
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School

A trustless architecture for
blockchain-based IoT applications

using constrained devices

Miguel Rodrigo Pincheira Caro

Advisor

Fabio Antonelli

Fondazione Bruno Kessler

Co-Advisor

Prof. Massimo Vecchio

Fondazione Bruno Kessler

May 2021

Abstract

Despite the increasing interest in blockchain as a possible solution to re-
place centralized IoT architectures, previous work failed to provide a direct
role for the sensing devices, i.e., direct interaction with the blockchain with-
out additional components. Moreover, few studies focus on permissionless
blockchains, even if it is the most secure platform for developing blockchain-
based applications.
This thesis presents an architecture that considers constrained sensing de-
vices as direct actors on a public blockchain network. A public blockchain
network allows the seamless inclusion of several unknown actors, and smart
contracts provide a platform to develop complex IoT applications. The re-
search followed an iterative DSR approach; designing, building, and evaluat-
ing new IT artifacts using two case studies in the agricultural IoT domain.
These cases fostered two exploratory studies that diverged from the main IoT
domain; however, they also provide novel contributions to blockchain-based
applications.
Thus, the novel architecture tackles three problems of current blockchain-
based IoT systems i) constrained sensing devices as direct actors on a blockchain
system, ii) permissionless blockchain networks and iii) smart contracts as
an IoT application platform. Furthermore, the exploratory analyses exam-
ine two challenges of blockchain-based applications i) user experience and
monetary costs and ii) data sharing and decentralized storage.

Keywords
[Internet of Things; Blockchain; Smart Contracts; Distributed Ledger]

Acknowledgements

This work is the conclusion of a journey full of challenges and difficulties
but always supported by family, friends, and colleagues to whom I am deeply
thankful. First, I would like to thank my supervisor, Mr. Fabio Antonelli,
for the opportunity to take this motivating journey under his tutelage, sup-
port, and experience. Next, I would like to thank my co-supervisor, Dr.
Massimo Vecchio, who has been a constant source of motivation and support
throughout my learning experience, always encouraging my academic and
professional growth. I also thank Mr. Raffaele Giaffreda for sharing his valu-
able experience and knowledge. A special thanks to the OpenIoT unit that
welcomed me to a warm and enjoyable working environment full of coffee,
laughs, and food tips.

I want to thank my friends and family in Chile. Our shared memories
overcame the distance and always remind me of the happiness of life. And to
new friends, that provided a home away from home, with laughs, food, and
wine. I am particularly grateful to Elena, who not only offered her friendship
but selflessly shared her time and knowledge through this Ph.D. journey.

My most important thank is to my family, Tamy. She is the source of
strength and encouragement. Without her unconditional love and support,
this journey will not have been possible. I thank my father for his continuous
support. I thankful to my Socia and those who are not with me. Finally, I
thank my mother for all that she taught me. Her memory is and always will
be a continuous light of guidance.

The works in this thesis was partially supported by (1) the AGILE project
(G.A. No 688088) and (2) the DECENTER project (G.A No 815141) within
the Horizon 2020 Programme of the EU, and (3) the SAPIENCE project
within the Climate KIC programme (P.ID No 200081) of the EIT.

5

6

Contents

1 Introduction 1

1.1 Towards decentralization of the Internet of Things 2
1.2 Sensing devices in blockchain-based IoT systems 3
1.3 A novel trustless architecture for blockchain-based IoT appli-

cations . 4
1.3.1 Design Science Research approach 5
1.3.2 Case studies . 5
1.3.3 Exploratory analyses 6
1.3.4 Innovative aspects . 7

1.4 Structure of the thesis . 8

Part I: Background on blockchain technology and IoT 13

2 A primer of blockchain technology 13

2.1 Blockchain working principles 14
2.1.1 Transactions and digital signatures 16

2.2 Taxonomy of blockchain networks 18
2.2.1 Public/permissionless blockchains 19
2.2.2 Private/permissioned blockchains 19

2.3 Decentralized consensus algorithms 20
2.3.1 Consensus on permissionless blockchains 21

i

2.3.2 Consensus on permissioned blockchains 24
2.3.3 Comparison of permissionless and permissioned con-

sensus algorithms . 27
2.4 Smart contracts . 28
2.5 Salient features of blockchain technology 30

3 State of the Art in integrating blockchain and IoT 33

3.1 IoT layered architectures . 35
3.1.1 Requirements of IoT systems 38
3.1.2 Challenges in centralized IoT architectures 41
3.1.3 Decentralization of IoT through blockchain technology 43

3.2 Integration schemes for blockchain and IoT 44
3.2.1 Cloud-level integration 47
3.2.2 Edge-level integration 47
3.2.3 Device-level integration 49

3.3 Interactions through smart contracts 49
3.4 Summary and gap analysis 54

Part II: Blockchain-based decentralized IoT applications 59

4 A novel trustless architecture for blockchain-based IoT ap-
plications 59

4.1 High-level architecture . 60
4.2 Novel contributions . 61

4.2.1 Constrained sensing devices as direct actors on the
blockchain system . 61

4.2.2 Permissionless blockchain as the underlying network . 62
4.2.3 Smart contracts as a software platform 62

4.3 Blockchain-based decentralized IoT framework 63

ii

4.3.1 M1: Device module 65

4.3.2 M2: Gateway module 67

4.3.3 M3: Blockchain module 68

5 A blockchain-based IoT system for traceability in Agri-Food
71

5.1 Introduction . 72

5.2 Related work . 73

5.3 Proposed system architecture 75

5.4 Architecture evaluation . 80

5.5 Conclusions . 81

6 Cost-effective IoT devices in a blockchain-based water man-
agement system 83

6.1 Introduction . 84

6.2 State of the art and rationale 87

6.3 Proposed system architecture 89

6.4 Implementation . 93

6.4.1 The Device module 94

6.4.2 The Gateway module 96

6.4.3 The Blockchain module 97

6.5 Architecture evaluation . 98

6.5.1 Device module footprint 100

6.5.2 Device module performance 100

6.5.3 Transaction compression 101

6.5.4 Transaction cost and processing time 103

6.5.5 Device power consumption and energy budget 104

6.6 Conclusions . 107

iii

Part III: Exploratory analyses of blockchain-based appli-
cations challenges 111

7 Cost and user experience in blockchain-based applications 111
7.1 Rationale and practical assessment of a fully distributed blockchain-

based marketplace of Fog/Edge computing resources 112
7.1.1 Introduction . 112
7.1.2 Related work . 114
7.1.3 Proposed system architecture 116
7.1.4 Experimental setup 119
7.1.5 Architecture evaluation 121
7.1.6 Conclusions and future works 128

7.2 Cost Model for blockchain-based applications 130
7.2.1 Introduction . 130
7.2.2 Application description and requirements 131
7.2.3 Proposed transaction taxonomy 132
7.2.4 Cost model for permissionless networks 133
7.2.5 Evaluation of the marketplace application 138
7.2.6 Conclusions . 141

8 Data-sharing and decentralised storage in blockchain-based
applications 143
8.1 A blockchain-based approach to enable remote sensing trusted

data. 143
8.1.1 Introduction . 143
8.1.2 Proposed architecture 147
8.1.3 Use case: precision agriculture 153
8.1.4 Conclusions and future works 156

8.2 Decentralized storage for trusted data sharing 157
8.2.1 Introduction . 157

iv

8.2.2 Proposed Architecture 159
8.2.3 Experimental setup 162
8.2.4 Evaluation results . 164
8.2.5 Conclusions . 170

9 Conclusions 173
9.1 Novel contributions . 174
9.2 Future works . 176

Bibliography 177

Appendix A: List of Abbreviations 200

v

List of Tables

2.1 Comparison of public and private blockchains. 29

3.1 Node types in blockchain networks 45

5.1 Performance of AgriBlockIoT in terms of latency, network traf-
fic, and CPU load. 81

6.1 Components of a transaction in the Ethereum blockchain. . . 94

6.2 Main characteristics of the hardware platforms used in the
evaluation campaign. 99

6.3 Device module program size footprint (in bytes). 100

6.4 Device module memory footprint (in bytes). 101

6.5 Average processing time overhead of the device module (in
milliseconds). 102

6.6 Transaction costs for different values of Tp (slow, avg, and fast
correspond to 2, 5, and 10 gwei, respectively, while 1 ETH =

205 USD is the exchange rate). 104

6.7 Average energy consumption of the device module at 5V (in
Joules). 105

7.1 Average cost for creating reservations
(Tp = 10 gwei and Ce = 205 USD). 121

7.2 Average cost for creating and updating advertisements
(Tp = 10 gwei and Ce = 205 USD). 123

vii

7.3 Average transaction cost for creating the marketplace
(Tp = 10 gwei and Ce = 205 USD). 124

7.4 Average time response (in seconds) for querying the list of
advertisements from the MSC. 125

7.5 Average time response (in seconds) for querying details of all
the advertisement. 126

7.6 Average time response (in seconds) for querying the detailed
list of advertisements using local buffer. 127

7.7 Average processing time (in seconds) and cost of the function-
alities in a live network (Tp = 10 gwei and Ce = 205 USD). . 128

7.8 Basic requirements of blockchain-based application on permis-
sionless networks. 132

7.9 Parameters for the cost model of infrastructure using a per-
missionless blockchain. 134

7.10 Basic transactions for a marketplace classified using the CRIV
taxonomy. 139

7.11 Parameters for the cost model of the marketplace using in a
public blockchain. 140

7.12 Cost scenario for a decentralized marketplace on a public blockchain.141

8.1 Transaction size and cost. 165
8.2 Transaction processing times in terms of minimum, maximum,

average, and variation on a Ropsten and a Goerli network. . . 166
8.3 Upload times expressed in seconds. 168
8.4 Download times expressed in seconds. 170

viii

List of Figures

2.1 Blockchain data structure. 15
2.2 Transactions in a Merkle Tree. 16
2.3 Public key signature process. 17
2.4 Performance and scalablity of different consensus (adapted

from [1]). 28
2.5 Main features of blockchain technology. 31

3.1 Component-Oriented Architecture for modern IoT systems. . 36
3.2 Service-Oriented Architecture for IoT systems (extracted from

[2]) . 37
3.3 Blockchain integration for IoT systems 46
3.4 Two examples of IoT architectures integrating blockchain at

Edge-level. 53

4.1 High-level overview of the novel trustless architecture for blockchain-
based IoT applications . 60

4.2 Blockchain-based decentralized IoT framework. 63
4.3 Trustless architecture: Constrained Sensing devices (D) pro-

vide trustworthy information to a permissionless blockchain
(B) where unknown users (U) securely interact with decen-
tralized IoT applications. 66

4.4 Class diagram of a sample application using Smart Twins, and
Smart Twin Apps. 69

ix

4.5 Example interactions over the proposed architecture. 70

5.1 Simplified version of the Agri-Food supply chain management
process. 76

5.2 Layered architecture of AgriBlockIoT. 77

6.1 Typical high-level 3-layer architecture of modern IoT systems. 87

6.2 High-level architecture of the proposed blockchain-based sus-
tainable water management system. 90

6.3 Software modules of the proposed architecture. 92

6.4 Device module footprint in terms of program size (in percentage).101

6.5 Device module footprint in terms of memory (in percentage). 102

6.6 Average current consumptions at 5V. 105

6.7 Estimated daily energy budget distribution for (a) reactive
and (b) continuous monitoring. 106

7.1 The proposed fully-distributed e-marketplace software archi-
tecture. 117

7.2 Sequence diagram of the interactions within the proposed e-
marketplace. 119

7.3 Average time response (in seconds) for querying the list of
advertisements . 125

7.4 Average time response (in seconds) for obtaining the details of
all advertisements. 126

7.5 Average time for all advertisements using local buffer. 127

7.6 Life-cycle of a blockchain-based application 133

7.7 Cost and benefits per transaction in the marketplace reflecting
the volatility of the cryptocurrency in 2020. 141

x

8.1 Proposed architecture – Untrusted actors interact using the
smart contracts to share, search, retrieve, and score metadata
and receive rewards. 147

8.2 Geographic extension of the datasets shared in the blockchain
system– in blue, the IoT raw and processed data, and in yel-
low, the processed Sentinel-2A data. 152

8.3 Simplification of decentralized storage protocol (based on IPFS
and Swarm). 158

8.4 Proposed architecture based on blockchain, smart contracts,
and DFS to provide an infrastructure for sharing datasets
among untrusted actors. 161

8.5 Transactions processing times histograms 167
8.6 Comparison of upload and download times for different file size.169

xi

Chapter 1

Introduction

In recent years, the Internet has expanded its limits from business to social
interactions and from people to everyday things. Today, not only computers
connect to the Internet, but also objects such as televisions, cars, and bikes,
interact over the network under the field of the “Internet of Things” (IoT).
Everyday objects now incorporate technical capabilities to connect the digital
and physical world. IoT is growing at such a speed that in December 2017,
the number of connected objects was over 8 billion 1, and the number of
Internet users was about 4 billion 2. Moreover, recent studies estimate that
by 2025, the number of connected devices will be over 30 billion 3. The
IoT aims to make the Internet more immersive and pervasive by enabling
easy interaction with a wide variety of devices [3], fostering the development
of applications to provide new services to individuals [3] and transforming
existing industrial operations [4].

1https://www.gartner.com/
2https://www.internetworldstats.com/stats.htm
3https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-

first-time/

1

1.0. INTERNET OF THINGS CHAPTER 1. INTRODUCTION

1.1 Towards decentralization of the Internet of Things

Billions of sensing devices build the core of IoT, collecting information from
the physical world. These devices interact with each other and with other
technological components, creating complex IoT systems for several appli-
cations [5]. The ubiquity of Internet connections fosters a steady growth of
IoT systems worldwide, which is also encouraged by the decreasing price and
size of embedded computers [6]. Every day, smaller and cost-effective devices
empower new kinds of IoT applications including infrastructure monitoring,
smart homes, precision agriculture, personal healthcare, and industrial man-
ufacturing [7]. As billions of devices are connected, it is necessary to define
appropriate architectures that allow easy communications, control, and func-
tional applications [8].

Centralized cloud-based architectures are the current choice for IoT sys-
tems, where a validating third party provides services such as authentication,
authorization, and data handling for both sensing devices and end-users [9].
These architectures simplify the design and the deployment of IoT systems
and applications. However, they introduce additional concerns regarding
data management and privacy, as well as an over-exposition to several cyber-
security threats [10]. Moreover, the presence of the intermediary decreases
the efficiency of interactions between devices, reducing the potential growth
of the IoT applications [7]. These challenges require radically new approaches
for the architectures behind the next-generation IoT systems and applica-
tions.

In recent years, there has been a growing interest in integrating blockchain
technologies into IoT [11] for enabling trustless architectures. Blockchain uses
a unique combination of cryptography, data structures, and incentive mech-
anisms to maintain a particular type of distributed database (i.e., a ledger)
in a peer-to-peer network. The distributed ledger is immutable by design

2

CHAPTER 1. INTRODUCTION 1.1. SENSING DEVICES

and offers an auditable and transparent source of information. Integrating
blockchain into IoT could enable decentralized applications without a val-
idating central authority [12]. Blockchain provides a trusted repository of
information for IoT systems, where data is secure and traceable, and the
data source can be precisely identified [13]. Moreover, blockchain directly
benefits several business processes (e.g., accounting, billing [14]) by enabling
the seamless inclusion of several actors [15] and making their interactions
leaner, faster, and more transparent [11].

1.2 Sensing devices in blockchain-based IoT systems

Despite the growing interest in blockchains, one aspect that previous works
have failed to consider is a direct role for the sensing device, i.e., the ca-
pability of devices to interact with the blockchain without the intervention
of an additional system component. The sensing devices are typically the
most constrained hardware component of the technology stack. Thus, de-
vices that autonomously interact with the blockchain might offer limited
onboard computing resources with restricted energy budgets [16, 17]. Cur-
rent studies consider scenarios without communications or energy restrictions
[18, 19, 20]. This approach contrasts with the average requirements of IoT
applications favoring power efficiency and low-cost to ensure cost-effective
and long-term operations (e.g., agriculture, smart cities) [21, 22]. For re-
stricted scenarios, the current research focuses on sensing devices that rely
on another component to interact with the blockchain (e.g., gateway nodes
[23, 24, 25]). However, the intermediary still introduces security concerns [6],
reducing the trustworthiness of the sensed data [11]. Another aspect missing
in the current literature is the benefits of using permissionless blockchain
infrastructures as most of the studies focus on permissioned infrastructures
[18, 26, 27]. However, a permissioned blockchain does not provide the same

3

1.2. NOVEL ARCHITECTURE CHAPTER 1. INTRODUCTION

level of openness, decentralization, and neutrality as a permissionless net-
work. Moreover, the type of consensus and the size of existing permissionless
blockchains networks offer a more secure platform for developing decentral-
ized applications [28, 29]. Thus, a need emerges for an architecture that
acknowledges constrained devices on permissionless blockchain networks and
provides the tools to develop new types of decentralized IoT applications.

1.3 A novel trustless architecture for blockchain-based
IoT applications

This thesis presents an architecture that integrates blockchain technology
into the Internet of Things, enabling the development of next-generation
IoT applications. The architecture relies on blockchain inherent features to
mitigate some of the main challenges in centralized IoT architectures. The
architecture assumes that each device securely manages its cryptographic
keys. Although this is a strong assumption, it is aligned with the state of the
art [30, 31]. Furthermore, blockchain holds the potential to more complex
identity schemes as key-building blocks for realizing completely decentralized
public key infrastructures [11]. However, this research falls outside the focus
of this thesis.

The proposed architecture considers the sensing devices as direct actors
on a permissionless blockchain network to guarantee a root of trust for the
sensed data [32]. Moreover, the integrity, auditability, and traceability of the
sensed data are maintained and enforced by the blockchain network [12].

In the proposed architecture, smart contracts provide a platform to de-
fine complex business logic by autonomously enforcing agreements between
untrusted actors [33], based on trusted values coming from ubiquitous IoT
devices. We argue that this tamper-proof, immutable, and decentralized
repository of sensed real-world information is the key to build novel decen-

4

CHAPTER 1. INTRODUCTION 1.3. NOVEL ARCHITECTURE

tralized IoT applications.

1.3.1 Design Science Research approach

“Design science research (DSR) is a research paradigm in which a designer
answers questions relevant to human problems via the creation of innova-
tive artifacts, thereby contributing new knowledge to the body of scientific
evidence. The designed artifacts are both useful and fundamental in under-
standing that problem” [34].

The DSR process starts with a problem with practical significance and
involves two essential stages, building and evaluating. The building stage is
required to produce a new Information Technology (IT) artifact. The evalua-
tion involves the assessment of the newly created IT artifact. The evaluation
process provides feedback and generates new knowledge, improving both the
design and artifact [35]. Thus, a rigorous DSR approach guides towards more
general and more valuable contributions. In this thesis, the DSR approach
enables the generation of theoretical insights rather than starting with a core
theory, similarly to [35, 36]. We believe that a DSR approach is favorable
for this research, considering the early stages of research and development of
blockchain technology.

1.3.2 Case studies

The proposed architecture is the result of a DSR process using two case
studies in the agricultural IoT domain. The first iteration addressed the
problem of reconstructing a centralized IoT application with a decentralized
blockchain-based architecture. We targeted food traceability applications
(Agri-Food), considering the growing adoption of IoT in this domain. Cur-
rent IoT-based traceability systems for Agri-Food supply chains are built
on top of centralized infrastructures, leaving unsolved issues and concerns

5

1.3. NOVEL ARCHITECTURE CHAPTER 1. INTRODUCTION

such as data integrity, tampering, and single points of failure. We propose
a blockchain-based traceability architecture for Agri-Food supply systems
that seamlessly integrates IoT devices producing and consuming digital data
along the process. Building and evaluating the IT artifact provided valuable
knowledge about blockchain-based IoT applications. These steps clarified the
requirements of large-scale IoT deployments and highlighted a crucial prob-
lem with current blockchain-based IoT applications– the role of constrained
sensing devices in the architecture.

The second iteration explored the use of constrained IoT devices on pub-
lic blockchains networks for incentivizing and rewarding sustainable water
management practices in agriculture. Current IoT precision agriculture ap-
plications focus on energy efficiency, which generally translates into power-
and-resource-constrained sensing devices. We proposed an architecture that
enables a trustless water management system where constrained IoT devices
can directly transact sensed data on a public blockchain network. We imple-
ment the proposed solution on off-the-shelf hardware devices and quantita-
tively assess the impact in terms of memory, program size, communication
overheads, and power consumption. The encouraging results and the bene-
fits of public blockchain networks as open and trustless application platforms
further defined the proposed architecture.

1.3.3 Exploratory analyses

The iterative process over these two cases generated new knowledge about the
strengths and challenges of blockchain-based IoT applications and fostered
two exploratory studies. These case studies diverged from the main IoT
domain of the thesis; however, they provide novel contributions to blockchain-
based systems.

The first exploratory analysis focuses on the performance and cost eval-
uation of a blockchain-based application. Current blockchain-applications

6

CHAPTER 1. INTRODUCTION 1.3. NOVEL ARCHITECTURE

tend to use additional components for compensating the current limitations
of public blockchains (e.g., data storage). We describe a case study where
smart contracts provide all the functionalities needed by the blockchain-based
application. We develop a full-fledged e-marketplace and evaluated several
design decisions in terms of cost and performance. Furthermore, we propose
a financial cost model for blockchain-based applications on permissionless
networks.

The second exploratory analysis provides a performance evaluation of de-
centralized storage to complement blockchain-based applications. Currently,
sharing and retrieving data is possible through tools managed by interme-
diaries. We present an architecture based on blockchain to build a system
to share and retrieve data acquired by untrusted sources in a decentralized
way. We analyze a case study on precision agriculture, and we evaluate de-
centralized storage as a possible solution to the current limitations of public
blockchain in terms of data storage.

1.3.4 Innovative aspects

The proposed architecture tackles three main problems of current blockchain-
based IoT systems:

• Constrained sensing devices as direct actors on a blockchain
system. Current blockchain-based IoT systems favor powerful sensing
devices or require additional elements to integrate the sensors. However,
the majority of IoT applications promote less-constrained sensing de-
vices for cost-effective and large-scale IoT systems. In our architecture,
constrained sensing devices are direct actors on the blockchain without
relying on another system component.

• Permissionless blockchain networks. Current blockchain-based
IoT systems favor permissioned blockchain implementations. However,

7

1.4. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

the most secure approach to develop blockchain applications is on top of
a permissionless network. The proposed architecture utilizes a permis-
sionless network. On the one hand, a majority of honest peers ensures
the integrity of the sensed data. On the other hand, a majority of hon-
est peers avoid dishonest peers to compromise the integrity of the entire
system [28].

• Smart contracts as an IoT application platform. Currently,
smart contracts are mainly used for financial applications or providing
basic functionalities such as asset registers. In the proposed architec-
ture, smart contracts define complex business logic that autonomously
enforces agreements between untrusted actors based on the trusted val-
ues coming from the ubiquitous IoT devices.

1.4 Structure of the thesis

This chapter presented the context of the research, the proposal, and its novel
contributions. The rest of the thesis is organized into three parts as follows.

Part I provides a detailed context of blockchain technology and the Inter-
net of Things. Chapter 2 presents the main concepts of blockchain, working
principles, taxonomy, decentralized consensus, and smart contracts. Chapter
3 reviews the state of the art on blockchain and IoT, including current IoT
architectures, integration schemes for blockchain and IoT, and smart con-
tracts as an interaction platform. The chapter concludes with a gap analysis
on blockchain-based architectures for the IoT.

Part II describes novel blockchain-based decentralized IoT applications.
Chapter 4 presents a novel blockchain-based architecture that considers con-
strained IoT devices. The architecture is conceptualized as a layered-framework
to develop new types of IoT applications and evaluated with two case stud-

8

CHAPTER 1. INTRODUCTION 1.4. STRUCTURE OF THE THESIS

ies in the agricultural domain. Chapter 5 introduces a blockchain-based
IoT system for traceability in agri-food applications. Chapter 6 describes
a blockchain-based IoT system to foster sustainable agriculture practices by
incentivizing virtuous behaviors in water management.

