robots,” in To appear in Proc. of

IEEE Int. Conf. on Robot. and Auto (ICRA), Stockholm, Sweden, 2016.
[33] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, 2004.
[34] A. Del Prete and N. Mansard, “Robustness to Joint-Torque Tracking

Errors in Task-Space Inverse Dynamics,” IEEE Transaction on Robotics,
vol. 32, no. 5, pp. 1091 – 1105, 2016.

[35] M. Moll, I. A. Sucan, and L. E. Kavraki, “An extensible bench-
marking infrastructure for motion planning algorithms,” arXiv preprint

arXiv:1412.6673, 2014.
[36] Q. Pham, S. Caron, and Y. Nakamura, “Kinodynamic planning in the

configuration space via admissible velocity propagation,” in Robotics:

Science and Systems IX (RSS), Berlin, Germany, 2013.
[37] N. Amenta, S. Choi, and R. K. Kolluri, “The power crust,” in Proc. of

Sixth ACM Symposium on Solid Modeling and Applications (SMA), Ann
Arbor, Michigan, USA, 2001, pp. 249–266.

[38] S. Tonneau, J. Pettré, and F. Multon, “Using task efficient contact con-
figurations to animate creatures in arbitrary environments,” Computers

& Graphics, vol. 45, no. 0, 2014.
[39] S. Chiu, “Control of redundant manipulators for task compatibility,” in

Proc. of Int. Conf. on Robot. and Auto (ICRA), vol. 4, 1987, pp. 1718–
1724.

[40] Z. Qiu, A. Escande, A. Micaelli, and T. Robert, “Human motions
analysis and simulation based on a general criterion of stability,” in
Int. Symposium on Digital Human Modeling, 2011.

[41] S. Caron, Q.-C. Pham, and Y. Nakamura, “Leveraging Cone Double
Description for Multi-contact Stability of Humanoids with Applications
to Statics and Dynamics,” in Robotics, Science and Systems (RSS), 2015.

[42] K. Fukuda and A. Prodon, Double description method revisited. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 91–111.

https://arxiv.org/pdf/1610.00700v1.pdf
https://arxiv.org/pdf/1610.00700v1.pdf
https://doi.org/10.1177/0278364910392608
http://dx.doi.org/10.1007/s10514-009-9121-3
http://dx.doi.org/10.1007/s10514-009-9121-3

	I Introduction
	I-A State of the art
	I-B Contributions

	II Overview
	II-A Computation of a guide path — P1 (Section IV)
	II-B Generating a discrete sequence of contact configurations — P2 (Section V)

	III Notation and definitions
	IV Root path planning in the contact reachable space
	IV-A Conditions for contact reachability
	IV-B The compromising reachability condition
	IV-C Computing the guide path in Creach0

	V From a guide path to a discrete sequence of contact configurations (P2)
	V-A Definition of a contact sequence
	V-B Contact planning algorithm
	V-B1 Algorithm overview
	V-B2 Pseudo-code of the Algorithm

	V-C Contact generator

	VI A criterion for robust static equilibrium
	VI-1 Conditions for static equilibrium
	VI-2 Formulation of a robust LP

	VII Source code of our planner
	VIII Results
	VIII-A Experimental validation of the contact plans
	VIII-B Description of the scenarios
	VIII-B1 HRP-2 – Standing up (Figure 6)
	VIII-B2 HRP-2 – Car egress (Figure 7)
	VIII-B3 HRP-2 – Staircase with high steps (Figure 8)
	VIII-B4 HyQ – DRC-style rubble (Figure 9)
	VIII-B5 HyQ – Obstacle race (Figure 10 and 11)
	VIII-B6 HRP-2 – Path re-planning (Figure 12)

	VIII-C Role of the main parameters
	VIII-C1 Choosing the scaling factor s
	VIII-C2 Choosing the heuristics
	VIII-C3 Discretization of the guide path

	VIII-D Performance analysis
	VIII-D1 Success rates (Table II)
	VIII-D2 Computation times (Table IV)

	VIII-E Comparison with previous work

	IX Discussion: validity and purpose of our contact planner
	X Conclusion
	Appendix A: Generating the W volumes for HRP-2
	A-A Step 1: computing the reachable workspace Wk of a limb
	A-B Step 2: computing the torso scaling workspace W0 of the robot

	Appendix B: Manipulability-based heuristics for contact selection
	B-1 The force and velocity ellipsoids
	B-2 Manipulability-based heuristics

	Appendix C: Addressing P3
	References