Part III presents exploratory analyses on two challenges identified on novel
blockchain-based applications. Chapter 7 analyses the monetary costs asso-
ciated with blockchain infrastructure to support the application. Chapter 8
evaluates decentralized storage to compensate for the current limitations of
blockchain implementations to store large amounts of data.

Chapter 9 summarize the thesis and discusses possible future works. Fi-
nally, Appendix A lists all abbreviations used in the thesis.

9

Part I: Background on blockchain
technology and IoT

Chapter 2

A primer of blockchain technology

This chapter contains text taken from the published work:

– Ali, M. S., Vecchio, M., Pincheira, M., Dolui, K., Antonelli, F., & Rehmani, M. H. (2018).Appli-
cations of blockchains in the Internet of Things: A comprehensive survey. IEEE Communications
Surveys & Tutorials, 21(2), 1676-1717.

Blockchain technology combines data structures, incentive mechanisms,
and cryptography techniques to maintain a distributed database on a peer-
to-peer network [37, 38, 39]. This database stores the information by using
logical blocks linked to each other, creating a chained data structure. All
the peers (i.e., computers in the network) maintain identical copies of the
database (i.e., the blockchain). New blocks are added to the blockchain
using a decentralized consensus algorithm. The consensus algorithm defines
how to validate new blocks and reach a unique global state that is agreed
upon by all the network peers. Blockchain is also called a distributed ledger
as the information stored represents transactions, i.e., interactions occurring
within users of the system [15].

Using blockchain technology, two mutually unknown actors (i.e., users of
the system) can interact without the need for a third-party intermediary.
This trustless environment is enabled by a unique combination of elements
(e.g., incentives, cryptography, peer-to-peer network) inherent to a system
using blockchain technology. Cryptocurrencies are the first use case of a

13

2.1. BLOCKCHAIN WORKING PRINCIPLES CHAPTER 2. BLOCKCHAIN

blockchain-based system; however, the technology is increasingly attracting
interest from several other domains and applications [12, 15].

This chapter introduces the working principles and essential concepts re-
quired to understand a blockchain system. First, we describe the different
components (i.e., transactions, blocks, and signatures) and their role in en-
abling decentralized trust. Section 2.2 presents a taxonomy for the different
types of blockchains using two categories: public and private. Section 2.3 de-
scribes the most used decentralized consensus algorithms used for each type
of blockchains to coordinate the peer-to-peer network. In Section 2.4, we in-
troduce the concept of smart contracts as a tool for programming blockchain-
systems. We conclude the chapter by summarizing the inherent salient fea-
tures of blockchain technology.

2.1 Blockchain working principles

A blockchain, as described on Bitcoin [40], is a distributed timestamped data-
structure built on blocks containing details of transactions that have occurred
within the network. Transactions represent the interactions among actors and
hold information regarding value transfer or data exchange. Blocks are data
structures that aggregate transactions and are divided into two parts, .i.e.,
the header and the body [40]. The body stores the transactions. The header
contains several fields, including a timestamp, an identifier, and the identifier
of the previous block. The blocks are linked, creating a chain of blocks (i.e.,
the blockchain), as shown in Figure 2.1. The blockchain is an append-only
data structure. Blocks can not be updated or deleted after adding them to
the blockchain, and the first block in the chain is called genesis block.

The block identifier is the cryptographic hash of its content, creating an
integrity check for the entire block [12]. Linking the blocks helps to preserve

14

CHAPTER 2. BLOCKCHAIN 2.1. BLOCKCHAIN WORKING PRINCIPLES

Block 1

header

Hash of previous

block header

Block 2

header

Hash of previous

block header

Block 3

header

Hash of previous

block header

Block 1

body

Block 3

body

Block 3

body

Transactions are stored here! Transactions are stored here!Transactions are stored here!

Figure 2.1: Blockchain data structure.

the integrity of all the information in the blockchain. An attack that alters
the content of a block changes its identifier, making the block invalid. This
change triggers a domino effect, invalidating the following blocks. Therefore,
to successfully modify a single block, the attack must alter all the subsequent
blocks as well. Moreover, the attack must compromise the majority of nodes
in the network for the peers to reach a consensus on this altered blockchain. If
the blockchain network comprises a considerable number of nodes, this attack
is complex to perform and requires a substantial amount of computational
power, making the blockchain practically immutable [28].

The header of the block also contains the Merkle tree root for all the
transactions stored [41]. All transactions have a unique transaction ID that
is the cryptographic hash of the data in the transaction. The transaction
IDs are hashed together in pairs, and a hash tree is built within the block
as seen in Figure 2.2. As part of the consensus algorithm, transactions are
verified each time that a new block is broadcast on the network. The Merkle
tree significantly reduces the time to verify a transaction, as the verification
can be done using the Merkle tree branch containing the transaction. A
tampered transaction would produce altered hashes within its branch and
would be detected with a low computational effort.

Verified transactions are grouped in a new block that is broadcast from
one node to the rest of the network, and each peer appends it to the local
copy of the blockchain after validation. Appending a new block implies the

15

2.1. BLOCKCHAIN WORKING PRINCIPLES CHAPTER 2. BLOCKCHAIN

Block n

Body

BlockHash

PrevBlockHash

Nonce Timestamp

MerkleRoot

Block (n-1) Block (n+1)

Header

H(hA|hB) H(hC|hD)

H(A) H(B) H(C) H(D)

A B C D

Block Transactions

Figure 2.2: Transactions in a Merkle Tree.

agreement of its contents, updating the agreed state of the blockchain system
[15]. Since the blockchain replicates in each peer, the entire system has a
fault-tolerant architecture, i.e., if one peer fails, any other peers can replace
it [37]. Moreover, since all the information is always accessible by any peer,
blockchain is considered fully auditable [12].

Having the blockchain replicated in all the peers provides several benefits;
however, it also requires handling some particular scenarios [15]. For in-
stance, when multiple nodes in the blockchain network produce valid blocks
simultaneously, the blockchain can fork. In this case, maintaining a single
accepted state of the blockchain becomes an issue for the system. Typically,
blockchains resolve this issue by considering the longest fork as canon and
discarding the blocks in the other forks [40, 42].

2.1.1 Transactions and digital signatures

Transactions represent the interactions among the actors of a blockchain-
based system. Each actor has a unique address associated with a pair of
cryptographic keys. Actors use the keys (i) to sign their transactions to

16

CHAPTER 2. BLOCKCHAIN 2.1. BLOCKCHAIN WORKING PRINCIPLES

certify their origin and (ii) to validate the integrity and the origin of the
transaction they receive. Thus, all the interactions in blockchain are made
through digitally signed transactions.

In Bitcoin, transactions are signed using the Elliptic Curve Digital Sig-
nature Algorithm ECDSA[43], an asymmetric cryptographic algorithm that
uses a public/private key pair. The public key is shared to all the actor of
the system while the private keys must be kept secret. Signing a transaction
with the private key produces a unique signature composed pair of numbers
(r, s). Anyone in possession of the public key can easily have an unequivocal
confirmation that the signature was generated by the matching private key,
as shown in Figure 2.3.

Figure 2.3: Public key signature process.

Transactions can be considered as an arbitrary data array Tx. The fields
of the array vary with each implementation; however, most of them share
common fields. Based on [40, 42, 44, 45, 46], a general transaction structure
for Tx can be considered as

Tx = {Theader, Tdestination, Tdata, Tvalue, Tsignature, Textra} (2.1)

Where Theader is the header of the transaction typically including a unique
identifier. Tdestination is the identifier of the transaction recipient normally
derived from the public key. Tdata is the information that is exchange between
the interacting parties. Tvalue represent value transfer among the parties (i.e.,

17

2.1. TAXONOMY CHAPTER 2. BLOCKCHAIN

cryptocurrency exchange). Textra represents all the additional information
pertinent to each blockchain implementation. Finally, Tsignature is the digital
signature of T , represented by (r, s) and is normally appended to the end.
From the signature is possible to obtain the public key of the transaction
sender and thus, the sender identity.

2.2 Taxonomy of blockchain networks

Bitcoin introduced blockchain technology for storing the financial transac-
tions of a decentralized payment scheme using a public peer-to-peer network
[40]. After this first use case, several new implementations appeared, intro-
ducing modifications to the original protocol to provide additional features.
One example are blockchain systems such as Hyperledger [47], Stellar [48],
and Multichain[49] that propose permissioned peer-to-peer networks suit-
able for use cases where a certain level of trust among the peers exists. This
assumption softens some security concerns and increases the overall perfor-
mance of the system (e.g., latency, transaction throughput)[50].

Another example is IOTA [13] that proposes a directed acyclic graph ap-
proach (DAG) instead of a single sequence of blocks to achieve the higher
scalability and data throughput required by some use cases. This proposal
is ledger built and maintained by peers, but without using a blockchain (i.e.,
a sequence of blocks forming a chain) as the underlying data structure. In
the literature, these approaches (i.e., without using a chain of blocks) belong
to the Distributed Ledger Technology DLT class, of which blockchain-based
approaches only represent a subset. For a more formal taxonomy and de-
scription, the interested reader is referred to [11, 18, 51] and the references
therein.

Currently, there is no standard taxonomy for the blockchain-based ap-
proaches of the DLT. For instance, authors in [52], [13] and [33] classify

18

CHAPTER 2. BLOCKCHAIN 2.2. TAXONOMY

blockchain by generations, being Bitcoin the first generation. However, there
is not a clear separation between generations or how many generations ex-
ist. In this thesis, we consider the two-type taxonomy agreed by several re-
searchers and practitioners, i.e., public and private blockchain [53, 54, 55, 56].

2.2.1 Public/permissionless blockchains

Public blockchains rely on unknown users willing to operate the network
peers in exchange for incentives paid in cryptocurrencies [56]. The peers
in the public blockchain can choose to validate new blocks or merely issue
transactions. Each transaction has a processing fee that serves as an incentive
to the peers for creating and publishing new blocks onto the blockchain[15].
Since the users operating the nodes are unknown, malicious actions can occur.
To mitigate dishonest behaviors, publishing new blocks typically requires
spending computational resources by solving a cryptographic puzzle [40] or
staking a predefined cryptocurrency amount [57]. These requirements aim to
discourage dishonest users from wrongly validating blocks as this malicious
behavior impacts the user resources [29]. Examples of public blockchain are
Bitcoin [40], Ethereum [42], and Litecoin [29], to name a few.

2.2.2 Private/permissioned blockchains

Private blockchain are permissioned, and the infrastructure supporting this
network is managed by a stakeholder (or a group of stakeholders). The
stakeholders can define different roles and permissions for the users, restrict-
ing their access to the system. Examples of these types of blockchain include
Hyperledger [47], or Multichain [49]. Private blockchains do not require
cryptocurrency to operate, and there are no processing fees included in the
transactions. Blocks are published by authorized nodes, reducing the security
constraints and thus, increasing the performance of the system [50]. How-

19

2.2. DECENTRALIZED CONSENSUS CHAPTER 2. BLOCKCHAIN

ever, a private blockchain is not as tamper-resistant as a public blockchain,
and the organization may choose to roll back the blockchain to any point in
the past. Even if a private blockchain provide auditability and offers better
performance (e.g., lower latency, higher transaction throughput) is not en-
tirely decentralized or censorship-resistant as a public blockchain [58].

2.3 Decentralized consensus algorithms

Both types of blockchain systems use consensus algorithms to coordinate the
peers of the network. In any blockchain, a system based on “state machine
replication", consensus protocols ensure all replicas of the shared state are
synchronized and in agreement at any given point in time. Earlier works
on consensus protocols [59] involved cryptography and partial concurrency
[60], and precursor designs and proposals of digital currency [61, 62] were the
building blocks that went into developing decentralized consensus algorithms
used in blockchain networks.

Core principles applied in designing consensus algorithms are safety, live-
ness, and fault tolerance. Safety is the extent to which a system can tolerate
failures, say in an (n, f) fault-tolerant system, where n is the total number
of processes, the system should be able to tolerate at most f faults. Safety
is the ability to mitigate corrupted or out-of-order messages so that all non-
faulty nodes reach consensus. The liveness of a fault-tolerant system means
that despite the presence of f faults, all correctly participating nodes should
be able to move forward with their distributed processes.

Maintaining fault tolerance in a consensus protocol becomes difficult when
nodes can fail or start acting dishonestly. This fault is termed the “Byzan-
tine Generals Problem” [63]. In a distributed system running a consensus
protocol, a node can fall under a Byzantine fault as a result of software bugs

20

CHAPTER 2. BLOCKCHAIN 2.3. DECENTRALIZED CONSENSUS

or by being compromised. Byzantine faults occur when a node sends false
messages and misleads the other nodes participating in the consensus proto-
col. Several algorithms are proposed in the literature, as surveyed by authors
in [64]. These algorithms approach Byzantine faults on many types of dis-
tributed systems by making assumptions on different parameters such as the
specific use-cases, the network performance, or the type of node failure.

In this chapter, we discuss a few decentralized consensus algorithms rel-
evant to both permissioned and permissionless blockchains. The main goal
of these consensus algorithms is the agreement on which new information is
added to the blockchain. Authors on [65], [58], and [50] contain exhaustive
details on consensus algorithms for both types of blockchain networks.

2.3.1 Consensus on permissionless blockchains

Reaching consensus using votes in a permissionless blockchain is problematic.
Participants can use multiple accounts on the blockchain and launch a Sybil
attack [66] to drive decisions in their favor. Therefore, consensus algorithms
in permissionless blockchain are based on a lottery-based selection of a single
node (i.e., peer in the network) that will add a new block. On a public
blockchain, adding a new block needs to be expensive, so the resources of a
single peer are insufficient to bias the consensus of the entire network.

Proof of Work (PoW)

The first public blockchain consensus protocol was the Proof of Work as de-
scribed by Bitcoin [40]. Any node can add a block to the blockchain by
showing that it has performed a computationally expensive amount of work.
Adding new blocks with PoW is called mining, and miners (i.e., nodes cre-
ating blocks) engage in a race to solve a cryptographic puzzle. The puzzle
consists of finding a nonce that, when hashed with the hash of a block,
produces a resultant smaller than a predefined threshold. The proportional

21

2.3. DECENTRALIZED CONSENSUS CHAPTER 2. BLOCKCHAIN

inverse of this threshold is called the difficulty level, which is stored in the
block header, and gets adjusted with the increasing number of participants,
to maintain an average block processing time [15, 29]. The calculated nonce
is the proof of the spent resources a miner does. The miner adds the nonce
to the block header and broadcasts the block to the network. All partici-
pating nodes need to verify the block published by the miner. Subsequently,
the miner claims the processing fees associated with the transactions stored
within the block as a reward for mining [40]. In PoW consensus, the compu-
tationally expensive block creation and transaction fees secure the network
against DDos attacks and false block creation [40, 29].

PoW also defines how to handle the case of two nodes publishing a block
almost concurrently [62]. Consider the case where after a block n, a node
in Australia mines a valid block (n + 1), and at the same time, a node in
Sweden mines another valid block (n + 1)′. This event creates a temporary
fork, i.e., two groups of peers having a different version of the blockchain.
After the block n, one fork has the block (n+1) and the other has the block
(n+1)′. Moreover, both forks continue adding blocks to their version of the
blockchain. In this case, the consensus algorithm defines that the fork with
the most work committed to it (i.e., more blocks) is hence canon, and the
other fork is orphaned [40, 46].

PoW consensus is vulnerable when an attacker takes control of 51% of
the processing power of the network [67][68]. Therefore, PoW provides fault
tolerance as long as the total computational power is n ≥ 2f+1 where f is the
computational power occupied by a single malicious user [29]. To overcome
this type of attack, and considering the append-only nature of blockchain,
Pow blockchain such as Bitcoin and Ethereum introduced the concept of
delayed finality for a block. Before the finality, the blockchain can be rolled
back to a previous block in the event of a 51% attack. After reaching finality,
a block is irreversible. Ethereum and Bitcoin consider a block finalized after

22

CHAPTER 2. BLOCKCHAIN 2.3. DECENTRALIZED CONSENSUS

six confirmations, i.e., after six new blocks are added [29].

Proof of Stake (PoS)

The Proof of Stake algorithm aims at reducing the ever-increasing electricity
consumption of mining in PoW blockchain networks [69]. PoS aims to stake
peers’ economic share in the network [70]. Here, the term miner is replaced
with validators, and similar to the PoW, one of the validators is chosen to
publish (i.e., add) a new block onto the blockchain. The difference lies in
how the validator is chosen. In PoS, a validator is selected in a pseudo-
random fashion, with the probability of being selected proportional to the
validator’s share in the network [71] [72]. NaivePoSconsensus mechanisms
are prone to attacks like the “nothing at stake” attack and require further
considerations to be consensus-safe [73]. Block finality is faster compared
to PoW blockchains since there is no computational puzzle solving involved
in choosing the validator. Ethereum’s Casper [57] is currently one of the
most advanced implementations of the PoS and punishes malicious nodes by
subtracting their funds in case of dishonest behavior.

Proof of X

Other alternative consensus algorithms for public blockchain are classified as
“Proof of X”. In [50], the author presents an exhaustive study of these algo-
rithms. However, most of these algorithms are suited for private blockchains,
and those proposed for public scenarios, lack the maturity of PoW and PoS.
For instance, Proof of activity (PoA) [74] was proposed as an alternative to
Bitcoin mining and combines aspects of the PoW and PoS. Computational
puzzle-solving in PoA only involves finding a nonce against the block header
without considering the transactions in the block. A random group of valida-
tors is chosen to vote the validity of the mined block header. Similar to PoS,
the probability of the validators being chosen is proportional to their share

23

2.3. DECENTRALIZED CONSENSUS CHAPTER 2. BLOCKCHAIN

in the network. Transaction fees are split between the miner and validators.
Concerns towards PoA include the high computational power requirements
and the fact that a naive implementation can be prone to nothing at stake
attacks [1]

2.3.2 Consensus on permissioned blockchains

In permissioned blockchain deployments, only a limited number of known
participants have a copy of the entire blockchain [75]. Maintaining consen-
sus, therefore, is straightforward and does not require costly proofs for pub-
lishing a new block. Since participants are known, there is no risk of a Sybil
attack, therefore voting mechanisms are used to achieve consensus. Hence
permissioned blockchains have a much higher performance than permission-
less blockchains in terms of latency, transaction throughput, and power con-
sumption [1, 50].

Practical Byzantine Fault Tolerance (PBFT)

The Practical Byzantine Fault Tolerance (PBFT) algorithm [76] involves
multiple rounds of voting by all nodes of the network to commit a state change
(i.e., add a new block). The PBFTalgorithm includes an optimized encrypted
message exchange for making global voting more practical. This algorithm
requires n ≥ 3f+1 nodes to tolerate f failing nodes. In PBFTconsensus, one
node is chosen to be the leader, who assembles a set of ordered transactions
into a block. The validating peers in the network calculate a hash of the block
and broadcast it. Validating peers observe the hashes they receive from the
rest of the network, which can be seen as votes over multiple rounds. If 2/3
votes are in favor of the candidate block, the peers add it to their copy of
the blockchain. PBFTconsensus provides high throughput and low latency
in validating transactions. However, the overhead incurred by broadcasting
blocks and votes in PBFTconsensus set a maximun of tens of validators.

24

CHAPTER 2. BLOCKCHAIN 2.3. DECENTRALIZED CONSENSUS

Hyperledger Fabric uses a variation of PBFTcalled Sieve [77], designed to
perform consensus while executing a non-deterministic chaincode.

Tendermint

Tendermint [45] is a Byzantine Fault Tolerant consensus algorithm, that, sim-
ilarly to PBFT, provides an n ≥ 3f+1 fault tolerance. Tendermint usesPoSin
combination with principles of PBFTto provide security, high throughput,
and low block processing times of about 1-3 seconds. Tendermint uses the
lottery-based properties ofPoSto select the leader node with probability pro-
portional to the node share in the network. Tendermint performs multiple
rounds of voting to reach a consensus on a new block and requires a superma-
jority or 2/3 of its validators to maintain 100% uptime. If more than 1/3 go
offline, the network may stop progressing and lose liveness. Assuming that
less than a third of all validators are faulty, Tendermint provides a safety
guarantee that no conflicting blocks are created and no forks appear in the
blockchain. Transaction finality in Tendermint is approximately 1 second,
and the protocol is compatible with public and private chains. However, it
has a lower level of scalability than PoW orPoS[13].

Federated BFT (FBFT)

Blockchain implementations in Ripple [44] and Stellar [48] extended the tra-
ditional Byzantine Fault Tolerance to scenarios involving a consortium of
nodes (i.e., subnetworks). Ripple consensus begins with a unique node list
(UNL) of active validator in the network. Each node has a UNL with 100+
nodes in it. Each nodes UNL has to overlap by at least 40% with the UNLs
of other nodes. Ripple carries out multiple rounds of voting, where nodes as-
semble transactions into candidate blocks and broadcast them to the nodes
in their UNL. Nodes then broadcast votes on each candidate block. Each
round of voting helps nodes refine their candidate block, and a new block

25

2.3. DECENTRALIZED CONSENSUS CHAPTER 2. BLOCKCHAIN

is added to the ledger once it receives a supermajority vote of 80%. Even
though Ripple carries out multiple rounds of votes, it provides a fault toler-
ance of n ≥ 5f + 1 [44]. The consensus in the entire network is based on
consensus within subnetworks, so Ripple allows open-ended participation of
users, market entities, and gateways to other subnetworks [44].

Stellar introduces the idea of quorums in blockchain networks, where a
quorum is a set of nodes used to reach consensus. A node in such a network
can be part of multiple quorum slices, where each quorum slice securely
reaches consensus through voting. Since the quorums and quorum slices are
allowed to intersect, Stellar allows open participation of nodes in different
subnetworks within the main Stellar network. Stellar opts for safety over
liveness, with malicious behavior, the blockchain does not progress till the
malicious behavior is resolved. Stellar provides flexible trust and low la-
tency since it is computationally inexpensive, and quorums contain a limited
number of nodes that share vote messages [48].

Proof of Elapsed Time (PoET)

Among the Proof of X protocols for permissionless networks, one example
is Proof of Ellapsed Time by Hyperledger Sawtooth [78]. PoET runs in a
Trusted Execution Environment (TEE), such as Intel Software Guard Ex-
tensions (SGX) [79]. A trusted voting model built on SGX helps electing
a validator for publishing a new block. PoET is lottery-based without ex-
pensive computational puzzle solving or monetary stake. Nodes in the PoET
network request a wait time from a trusted function within the SGX. The val-
idator with the shortest wait time is selected as the leader. Another trusted
function attests if the validator waited an allotted amount of time before pub-
lishing a new block. Even if the algorithm meets the prerequisites of a viable
lottery-based consensus algorithm, its limitation is in the use of specialized
hardware.

26

CHAPTER 2. BLOCKCHAIN 2.3. DECENTRALIZED CONSENSUS

2.3.3 Comparison of permissionless and permissioned consensus
algorithms

Table 2.1 summarizes the differences and similarities between public and pri-
vate blockchain, including the consensus algorithms and examples for each
blockchain type. The decision of the blockchain type depends on the require-
ments (e.g., permissions and performance) of each use-case.

Permissionless blockchains are open systems designed to accommodate
several unknown and widely disperse actors[28]. However, permissionless
blockchain must have slow block creation speeds, taking into account the
propagation speeds of nodes within the network. Permissionless blockchain
work with unknown users, which requires additional security measurements
to prevent abuses and guarantee the integrity of the information[15]. These
measurements increase the system latency, providing a limited throughput
in terms of transactions per second. At the time of writing, Bitcoin process
around five transactions per second, while Ethereum process close to 20 per
second [29].

Permissioned blockchains have much lower latency but suffer from a severe
scalability issue. The networking overhead incurred from voting mechanisms
limits permissioned blockchains to scale to only hundreds of nodes[50], as
shown in Figure 2.4. Despite the decentralized architecture, permissioned
blockchains are not entirely decentralized in terms of administration as peers
have different levels of permissions [13].

For early adopters of this new technology, private blockchains present a
harmless transition from traditional centralized systems [13]. Access con-
trol and higher throughput enable cross-organization business processes [52],
which has proven beneficial on domains such as Manufacturing [23], Smart
Homes[80], and Communications[20], to name a few.

However, an increasing number of blockchain-based systems are thriving

27

2.4. SMART CONTRACTS CHAPTER 2. BLOCKCHAIN

Figure 2.4: Performance and scalablity of different consensus (adapted from [1]).

from permissionless networks. Applications in Energy Trading [81], Utilities
management [82, 83], Land ownership [84] [85], Remote Sensing [84] are a
few examples embracing the unique benefits offered by public blockchain
networks and the possibility to securely interact with unknown actors.

2.4 Smart contracts

Smart contracts are scripts stored in the blockchain, roughly similar to stored
procedures in a database [12]. Bitcoin offers limited scripting capabilities
through a restricted set of instructions that allow, for example, multi-signature
transactions and escrow agreements [15]. To overcome the scripting limita-
tion, Ethereum [42] extended Bitcoin to include a Turing-Complete program-
ming language, allowing the development of more complex software applica-
tions called smart contracts [46]. The term “smart contract” was coined by N.
Szabo with the objective of “securing relationships on public network” [86].
In blockchain networks, smart contracts perform the function of carrying out

28

CHAPTER 2. BLOCKCHAIN 2.4. SMART CONTRACTS

Table 2.1: Comparison of public and private blockchains.

Public Blockchain Private Blockchain
Participation in Consensus All nodes Selected Nodes
Access Public read/write Can be restricted
Identity Pseudo-anonymous Approved participants
Immutability Yes Partial
Transaction Processing Speed Slow Fast
Permissionless Yes No

Consensus Algorithms PoW [29], PoS [57]
PBFT [77], FBFT [48] [77]

Tendermint [45]
PoET [78]

Implementations
Bitcoin[40], Ethereum[46]

Litecoin [29]

Hyperledger Fabric[77],
Hyperledger Sawtooth [78]

Stellar [48]
Multichain [49]

transactions in a predetermined fashion agreed by interacting actors.

A smart contract is a distributed software stored in the blockchain that
implements functions callable by any actor using transactions. Once on the
blockchain, the code in the smart-contract is immutable [13]. Every time a
smart contract is called, the software runs deterministically in all the peers
at the same time. The exact execution output enforces the agreement among
actors without the need for any third-party validator. The trust in the valid
execution of the code arises from the trust in the underlying blockchain
system[52].

Smart contracts have an internal state composed of storage and a bal-
ance. The storage is a private data repository, and the balance allows the
smart contract to generate transactions [12]. Smart contracts can process in-
formation from the blockchain, create new transactions, and make decisions
on behalf of their creators [87]. Moreover, smart contracts can instantiate
and invoke other smart contracts [52]. Thus, smart contracts can be seen as

29

2.4. SALIENT FEATURES CHAPTER 2. BLOCKCHAIN

“autonomous agents" as they have their own identity and are considered an
actor on the blockchain system [88].

While Bitcoin is considered the reference implementation for the blockchain
protocol, the reference for smart contracts is Ethereum [89]. Permission-
less blockchains have taken Ethereum as the model for implementing smart
contract functionalities or provide direct compatibility with Ethereum smart
contracts [47]. Thus, smart contracts provide a general-purpose programmable
infrastructure [33] to implement different types of processes [52] and create
new types of decentralized applications.

2.5 Salient features of blockchain technology

Blockchain provides a decentralized, trustless environment where mutually
untrusted actors can interact without a validating intermediary [13]. Appli-
cations that previously required a trusted intermediary can now work in a
decentralized manner [12]. Blockchain enables this secure environment by a
unique combination of inherent properties and working principles. Accord-
ing to current literature, the following are the most important features of
blockchain technology enabling decentralized trust.

Transparency On a public blockchain, there are no restrictions to access
the system, and all transactions are visible to any system actors, creating a
real transparent environment. [25, 55, 90, 28, 12].

Auditability Any actor can download a copy of the blockchain, making
the information available for everyone to query, verify, and audit. The use
of digital signatures adds non-reputability to this public verification of the
blockchain. [37, 32, 12, 25, 55].

Immutability Once a transaction reaches finality, it becomes immutable.
Transactions can not be modified or deleted without a substantial amount of
computing. [13, 91, 25, 90, 37].

30

CHAPTER 2. BLOCKCHAIN 2.5. SALIENT FEATURES

Integrity The cryptographic hashes of blocks and transactions combined
with asymmetric cryptography protect from unauthorized changes on the
information. [13, 91, 25, 90, 33, 37].

Openness On the one hand, blockchain implementations typically open-
source. On the other hand, public blockchains are open to any user to join
the system. [90, 13, 12, 87].

Scalability Distributed systems can dynamically adjust their resources.
Moreover, they remove the bottleneck imposed by the presence of centralized
services. [23, 90, 87, 13, 12].

Neutrality New information added to the blockchain is agreed upon by
the peers via decentralized consensus making the system censorship-resistant.
On a public blockchain, all peers have the same rights, creating a system
based on distributed power. [87, 12, 37, 33].

Fault-tolerance The decentralized nature of blockchain eliminates the
existence of a single point of failure in the architecture. All blockchain peers
contain identical replicas of the ledger records, adding inherent redundancy.
[12, 37, 55, 13].

Figure 2.5: Main features of blockchain technology.

31

2.5. SALIENT FEATURES CHAPTER 2. BLOCKCHAIN

These features interconnect, as shown in Figure 2.5, to enable decen-
tralized trust among unknown actors. Moreover, smart contracts provide a
platform to develop new types of decentralized applications. Cryptocurren-
cies are the first application of the record-keeping and trustless environment
of blockchains. Despite the current limitations (e.g., latency, transaction
throughput), the technology holds the potential to support other types of
applications that required secure interactions between unknown actors.

32

Chapter 3

State of the Art in integrating
blockchain and IoT

This chapter contains text taken from the published work:

– Pincheira, M., Vecchio, M., Giaffreda, R., & Kanhere, S. S. (2021).Cost-effective IoT devices as
trustworthy data sources for a blockchain-based water management system in precision agriculture.
Computers and Electronics in Agriculture, 180, 105889.

– Ali, M. S., Vecchio, M., Pincheira, M., Dolui, K., Antonelli, F., & Rehmani, M. H. (2018).Appli-
cations of blockchains in the Internet of Things: A comprehensive survey. IEEE Communications
Surveys & Tutorials, 21(2), 1676-1717.

The Internet of Things (IoT) is a concept that describes an interconnected
system where billions of everyday objects act as sensing devices creating ubiq-
uitous applications [7]. The main objective of IoT is to connect a heteroge-
neous group of devices. These devices sense, collect, analyze, and store large
amounts of data to improve the awareness of the physical environment [6].
IoT is a disruptive technology solving an increasing number of present-day
issues in domains such as Smart Cities, Agriculture, Health, and Industry,
to name a few [7].

IoT systems are based on computationally-constrained devices capable
of sensing the surrounding environment and interact with several other IoT
devices creating complex systems [4]. Currently, IoT systems are based on
centralized architectures, where an intermediary enables the trust for the

33

CHAPTER 3. STATE OF THE ART

device interactions. Centralized architectures simplify the design and the de-
ployment of IoT systems; however, they also introduce challenges and risks
regarding security and privacy [92]. Furthermore, an architecture that re-
quires an intermediary for trusted interactions between devices will not scale
at the same exponential growth of IoT applications [13].

In recent years there has been growing interest in blockchain as a possible
solution to address these concerns. As described in Section 2.5, blockchain
provides a trustless environment enabling interactions between mutually un-
trusted actors without a validating intermediary. Current literature proposes
different integration schemes for blockchain and IoT. These schemes define
distinct roles for the various types of IoT devices according to their capabil-
ities. However, far too little attention has been paid to how blockchain is
integrated with the core of IoT systems, i.e., the constrained sensing devices.

In this chapter, we present the state-of-the-art regarding the integration
of blockchain technology in the Internet of Things domain. First, we de-
scribe modern IoT architectures using a component-oriented approach and
a service-oriented approach. We identify the requirements and current chal-
lenges of the IoT systems and highlight the benefits that blockchain offers
to tackle these challenges. Section 3.2 reviews the most relevant blockchain
and IoT integration schemes found in current literature. The schemes are
classified into three categories, considering the architecture of IoT systems.
The chapter concludes with a gap analysis for the integration of blockchain
and IoT, focusing on the constrained sensing devices as direct actors in a
blockchain system. This gap presents the motivation and requirements for
the integration framework proposed in this thesis.

34

CHAPTER 3. STATE OF THE ART 3.1. IOT LAYERED ARCHITECTURES

3.1 IoT layered architectures

Modern IoT systems consist of several components, each of them with unique
constraints and capabilities [4]. These components can be organized using a
layered-architecture working as a reference for IoT systems. Since the coinage
of the term “Internet of Things” in 1999, the reference architecture has gone
through several designs that include up to 7 different layers, as proposed by
Cisco Systems Inc1.

The architecture defines each layer and the components within and there
are several ways to approach an architectural design [9]. Typically, IoT
architectures follow a component-oriented approach, a service-oriented ap-
proach, or a mixture of both. A component-oriented approach focuses on the
devices, their requirements, and constraints from a functional perspective
[6]. A service-oriented approach focus on the expected functionalities and
requirements from an application perspective [2].

Following a component-oriented approach, the trend of the literature is a
3-layer architecture [6, 19, 93, 9] , as shown in Figure 3.1. The pyramidal
shape represents the scale (i.e., number of devices) of each of the layers, and
the typical data flow starts at the bottom layer and moves through the top.

On the bottom, the Device Layer is the core of IoT systems, comprising
the sensing devices that acquire data from the physical world. These devices
are small and cost-effective [7, 3], favoring low-power energy consumption
modes against capabilities such as processing, storage, or connectivity [5, 3].
The Device Layer is also called the perception layer or physically layer [6,
5]. In the middle, the Edge Layer provides connectivity and additional
computational power to the sensing devices. This layer is sometimes also
referred to as gateway layer or network layer [6]) and includes less-constrained
devices in terms of computing capabilities and communications.

1https://www.cisco.com/

35

3.1. IOT ARCHITECTURES CHAPTER 3. STATE OF THE ART

At the top of the architecture, the Cloud Layer represents powerful
servers responsible for processing and storing the data [6]. IoT applications
are typically hosted at this layer, giving the users an entry point to the entire
IoT system.

Figure 3.1 shows the estimated scale of each layer (i.e., number of devices).
Following this architecture, the typical data flow starts at the Device Layer
sensing environmental parameters. The sensed-data is sent Edge Layer that
provides the connectivity required to reach the Cloud Layer. Once the sensed-
data reaches the top layer, it is processed and stored as required by the IoT
application.

Figure 3.1: Component-Oriented Architecture for modern IoT systems.

In recent years, the Service-Oriented Architecture (SoA) [94] approach
is attracting considerable interest as an alternative to describe IoT systems
[6, 4]. The different components of IoT systems work together as networked
devices, presenting the IoT applications as services on service-oriented archi-
tecture [2]. As surveyed on [2], the principal focus for SoA in IoT is security
[95, 2] and the architecture is usually arranged into three layers as shown in
Figure 3.2.

36

CHAPTER 3. STATE OF THE ART 3.1. IOT ARCHITECTURES

Figure 3.2: Service-Oriented Architecture for IoT systems (extracted from [2])

On the SoA architecture, the Physical Layer groups both Device Layer
and Edge Layer of the previous component-oriented architecture. From a
SoA perspective, both components are responsible for interconnecting physi-
cal sensing entities to internet services. One of the key elements that support
the entire architecture is a unique device identifier [2], as shown in Figure 3.2.
TheNetwork Layer supports the Internet as the communication channel for
connecting the sensing devices, following a network-oriented approach. The
objective of this layer is to enable information sharing between IoT devices
and traditional IT systems. At the top, the Service Layer drives towards
the seamless interoperation between IoT and Internet services [2], following
a semantic-oriented approach. At this layer, the identification of traditional
application requirements semantically defines an IoT service. Among the re-
quirements, one key element is that the IoT service needs to be accessible by
standard interfaces to support the demands from users and applications [2].

37

3.1. IOT ARCHITECTURES CHAPTER 3. STATE OF THE ART

To summarize, both architectures aim to describe the diverse elements
composing modern IoT systems, their capabilities, and their functionalities
with different levels of abstractions. The first approach, as shown in Figure
3.1, is component-oriented. The approach focuses on describing the capabil-
ities and constraints of the devices. The second approach is service-oriented,
as shown in Figure 3.2. This approach focuses on describing the functional-
ities and expected behaviors of each IoT component. Thus, both architec-
tures provide different details to describe the complexities behind modern
IoT systems and should be considered on an blockchain and IoT integration
framework.

3.1.1 Requirements of IoT systems

The requirements of IoT systems vary considerably within domains and use
cases (i.e., IoT applications). For instance, applications in Industrial envi-
ronments [4] favor high connectivity with near real-time response. These
requirements demand IoT devices (at the device layer) with a high compu-
tational capacity and fast network communications, increasing the energy
requirements. Additionally, these environments impose higher restrictions in
terms of access control and permissions at the cloud layer.

Another example is smart-cities[3], where one of the main requirements is
mobility. Sensing devices should be smaller and portable and demand con-
stant connectivity even while changing their location. Applications will favor
low-power consumption devices to achieve more lasting energy autonomy,
lowering communications and processing speeds. Additionally, to compen-
sate for periods without network access, sensing devices favor storage and
memory versus processing power. Similarly, Health Care [96] also values mo-
bility and pervasiveness of the IoT devices but introduces additional security
and privacy requirements. These requirements demand strict security and
privacy policies that need to be defined and guaranteed in all architecture

38

CHAPTER 3. STATE OF THE ART 3.1. IOT ARCHITECTURES

layers.
Finally, Agriculture is one of the most restricting IoT domains. Precision

agriculture applications require power efficiency and low-cost devices to guar-
antee large-scale, cost-effective, and long-term installations [21]. Moreover,
agriculture applications in this domain require energy-efficient communica-
tion networks [97], favoring coverage over speed.

A complete analysis of all possible application requirements is beyond
the scope of this thesis. We focused our research on a subset of system
requirements with a higher impact on the sensing devices. Based on the
surveyed literature, we define the following as a list of traditional constraints
that need to be addressed in IoT systems.

• Connectivity : Communications are the key to the complex intercon-
nections inside of IoT systems. Connectivity requirements (i.e., latency,
bandwidth, coverage, and mobility) directly define each component of
the entire IoT system. For instance, the cloud layer is typically based
on IP Internet access, while the device layer might use RF commu-
nications. This scenario forces the edge layer to implement different
protocols to provide the expected connectivity. Moreover, communica-
tions are typically one of the most power-consuming tasks of the IoT
device work-cycle. [5, 6, 3, 98, 7, 99, 100]

• Computing : The computing power (i.e., processing, memory, and
available storage) is a defining requirement for the entire architecture.
Sensing devices are typically resource-constrained to reduce size and
cost, and microcontrollers provide the most suitable platform. If sens-
ing devices are resource-constrained, the edge layer needs to compensate
for the missing computing, storage, or communication capabilities, fa-
voring system-on-a-chip hardware (SoC). The computing requirements
also determine the services required from the provider at the cloud layer.

39

3.1. IOT ARCHITECTURES CHAPTER 3. STATE OF THE ART

[5, 4, 7, 99, 101]

• Energy : This constraint reflects energy requirements such as the en-
ergy source (e.g., battery, solar-powered, energy-harvesting) and the
autonomy (e.g., days, months, years), particularly at the device and
edge layers. Different communication protocols will have varying en-
ergy requirements where typically faster speeds require additional en-
ergy. The same applies to computing requirements as processing power
increases energy consumption. However, energy is also a restriction
directly imposed by the IoT application. For instance, Smart Cities ap-
plications will require mobile battery-powered devices, while Industrial
applications might provide continuous energy sources for static devices.
[5, 98, 4, 7, 3, 99]

• Scale : This requirement reflects the size of the IoT system in terms
of users and devices. IoT systems usually employ a massive number of
sensing devices to achieve the pervasiveness required by IoT applica-
tions. On the one hand, reductions in hardware costs foster the number
of devices at the lower layers. On the other hand, the broad adoption
of IoT translates into use cases (e.g., Smart Cities) involving thousands
of users at the application layer. [101, 4, 6, 7, 5]

• Costs : Cost becomes a constraint when selecting the sensing devices
which are the core of the IoT system. A sensing device with high
computing power, fast connectivity, and extended energy autonomy is
achievable but with a high monetary cost. Large-scale deployments (i.e.,
with a large number of devices), as applications in smart cities or agri-
culture, demand cost-effective devices for achieving economic feasibility.
[101, 3, 7, 6, 5]

This list of requirements, while not exhaustive, provides a general overview
of the typical constraints that IoT systems need to take into consideration.

40

CHAPTER 3. STATE OF THE ART 3.1. IOT ARCHITECTURES

Therefore, a framework that integrates blockchain into the IoT must address
these requirements in all architectural layers.

3.1.2 Challenges in centralized IoT architectures

Centralized cloud-architectures are the predominant scheme for building IoT
platforms [13]. In these architectures, a central server manages several tasks
such as data handling, device coordination, and actors authorization [9]. Cen-
tralized services have contributed to the exponential growth of IoT; however,
they have introduced several concerns regarding trust and data transparency
[28]. Centralized cloud services act as a black box for IoT services and IoT
users do not have control and total confidence in how the data they share will
be used [13]. Moreover, these centralized servers are intermediaries present
in all interactions of the actors in the system [12]. Based on the surveyed
literature, the following are some of the main challenges currently affecting
centralized IoT architectures.

• Security The diverse types of interconnected IoT devices provide sev-
eral attack surfaces that are difficult to immunize against security threats.
The entire IoT system exposed many entry-points to traditional IT at-
tacks such as phishing, password security, message spoofing/alteration,
traffic analysis, distributed denial of Service, Sybil attack, and eaves-
dropping, among many others[6]. The edge layer is another entry point
to the system with inherent threats and risks. An attack on one gateway
compromises the entire device layer, and thus, the trustworthiness of the
sensed data of several IoT devices [13]. Finally, IoT devices are com-
monly isolated hardware solutions that, depending on their deployment
conditions, are subject to tampering in ways that may be unpredictable
by manufacturers. These attacks can alter how devices measure the
physical world or how they share the data. Moreover, very few systems

41

3.1. IOT ARCHITECTURES CHAPTER 3. STATE OF THE ART

securely handle the device identity, enabling attacks such as node cap-
ture, malicious code injection, false data injection, and message replay,
to name a few[6]. [6, 5, 4, 7, 101, 13, 100, 98]

• Availability The IoT represents a proliferation of always-available smart
devices that continuously collect data from the environment [7]. This
high availability may not always be the case in architectures involv-
ing centralized servers [100]. An attack on the centralized provider can
compromise the entire application, affecting hundreds of users and thou-
sands of devices [99]. Moreover, since cloud services are multitenant by
nature, an attack on a single provider can directly reach several IoT
applications, increasing the impact of such an attack. [101, 6, 4, 7, 99]

• Data Managemenet The data generated by IoT devices may offer
detailed information about the context where the device exists [102]. In
many domains (e.g., Health Care, Smart Home), the data collected by
the IoT devices describe sensitive personal information about individuals
[4]. In the current IoT service provision, users surrender their data to
centralized service providers acting as isolated silos. On the one hand,
the provider might collect this information without any explicit user
consent [100]. On the other hand, this information can be later disclosed
to third parties, withholding users of control on which data and to whom
their data is given access [102]. Additionally, users lack the tools for
verifying the integrity of the data in the IoT system, starting at the
device and finishing at the application. [7, 102, 6, 4, 100]

• Potential Growth IoT systems are typically composed of numerous
sensing devices to create ubiquitous systems. The volume of data gen-
erated by these sensing devices can be enormous and difficult to manage
for elaboration, transmission, and storage[4]. IoT systems must scale to
efficiently handle this massive growing volume of data[103]. However,

42

CHAPTER 3. STATE OF THE ART 3.1. IOT ARCHITECTURES

the presence of a central service-provider can create a bottleneck limiting
the performance of the entire systems[13]. [98, 5, 103, 4, 7]

• Interoperability On the one hand, IoT systems interconnect several
types of devices with a plethora of hardware architectures. This het-
erogeneous system requires the connections between various types of
networks using multiple communications technologies[4]. On the other
hand, the IoT is full of standards supported by multi-national gover-
nance bodies, alliances, or organizations [104]. These standards cover
different aspects of IoT, from communication technologies to architec-
tures [101]. The uncontrolled proliferation of standards only leads to
fragmentation and becomes a real barrier for the IoT adoption in multi-
ple application domains [104]. IoT systems should avoid isolated systems
based on proprietary solutions and enable data sharing and interoper-
ability among these closes subsystems[7]. [5, 101, 4, 104, 3]

These challenges provide a general overview of the problems that IoT
systems are currently facing. Centralized cloud-architectures fostered the
development of the IoT domain. However, the centralized model is also
responsible for several of the reviewed challenges. Therefore, a decentralized
paradigm might be the key to develop new types of decentralized IoT systems.

3.1.3 Decentralization of IoT through blockchain technology

The salient features of blockchain, described in Section 2.5, can help to over-
come several concerns of centralized IoT architectures. Thus, blockchain
technology is an attractive solution for developing a secure decentralized
architecture for IoT systems [12]. The “trustless environment" enabled by
blockchain removes the need for trusted centralized entities to handle device

43

3.1. INTEGRATION SCHEMES CHAPTER 3. STATE OF THE ART

interactions [87]. Moreover, a decentralized system can scale better to fit the
exponential growth of IoT systems [13].

Security on decentralized IoT systems benefits directly from several of
the intrinsic features of blockchain [23]. For instance, the cost of creating
transactions (either monetary or computational) protect the network against
flooding and DDoS attacks. The use of cryptography can prevent and miti-
gate false data injection or node capture attacks [13].

Blockchain-based IoT systems can soften concerns regarding data man-
agement by the inherent properties of auditability and transparency [90].
Regarding data corruption, data integrity is one of the core properties of the
blockchain [25]. Moreover, blockchain networks store redundant replicas of
records over blockchain peers preventing data loss.

IoT systems require high availability, which may not always be the case in
architectures involving centralized servers. Blockchains are Byzantine fault-
tolerant record-keeping mechanisms that can identify failures through dis-
tributed consensus protocols [55].

Finally, blockchain is a big step towards interoperability [23]. On the one
hand, blockchain technology work over heterogeneous hardware platforms,
eliminating the dependency on a particular provider. On the other hand,
smart contracts provide a semantics-independent platform to develop pub-
licly available system interfaces [12].

3.2 Integration schemes for blockchain and IoT

Blockchain is in the early stages of research and development, and there
are still multiple research challenges towards seamlessly integrating IoT and
blockchains [12]. Among these challenges, one critical problem is to define
the roles for each device in a blockchain-based IoT system [13].

The possible role of an actor in a blockchain system depends on the

44

CHAPTER 3. STATE OF THE ART 3.2. INTEGRATION SCHEMES

blockchain implementation. Private blockchains can define different permis-
sion levels that translate into several roles[47, 78]. On the other hand, public
blockchains typically provide a reduced number of roles [42]. However, for
both types of blockchains three major roles are generally accepted, i.e., full
node, light node, and transaction issuer [40, 42, 13].

Full nodes hold the complete copy of the blockchain, issue transactions,
validate transactions, and may add new blocks by participating in the con-
sensus algorithms [40, 42]. Light nodes hold a reduced copy of the blockchain,
issue and validate transactions, but cannot add new blocks. Light nodes are
used as an entry point to the blockchain, using limited computational re-
sources [46]. A Transaction Issuer, also called a blockchain client, does not
have a copy of the blockchain and neither has the capabilities to create a new
block. However, it holds the cryptographic capabilities to create and send
transactions to the blockchain through light or full nodes [13]. These nodes
can be in the same local network as the transaction-issuer, or in the case of
the Ethereum platform, a third-party service like Infura 2 and Metamask3.
The former is a more suitable choice since using third-party services nullifies
the point of decentralization. Table 3.1 summarizes the general roles in a
blockchain system.

Table 3.1: Node types in blockchain networks

Node Type Storage Validator

Full Node Full Blockchain Yes
Light Node Block headers No

Transaction Issuer None No

Based on their capabilities, devices at the cloud layer can assume any role
in the blockchain system and even participate in the consensus algorithms [6,

2www.infura.io
3www.metamask.io

45

3.2. INTEGRATION SCHEMES CHAPTER 3. STATE OF THE ART

13]. Devices at the edge can usually take any role, but they rarely participate
in the consensus. In this case, other full nodes in the blockchain network can
carry out decentralized consensus and block validation [13]. However, sensing
devices typically have limited capabilities, restricting their possible roles in
the blockchain-based system. Thus, integration architectures are essential to
describe blockchain-based IoT systems [13].

While an increasing number of works are integrating blockchain into IoT
systems, few of them provide a direct role for most constrained devices. If
sensing devices are not direct actors on the blockchain, they do not have a
blockchain identity [32]. From the surveyed literature, we have categorized
the proposed architectures into three integration levels: at the cloud, at the
edge, and the device. The layer at which blockchain is integrated reflects
where the blockchain identity of the IoT device is managed.

Figure 3.3: Blockchain integration for IoT systems

46

CHAPTER 3. STATE OF THE ART 3.2. INTEGRATION SCHEMES

3.2.1 Cloud-level integration

This approach preserves the traditional IoT architecture and the blockchain
act as an additional element in the system. Cloud-level integration is pro-
moted by an increasing number of cloud service-providers offering Blockchain-
as-a-Service (BaaS). In BaaS, users access a blockchain node or blockchain-
related services for a fixed monthly price [105, 106]. This integration scheme
offers the benefits of high computational power, but it fails to achieve full
decentralization. Thus, cloud-level integration might be suitable for a per-
missioned blockchain-based system.

3.2.2 Edge-level integration

IoT devices at the Edge Layer (e.g, a gateway) acts as a transaction issuer,
but it can also serve as a Light Node or Full Node according to the de-
vice capabilities. Devices from the sensing Layer register with the gateway
device, and the gateway issues transactions to the blockchain. The degree
of decentralization achieved through this approach is not as fine-grained as
device-level integration. This integration scheme is currently the most com-
mon approach for blockchain-based IoT systems. In the following paragraphs,
we discuss relevant edge-level integrations architectures found in current lit-
erature.

One of the first architectures integrating blockchain and IoT is presented
by authors in [23] for a Cloud-Based manufacturing platform. Figure 3.4a
shows the system architecture based on a gateway device called BPIIoT.
The device allows connecting existing Industrial Machinery with blockchain
and other Industrial cloud-based services. Blockchain is a service inside the
BPIIoT and interacts with an Ethereum implementation. Thus, the BPIIoT
manages the identity of each IoT device in the system. This architecture is a
clear example of edge-level integration, based on the device used and its role

47

3.2. INTEGRATION SCHEMES CHAPTER 3. STATE OF THE ART

in the architecture.

A layered architecture is proposed in [80] and [107] for a Smart Home use
case. Authors introduce the Smart Home Manager (SHM), a device acting
as a bridge between IoT devices and the blockchain. The device’s identities
are managed by the SHM, as it keeps a shared key for local communications
with the devices. Moreover, the architecture includes different blockchains,
as each home has its private instance of Ethereum. Thus, this architecture
presents another edge-level integration, focused on security and privacy in a
smart-home environment, limiting the extension to other use-cases.

Authors of [108] proposed a privacy-aware gateway, which can connect
BLE-based devices to a private Ethereum network. Blockchain provides a
repository of access and privacy policies for each of the IoT devices. Devices
send their information to the blockchain through the gateway. Moreover,
users also must go through the gateway to access detailed information about
each IoT device. Thus, the gateway becomes a mandatory intermediary for
the interactions of both users and devices.

One of the most cited works integrating blockchain with IoT is by Novo
[25]. The author presents an architecture for managing access policies for IoT
devices through the blockchain. Figure 3.4b shows the proposed architecture
based on a management-hub, a device that acts both as a gateway and Full
Node in a private Ethereum implementation. Once again, the integration is
at edge-level. Moreover, the architecture considers that the IoT devices are
not linked nor connected to the blockchain. The IoT devices interact with
the management-hub through typical IoT protocols (i.e., CoAP messages)
for sending and receiving blockchain-information.

To summarize, although this approach is innovative, it does not removes
the intermediary (i.e., the edge-level device) to access the blockchain sys-
tem. The constrained capabilities of the sensing IoT devices may oblige
using these intermediaries to compensate for non-blockchain (e.g., commu-

48

CHAPTER 3. STATE OF THE ART 3.2. SMART CONTRACTS AND IOT

nications, storage, processing power). However, an intermediary managing
the devices identity is a step back towards a decentralized IoT environment.
On the one hand, the sensing device is linked to a particular component,
reducing its mobility and flexibility. On the other hand, the intermediary
introduces security concerns in the system, weakening the trustworthiness of
the acquired data [32]. Moreover, since the intermediary is at the edge layer,
it provides a bigger attack surface for the IoT system.

3.2.3 Device-level integration

Integrating blockchain at the device layer, as mentioned in [13] and [12], is the
optimal approach to extend the benefits of blockchain to the IoT systems.
In this scheme, the device itself is the transaction issuer. The IoT device
manages its own identity and does not rely on any other component in the
system. The device interacts directly with the blockchain, creating a trust-
worthy data-source [32]. The trade-off here is a higher degree of autonomy of
IoT devices and applications, versus increased computational complexity of
IoT hardware. Thus, the main limitation to achieve this scheme is the lack
of computational power to perform the cryptographic primitives necessary to
manage the blockchain identity.

Few works have addressed this scenario and, to the best of our knowl-
edge, no framework grants constrained sensing IoT devices as direct actors
on public blockchains networks.

3.3 Interactions through smart contracts

After integrating blockchain from a component perspective, it also necessary
to integrate blockchain from an application perspective [33]. Smart con-
tracts present a platform to implement the logic enabling the autonomous
interactions of the IoT devices. With this new paradigm, mutually untrusted

49

3.3. SMART CONTRACTS AND IOT CHAPTER 3. STATE OF THE ART

parties interact by placing the trust in the secure and correct execution of the
smart contract[109]. Thus, smart contracts must provide the functionalities
required by the IoT sensing devices as services for the framework.

According to the recent literature, smart contracts mainly provide “as-
sets management” capabilities to IoT applications, i.e., the ability to create,
transfer, and track an asset [15], [110]. Using this functionality, authors
have proposed use cases where autonomous interactions among devices oc-
cur in the context of a data marketplace [12, 13, 28, 110]. In these cases,
the blockchain provides a billing platform where devices can sell data di-
rectly to users or other devices. Similarly, other authors have also presented
a service marketplace [12, 110, 23], where the devices can rent some of their
capabilities (e.g., storage and CPU power). In both cases, smart contracts
provide only implement the basic functionalities for these types of renting
transactions.

Supply Chain Traceability [12, 13, 23] is another application where smart
contracts are used in conjunction with IoT devices. Traceability is a complex
process where several untrusted actors are involved. Blockchain also provides
an additional layer of transparency and trust, enabling a common shared
ledger of transactions. Currently, IoT devices automatize some of the steps
of this process. For example, devices such as RFID tags and RFID readers
can autonomously indicate when a particular asset arrived at a particular
destination, creating a new transaction in the blockchain visible to all the
actors interested in that asset.

However, there is no approach where smart contracts serve as autonomous
agents representing IoT devices. Once the smart contract is deployed, the
inherent properties of blockchain guarantee that the software will continue
to execute as intended[87]. Thus, a smart contract can take information and
make decisions on behalf of an IoT device enabling autonomous interactions
and not storing data.

50

CHAPTER 3. STATE OF THE ART 3.3. SMART CONTRACTS AND IOT

To this goal, smart contracts need to overcome several issues. Smart
contracts have proved to be the weakest link for the security of blockchain-
based systems, particularly in public networks. When a smart contract is
stored on the blockchain, it becomes immutable and can not be updated as
traditional software [12]. This inherent feature of blockchain translates into
a very peculiar software life-cycle, where updates or new releases are not
straightforward [109]. Additionally, the code of a smart contract is public
since it is deployed by a transaction, making any possible vulnerability easier
to find [23].

The combination of these two properties (immutability and auditability)
may become a threat to applications, as shown by the “DAO exploit”, where
a vulnerability was uncovered and exploited in a smart contract deployed in
the Ethereum network 4. The DAO was a “Decentralized Autonomous Orga-
nization” based on a smart contract that collected venture capital later spent
according to the votes of those who had invested. Without the possibility
of an update to fix the vulnerability, the software remained immutable. An
attacker exploited this vulnerability several times, obtaining over 3.6M of
Ether (near 60M of USD at that time).

Similarly, another vulnerability was found and exploited in the smart con-
tract used by the Parity wallet application 5. A function without the appro-
priated access restrictions allowed an attacker to become the owner of the
contract. This attacker later killed the contact (meaning that it was not
usable anymore) and froze over 500.000 Ethers (200M USD at the time)
belonging to the users of the wallet.

Based on the unique properties of blockchain-based software, current liter-
ature highlights the necessity of adapting and adopting software-engineering
best-practices to the design and development of smart contracts [111, 109,

4https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/
5https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/

51

3.3. SMART CONTRACTS AND IOT CHAPTER 3. STATE OF THE ART

112]. On the one hand, smart contract security is an open and growing re-
search topic[109]. On the other hand, the use of software patterns could help
mitigate the current challenges of blockchain software [113, 109]. A recent
study [89] proved that more than 20% of existing smart contracts are cloned
from industry-approved contract templates, implementing the most common
functionalities.

52

CHAPTER 3. STATE OF THE ART 3.3. SMART CONTRACTS AND IOT

(a) Blockchain-based IoT architecture presented in [23].

(b) Blockchain-based IoT architecture presented in [25].

Figure 3.4: Two examples of IoT architectures integrating blockchain at Edge-level.

53

3.4. SUMMARY AND GAP ANALYSIS CHAPTER 3. STATE OF THE ART

3.4 Summary and gap analysis

In this section, we have described IoT systems and their most crucial re-
quirements. Then, we have identified the current challenges linked to the
centralized cloud-architecture of modern IoT systems and how blockchain
technology can alleviate some of these concerns. We followed these descrip-
tions surveying the existing literature describing the integration of blockchain
and IoT, organizing the works into three integration schemes.

Despite this growing interest in blockchains as open, transparent, and
auditable tools for modern IoT applications, there has been little discussion
on the impact that blockchain may have on sensing devices. These devices
are the core of IoT systems and typically the most constrained hardware
elements of the technology stack.

Most of the current works in the literature, aiming at enabling blockchain
functionalities at the device level, still favor IoT devices with computing re-
quirements (in terms of processing, memory, energy) more similar to those
devices belonging to the Edge Layer (i.e., system-on-a-chip) than the Device
Layer (i.e., microcontrollers) [18]. This approach contrast with the average
requirements of many IoT applications (e.g., Agriculture, Smart Cities). In
those applications, power efficiency and low-cost are central concerns to en-
sure cost-effective and long-term operations [21]. It is no coincidence that the
authors of [20] identify the full understanding of the energy requirements and
processing time of this class of devices interacting with a blockchain-based
IoT architecture as one of the most challenging open questions.

When dealing with severely constrained sensing devices that interact with
a blockchain-based system, the usual approach is to rely on other architec-
tural components of the IoT technology stack (i.e., integration at the edge-
level). A significant issue of this approach is that constrained sensing devices
do not directly interact with the blockchain. Thus, they are not direct actors

54

CHAPTER 3. STATE OF THE ART 3.4. SUMMARY AND GAP ANALYSIS

of the blockchain-based system. This intermediary still introduces security
concerns in the system [6] and considering that this intermediary is typically
at the gateway layer, there is a bigger attack surface that may compromise
the data integrity of several sensing devices. Thus, adopting sensor nodes as
direct actors on a public blockchain infrastructure needs detailed investiga-
tion.

IoT devices can be considered oracles of a blockchain-based system, i.e.,
external components that provide information not available on the blockchain
system [114]. IoT sensing devices as direct actors of the blockchain is a
considerable step toward trustworthy oracles for blockchain systems [32].

Another topic missing from the current literature is the benefits of us-
ing public blockchain infrastructures. The majority of the studied works
focused on permissioned infrastructures [18, 26]. This approach is suitable
for applications and domains with predefined restrictions and constraints re-
garding access and authorization. However, a permissioned blockchain does
not provide the same level of openness, decentralization, and neutrality as a
permissionless network. Moreover, the PoW consensus and the large number
of honest miners found on existing public blockchains present a more secure
platform for developing decentralized applications [28, 29].

Therefore, for the effective design and implementation of an integration
framework for blockchain and IoT, we first need to identify and address
the main technical challenges of having such constrained sensing devices as
trusted oracles of a blockchain-based system [32]. The limitations imposed
by the communication capabilities and the reduced energy budgets of some
IoT deployments need to be identified, quantified, and analyzed by the frame-
work, following a component-oriented approach.

Once the constrained sensing devices are direct actors of the blockchain-
based systems, we need to design high-level software components to develop
decentralized IoT applications. Smart contracts have the capabilities for im-

55

3.4. SUMMARY AND GAP ANALYSIS CHAPTER 3. STATE OF THE ART

plementing complex business logic; however, there is limited general knowl-
edge about the best practices for blockchain-oriented software engineer [109].
Currently, using design patterns for smart contracts can help to avoid secu-
rity pitfalls and prevent vulnerabilities [113]. Design patterns should describe
the typical functionalities that the software component provides. The frame-
work must identify these general functionalities that smart contracts should
provide to IoT applications following a service-oriented approach.

56

Part II: Blockchain-based decentralized
IoT applications

Chapter 4

A novel trustless architecture for
blockchain-based IoT applications

This chapter contains text taken from the published work:

– Pincheira, M., Ali, M. S., Vecchio, M., & Giaffreda, R. (2018, May).Blockchain-based traceability
in Agri-Food supply chain management: A practical implementation. In 2018 IoT Vertical and
Topical Summit on Agriculture-Tuscany (IOT Tuscany) (pp. 1-4). IEEE.

– Pincheira, M., Vecchio, M., Giaffreda, R., & Kanhere, S. S. (2020, May). Exploiting constrained
IoT devices in a trustless blockchain-based water management system. In 2020 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC) (pp. 1-7). IEEE.

– Pincheira, M., & Vecchio, M. (2020, June).Towards Trusted Data on Decentralized IoT Applica-
tions: Integrating Blockchain in Constrained Devices. In 2020 IEEE International Conference on
Communications Workshops (ICC Workshops) (pp. 1-6). IEEE.

In this chapter, we present a novel trustless architecture for blockchain-
based IoT applications using constrained devices. The architecture is the
product of a DSR process over two case studies in the agricultural domain.
The chapter is structured as follows. Section 4.1 presets a high-level overview
of the architecture. Section 4.2 describes the novel contributions of the ar-
chitecture. To conclude, section 4.3 conceptualizes the architecture into a
layered framework and describes each of its components. The proposed ar-
chitecture is further analyzed and evaluated with the case studies on Chapters
5 and 6.

59

4.1. HIGH-LEVEL ARCHITECTURE CHAPTER 4. PROPOSED APPROACH

4.1 High-level architecture

The proposed blockchain-based architecture relies on the benefits of blockchain
technology on permissionless network (Section 2.5) to alleviate some of the
current challenges in centralized IoT architectures (Section 3.1.2) considering
the requirements of constrained sensing devices (Section 3.1.1). Figure 4.1
presents a high-level overview of the architecture.

Figure 4.1: High-level overview of the novel trustless architecture for blockchain-based
IoT applications

The architecture presents three novel characteristics: i) it consider con-
strained sensing devices as direct actors on the blockchain system, ii) it fa-
vors a permissionless blockchain infrastructure, iii) it provides a basic layer
of services to develop new types of decentralized IoT applications. The ar-

60

CHAPTER 4. PROPOSED APPROACH 4.2. NOVEL CONTRIBUTIONS

chitecture assumes that each device securely manages its cryptographic keys.
Although this is a strong assumption, it is aligned with the state of the
art [30, 31]. Furthermore, blockchain holds the potential to more complex
identity schemes as key-building blocks for realizing completely decentralized
public key infrastructures [11]. However, this research falls outside the focus
of this thesis.

4.2 Novel contributions

The proposed architecture provides several benefits to mitigate some of the
current challenges of IoT systems, as previously described in Section 3.1.3.
Concerning the current gap in the literature (Section 3.4), the architecture
presents the following three novel contributions:

4.2.1 Constrained sensing devices as direct actors on the blockchain
system

The proposed architecture considers low-cost and energy-efficient sensing de-
vices. Sensors are the core for modern IoT systems, and the sensed data is
the base to develop IoT applications [5]. Constrained devices align with the
requirements of modern IoT systems described in Section 3.1.2. In the pro-
posed architecture, sensing devices are direct actors on the blockchain system,
have a unique blockchain identity, and generate digitally signed transactions.
The use of cryptography at the root of the architecture aligns with the cur-
rent security challenges in IoT applications [115]. This approach guarantees
a root of trust for the sensed data towards trust-worthy blockchain oracles
[32].

61

4.2. NOVEL CONTRIBUTIONS CHAPTER 4. PROPOSED APPROACH

4.2.2 Permissionless blockchain as the underlying network

The proposed architecture favors a permissionless/public blockchain network.
Permissionless blockchain networks based on PoW consensus are the most se-
cure platform for developing decentralized applications [28]. The main two
public blockchain networks, i.e., Bitcoin and Ethereum, are estimated to
have 10,000 [37] and 8,000 [116] actives nodes respectively. This network size
provides high levels of redundancy, and fault-tolerance, increasing the avail-
ability of a blockchain-based IoT system. In the proposed architecture, a per-
missionless environment also guarantees the auditability and transparency of
the information. These properties alleviate the concerns regarding data man-
agement on centralized IoT systems. A permissionless system also provides
better scalability to address the potential growth of modern IoT systems. On
the one hand, permissionless networks are easier to scale (Section 2.3.3). On
the other hand, it provides an open platform for the integration of several
unknown actors to increase the system value.

4.2.3 Smart contracts as a software platform

The proposed architecture uses smart contracts to provide the basic ser-
vices for decentralized applications. Smart contracts provide a platform
to define complex business logic, autonomously enforcing agreements be-
tween untrusted actors [33] based on trusted values coming from ubiquitous
IoT devices. This approach allows true IoT interoperability among multi-
vendor devices and applications [7], with the increased security of underlying
blockchain network.

62

CHAPTER 4. PROPOSED APPROACH 4.2. FRAMEWORK

4.3 Blockchain-based decentralized IoT framework

We conceptualized the proposed architecture as the layered framework shown
in Figure 4.1. The framework is composed of three main modules, i.e.,
Blockchain, Gateway, and Device.

Figure 4.2: Blockchain-based decentralized IoT framework.

63

4.3. FRAMEWORK CHAPTER 4. PROPOSED APPROACH

Following the component-oriented perspective of modern IoT architec-
tures, our framework is divided into three modules. The Device module is
located at the Device layer and provides the necessary tools to transform a
constrained sensing device into a direct actor on a blockchain system. The
Gateway module is located at the Edge layer and is a simple relay com-
ponent between the two modules. The Blockchain module replaces the
centralized Cloud Layer with a decentralized Blockchain Layer and provides
an interface for developing new types of decentralized IoT applications.

From a service-oriented perspective, the lower modules address the low-
level requirements of constrained sensing devices. Conversely, upper modules
provide high-level services to develop new types of decentralized IoT appli-
cations.

Formally, the framework can be described as follow: Given a sensing device
d than produces a sensed value v, an IoT system D composed of n sensing
devices is described as :

D = [d1, d2, ...dn] (4.1)

For such IoT system D, our framework considers that

∀ d ∈ D ∃! st ∈ ST (4.2)

where

ST = [st1, st2, ..., stn] (4.3)

Where each stx is the “digital twin” of the device (i.e., SmartTwin) as an
autonomous agent in a permissionless blockchain system B.

This assumes that each device d has its own identity dI based on a unique
pair of cryptographic keys K such that

64

CHAPTER 4. PROPOSED APPROACH 4.3. FRAMEWORK

∀ d ∈ D ∃! K = (dKpublic, dKprivate) (4.4)

This architecture enables the direct interaction between two devices (da, db)
through their corresponding smart contracts (sca, scb) using a transaction
Tx.

Conversely, given a group of x unknown users U such that

U = [u1, u2, ..., ux] (4.5)

The framework enables the creation of a group of y of “Smart Twin Ap-
plications” (i.e., TwinApp) STA such that :

STA = [sta1, sta2, ..., stay] (4.6)

Thus, the framework enables the trustless architecture for blockchain-
based IoT applications without the need for intermediaries between users and
devices. In the framework, constrained sensing devices (D) act as trustwor-
thy data sources on a permissionless blockchain system (B). Smart contracts
provide an abstraction to develop next-generation blockchain-based applica-
tions (STA) that can benefit from any sensing device (ST) and can be used
by any unknown user (U). Figure 4.3 shows the envisioned application of
the framework, and the following sections describe each of the framework
components.

4.3.1 M1: Device module

The device module enables the integration of constrained sensing devices
as direct actors on a blockchain-based system. This module provides the
standard functionalities of an IoT device (i.e., sensing and transmitting) and
the cryptographic functionalities to interact with the blockchain system (i.e.,

65

4.3. FRAMEWORK CHAPTER 4. PROPOSED APPROACH

Figure 4.3: Trustless architecture: Constrained Sensing devices (D) provide trustworthy
information to a permissionless blockchain (B) where unknown users (U) securely interact
with decentralized IoT applications.

identity and api). The following sub-modules describe the four functionalities
of the device module.

• M1.1) Sensing: Controls the sensor that transforms a reading of the
physical world into a sensed data value v. For better compatibility
with existing IoT systems, this sub-module works as traditional sensing
operations in IoT devices.

• M1.2) Blockhain API’: Provides a limited set of methods to inter-
act with high-level functionalities of the blockchain network, i.e., access
and retrieve information and interact with the smart contracts. In par-
ticular, this module specifies the transaction format Tx to match the
corresponding ST . Considering the general structure of a transaction
(Section 2.1.1)

Tx = {Theader, Tdestination, Tdata, Tvalue, Tsignature, Textra} (4.7)

66

CHAPTER 4. PROPOSED APPROACH 4.3. FRAMEWORK

The module provides the definition of Tx and also the values for {Theader,
Tdestination, Textra}. Additionally, the module also provides the oper-
ations to transform Tx into a network-compatible version Tx′ (e.g.,
compressing/decompressing, encoding/decoding) according to the com-
munications capabilities of the device (M1.4)

• M1.3) Blockhain Identity: Provides all the cryptographic functions
required to create a direct interaction with the blockchain (i.e., a valid
transaction Tx). The functions include Elliptic Curve Digital Signature
Algorithm (ECDSA) and hashing algorithms optimized for constrained
devices. The key pair K is managed in this sub-module and provides a
unique identity dI to the device d.

Considering the general structure of a transaction Tx and given a sensed
value v, this modules creates the data of the transaction Tdata, Tvalue,
and the signature Tsignature.

• M1.4) Transmitting: Provides the methods to transmit Tx (or Tx′)
to the gateway, using the communication interface available in the sen-
sor. For better compatibility with existing IoT systems, this sub-module
works as traditional transmitting operations in IoT devices.

4.3.2 M2: Gateway module

The gateway module is a transparent gateway connecting two (or more)
communication interfaces as traditional IoT architectures at the edge layer.
The gateway module can not modify the transactions Tx as is signed by
the sensing devices, guaranteeing data integrity through this layer. The two
sub-modules of this module work as follows:

• M2.1) Receiving: Receives Tx (or Tx′) using the communication
interface that connects with the sensing device. For better compatibility

67

4.3. FRAMEWORK CHAPTER 4. PROPOSED APPROACH

with existing IoT systems, this sub-module works as usual receiving
operations in edge devices.

• M2.2) Blockchain API: Provides all the methods to interact with
high-level functionalities of the blockchain system, i.e., access and re-
trieve information and interact with the smart contracts. The module
also provides the operations to recover Tx from Tx′ (e.g., compress-
ing/decompressing, encoding/decoding). The submodule M1.2 (Blockchain
API’) is a reduced version of this component.

• M2.3) Blockchain Access: Sends Tx to a blockchain node using the
network interface at the edge device. Since blockchain is a peer-to-peer
network, and this sub-module can choose the best peer (e.g., with the
lowest latency) among several options.

4.3.3 M3: Blockchain module

The blockchain module enables a distributed application platform. It relies
on the scripting capabilities of the blockchain platform (i.e., smart contracts).
The framework defines two models as high-level smart contract abstractions
that specify a minimum set of primitives. Applications can extend these
models to fill the requirement of each particular use case. The base models
are SmartTwin and TwinApp

• M3.1) Smart Twin: Defines a base smart contract to create a Smart-
Twin (ST) that represents an IoT device on the blockchain. The contract
implements three methods, namely setValue() to register a value from
the IoT device, getValue() to return the registered value, and callApp()
to interact with a TwinApp. The contract also stores an internal vari-
able called device, representing the identity dI of the device d that can
change the internal state of the SmartTwin. A call to setValue() is only
accepted if it comes from the device d.

68

CHAPTER 4. PROPOSED APPROACH 4.3. FRAMEWORK

Figure 4.4: Class diagram of a sample application using Smart Twins, and Smart Twin
Apps.

• M3.2) Twin App: Defines a base smart contract to create a TwinApp
(STA) that interacts with a SmartTwin contract. The TwinApp imple-
ments two methods, namely registerTwin() and queryTwin() and stores
an internal variable called owner, representing the user uinU that cre-
ated the TwinApp. The method queryTwin() obtains the latest value
stored on a SmartTwin. This method is only valid if SmartTwin has
previously register with the TwinApp using the registerTwin() method.
Registration does not necesary impose restrictions and aims to internal
intializations on the application.

The blockchain module aims to provide high-level components for devel-
oping applications and thus, UML diagrams can provide a better descrip-
tion. Figure 4.4 shows a class diagram representing the SmartTwin and the
TwinApp. Figure 4.5 show a sequence diagram of SmartTwin and a TwinApp
interacting in the context of a sample application.

69

4.3. FRAMEWORK CHAPTER 4. PROPOSED APPROACH

Figure 4.5: Example interactions over the proposed architecture.

70

Chapter 5

A blockchain-based IoT system for
traceability in Agri-Food

This chapter contains text taken from the published work:

– Pincheira, M., Ali, M. S., Vecchio, M., & Giaffreda, R. (2018, May).Blockchain-based traceability
in Agri-Food supply chain management: A practical implementation. In 2018 IoT Vertical and
Topical Summit on Agriculture-Tuscany (IOT Tuscany) (pp. 1-4). IEEE.

This chapter presents AgriBlockIoT, a case study with the first version of
the novel trustless architecture for blockchain-based applications. The pro-
posed architecture seamlessly integrates IoT devices into a blockchain-based
traceability solution for Agri-Food supply chain management. To effectively
assess AgriBlockIoT, we defined a classical use-case within the agricultural
domain, namely from-farm-to-fork. We developed and deployed such use-
case, using two different blockchain implementations, namely Ethereum and
Hyperledger Sawtooth. We evaluated and compared the architecture per-
formance in both implementations in terms of latency, CPU, and network
usage. Finally, we highlighting their main pros and cons of the architecture
when using different types of blockchain implementations.

71

5.1. INTRODUCTION CHAPTER 5. AGRI-FOOD TRACEABILITY

5.1 Introduction

Today, the vast majority of traditional logistic information systems in Agri-
culture and Food (Agri-Food) supply chains merely track and store orders
and deliveries, without providing features as transparency, traceability and
auditability. These features would surely improve food quality and safety,
therefore they are more and more requested by consumers [117]. Thus, sev-
eral Research & Development communities are concentrating their efforts on
adopting some specific Internet of Things IoT technologies such as RFIDs
and Wireless Sensor Networks, or everyday-cheaper connected devices, to
enabled remote monitoring of the conditions in food transportation scenarios
and at a very fine granularity along the whole Agri-Food supply chain, e.g.,
from production to consumption [118].

However, the majority of the current IoT solutions still rely on heavily-
centralized cloud infrastructures, where there is usually a lack of trans-
parency, and by nature presents security threats including availability, data
lock-in, confidentiality and auditability [10].

In the Agri-Food domain, in order to maintain trust and reliability along
the whole supply chain, it is essential for the stored records to be tamper-
proof, while the best case would be if each actor issuing transactions could do
that without relying on any centralized third-party intermediary. A potential
solution to alleviate all of such issues and concerns is the Blockchain technol-
ogy, which is a peer-to-peer digital ledger that does not rely on centralized
servers. Since all the records stored in a blockchain are based on a consensus
reached at least by the absolute majority of peers of the network itself, this
distributed ledger is immutable by design and offers an auditable and trans-
parent source of information. And from an IoT perspective, instead of re-
quiring connectivity to a central cloud, sensor networks in a blockchain-based
traceability solution would only require stable connection to their closely lo-

72

CHAPTER 5. AGRI-FOOD TRACEABILITY 5.2. RELATED WORK

cated peer. Thus, blockchains exposes all the required properties for decen-
tralizing food traceability systems, while making traceable data available at
every step of the supply chain.

In this chapter, we present AgriBlockIoT, a fully-decentralized traceabil-
ity system for the Agri-Food supply chain management. Specifically, the
proposed solution can rely either on the Ethereum [46] or the Hyperledger
Sawtooth1 publicly available blockchain implementations, while it is able to
integrate various IoT sensor devices. By directly producing and consum-
ing valuable information from the IoT devices along the whole supply chain
and storing such data directly in its underlying blockchain, AgriBlockIoT
guarantees transparent and auditable asset traceability. To assess the fea-
sibility of the proposed solution, we engineered and deployed the so-called
from-farm-to-fork use-case: a classical food traceability scenario fostering
certified traceability of food along the whole supply chain, e.g., from agri-
cultural production (the farm-side) to consumption (the fork-side). Then,
we compare the two implementations, in terms of three performance metrics,
namely latency, CPU load, and network usage.

The remaining of this chapter is organized as follows: Section 5.2 summa-
rizes the current state of the art in the adoption of blockchains as an enabling
technology for the traceability in Agri-Food supply chains; Section 5.3 de-
scribes the system architecture of AgriBlockIoT; Section 5.4 contains the
analysis of our preliminary results; Section 5.5 presents the conclusions and
future work.

5.2 Related work

The last few years have witnessed an explosion of research and development
activity around blockchain technology, mainly within the financial technology

1https://www.hyperledger.org/projects/sawtooth

73

5.2. RELATED WORK CHAPTER 5. AGRI-FOOD TRACEABILITY

(FinTech) industry. Blockchain’s intrinsic capability of providing immutable
and tamper-proof records, together with its potential of enabling trust and
reliability among untrusted peers, are extremely attractive features, prevent-
ing this technology to stay relegated into a single vertical sector. For this
reason, several industries beyond the FinTech sector have already identified
the Blockchain technology as a driver for a paradigm shift. For data reliabil-
ity, ProvChain [119] explored the use of the Blockchain technology in a cloud
storage scenario to verify three levels of data provenance: collection, storage
and validation. In this work, the use of blockchains showed good results in
terms of tamper-proof records and user privacy, with very low overhead for
the storage itself. In a similar context, the authors on [120] explored the use
of blockchains with smart-contracts to achieve secure data provenance, using
the Open Provenance Model (OPM) with an access control-based privacy-
preserving solution.

Similarly, the adoption of IoT devices and technologies in the supply chain
management sector has attracted a lot of research interest in the last few
years. From the impact of autonomous identification system [121] to the ap-
plication of RFID technologies in logistics [122], the technological maturity
of devices and sensors is revolutionizing each step of the supply chain man-
agement process. Specifically for the Agri-Food domain, the authors of [123]
presented an inventory transparency use-case adopting IoT devices. There,
the goal was to explore the use of RFID and NFC-based devices to achieve
transparency and real-time information production directly on the field, en-
abling persistence by means of a centralized, cloud-based database. This
is indeed the classical paradigm adopted by far the majority of the current
IoT-based solutions.

However, the use of both the Blockchain and the IoT technologies in the
Agri-Food domain is still an under-explored, yet worth-to-explore, research
field. A traceability system based on the blockchain and the RFID technol-

74

CHAPTER 5. AGRI-FOOD TRACEABILITY 5.2. ARCHITECTURE

ogy was proposed in [124], with a sharp focus on Chinese food markets. The
work considered fresh food asset tracking as fruits, vegetables and meat, by
means of RFID-based devices for the data acquisition and blockchains for
data persistence. The authors of [125] presented a supply chain traceabil-
ity system for food safety, based on HACCP (Hazard Analysis and Critical
Control Points) and focus on transparency. There, they described the pro-
cess of crop plants in different phases, from harvesting to retailing, without
going into the details of a performance analysis. Overall, to the best of our
knowledge, some key-features offered by certain blockchain implementations
remain either not explored, or not fully exploited, one for all being the au-
tonomous transactions capability (often referred to as smart contracts [120]).

5.3 Proposed system architecture

The unique constrains and requirements of the modern Agri-Food industry
pose some major challenges to achieve a transparent, auditable and reliable
supply chain management process . Some of these challenges are the hetero-
geneity of the involved actors, stakeholders and business models, their differ-
ent levels of confidentiality, the lack of interoperability among the involved
systems and, most notably, the complete lack of a clear data governance
[126]. Figure 5.1 depicts a simplified version of such process, whose involved
actors are briefly introduced in the following:

A) provider: providers of raw materials, such as seeds and nutrients, but
also pesticides, chemicals, etc;

B) producer: usually the farmer e.g., the responsible of the actions from
seeding/planting to harvesting;

C) processor: this actor may perform various actions, from simple pack-
aging to more complex processes (e.g., pressing of the olives);

75

5.3. ARCHITECTURE CHAPTER 5. AGRI-FOOD TRACEABILITY

D) distributor: this actor is responsible of moving the output of the pro-
cessor (e.g., the product) from processor’s site to retailers;

E) retailer: this actor is responsible of selling the products, representing
it either small local stores or big supermarkets;

F) consumer: the final element of the chain.

Along the whole process, authorities provide standards, regulations, laws,
rules and policies that the involved actors have to comply with.

Figure 5.1: Simplified version of the Agri-Food supply chain management process.

We propose a layered architecture able to rely on blockchain and IoT
technologies to achieve transparency, auditability and immutability of the
stored records in a trustless environment. We consider the blockchain as a
layer of our system (see Figure 5.2), allowing AgriBlockIoT to be blockchain-
independent, while it can be integrated into existing traditional software
systems (ERP, CRM, etc.).

The proposed architecture takes advantage of the increasing capabilities
offered by modern edge devices (e.g., gateways, mini-PC, etc.), which may be
directly used as full nodes of our layered blockchain implementation, hence
extending the resistance, decentralization, security and trust of the whole
network. The main modules of AgriBlockIoT are :

76

CHAPTER 5. AGRI-FOOD TRACEABILITY 5.3. ARCHITECTURE

Figure 5.2: Layered architecture of AgriBlockIoT.

• API: a REST Application Programming Interface exposing the capa-
bilities of AgriBlockIoT to other applications, with a high level of ab-
straction, allowing easy integration with existing software systems;

• Controller: a component responsible of transforming the high-level
function calls into the corresponding low-level calls for the blockchain
layer, and viceversa (i.e., querying and converting the data records
stored in the blockchain, into high-level information for the upper layer);

• Blockchain: The main component of the system, containing all the
business logic, implemented through smart-contracts on the blockchain,
as a gateway to the blockchain itself. Depending on the selected blockchain,
this module will vary in complexity, according to the program capabili-
ties and the client interfaces for each particular blockchain.

Then, to coherently define the high-level functionality of AgriBlockIoT,
we had a bottom-up approach through which we extracted the set of require-
ments starting from a complete use-case, namely from-farm-to-fork. The

77

5.3. ARCHITECTURE CHAPTER 5. AGRI-FOOD TRACEABILITY

latter is, indeed, a classical food traceability use-case that fosters certified
traceability of food along the whole supply chain, from agricultural produc-
tion to consumption. In other words, AgriBlockIoT shall provide consumers
with complete history of the food he is buying. The only pre-condition is
that all the participants (so including the IoT devices) are registered users of
the underlying blockchain, meaning that they have the correct public/private
key-pairs to digitally sign each operation on the distributed ledger. In the
following, we summarize the list of extracted requirements:

R1: Raw Materials Purchasing: producers and providers store in the
blockchain the details of sales and purchases of raw materials, including
technical information of products and amounts. Note: smart-tags (e.g.,
barcode, QR codes) can be used to automatize this process;

R2: Planting: producers store in the blockchain information about the
planting process (e.g., the amount of seeds used). Note: sensors can au-
tomatize such data entry process (e.g., connected weight scales), while
smart contracts can autonomously fire, hence creating records when-
ever anomalies are detected (e.g., more seeds than the ones registered
as purchased);

R3: Growing: sensors, at regular intervals, autonomously store in the blockchain
information about the growing plants and environment. Note: smart
contracts can asynchronously fire, hence creating records whenever anoma-
lies are detected (e.g., sensor values outside certain thresholds);

R4: Farming: farmers store in the blockchain information about each stage
of the process (e.g., irrigation, fertilizing, etc.), including amounts of
inputs applied. Note: sensors can automatize such data entry process
(e.g., chemical sensors and multisensory systems), while smart contracts
can autonomously fire, hence creating records whenever anomalies are
detected (e.g., sensor values outside certain thresholds);

78

CHAPTER 5. AGRI-FOOD TRACEABILITY 5.3. ARCHITECTURE

R5: Harvesting: farmers store in the blockchain details about the har-
vesting. Note: sensors can automatize such data entry process (e.g.,
connected weight scales), while smart contracts can autonomously fire,
hence certifying that the process from seeding to harvesting is compliant
with certain regulations (e.g., organic, fair trade, etc.);

R6: Delivery to processor: farmers transfer the ownership of the products
to distributors, directly through the blockchain. Note: sensors (e.g.,
GPS sensors) and smart contracts can automatize this process, or create
records whenever anomalies are detected during the delivery phase (e.g.,
sensor values outside certain thresholds);

R7: Processing: considering the simplest case of a packaging processor,
the latter store in the blockchain details about the received amount of
product from distributors, the packaged amount and, eventually, the
amount of product lost during the processing phase. Note: sensors can
automatize such data entry process (e.g., connected weight scales), while
smart contracts can autonomously fire, hence creating records whenever
anomalies are detected (e.g., the packaged amount is larger than the
received amount);

R8: Delivery to retailers: processors transfer the ownership of the pro-
cessed product to distributors, directly through the blockchain. Note:
sensors (e.g., GPS sensors) and smart contracts can automatize this
process, or create records whenever anomalies are detected during the
delivery phase (e.g., sensor values outside certain thresholds);

R9: Retailing: retailers store in the blockchain details about the received
amount of product from distributors. Then, at regular intervals, sensors
autonomously store in the blockchain information about the status of
the retail environment. Note: smart contracts can asynchronously fire,

79

5.3. EVALUATION CHAPTER 5. AGRI-FOOD TRACEABILITY

hence creating records whenever anomalies are detected (e.g., sensor
values outside certain thresholds);

R10: Consuming: retailers store in the blockchain details about the sold
products, while consumers are able to transparently verify the whole
history of a product before buying it. Note: smart-tags can be associated
to each package, so that consumers can easily retrieve the whole history
of the product.

5.4 Architecture evaluation

We assess the performance of AgriBlockIoT implementing the functionality
of an IoT sensing device producing digital values that are directly stored
in the blockchain. The stored data can be then retrieved, while it is possi-
ble to implement smart-contracts that are autonomously executed upon the
occurrence of certain conditions on the data produced by the sensor itself.
Since AgriBlockIoT is blockchain-agnostic, we implemented the underlying
blockchain module over two different, private, six-nodes-based implementa-
tions, namely Ethereum and Hyperledger Sawtooth. The reasons of choos-
ing these implementations are the different levels of customization for the
records included on the ledger (transactions). While both platforms allow
to implement complex business logic, Ethereum works with a single transac-
tion structure, while Hyperledger Sawtooth allows the definition of a custom
transaction structure. Additionally, Ethereum can be used on both public or
private blockchain networks, while Sawtooth is defined for private networks
only.

Both the networks were configured with the default settings, and de-
ployed in dedicated virtual machines equipped with 4GB of RAM, 2 Intel(R)
Core(TM) i5-6440HQ CPUs 2.60GHz and 20GB of hard disk. Regarding

80

CHAPTER 5. AGRI-FOOD TRACEABILITY 5.5. CONCLUSIONS

the Operating System, we opted for a fresh Linux Ubuntu 16-04 basic dis-
tribution, only installing the packages needed to deploy the corresponding
blockchain node. A series of 100 test where run independently for each sce-
nario. During each test, AgriBlockIoT simply set the value of a sensor, as
done by an environmental IoT sensing device through a gateway, and issued
a transaction in the blockchain. For each test we measured the time nec-
essary to set the value in the blockchain (latency), the processing power of
each node (CPU load), and the network usage (in terms of bytes transmitted
and received); the average values are summarized in Table 5.1. From these
results, we observe that Hyperledger Sawtooth has better performances with
respect to the Ethereum counterpart.

Table 5.1: Performance of AgriBlockIoT in terms of latency, network traffic, and CPU
load.

latency network tx network rx CPU load
[seconds] [bytes] [bytes] [%]

Ethereum 16.55 528’108 682’415 46.78
Sawtooth 0.021 19’303 20’641 6.75

5.5 Conclusions

AgriBlockIoT enables the integration of IoT and Blockchain technologies,
creating transparent, fault-tolerance, immutable and auditable records which
can be used for an Agri-Food traceability system. Regarding the preliminary,
very practical test: even if the Hyperledger Sawtooth-based implementation
had better results in terms of measured metrics with respect to the Ethereum
one, both implementations have different properties and capabilities that
need to be considered before choosing one over the other. In some cases it
may be convenient to trade off the high-latency of Ethereum with its scala-

81

5.5. CONCLUSIONS CHAPTER 5. AGRI-FOOD TRACEABILITY

bility and reliability, since it enables larger numbers of participants and its
software maturity is far higher than Hyperledger Sawtooth. Moreover, from
an economic perspective, recall that the monetary cost of using the Ethereum
public network can be avoided by using private networks. However, in this
environment, the limitation of having a single language for implementing
smart-contracts, as well as a fixed structure for the records, may represent a
drawback when developing more sophisticated business logic. Last but not
least, the current consensus algorithm of Ethereum is quite CPU-intensive
and this may represent a barrier for computationally-limited devices, such as
edge gateways and IoT devices. Conversely, the Hyperledger Sawtooth imple-
mentation offers a novel consensus algorithm which may be more suitable for
constrained IoT devices. Furthermore, the ability of implementing the logic
using different languages, as well as the customization of the records, may
enable faster implementations and easier integrations with other systems.
However, Hyperledger Sawtooth is still far for being considered a mature
implementation at the level of Ethereum.

As future works, we plan to extend the performance analysis to more
constrained hardware architectures, in order to assess the suitability of the
proposed framework to applications comprising real IoT devices and gateways
along the Agri-Food supply chain.

82

Chapter 6

Cost-effective IoT devices in a
blockchain-based water management
system

This chapter contains text taken from the published work:

– Pincheira, M., Vecchio, M., Giaffreda, R., & Kanhere, S. S. (2021).Cost-effective IoT devices as
trustworthy data sources for a blockchain-based water management system in precision agriculture.
Computers and Electronics in Agriculture, 180, 105889.

This chapter explores how the energy efficient-integration of IoT-based
sensing and blockchains can be used to incentivize virtuous behaviors in agri-
cultural practices. We present an architecture where constrained sensing IoT
devices work as trustworthy data sources for a permissionless blockchain. We
validate our proposal by implementing a complete use case using Ethereum
as a public blockchain network. We evaluate the impact of the architecture
on constrained IoT devices in terms of energy, processing time, and available
memory using six different types of IoT hardware platforms. The valida-
tion results show new means to energy-efficiently integrate IoT data sources
in a permissionless blockchain, making our proposal a strong candidate for
use in automated and incentive-based irrigation water management systems.
Thus, the proposed architecture holds the potential to be a key component
in fostering increased sustainability of the whole agricultural sector.

83

6.1. INTRODUCTION CHAPTER 6. WATER MANAGEMENT

6.1 Introduction

Water management systems in agriculture have a deep socio-economical im-
pact that goes beyond end-users and service providers’ benefits [127, 128], as
the water used for irrigation accounts for over 70% of the available freshwater
resources[129]. This calls for more sustainable water management processes,
while service providers face the need for precise systems to measure water
consumption of their subscribers, as emphasized by transnational directives
such as the European Water Policy1. Nowadays, the Internet of Things (IoT)
can offer energy-efficient sensing devices embedded within the water distri-
bution systems. Moreover, the recent advances in Low Power Wide Area
Networks LPWAN technologies enabled the deployment of such devices at
very large scales, also reaching remote agricultural areas with minimal eco-
nomic impact for both service providers and end-users [130].

However, these types of systems are based on centralized architectures,
often managed by the service provider, hence restricting the actors involved
in the water management process. In recent years, there has been a grow-
ing interest in integrating blockchain technologies into IoT systems [11] for
trustless architectures. Blockchain, the technology behind Bitcoin[40], uses
a unique combination of cryptography, data structures, and incentive mech-
anisms to maintain a peculiar type of distributed database (i.e., a ledger) in
a peer-to-peer network. This distributed ledger is immutable by design and
offers an auditable and transparent source of information. For managing re-
sources such as water and energy, IoT and blockchain directly benefit several
business processes, such as accounting, billing, and distribution [14]. More-
over, the trustless nature of a blockchain-based system enables the seamless
inclusion of several external actors that can directly reward and/or certify
certain end-users’ behaviors, based on the actual use of the monitored re-

1https://ec.europa.eu/environment/water/index_en.htm

84

https://ec.europa.eu/environment/water/index_en.htm

CHAPTER 6. WATER MANAGEMENT 6.1. INTRODUCTION

source [131].

Despite this growing interest in blockchains, previous works have failed to
address the impact that such technology may introduce to existent agricul-
tural IoT systems. Current studies consider highly connected environments,
without communications or energy restrictions for the blockchain-enabled
devices, while agricultural IoT systems favor low-cost and power-efficient
devices [21, 132]. These requirements translate into severely constrained
architectural elements that cannot guarantee the fulfillment of the central
requirement of being direct actors of a blockchain-based infrastructure. Con-
sequently, current research has only focused on sensing devices that rely on
another system component (e.g., a gateway) to interact with the blockchain
[24, 25]. However, the presence of this intermediary introduces security con-
cerns on the data flow [6], reducing the trustworthiness of the sensed data
[11]. Furthermore, since the intermediary is typically a gateway, there is
a bigger attack surface that may compromise the data integrity of several
sensing devices. Thus, a need emerges to quantitatively judge whether con-
strained IoT devices can be a direct actor within a blockchain-based system,
acting as a trustworthy data source [32].

In this chapter, we present a system architecture based on constrained
IoT devices for measuring water consumption, working as direct data-source
actors in a public blockchain infrastructure, where smart contracts represent
the interests of different water management stakeholders and regulate the
distribution of incentives amongst virtuous farmers.

The novelty of the study lies in the use of constrained sensing devices
as trustworthy data sources for a permissionless blockchain, supporting the
interests of a diverse set of water management stakeholders and enabling
the smooth inclusion of additional external participants. The contribution
of this chapter is threefold. First, we highlight the unique benefits that per-
missionless blockchain networks provide to multi-actor scenarios. Second, we

85

6.1. INTRODUCTION CHAPTER 6. WATER MANAGEMENT

unveil the fundamental role that can be played by constrained IoT sensing
devices as trusted data sources for such permissionless blockchain infrastruc-
tures. Third, we quantitatively assess the impact of this architectural choice
on the constrained devices commonly used in agricultural IoT deployments.
To this end, we consider typical metrics found in current literature such as
available computing power and energy budgets for the IoT devices [130, 21],
and transaction costs and times for the blockchain operations [131, 51].

To this aim, we developed a cross-platform software library that allows
constrained devices to be direct actors on a public blockchain network. We
provide a basic structure for the smart-contract that can benefit from these
types of blockchain-enabled devices. Then, by using dedicated equipment
able to measure power consumption at very high resolution, we evaluate the
performance of this software implementation on six different IoT platforms
belonging to three hardware families, namely ARM, AVR, and MIPS. De-
spite some specific characteristics of the selected water management use case,
our study reaches a general conclusion: even severely constrained, low-cost,
battery-powered devices like those used in agricultural IoT deployments are
capable of interacting directly with a public blockchain. Quantitatively, we
demonstrate that the blockchain-related operations require an additional 6%
of the average energy budget needed for normal (i.e., non-blockchain) device
operations.

The remainder of the chapter is structured as follows: Section 6.2 offers a
brief literature overview about IoT and blockchain integration. The proposed
system architecture is presented in Section 6.3, followed by the implementa-
tion of a fully-working proof-of-concept (PoC) described in Section 6.4. Based
on this PoC, Section 6.5 presents an evaluation of several metrics regarding
the integration of IoT devices in a blockchain system. The chapter concludes
with Section 6.6, summarizing the main results and outlining potential future
research works.

86

CHAPTER 6. WATER MANAGEMENT 6.1. STATE OF THE ART

6.2 State of the art and rationale

Modern IoT systems typically consist of several components, each of them
with unique constraints and capabilities. In line with current literature, we
consider a classical 3-layer technological architecture as shown in Figure 6.1
[6]. The Device layer group together those sensing devices capable of acquir-
ing data from the physical world. These devices are typically small and favor
low-power consumption modes against powerful capabilities, such as compu-
tational power, memory, and connectivity. The Edge layer (sometimes also
referred to as the Gateway) group together less-constrained devices providing
additional connectivity and computational power to the lower layer. Finally,
the Cloud layer represents powerful servers responsible for processing and
store the data collected by the Device layer and forwarded through the Edge
layer.

Figure 6.1: Typical high-level 3-layer architecture of modern IoT systems.

The unique combination of features offered by blockchain technology, such
as its openness, transparency, auditability, and non-repudiation, can directly
benefit several IoT-related processes [11]. These features are particularly at-
tractive when IoT technology is monitoring and managing resources such as
water and energy [14]. Using smart meters as sensing devices, authors of [82]
propose a software platform for sustainable management of water supply sys-
tems. In their proposal, after monitoring water usage, a blockchain provides
a trading platform for exchanging tokens that reduce the cost of energy based
on this usage. Similarly, authors of [83] propose a privacy-friendly gamifi-

87

6.2. RATIONALE CHAPTER 6. WATER MANAGEMENT

cation approach based on water consumption data acquired by IoT devices
owned by the utility company. The collected information is then used by
the gamification process, profiting from the blockchain transparency to pre-
vent dishonest behaviors. Recently, the authors of [133] presented a system
to manage and coordinate the use of water by irrigation communities. In
this case, several individuals gather for better access to the resource, and
blockchain enables trust among community members based on the informa-
tion collected by the IoT devices.

However, and to the best of our knowledge, there has been little discussion
on the use of constrained sensing devices as trustworthy data sources for
a permissionless blockchain system. On the one hand, studies integrating
blockchain into the IoT systems tended to focus on sensing devices with
capabilities more similar to the Edge layer (i.e., system-on-a-chip) than the
device layer (i.e., micro-controllers), as described in [18]. We argue that
this approach is in full opposition with the average requirements of typical
agriculture applications, where power efficiency and low-cost are essential
requirements to ensure cost-effective and long-term operations [21].

On the other hand, whenever considering more constrained sensing de-
vices in the blockchain, the current approach is to rely on other architectural
components of the IoT architecture ([24, 25]). A significant drawback of this
approach is that constrained sensing devices do not send their data directly
to a blockchain. Thus, they are not direct actors of the blockchain-based
system. The presence of an intermediary introduces security concerns in the
system [6], hindering the trustworthiness of the acquired data. Considering
that this intermediary is typically at the gateway layer, there is a bigger
attack surface that may compromise the data integrity of several sensing de-
vices [11]. Last but not least, the communication technologies typically used
by these constrained devices also present constraints and restrictions that few
researchers have addressed. Indeed, agricultural applications require energy-

88

CHAPTER 6. WATER MANAGEMENT 6.2. PROPOSED ARCHITECTURE

efficient communication networks ([21, 133, 97]) such as those provided by
LPWAN radio technologies (e.g., LoRaWAN, NB-IoT, etc.), each of them
with different capabilities and limitations [130].

This chapter introduces an architecture where constrained IoT devices are
direct data-source actors for a sustainable water management system, where
a permissionless blockchain supports the interests of a diverse set of water
management stakeholders. We identify, analyze, and address the challenges
for having sensing devices as trusted oracles in the blockchain system [32]
with a focus on the limitations imposed by the communication capabilities
and the reduced energy budgets of these types of agricultural deployments.

6.3 Proposed system architecture

We propose a system architecture for a decentralized water management
system that incentivizes and rewards virtuous behaviors for sustainable agri-
cultural practices. Our architecture considers low-cost and energy-efficient
sensing devices able to accurately measure water consumption as direct ac-
tors of a public blockchain-based infrastructure. Thus, each device manages
its own blockchain identity, autonomously creating a transaction and sending
it over an LPWAN network. In our system, each actor is identified by its
unique combination of public/private keys. In the following, we assume that
each actor of our system securely manages its own private key. While this
is a strong assumption, it is important to recall that blockchains have also
the potential for more complex identity schemes, being them key-building
blocks for realizing completely decentralized public key infrastructures [11].
However, this research segment falls outside the focus of this thesis. Since
each transaction is digitally signed by the sensing device itself, the infor-
mation can be considered as coming from a trustworthy oracle and directly
feed a smart contract. Moreover, the use of cryptography at the root of

89

6.3. PROPOSED ARCHITECTURE CHAPTER 6. WATER MANAGEMENT

the system is aligned with the current challenges in IoT applications [115].
This process guarantees data integrity by creating immutable, auditable, and
non-repudiable records that are easily verifiable by other users. Considering
the broad socio-economical impact of water management systems [127], our
architecture favors a public blockchain infrastructure to provide a permis-
sionless environment among several unknown actors. Last, but not least,
to leverage on smart contracts as the foundation for decentralized applica-
tions represents a novel approach to realize true IoT interoperability among
multi-vendor devices and applications [7].

Figure 6.2: High-level architecture of the proposed blockchain-based sustainable water
management system.

To keep low the transaction rate of the sensing nodes, we allow for aggre-
gating multiple readings at sensor side. This means, for instance, a sensor
node can transact hourly, daily, or even weekly-aggregated chunks, depend-
ing on the requirements of the application. However, individual data points
can still be stored in more traditional IoT platforms. In this way, the users
(or the service provider) can set the frequency of the reports based on the
trade-offs in terms of the energy budget of the sensor nodes, transaction
cost in the public blockchain, and maximum delay tolerable by the business
process.

In our system architecture, each device is represented by a unique smart

90

CHAPTER 6. WATER MANAGEMENT 6.3. PROPOSED ARCHITECTURE

contract deployed in the blockchain. More formally, if an IoT deployment
D is composed by n sensor devices di (with i = 1, . . . , n) such that D =

[d1, . . . , dn], then ∀ d ∈ D ∃! c ∈ C, where C = [c1, . . . , cn] represents
the group of smart contracts ci mapping the i-th device in the blockchain.
Therefore, each smart contract can be seen as the device’s “digital-twin” in
the blockchain (for analogy, we refer to it as the device’s “smart-twin”). This
contract has a template interface, including both public and private methods.
Private methods update the state of the twin in the blockchain and can be
invoked only by the device owning the blockchain identity, while public meth-
ods simply provide a standardized interface for other smart contracts. The
applications in our architecture are based also on smart contracts interacting
with the smart-twins. Thus, a billing contract or a rewarding contract can
use the devices’ contracts as transparent source of information in a trustless
way, while the government or an environmental organization can grant re-
wards to foster sustainable behaviors on water management interacting with
the same smart-twins. A high level overview of our architecture is shown on
Figure 6.2.

To better characterize our architecture and similarly to modern IoT sys-
tems (Figure 6.1), we split it into three modules, namely the Device, Gateway,
and Blockchain modules, as shown in Figure 6.3. On current IoT systems,
sensors at the device layer capture a real-world phenomenon such as tem-
perature, humidity, or resource consumption. In our architecture, the De-
vice module is responsible for converting the sensed values into blockchain
transactions that, later sent to the corresponding smart-twin counterparts.
The Gateway module is a dumb relay component between the device and
the blockchain layer, exactly like the majority traditional IoT architectures
at the edge layer. Notice that the gateway module is unable to modify the
transactions already generated and signed by the sensing devices. Finally, the
Blockchain module gathers together all the smart contracts representing the

91

6.3. PROPOSED ARCHITECTURE CHAPTER 6. WATER MANAGEMENT

smart-twins and the distributed application itself. In contrast to traditional
cloud layers in IoT systems, smart-contracts provide a fully decentralized in-
terface for developing new types of IoT applications. The following sections
thoroughly describe the three modules of our proposal.

This system architecture makes noteworthy contributions to the current
state of the art. First of all, it adopts constrained IoT devices as trusted
oracles of a blockchain-based system as instruments to certify very specific
behaviors. Currently, these certification processes are heavily intensive on
manual labor and are often able to provide only discrete snapshots in time.
Conversely, the presented architecture makes a step towards the full automa-
tion of those processes requiring adherence to specific sets of rules, granted
that IoT devices can monitor such adherence. Overcoming energy and com-
munications constraints, and without relying on any additional architectural
component, these IoT devices become a convenient alternative to vouch for
the truthfulness of the collected data. Moreover, in a water management
system that fosters water savings, the benefits of using a permissionless
blockchain in terms of openness and transparency far outweigh the disad-
vantages concerning transaction throughput and latency. The permissionless
network allows any stakeholder willing to put a value tag to those savings, to
use this architecture not only for the truthfulness of the collected data, but
also as a platform to directly and securely reach the farmers.

Figure 6.3: Software modules of the proposed architecture.

92

CHAPTER 6. WATER MANAGEMENT 6.4. IMPLEMENTATION

6.4 Implementation

To better describe the proposed architecture, we implemented it as a fully-
working showcase. First of all, to wisely select the most suitable distributed
infrastructure, we had to consider the primary requirement of our archi-
tecture to leverage on a permissionless network with scripting capabilities.
Although some recent DLT protocols (e.g., Hyperledger, and IOTA) of-
fer attractive features for distributed IoT applications, we opted for the
Ethereum[46] blockchain since it is still considered as the reference public
blockchain implementation for smart contracts [89]. However, to migrate our
implementation to a different infrastructure with scripting capabilities should
not be an issue.

Secondly, in this work, we are sharply focused on the role of constrained
IoT sensing devices as trusted data sources in a blockchain-based architec-
ture, while other infrastructure-related challenges (e.g., synchronization of
blockchain nodes, transaction updates, etc.) are beyond the scope of this
thesis. The interested reader is referred to [51] for a detailed description of
such open challenges.

Finally, considering that there are no additional communications require-
ments for the application (in terms of existing infrastructure, range, or band
licensing), we chose LoRaWAN over other LPWAN alternatives such as Sig-
Fox and NB-IoT. Briefly, when compared to the latter technologies, the for-
mer offers a comfortable balance between coverage, maximum payload size,
and infrastructure costs. However, for more accurate technical details and
comparative analysis on the advantages and limitations of various LPWAN
technologies, the readers are referred to [130] and references therein.

93

6.4. IMPLEMENTATION CHAPTER 6. WATER MANAGEMENT

6.4.1 The Device module

The values acquired by the sensing devices need to be converted into a
blockchain transaction. In Ethereum, a transaction is defined as a “single
cryptographically-signed instruction” sent from one address to an other. A
transaction T is formally described in [42] as:

T = (Tn, Tp, Tg, Tt, Tv, Td, Tw, Tr, Ts),

where Tn is the nonce indicating the number of transaction previously sent by
the issuing address; Tp is the gas price; Tg is the gas limit; Tt is the destination
address; Tv is the value that is transferred to the particular address within the
operation; Td is an array with the input data of the message call (in the case
of a contract call, it specifies the function identifier and the parameters to
be passed to that function); Tw is the recovery identifier (or chain identifier);
finally, Tr and Ts are the (r, s) values of the elliptical curve digital signature
for the transaction. All the components of T are summarized in Table 6.1.

Table 6.1: Components of a transaction in the Ethereum blockchain.

Component Description

Tn Number of transaction
Tp Gas price
Tg Gas limit
Tt Destination address
Tv Value transferred within the transaction
Td Input data of the message call
Tw Recovery identifier (or chain identifier)
Tr R component of the ECDSA for the transaction
Ts S component of the ECDSA for the transaction

The process for creating a transaction T , though completely performed
at device level, can be split into three stages, namely Encoding, Hashing

94

CHAPTER 6. WATER MANAGEMENT 6.4. IMPLEMENTATION

and Signing. Considering that there is no official Ethereum implementation
that can be used in constrained IoT devices and, to the best of our knowl-
edge, no third-party library providing cross-platform compatibility exists,
we implemented our own software library. Based on open-source initiatives
and favouring cross-platform compatibility over code optimization, we used
C language within the Arduino development framework. In the following
paragraphs, we detail each function carried out by the Device module.

Sensing implements the logic for measuring the water consumption. For
our PoC we utilized the YF-201 water flow sensor 2, a low-cost valve, based
on a magnetic Hall-Effect sensor that outputs an electrical pulse as water
passes through. The sensor is managed by a micro-controller as a general-
purpose input with an attached interrupt, and the measurement is based on
the elapsed time between two consecutive interruptions, without the need for
any additional software library.

Enconding this stage creates Tu, a byte-array concatenating an encoded ver-
sion of each field of T . The encoding is a custom serialization method called
Recursive Length Prefix (RLP) defined by Ethereum in [42]. The sensed
value of the previous stage is combined with the smart contract method
name identifier to create the field Td.

Hashing applies the Keccak-256 cryptographic hashing algorithm to Tu. De-
spite the size of Tu, this cryptographic unidirectional function always returns
a 256 long bit-array that unequivocally and uniquely represents the hashed
transaction.

2http://www.mantech.co.za/datasheets/products/yf-s201_sea.pdf

95

http://www.mantech.co.za/datasheets/products/yf-s201_sea.pdf

6.4. IMPLEMENTATION CHAPTER 6. WATER MANAGEMENT

Signing at this stage, Thash is digitally signed using the Elliptic Curve Dig-
ital Signature Algorithm (ECDSA). The result is a unique tuple (r, s) based
on a private key Pk and the input Thash. This tuple is encoded using RLP
to create the byte-array representing the transaction T . The size of T is
variable, and in our PoC started from 140 bytes increasing over time. This
eventually becomes an issue for LPWAN transport networks, as bigger pay-
loads have an impact in both power consumption and coverage ([130]). Thus,
we include a dictionary-based compression stage to reduce the average length
of T .

Compressing this stage applies a simple dictionary-based compression algo-
rithm to the input byte-array T . As first step, we remove the RLP encod-
ing to Td, Tw, Tr, Ts to obtain T ′d, T

′
w, T

′
r, T

′
s . Then, we added T ′d1 and T ′d2

as codewords taken from the dictionary, replacing (Tp, Tg) and (Tt, Tv, Td)

respectively. The result T ′ is a compressed version of T defined as T ′ =
(T ′h, T

′
n, T

′
d1, T

′
d2, T

′
w, T

′
r, T

′
s).

Transmitting for our PoC, we choose the LoRaWAN radio technology. We
used an off-the-shelf communication module based on the RFM95W chip,
relying on the Lmic free library3. Our network infrastructure is based on the
Over-The-Air-Activation (OTAA) which requires to store an application-key
and a device-id on-board the device. Devices used SF7 and 125kHz bandwith
in the EU868 band.

6.4.2 The Gateway module

From the perspective of current IoT systems, this module is a typical IoT
gateway agent, receiving data from one layer and forwarding to another. In
particular, it receives blockchain-signed packets from the LoRaWAN stations

3https://github.com/matthijskooijman/arduino-lmic

96

https://github.com/matthijskooijman/arduino-lmic

CHAPTER 6. WATER MANAGEMENT 6.4. IMPLEMENTATION

and forwarding them to a blockchain node. This module was implemented
in Python 3.6 and deployed it on a Raspberry Pi 3B board4 running a clean
install of Raspbian 9, with kernel 4.14.

Receiving this stage represents the interface with a wide area network in-
frastructure, providing the compressed transaction T ′ sent by the device mod-
ule. In our particular case, it interfaces with the LoRaWAN radio stack.

Decompressing this stage symmetrically reverses the dictionary compres-
sion of T ′, applying the RLP encoding if needed. The output of this stage
is, consequently, the original T byte-array. It is important to highlight that
even a single bit-swap while reconstructing T , would invalidate the original
signature of the transaction, hence invalidating the transactions itself.

Forwarding at this stage, the re-assembled transaction T is finally sent to
a blockchain node. For our PoC, the node is an Ethereum full node hosted
on a physically different computer.

6.4.3 The Blockchain module

This module of the architecture groups the smart contract realizing the de-
centralized application of the water management system. Interactions in our
architecture are based on the interactions between the corresponding smart
contracts. To achieve this goal, we envision two types of smart contracts
Twin and Apps, described in the following paragraph.

Interacting a Twin contract is a simplified representation of the IoT device
in the shape of a “smart twin” (see Valves in Figure 6.2). Besides maintaining
the values sensed by the device, they also provide a common interface for the

4https://www.raspberrypi.org/

97

https://www.raspberrypi.org/

6.5. ARCHITECTURE EVALUATION CHAPTER 6. WATER MANAGEMENT

Apps. For this PoC, a Twin contract stores only the owner of the device it
corresponds to and the timestamped measured values (water measurements).
As an interface, the Twin implements two methods, namely setValue() to
update the measurements (this method can be invoked only by the device
the contact represents) and getValue() to let any transaction issuer read
the measurements.

The App contract, on its hand, implements all the business logic of the
system, directly interacting with the Twin contracts by calling the latter’s
public methods to, for instance, accredit water consumption, assign rewards,
or grant certifications. To alleviate concerns deriving from the security vul-
nerabilities that a smart contract may introduce in our system, we adopt
industry-approved libraries in our implementation. Specifically, we created
a rewarding App based on the ERC20 Token contract provided by Open-
Zepellin5, a library for secure smart contract development considered as a
community-standard. Finally, the App contract implements a method called
Reward(cx) that distributes tokens based on the water usage of a Twin cx

relative to a threshold previously defined.

6.5 Architecture evaluation

In this section, we evaluate the performance of our software implementation
on different micro-controllers boards (MCU). The main goal is to quantita-
tively analyze the impact that being a direct actor on a public blockchain
infrastructure has at the IoT device level. By focusing on very constrained
hardware families (all characterized by clock frequencies lower than 100 MHz,
reduced memory and program space) we can benchmark low-cost, battery-
powered devices suitable for typical precision agriculture scenarios. More
in detail, we select six different IoT platforms of three different hardware

5https://github.com/OpenZeppelin/openzeppelin-contracts

98

https://github.com/OpenZeppelin/openzeppelin-contracts

CHAPTER 6. WATER MANAGEMENT 6.5. ARCHITECTURE EVALUATION

families, namely AVR, MIPS, and ARM. While an exhaustive review of all
possible IoT platforms goes beyond the scope of this research, the selected
sample provides a reference for other scenarios and use cases. Finally, re-
garding the underlying blockchain infrastructure, we opt for the open source
Ethereum codebase, as it is considered as the de-facto standard of permission-
less, cross-industry, token-based blockchains with smart contracts capabili-
ties, while benchmarking different blockchain implementations and consensus
protocols is out of the scope of this research.

Table 6.2: Main characteristics of the hardware platforms used in the evaluation campaign.

Device Model MCU Architecture Clock (Mhz) Prog.
Mem
(KB)

SRAM
(KB)

Price
(USD)

ATM Arduino Uno ATMega328P 8-bit AVR 16 32 2 18
M0+ STM32L031K6T6 Cortex M0+ 32-bit ARM 32 32 8 10
M0 STM32F030R8T6 Cortex M0 32-bit ARM 48 64 8 10
PIC ChipKit Lenny PIC32MX270 32-bit MIPS32 40 256 64 23
M4L STM32L452 Cortex M4 32-bit ARM 84 512 96 12
M4F STM32F401RET6 Cortex M4 32-bit ARM 84 512 96 12

In our selection, the most constrained device is the ATM, an 8-bit micro-
controller from the AVR family typically used on Arduino-like boards. On
the opposite end, from the ARM family, we have the M4, a 32-bit board
with 48x more memory, and 16x more program space than the ATM, within
the same price range. This platform offers both low power (M4L) and high
performance (M4F) alternatives to better accommodate the needs of each
use case. Our pool includes also a board of the M0 family, which is a 32-bit
platform that aims at very low power consumption modes. Finally, we include
a constrained board belonging to the MIPS family. Table 6.2 summarizes the
six boards included in our pool, detailing their architecture, clock frequency,
program space, memory size, particular model, and reference price (updated
to April 2019).

99

6.5. ARCHITECTURE EVALUATION CHAPTER 6. WATER MANAGEMENT

6.5.1 Device module footprint

To estimate the footprint of the device module, we incrementally created the
code by adding the functions and libraries needed by each software stage.
Based on the statistics reported by the compiler of each board, we estimated
the program size and memory usage of the code for each stage. These results
are summarized in Table 6.3 and Table 6.4, respectively. Then, Figure 6.4 and
Figure 6.5 graphically depict the results of the previous tables, as percentages
of total program size and memory available at each device. It is important to
notice that the ATM and the MP0 (both equipped with 32 KB of program
space) are not able to host the whole module implementation. In both the
graphs and the tables, the − mark highlights this circumstance.

Table 6.3: Device module program size footprint (in bytes).

Device Available a) Sen b) Enc c) Hsh d) Sig e) Com f) Trx

ATM 32.256 2.570 3.018 7.364 14.396 594 -
M0+ 32.768 15.672 3.980 2.188 6.900 416 -
M0 65.536 13.368 3.976 2.188 6.900 416 21.000
PIC 249.856 35.148 29.568 4.120 16.548 844 22.988
M4L 524.288 16.996 4.120 2.264 6.792 436 17.332
M4F 524.288 14.628 3.772 2.264 6.792 436 17.148

6.5.2 Device module performance

To evaluate the overhead that our architecture introduces into the con-
strained devices, each board created and transmitted 100 blockchain trans-
actions. At the end of each stage (Sensing, Encoding, Hashing, Signing,
Compressing, and Transmitting) the total elapsed time (in milliseconds) was
reported by the board. Table 6.5 presents the average processing time over-
head of 100 transactions. For the sake of completeness, for the boards that

100

CHAPTER 6. WATER MANAGEMENT 6.5. ARCHITECTURE EVALUATION

Figure 6.4: Device module footprint in terms of program size (in percentage).

were not able to host the full device module, we measured the time for the
blockchain-related stages only (i.e., Encoding, Hashing, Signing and Com-
pressing).

6.5.3 Transaction compression

The experiments described in Section 6.5.2 were also used to calculate the
difference in size between T ′ and T . On average, the compression stage was

Table 6.4: Device module memory footprint (in bytes).

Device Available a) Sen b) Enc c) Hsh d) Sig e) Com f) Trx

ATM 2.048 206 96 440 407 81 712
M0+ 8.192 1.012 616 104 164 76 796
M0 8.192 1.060 616 104 164 76 752
PIC 65.536 8100 60 0 164 76 628
M4L 98.304 1052 616 104 164 76 752
M4F 98.304 1072 596 124 164 76 740

101

6.5. ARCHITECTURE EVALUATION CHAPTER 6. WATER MANAGEMENT

Figure 6.5: Device module footprint in terms of memory (in percentage).

Table 6.5: Average processing time overhead of the device module (in milliseconds).

Device b) Enc c) Hsh d) Sig e) Com f) Trx

ATM 0,523 29,235 4.187,285 0,514 -
M0+ 0,469 4,738 683,110 0,442 -
M0 0,282 3,324 471,009 0,235 2.452,982
PIC 0,129 1,651 304,567 0,109 2.461,227
M4L 0,111 1,563 124,938 0,085 2.448,768
M4F 0,083 1,204 118,254 0,069 2.455,960

able to reduce the size of T by 45% (i.e., from an average of 140 to an average
of 75 bytes). Moreover, this stage added minimal burden to the boards: in
the most constrained device (ATM), this stage required less than 1% of the
available program size, 4% of the available memory, and less than 1ms to
execute, as shown in Table 6.3 and Table 6.5.

102

CHAPTER 6. WATER MANAGEMENT 6.5. ARCHITECTURE EVALUATION

6.5.4 Transaction cost and processing time

According to the information provided by Geth (i.e., the official Ethereum
client), we obtained the amount of gas needed to create both the Twin and
the App smart contracts. At the same time, we obtained the amount of gas
needed for executing the two most common operations in our architecture,
namely setValue() and Reward(). On a public Ethereum network, this
amount of gas is directly translated into monetary cost, by setting the gas
price Tp in Ether (ETH), the cryptocurrency of the Ethereum blockchain.
Typically, such values are more concisely expressed in gwei, that is the ninth
power of the fractional ETH(i.e., 1 gwei = 1.0× 10−9 ETH and, for this
reason, also known as nano-ether). As a rule of thumb, higher values of Tp
correspond to faster transaction processing times. However, to accurately
estimate the response times of a blockchain network at different values of Tp
is beyond the scope of this work. Nevertheless, the majority of Ethereum
clients (also known as “wallets”) presents three categories that relate Tp to
transaction times (i.e., the time needed for a transaction to be validated and
included in the blockchain). Thus, 2-3 gwei is the typical gas price for a
slow transaction time, 5-6 gwei is the typical range for average transaction
time, and 10-12 gwei is more suitable for fast transaction time. For the sake
of completeness, Table 6.6 translates the values of the system into USD,
assuming an USD/ETHexchange rate of 205 (i.e., 1 ETH = 205 USD),
based on the all time average price until July 2019, as reported by Etherscan6.

Using Tp = 5 gwei we deployed a Twin contract in Ropsten7. Then, we
evaluated the real transaction processing time for a executing the setValue()
operation. We tested this operation, as it is the most frequent transaction
in the architecture. We sent one transaction approximately each 30 minutes
over a period of one week. The average blockchain processing time was 32

6https://etherscan.io/chart/etherprice
7at: 0x1449aeaaf3f18190b46b435b1258efb61257c71b

103

https://etherscan.io/chart/etherprice

6.5. ARCHITECTURE EVALUATION CHAPTER 6. WATER MANAGEMENT

Table 6.6: Transaction costs for different values of Tp (slow, avg, and fast correspond to
2, 5, and 10 gwei, respectively, while 1 ETH = 205 USD is the exchange rate).

Gas slow avg fast

Twin Creation 143.947 0,059 USD 0,148 USD 0,295 USD
setValue() 26.821 0,011 USD 0,027 USD 0,055 USD
App Creation 3.343.572 1,371 USD 3,427 USD 6,854 USD
Reward() 156.580 0,064 USD 0,160 USD 0,321 USD

seconds, with a median of 21 seconds. Over this sample, only two trans-
actions took more than 300 seconds to terminate (i.e., less than 1% of the
total).

6.5.5 Device power consumption and energy budget

For the boards hosting the full device module (namely, M0, PIC, M4L, and
M4F), we measured the energy consumption while creating transactions, as
described in Section 6.5.2. Before creating each transaction, we included an
idle state of 8 seconds plus 5 seconds of sensing time, just as a reference. For
measuring the energy, we used an Otii device8 capable of measuring currents
with accuracy of ±(1% + 0.5µA) at 5V, with sampling rate of 1KHz (i.e.,
1000 samples per second). Figure 6.6 graphically depicts the average current
consumption at 5V, while Table 6.7 shows the average energy consumption
of each stage.

To estimate the energy impact that integrating blockchain has for con-
strained sensing device, we defined a simple energy budget model as follows:

Edaily = Eidle + Esens + Etran + Eblock,

where Eidle is the energy of sensor in idle state, Esens is the energy for sensing
and processing a water consumption measurement, Etran is the energy for

8https://www.qoitech.com/

104

https://www.qoitech.com/

CHAPTER 6. WATER MANAGEMENT 6.5. ARCHITECTURE EVALUATION

Figure 6.6: Average current consumptions at 5V.

Table 6.7: Average energy consumption of the device module at 5V (in Joules).

Device Idle a) Sen b) Enc c) Hsh d) Sig e) Com f) Trx

M0 1,897 1,174 0,004 0,020 0,199 0,042 0,553
PIC 1,770 1,085 0,004 0,017 0,140 0,037 0,555
M4L 1,801 1,088 0,004 0,018 0,106 0,038 0,498
M4F 2,537 1,430 0,006 0,028 0,151 0,058 0,643

transmitting the water measurement, and Eblock is the energy used for sending
the daily usage to the blockchain. Though simple, this analytical model
is aligned with the ones found in the current literature (see for instance
[22]). To estimate the distribution of the energy budget in one day, we
used our experimental results for time measurements (Table 6.5) and power
consumption (Table 6.7).

However, defining and optimizing irrigation schedules (i.e., the sensing
and idles times of the IoT device) is a challenging task. The schedule needs
to consider administrative constraints (local policies, availability) and several

105

6.5. ARCHITECTURE EVALUATION CHAPTER 6. WATER MANAGEMENT

(a) Reactive Monitoring. (b) Continuous Monitoring.

Figure 6.7: Estimated daily energy budget distribution for (a) reactive and (b) continuous
monitoring.

parameters which are related to the field (e.g., size, type of crop, phenological
phase, type of soil), the environment (average temperature, humidity, sea-
son), the irrigation system (e.g., type of installation, water flow)[128, 132].
For instance, the authors of [129] estimated that the watering schedules for
different varieties of citrus fruit using a dripping watering system providing
4 l/h can vary from a minimum of 1 h/day up to 3.25 h/day depending
on the month. On the other hand, authors of [134] reported that irrigation
schedules for grapevines were carried every four days for 7 hours, following
the existent administrative constraints. Since a precise watering schedule is
a task beyond the scope of this research, we considered an average watering
frequency of 2 h of watering twice a day. We also considered two different
scenarios for the IoT system: reactive and continuous. More specifically, the
energy budget for the reactive scenario considers that the measuring device
only reports when using the valve. On the other hand, the continuous sce-
nario considers a measuring device reporting every 15 minutes. These results
are depicted in Figure 6.7.

106

CHAPTER 6. WATER MANAGEMENT 6.6. CONCLUSIONS

6.6 Conclusions

In this chapter, we proposed an architecture based on IoT and blockchain
to foster sustainable agriculture practices, by incentivizing and rewarding
virtuous behaviors in water management. In our proposed architecture, con-
strained IoT devices are direct actors of a public blockchain network serving
as trustworthy data sources for the smart contracts. We studied the impact
that integrating blockchain capabilities has on the most constrained devices,
typically employed for agricultural IoT deployments. By implementing a
complete proof-of-concept of our proposal, we quantitatively evaluate this
impact in terms of memory, program size, communications, and power con-
sumption at the sensing device.The requirements of this proof-of-concept are
perfectly aligned with those shown on similar works, where IoT is used in
the agricultural domain without integrating blockchain [132, 135, 136]. For
example, the data-flow presented in [135] can be easily adjusted to fit our
proposal.

Our results have shown that off-the-shelf, cost-effective IoT devices can
interact directly with a public blockchain even over Low Power Wide Area
Networks (LPWAN). More concretely, 32-bit boards in the same price range
of 8-bit microcontroller (i.e., Arduino board), can seamlessly support the
proposed architecture. Regarding energy budget, performing the blockchain
operations required on average only an additional 6% of the energy concern-
ing traditional operations without blockchain involvement. Moreover, even
for a device reporting every 15 minutes while sending the water consumption
to the blockchain once a day, the blockchain operations consume only 0.004%
of the daily energy budget.

Future works include quantitative evaluations of the metrics related to the
smart contracts supporting our framework, also including security-related
considerations and a more formal security analysis. Smart contracts can

107

6.6. CONCLUSIONS CHAPTER 6. WATER MANAGEMENT

also provide a starting point for an economic evaluation of our architecture.
Finally, evaluating other communications technologies, such as Narrow-band
IoT, could provide a better understanding of the possible alternatives to
further develop the system.

108

Part III: Exploratory analyses of
blockchain-based applications

challenges

Chapter 7

Cost and user experience in
blockchain-based applications

This chapter contains text taken from the published work:

– M. Pincheira, M. Vecchio & R. Giaffreda (2020, July). Rationale and Practical Assessment
of a Fully Distributed Blockchain-based Marketplace of Fog/Edge Computing Resources. In 2020
Seventh International Conference on Software Defined Systems (SDS) (pp. 165-170)

This chapter is the first exploratory analysis on the challenges of blockchain-
based applications identified from the previous two case studies. Its focus is
the monetary cost and the impact on the user experience of using a permis-
sionless network for all the functionalities of a blockchain-based application.
Section 7.1 presents an architecture and the implementation of a blockchain-
based application solely relying on a public blockchain network. To test
its effectiveness, we evaluate several design decisions and trade-offs in terms
of monetary cost versus time-response as a metric for the user experience.
Section 7.2 proposes a cost model for estimating the monetary cost of a
blockchain-based application. The model includes a transaction taxonomy,
an application life-cycle, and a series of parameters that help to characterize
blockchain-based applications and thus, estimate their monetary costs.

111

7.0. FOG/EDGE MARKETPLACE CHAPTER 7. APPLICATIONS COSTS

7.1 Rationale and practical assessment of a fully dis-
tributed blockchain-based marketplace of Fog/Edge
computing resources

7.1.1 Introduction

A marketplace can be defined as a place where people gather for selling and
buying goods. They can be traced back thousands of years, and they have
been reinvented several times [137]. Throughout history, goods evolved from
cattle, vegetables, and hunting tools, to machine learning algorithms, cloud
resources, and IoT data, just to mention a few examples. And the place mi-
grates from a physical location to a virtual software platform, better known as
“electronic marketplace” or, more simply, e-marketplace. However, the main
objective remains the same: a buyer with a specific need browses through
several offers published by the sellers negotiating the purchase of the one that
best fits. By nature, traditional marketplaces are open and heterogeneous
playgrounds where the main users are buyers and sellers. In e-marketplaces,
however, the digital platform is provided by a trusted third-party interme-
diary who has increasingly gained more importance in the process. As a
matter of fact, in exchange for usability and simplicity, these centralized e-
marketplaces have reduced the transparency and flexibility of the process,
allowing rules and procedures to be set by the provider [26]. Furthermore,
intermediaries may influence the interactions of participants by favoring some
specific offers over others, or by silently pushing buyers towards specific sell-
ers [138, 139].

In the last few years, an increasing number of studies have focused on
blockchain as a possible solution for decentralized e-marketplaces [140, 141,
142]. Blockchain, the technology behind the Bitcoin and other cryptocurren-
cies, can provide immutability, transparency, and traceability to the interac-

112

CHAPTER 7. APPLICATIONS COSTS 7.1. FOG/EDGE MARKETPLACE

tions without the need for a third-party intermediary [11]. This technology
can help to overcome issues such as validating the integrity of the offers,
auditing the negotiations, and enforcing the conditions of the sales [143].
Finally, the decentralized architecture of blockchain networks removes the
single-point of failure of the whole e-marketplace infrastructure [144].

However, despite the extensive use of blockchain in the financial sector, in
terms of research and development, the technology is still in its early stages
of maturity. This translates into limitations (e.g., scalability, throughput,
costs, etc.) that need to be wisely considered before deciding to integrate a
blockchain-based solution into a production system. In the specific case of
decentralized e-marketplaces, one of the main drawbacks the technology is
currently facing is the usability and the user experience of such platforms
[140]. To overcome these limitations, the current literature is pursuing two
approaches: a) using private over public blockchain implementations, and b)
including other services, such as decentralized file systems (DFS) and decen-
tralized databases (DDB).While the first approach provides decentralization
at the architectural level, it still relies on a controlling entity. On the other
hand, the second approach provides full decentralization yet introduces a
dependency on these new services. Moreover, from the perspectives of the
user and the developer, such services may present additional usability issues.
These factors raise several questions about design decisions and architectural
choices for these blockchain-based e-marketplaces.

In this section, we propose a fully decentralized e-marketplace framework,
based only on a public blockchain infrastructure. To evaluate its effectiveness,
we consider the use-case of a marketplace of Fog/Edge Computing resources.
As metrics for the user experience, we focus on monetary cost and system
performance. For particular design decisions, we evaluate different scenarios
and present a final version of the marketplace based on our evaluations.
This thorough analysis provides guidelines for designing blockchain-based

113

7.1. FOG/EDGE MARKETPLACE CHAPTER 7. APPLICATIONS COSTS

marketplaces and can be particularly useful when assessing the feasibility of
adopting public blockchain implementations.

The remaining of this section is structured as follows: Subsection 7.1.2
provides a brief overview of similar works related to blockchain-based mar-
ketplaces. In subsection 7.1.3, we describe the proposed architecture, while
subsection 7.1.4 delves into the parameter setup of our evaluation campaign.
Subsection 7.1.5 presents the implementation details and the analysis of the
obtained results. Subsection 7.1.6 presents final remarks and proposes some
interesting hints for future research works.

7.1.2 Related work

In recent years, there has been a growing interest in blockchain technol-
ogy as a fabric for creating decentralized e-marketplaces. In general, while
some studies have been conducted on private blockchain implementations
[26], fewer have dealt with smart contracts on public blockchain implementa-
tions. In the context of cloud services marketplaces, the authors of [145] study
the negotiation of service level agreements. However, this work provides only
a use-case example, without deploying it on a real blockchain. Similarly, the
authors of [143] use the web service agreement negotiation specification to
define a custom blockchain. Nonetheless, they evaluate their proposal only
in a simulation environment, without implementing any smart contract. An
Ethereum-based green certificate marketplace is presented in [146], where
the authors propose an architecture based on a single smart contract that is
later deployed and tested. They present metrics regarding the cost of differ-
ent pricing strategies for buying and selling certificates and compare these
monetary results with a traditional centralized marketplace. Similarly, the
authors of [142] present a system for renewable energy auctions. Their ar-
chitecture is based on a single smart contract and they also focus on the
auction prices. However, neither of these works address other marketplace’s

114

CHAPTER 7. APPLICATIONS COSTS 7.1. FOG/EDGE MARKETPLACE

functionalities, such as creating and managing the market itself.

A general-purpose marketplace is presented in [139], where the authors
propose, implement, and test a system based on a hybrid infrastructure com-
bining Ethereum and a decentralized file system (DFS). The data of products
are stored in the DFS, while the Ethereum network is used to store a reference
to such data and to support the bidding process. This work presents metrics
regarding the performance of the application based on gas consumption and
transaction time. A similar hybrid architecture is presented in [140], where
the authors present a thorough analysis of the data and associated costs for
a marketplace of IoT data in a smart city context. However, both works miss
to provide any evaluation of the overhead time required to create and browse
the existing products using the proposed hybrid approach.

More aligned to our proposal is the Ethereum-based general-purpose mar-
ketplace presented in [144], where the authors first describe five functional-
ities of a marketplace, and then focus on the evaluation of two of them,
namely “offer creation”, and “offers query”. More in detail, they propose a
hybrid centralized/decentralized architecture where the consumer and the
provider access their own type of nodes. The search is based on a smart
contract, but it also relies on an external array maintained in the so-called
“consumer node”. To evaluate the performance of this system, the authors
deploy a private Ethereum network with three nodes, namely a miner, a
provider, and a consumer. Then, a smart contract for adding offerings is
added to the chain. Their results show quite good performance from the
user perspective: in particular, a list of 4096 offers is obtained in less than 20
seconds. However, they miss to provide details about the smart contract, the
offerings (e.g., fields, size), as well as the time needed to create and maintain
the external array. Last but not least, this approach is not fully decentral-
ized, so if one consumer node was off-line, then a subset of consumers would
not be able to access the marketplace.

115

7.1. FOG/EDGE MARKETPLACE CHAPTER 7. APPLICATIONS COSTS

On in all, these works highlight the critical task of evaluating the design
decisions for a fully distributed system architecture, especially from the smart
contracts perspective and the impact they can have on the user experience
when using a public blockchain network.

7.1.3 Proposed system architecture

We propose a fully decentralized e-marketplace framework that relies solely
on a public blockchain with smart contract capabilities. Regarding the appli-
cation domain, we focus on the requirements of an e-marketplace of Fog/Edge
Computing resources, as part of an ongoing project funded by the European
Commission, namely “DECENTER: Decentralised technologies for orches-
trated Cloud-to-Edge intelligence" 1. Although the proposed software archi-
tecture (depicted in Figure 7.1) takes into account very specific requirements
of this project, it can seamlessly accommodate requirements of other domain-
specific marketplaces we have found in the literature (e.g., [140, 139, 144]).
In our framework, a centralized infrastructure is completely replaced by a
blockchain network and any administrative task is performed by a single
market smart contract deployed in the network. It follows that the only two
types of actors of this system are buyers and sellers, unequivocally identified
in the blockchain by unique addresses. Thus, issuing a transaction from one
address can be considered as the proof of ownership of that identity, while
keys distribution and management issues are beyond the scope of this work.

We define a marketplace M as a collection of advertisements Ai such that
M = {A1, A2, . . . , Al} ,where l ∈ N is the size of the marketplace. M can
be represented by a single Market Smart Contract MSC, deployed in the
blockchain by a generic actor X of the system. It is important to notice
that X does not have any special privilege with respect to any other actor
of the system; for instance, M can be instantiated by a seller (or by a group

1https://www.decenter-project.eu/

116

https://www.decenter-project.eu/

CHAPTER 7. APPLICATIONS COSTS 7.1. FOG/EDGE MARKETPLACE

Figure 7.1: The proposed fully-distributed e-marketplace software architecture.

of sellers) or a buyer (or by a group of buyers). Each advertisement Ai

represents a resource ri belonging to a particular seller and is described by
a finite set of fields Di = {d1, d2, . . . , dm}, where m ∈ N. Moreover, each Ai

is uniquely represented by its corresponding advertisement smart contract
ASCi deployed in the blockchain. It is worth to notice that this definition
can be used for any type of resources, such as goods (e.g., renewable energy,
IoT data, etc.) and even services (e.g., AI models, algorithms, etc.).

A buyer can browse the marketplace advertisements, choosing a specific
Ai ∈M based on the values ofDi. If interested to Ai, he creates a reservation
RAi representing the offer for the resource advertised. At its turn, RAi is
described by a set of fields Gi = {g1, g2, . . . , gn}, where n ∈ N. If such an
offer is accepted by the seller, then the agreement between the two parties is
represented by a unique reservation smart contract RSCi, also deployed in
the blockchain. At this point, the process can be considered as finalized.

All possible interactions between actors and components of the proposed
architecture can be grouped into seven functionalities (F1-F7, as shown in
Figure 7.2). These functionalities are mapped onto four software components
which are described in the following. It is worth to notice that F1 is only a

117

7.1. FOG/EDGE MARKETPLACE CHAPTER 7. APPLICATIONS COSTS

transaction necessary to deploy the first contract and, for this reason, it does
not belong to any specific component.

The Market Client (CLI)

it provides an application interface (API) to interact with the blockchain
and access all the functionalities of the marketplace (F2-F7). Any off-chain
processing and off-chain storage is done by this module, without having to
rely on external services (e.g., DFS).

The Market Smart Contract

it can be considered as the manager of the market. However, it cannot in-
fluence the market users’ interactions. The main scope of this component
is to act as a registry for the existing contracts (F4). Moreover, it is used
as a factory for creating new advertisements (F2); this guarantees that all
advertisements will have the exact same code. This smart contract can imple-
ment more complex logic holding the potential of converting a decentralized
e-marketplace into an Autonomous Decentralized Organization (DAO) man-
aging not only advertisements, but also reviews, scores, and reputations.

The Advertisement Smart Contract

it can be considered as the main component of the system since it contains
the details of an advertisement (F5) and the method to update such details
(F3). It also contains the logic to receive reservation requests (F6) and to
accept/reject them (F7). The advertisement is fully managed by the seller,
therefore the latter cannot be influenced by any third-party.

118

CHAPTER 7. APPLICATIONS COSTS 7.1. FOG/EDGE MARKETPLACE

The Reservation Smart Contract

at current development stage of the project, a purchase is considered finalized
with the creation of this smart contract. Thus, for the sake of simplicity, it
can be considered as an escrow agreement. However, in principle, it could
provide more complex logic (e.g., automatic verification of an agreement,
negotiation in case of failure of an agreement, etc.).

Figure 7.2: Sequence diagram of the interactions within the proposed e-marketplace.

7.1.4 Experimental setup

To quantitatively assess the benefits of the proposed architecture, we tai-
lored our design to the Ethereum blockchain, being it the second largest
public blockchain network and globally considered as a reference regarding
scripting capabilities. The experiments were performed using a DELL Lati-
tude E5470 laptop endowed with 4x Intel Corei5-6440HQ at 2.60GHz, 8GB
RAM, 256GB SSD Disk and running a Linux Ubuntu Operating System
(16.04.6 LTS). Regarding the software stack and tools, we implemented the
CLI using Python 3.6, the web3 library as an interface for the Ethereum

119

7.1. FOG/EDGE MARKETPLACE CHAPTER 7. APPLICATIONS COSTS

network, the flask library to provide a public REST API, and the gzip utility
for file compression. To evaluate the time response of a smart contract we
used Ganache (version 2.0.1), that is part of the Truffle suite 2. This software
provides the same results as sending a transaction to a real Ethereum node,
without the network delay and the transaction processing time needed for
the mining process. To assess the network performance we run a node of
the Ethereum Ropsten3 test network, using the official Ethereum client geth
(version 1.9).

Basic data model parameters

Based on the requirements of our project, we set m = 60 for the adver-
tisement description, meaning that D is composed of 60 fields (e.g., unique
identifier, type of resource, region, seller, status). For the reservation de-
scription G, we considered n = 30 on average. As done in similar works
[140], D and G are encoded using JSON format in order to ease integration
with the other components of the system (e.g., user interface). For the ex-
periments, random data is generated for all the fields, based on real examples
of G and D, thus the size of D and G refers to the total bytes used by data
encoded using JSON.

Reference cost for Ethereum

To obtain a reference monetary cost, we fixed a conversion rate CE from
ETH to USD equal to 205 USD. We obtained this value as the average daily
ETH price until July 2019, as reported by Etherscan4). We also set a gas
price Tp of 10 gwei, which is the value recommended by Metamask5 for fast
transactions processing.

2https://truffleframework.com/ganache
3https://ropsten.etherscan.io/
4https://etherscan.io/chart/etherprice
5https://metamask.io

120

https://truffleframework.com/ganache
https://ropsten.etherscan.io/
https://etherscan.io/chart/etherprice
https://metamask.io

CHAPTER 7. APPLICATIONS COSTS 7.1. FOG/EDGE MARKETPLACE

7.1.5 Architecture evaluation

Cost evaluation

We evaluated the cost of our framework with a bottom-up approach, start-
ing from the reservation as the basic unit of the system. Any design decision
taken on the reservation will have a direct impact on the cost of both the
advertisement and the market. For testing purposes, all contracts are cre-
ated by calling a method contained in another smart contract that acts as a
factory.

Cost of RSC

Our reservation is based on the escrow contract provided by OpenZepellin6,
that is an industry-approved library for secure smart contract development.
This base escrow also stores the reservation details G as raw bytes on a single
variable. Since such information does not need to be processed internally by
the RSC, it can be also stored in compressed format, using CLI to perform
this off-chain task. We evaluated these two scenarios (i.e., compressed and
normal) by creating 100 reservations with random data generated for G.
Table 7.1 depicts the cost in gas and a reference cost in USD, according to
the set conversion rates. The average size of G was 1585 and 653 bytes for
the normal and compressed case, respectively.

Table 7.1: Average cost for creating reservations
(Tp = 10 gwei and Ce = 205 USD).

Normal Compressed
Size USD Size USD

Create 1793288 3,7 1144229 2,3

6https://github.com/OpenZeppelin/openzeppelin-contracts

121

https://github.com/OpenZeppelin/openzeppelin-contracts

7.1. FOG/EDGE MARKETPLACE CHAPTER 7. APPLICATIONS COSTS

Cost of ASC

To implement the advertisement smart contract, we considered three levels of
on-chain processing. From all the existing fields di ∈ D we select a subgroup
D′ ∈ D that could be used by the smart contract to provide additional
functionalities on the market. The size of D′ translates into three designs
alternatives for the ASC according to the number of fields that are stored as
variables and accessible by the contract, namely:

a) Maximum: D′ is composed of 15 fields (including 3 dynamic lists), while
the remaining 45 fields are stored as raw bytes using a single variable.

b) Medium: D′ is composed of 10 fields (including 1 dynamic list), while
the remaining 50 fields are stored as raw bytes using a single variable.

c) Minimum: D′ is composed of 5 fields, while the remaining 55 fields are
stored as raw bytes in a single variable.

Then, we evaluated the three alternatives (namely, a, b, c) by creating and
updating 100 advertisements with random data generated for D. Table 7.2
shows the average cost in gas and a reference cost in USD. The size of D was
2522 and 1007 bytes for the normal and compressed case, respectively.

Cost of MSC

The final cost evaluation of our system is for the MSC, which depends on both
the RSC and the ASC. However, this contract also needs to maintain a reg-
istry R of all the existing advertisements based on the unique identifier (duid)
and the blockchain address (dadd) of each advertisement. Since this registry
can be queried, we consider only two types of possible queries, namely a) All
and b) Filtered. The filtered query is simply based on the region dreg ∈ D,
leading to three alternatives to implement this registry R = {duid, dadd, dreg}
in the MSC:

122

CHAPTER 7. APPLICATIONS COSTS 7.1. FOG/EDGE MARKETPLACE

Table 7.2: Average cost for creating and updating advertisements
(Tp = 10 gwei and Ce = 205 USD).

Normal Compressed
a) Maximum Gas USD Gas USD

Create 4151378 8,5 4040785 8,3
Update 724653 1,5 488352 1,0
b) Medium Gas USD Gas USD
Create 3460243 7,1 2877232 5,9
Update 661437 1,4 270337 0,6
c) Minimum Gas USD Gas USD
Create 3352120 6,9 2467789 5,1
Update 587023 1,2 263409 0,5

d) On-Chain Registry: the full registry R (duid, dadd, dreg) is stored as fields
in the contract. This alternative allows the MSC, for instance, to detect
when a duid is repeated, and also to filter the registry without off-chain
processing.

e) Off-Chain Registry: we use events to store R, which is a cheaper al-
ternative for storage purposes. In this case, the contract cannot detect
if an duid is repeated, neither it can filter the registry. This process-
ing must be done off-chain, since smart contracts cannot access event
information.

f) Hybrid Registry: we minimize the internal storage, so it is used only
to detect if an duid is repeated. We use events to store the rest of the
registry and the filtering is done off-chain.

Finally, using the three different types of ASC (namely, a, b, c) from
subsection 7.1.5, we could evaluate the three market alternatives (namely,
d, e, f). Table 7.3 shows the average results of 100 tests performed for each
type of ASC and MSC.

123

7.1. FOG/EDGE MARKETPLACE CHAPTER 7. APPLICATIONS COSTS

Table 7.3: Average transaction cost for creating the marketplace
(Tp = 10 gwei and Ce = 205 USD).

d) On-Chain e) Off-Chain f) Hybrid
GAS USD GAS USD GAS USD

a) Maximum 5830842 12,0 4939778 10,1 5070884 10,4
b) Medium 4797904 9,8 3888487 8,0 4019514 8,2
c) Minimum 3807595 7,8 2897972 5,9 3032280 6,2

Performance evaluation

We evaluated the performance of our framework in terms of time response
for getting all the advertisements from a deployed market. This process
is divided in two steps: 1) Query the list of existing advertisements from
the marketplace (F4), and 2) Query the details of each advertisement (F5).
We evaluated all the queries considering seven different sizes of the market
l = [27, 213], evenly distributed over 5 regions (for filtering purposes). This
values were chosen considering the scenarios presented on current literature.

Query list

Using the three versions of MSC described in subsection 7.1.5, we could
measure the total time needed for retrieving the complete list or a filtered
list from the MSC (F4). The average time of 100 tests is shown in Table 7.4
and depicted in Figure 7.3. It is worth to notice that, when l > 1024, the
MSC reaches the gas limit before processing the entire registry R.

Query details

We measured the total time needed for retrieving the details of all the existing
advertisements (F5), according to the list obtained from the previous step
(F4). The average time of 100 tests for each market size is shown in Table 7.5

124

CHAPTER 7. APPLICATIONS COSTS 7.1. FOG/EDGE MARKETPLACE

Table 7.4: Average time response (in seconds) for querying the list of advertisements from
the MSC.

d) On-Chain e) Off-Chain f) Hybrid
size(l) All Filter All Filter All Filter

128 0.78 0.93 0.12 0.13 0.13 0.12
256 1.34 1.88 0.21 0.21 0.21 0.21
512 2.64 3.71 0.35 0.34 0.35 0.36
1024 5.33 7.56 0.65 0.69 0.72 0.69
2048 11.35 - 1.31 1.31 1.32 1.33
4086 23.06 - 2.67 2.62 2.69 2.67
8192 46.01 - 5.65 5.63 5.54 5.55

Figure 7.3: Average time response (in seconds) for querying the list of advertisements

and depicted in Figure 7.4.

Local buffers for queries

The major delay on both queries, is the network call to access the blockchain,
and not the time needed by the smart contract. We implemented a buffer
in the CLI in order to reduce the network calls. Thus, the time displayed

125

7.1. FOG/EDGE MARKETPLACE CHAPTER 7. APPLICATIONS COSTS

Table 7.5: Average time response (in seconds) for querying details of all the advertisement.

a) Maximum b) Medium c) Minimum
size(l) All Filter All Filter All Filter

128 15.4 3.8 15.9 3.3 14.4 3.1
256 29.2 7.4 28.7 5.9 28.3 5.8
512 59.2 15.1 57.5 11.8 57.3 11.8
1024 118.9 30.1 116.1 23.5 114.2 23.4
2048 257.8 - 231.9 47.5 229.8 46.5
4086 503.7 - 470.1 96.1 465.2 95.1
8192 980.1 - 975.7 198.9 966.9 196.5

Figure 7.4: Average time response (in seconds) for obtaining the details of all advertise-
ments.

in Table 7.5 becomes the initialization time for CLI, enabling later calls
to be answered by the local buffer. New advertisements and updates are
monitored by the client on background. To avoid out-dated information,
for example when creating reservation, the selected advertisement is always
retrieved from the blockchain before any write operation. Using this buffer,
we repeated the experiments described in subsection 7.1.5. The results are

126

CHAPTER 7. APPLICATIONS COSTS 7.1. FOG/EDGE MARKETPLACE

summarized in Table 7.6 and displayed in Figure 7.5.

Table 7.6: Average time response (in seconds) for querying the detailed list of advertise-
ments using local buffer.

a) Maximum b) Medium c) Minimum
size(l) All Filter All Filter All Filter

128 0.007 0.004 0.006 0.005 0.005 0.005
256 0.014 0.007 0.012 0.008 0.011 0.007
512 0.024 0.011 0.025 0.011 0.025 0.011
1024 0.043 0.022 0.045 0.021 0.051 0.021
2048 0.091 0.036 0.089 0.032 0.096 0.041
4086 0.173 0.071 0.172 0.069 0.181 0.075
8192 0.379 0.133 0.383 0.128 0.404 0.135

Figure 7.5: Average time for all advertisements using local buffer.

Network processing times

As a final step, we combined all the selected elements into the final version
of the architecture. We evaluated the processing time for the transactions

127

7.1. FOG/EDGE MARKETPLACE CHAPTER 7. APPLICATIONS COSTS

on a live network. To this aim, we deployed a single Hybrid MSC 7 and 128
Minimum ASC on Ethereum Ropsten network. Each advertisement was also
updated, and a reservation was requested and accepted on it. For a better
reference under different network conditions, the advertisements were created
approximately every 10 minutes during a period of 24 hours. Table 7.7 shows
a summary of the processing time and cost for each of the 7 market func-
tionalities. It is important to notice that queries F4 and F5 do not require
transactions, hence do not have associated costs nor require processing times
in the network.

Table 7.7: Average processing time (in seconds) and cost of the functionalities in a live
network (Tp = 10 gwei and Ce = 205 USD).

Functionalities Processing Time Cost USD

F1) Create Market 20s 6.2
F2) Create Advertisement 22s 5.1
F3) Update Advertisement 23s 0.5
F4) Query List 0s 0
F5) Query Details 0s 0
F6) Request Reservation 23s 0.1
F7) Accept Reservation 22s 2.0

7.1.6 Conclusions and future works

In this section, we have proposed a fully decentralized marketplace where
smart contracts alone provide all the functionalities needed by the applica-
tion, without the need for additional services (i.e., storage). To validate
the proposed framework, we have developed a full-fledged e-marketplace of
Fog/Edge Computing resources in the context of an ongoing EU research
project. We evaluated several design decisions in terms of cost and perfor-

7available at :0xFED47d92904602cCb7324Dc67dF1A2E833E7a9D7

128

CHAPTER 7. APPLICATIONS COSTS 7.1. FOG/EDGE MARKETPLACE

mance as metrics for assessing the user experience. Our results have shown
that a fully blockchain-based marketplace can be created at the cost of around
6 USD and the different operations costs range from few cents to 5 USD. On
a live network, these costs translates into processing times of around 20 sec-
onds, which is among the fastest processing times the network is currently
capable of. When browsing the marketplace, a detailed list of over 8000 ad-
vertisements could be obtained in less than 1 second with minimal off-chain
computation and without off-chain storage. Compared to the state-of-the-
art counterparts, our fully decentralized architecture provides response times
within the same range as those provided by hybrid architectures. These en-
couraging results validate the effectiveness of the proposed architecture and
clearly define thresholds in terms of performance and cost within which our
fully decentralized marketplace can operate to also guarantee seamless user
experience. We expect that these constraints and thresholds can be used
as guidelines for designing smart contracts within different application do-
mains.Future works include evaluating further complex smart contracts at
the reservation level, enabling more elaborate functionalities such as auto-
matic negotiation and automatic conflict resolution.

129

7.1. COST MODEL CHAPTER 7. APPLICATIONS COSTS

7.2 Cost Model for blockchain-based applications

7.2.1 Introduction

Current models studying blockchain-based application focus on factors such
as scalability, security, and performance. However, they fail to provide a
monetary cost analysis, particularly when a permissionless infrastructure is
required.

In this section we present a cost model for the infrastructure of a blockchain-
based application on permissionless networks. To this aim, we propose
a transaction taxonomy and an application life-cycle to describe a typical
blockchain-based application. This taxonomy and life-cycle can be used to
provide an overview of the system at the design stage. To illustrate the us-
ability of the model to quantitatively analyse the cost and benefits of the
blockchain-base application, we study the application described in Section
7.1.

The model is a step towards identifying the diverse factors characterizing
blockchain-based applications in a public blockchain network and the costs
behind such applications.

General overview of the model

The proposed model consider interactions among actors (i.e., transactions)
as the functional unit to provide Life Cycle Assessment (LCA) of the appli-
cation. Given a group of actors A and a group of stake-holders S, the cost
of the blockchain-based application CI is given by the infrastructure needed
to support the interactions I of the actors. These interactions generate value
units K which are are the benefits BK for the stake-holders. Thus, for a
given month m we define the cost of the system as C(m) as the cost of the
interactions CI over an infrastructure supporting the blockchain-based ap-
plication. These interactions are expected to a generate a value BK which

130

CHAPTER 7. APPLICATIONS COSTS 7.2. COST MODEL

represents the benefits for the stakeholders in that given month B(m) such
that:

n∑
m=1

C(m) = CI −→ BK =
n∑

m=1

B(m) (7.1)

Our model propose a series of key parameters which allow to characterize
the application and the interactions of their actors. To better understand
these parameter, we first need to define what we consider a typical blockchain-
based application. To this end, subsection 7.2.2 describes the requirements
of these types of applications and the life-cycle that will provide the scope of
our analysis. Based on these definitions and requirements, subsection 7.2.3
proposes a transaction taxonomy to generalize the interactions of the actors,
making the model usable in a wider range of applications and domains.

7.2.2 Application description and requirements

In our model, we consider that the application supports the interactions of
a group of unknown actors, identified only by the use of private/public keys.
Anyone with a set of keys is considered an actor after being registered in the
application. Actors have a limited group of predefined interactions that aims
to create and transfer value among them. Finally, all the information in the
application is immutable, auditable, and accessible by anybody. To simplify
the analysis, we consider that the blockchain-based applications have the four
requirements detailed on Table 7.8.

Similar to the analysis presented on [52], we consider that these blockchain-
based applications have a two-phase life-cycle: Bootstrap and Operation. It
is important to highlight that we do not consider the costs of developing the
software nor the cost of updating the software. We only focus on the cost of
the infrastructure to support the interactions of the actors.

131

7.2. COST MODEL CHAPTER 7. APPLICATIONS COSTS

Table 7.8: Basic requirements of blockchain-based application on permissionless networks.

Requirement

R.1 All the application logic is on the blockchain
R.2 Actors are unknown and identity is proven by digital signatures
R.3 Actors need to be registered in the application
R.4 Actors interact to generate and transfer value
R.5 Information is public, immutable, and auditable

7.2.3 Proposed transaction taxonomy

Interactions among actors on a blockchain-based application are represented
by transactions. From the group of all possible interactions I, our model
focus only in a subset of transactions Tx ∈ I that create new information for
the application. Based on the basic requirements presented on Table 7.8 and
the life-cycle of the application, we proposed CRIV , a simple taxonomy to
classify the transactions. CRIV categorizes the transactions into 4 types of:
Creation (TxC), Registration (TxR), Interaction (TxI), and Value (TxV).
Figure 7.6 shows the CRIV taxonomy in reference to the life-cycle phases of
the blockchain-based application.

• Creation Transaction (TxC) These are the transactions needed to
deploy the application logic into the blockchain. TxC may include one
or many transactions and are expected only during the Bootstrap phase.

• Registration Transaction (TxR) These transactions are required
when an unknown user interacts with the application for the first time,
making the user an the actor of the application.

• Interaction Transaction (TxI) Are the most common types of inter-
actions between actors on the application. These types of transactions
produce information that needs to be kept in the blockchain, but do not
include the transfer of value.

132

CHAPTER 7. APPLICATIONS COSTS 7.2. COST MODEL

Figure 7.6: Life-cycle of a blockchain-based application

• Value Transaction (TxV) These type of transactions are the most
important on the system as they include the transfer of value between
unknown actors on a decentralized system.

7.2.4 Cost model for permissionless networks

On permissionless blockchain networks (i.e., Bitcoin [40], Ethereum [46]),
transactions that create new information (i.e., modify the blockchain state)
have a monetary cost. The cost is expressed in terms of the cryptocurrency
used in the blockchain and pays for the use of the public network infrastruc-
ture. We divided our proposed cost model into two components,i.e., CB and
CO one for each phase of the application life-cycle. Using the proposed tax-
onomy, the bootstrap component CB includes TxC and TxR for the initial
actors. Conversely, the operation component CO considers TxR for other
new actors, TxI , and TxV . This component is evaluated every month during
the operation phase. Table 7.9 summarize all the parameters of our model,
which are described in the following paragraphs.

133

7.2. COST MODEL CHAPTER 7. APPLICATIONS COSTS

Table 7.9: Parameters for the cost model of infrastructure using a permissionless
blockchain.

Parameter Description

A0 Number of expected initial actors
P (m) Price of the crypto-currency
µ Time factor for processing transactions
CCC Computational cost of creation transactions
CCR Computational cost of registration transactions
CCI Computational cost of interactions Transactions
CCV Computational cost of value Transactions
Fg Factor of growth
Fi Factor of interactions for the actors
Fv Factor of value transfer
Fk Value unit factor
Vs Total Monetary value of a value-unit

Therefore, in any given a month m where m = 0 is the bootstrap phase,
and m > 0 is a month on the operation phase, we define the cost of permis-
sionless blockchain network infrastructure C(m) as:

C(m) =

CB, if m = 0

CO(x) m > 0
(7.2)

For both phases the costs are the fees required to execute the transactions
on the public network. The fee links the computational cost CC of a trans-
action with the cryptocurrency of the network P using a processing time
factor µ. Given the high volatility of the cryptocurrencies price, an accurate
estimation for P is a very complex task beyond the scope of this work. In our
model, we reflect this variation using a function P (m) for the price at a given
month m. This function should be define by the user of the model, according
to the particular application implementations. The values of the function can
be fixed (e.g., the average for a year), a fixed set of values (e.g., based on his-

134

CHAPTER 7. APPLICATIONS COSTS 7.2. COST MODEL

torical monthly prices), or an estimation function. The factor µ increases the
price paid for a transaction, which typically translated into faster processing
times since higher fees are more attractive to the node operators. Using the
CRIV taxonomy, for each transaction Tx ∈ {TxC, TxR, TxI, TxV }, the
total cost in a month m is given by:

CTx(m) = P (m) · µ · CCTx ·QTx (7.3)

Where QTx is the total number of transactions, and CCTx as the compu-
tation of that type of transaction. Thus, the cost of the bootstrap phase is
given by:

CB = CTxC(0) + CTxR(0) (7.4)

Where the first component is the cost to create the application on the
blockchain and the second component is the cost to register the initial actors
of the system A0.

Similarly, the costs of the operation phase at a given month m is defined
by:

CO(m) = CTxR(m) + CTxI(m) + CTxV (m) (7.5)

To calculate the costs using these equations, we need to define how to esti-
mate the number of transactions QTx(m). Since the number of transactions
is directly related to the number of actors in the system, we first define this
parameter as A(m) such that:

A(m) =

A0, if m = 0

A(m− 1) · Fg m > 0
(7.6)

Where A0 is the initial numbers of actors in the system, and Fg is the
expected monthly growth of the system (in terms of actors). Therefore, the

135

7.2. COST MODEL CHAPTER 7. APPLICATIONS COSTS

number of a transactions QTx(m) for each type of transaction T is given by:

QTx(m) =



1 for Tx = TxC and m = 0

0 for Tx = TxC and m > 0

A(m)− A(m− 1) for Tx = TxR

A(m) · Fi for Tx = TxI

A(m) · Fv for Tx = TxV

(7.7)

QTxC is 1 in the bootstrap phase and 0 for the operation phase, QTxR is
the number of new actors, QTxI is obtained from all the actors using a fac-
tor of interaction Fi, and QTxV is obtained using a factor of value transfer Fv.

As show on Equation 7.1, the costs of a blockchain-based application
(CK) is the cost of the infrastructure to support the interactions I among
the actors A. These interactions are expected to produced a certain value
V K which provides benefits to the stake holders. Therefore, the benefits of
a given month m is defined by:

B(m) = Fk ·QTxV (m) · V (7.8)

Where Fk is the factor of value units in a transaction of type TxV , QTxV

is the number of transactions of type TxV , and V is total monetary value
of a value-unit. This monetary value is the sum of all the monetary value
assigned by each stake-holder S (i.e., the benefit for each stakeholder).

Thus, to estimate the cost and benefits of a blockchain-based application,
we need to define the parameters on Table 7.9 which helps us to characterize
the application and its behavior in a given time-frame.

136

CHAPTER 7. APPLICATIONS COSTS 7.2. COST MODEL

Parameters specifications

The proposed cost model is blockchain-agnostic. To estimate the costs and
benefits of a blockchain-based application, the parameters of model need to
adjusted according to the particular blockchain implementation selected for
the application. For our evaluation, we choose Ethereum, as it is considered
a reference implementation for smart-contracts [89] and migrating the model
to other implementations should not present a major issue.

• The price of the cryptocurrency P (m) is the price of Ether (ETH) which
is quite volatile. However, historic values can provide a good reference
for evaluating different scenarios. For Ethereum, the historical price
(and many other statistics) can be obtained from several websites (e.g.,
Etherscan 8, Coinmarketcap 9)

• The computational cost of the interactions correspond to the gas need
to execute a transaction on the Ethereum network. The gas needed is
defined by the computational operations performed by the transaction
(i.e., write a byte, transfer cryptocurrency). Every computational op-
eration has a predefined gas usage [42]. Therefore, this computational
cost can be obtained from the smart contracts that implement the the
logic of the application.

• If the smart-contracts are not yet designed, some reference values can
be estimated for the computation cost. Recent studies on the smart-
contracts currently deployed on the Ethereum, shown that the majority
of these applications are very similar to each other [89, 147]. In fact,
1/3 of the contracts are Token applications cloned from openZepellin 10,
a community-approved library for secure smart contract development.

8https://etherscan.io/chart/etherprice
9https://coinmarketcap.com/es/currencies/ethereum/

10https://github.com/OpenZeppelin/openzeppelin-contracts

137

7.2. COST MODEL CHAPTER 7. APPLICATIONS COSTS

Thus, if the smart contract are not yet implemented, codes from this
application library (e.g., ER20 Token, ERC721 Token) can provide a
very good reference for the computation cost of the interactions.

• The µ parameter on Ethereum can be directly mapped to the gas price.
Higher gas price translates into faster processing time for the transac-
tion, however, there is no direct relation that provide a time reference.
On average network condition (i.e., number of actors and number of
transactions on the network), values of gas around 10-20 provide an
average of processing time within the limit of the network ([148, 149].
However, events such an initial coin offering (ICO) will create higher
traffic and thus, an increase of the gas value needed to achieve that
average processing time [150].

7.2.5 Evaluation of the marketplace application

To test our model, we study the fully distributed blockchain-based market-
place for Fog-Edge computing resources (FECR) presented in Section 7.1. In
this application, the group or unknown actors A is composed of both buyers
and sellers of FECR. The unit of value is the FECR, expressed as a SLA
(Service level agreements) between the buyer and the seller. In this case, the
stake-holders are a group of sellers (service providers) wanting to avoid an
intermediary to provide the marketplace functionality. For the marketplace,
seven different transactions describe all the possible interactions among the
actors (see section 7.1.3). Table 7.10 shows these transactions with the re-
spective gas cost and the classification in the CRIV taxonomy. From the
table we can obtain the values for CCc, CCr, CCi, and CCv. It is important
to notice that functions F1.4 and F1.5 are not considered in the taxonomy,
as they read-only transactions.

For the other parameters, we will estimate an scenario based on similar

138

CHAPTER 7. APPLICATIONS COSTS 7.2. COST MODEL

Table 7.10: Basic transactions for a marketplace classified using the CRIV taxonomy.

Transaction Estimated Gas CRIV

F1.1) Create Market 3032280 TxC
F1.2) Create Advertisement 2467789 TxR
F1.3) Update Advertisement 263409 TxI
F1.4) Query List 0 -
F1.5) Query Details 0 -
F1.6) Request Reservation 63681 TxI
F1.7) Accept Reservation 1144229 TxV

marketplace use case (subsection 7.1.2). We assumed a initial market size
of 100 users (A0) with a monthly growth of 1% (i.e., factor of growth). We
estimated that all the actors will perform 2 interactions per month (i.e., factor
of interaction). We assumed that 50% of the actors will rent their resources
on any given month (i.e. factor of value transfer). The value-units are SLA
between buyers and sellers for a FECR rented for a month at 60 USD. For
the stakeholder (service provider) we assume that costs of the FECR is 50%
of the price, providing a benefit of 30 USD per value-unit (Vs = 30).

In this first scenario, we define a fixed price of Ether at 307 USD, which is
the year average price for Ethereum in 2020, as reported by 11. The average
gas price was 30 gwei, which becomes our as µ = 30x10−9.

Table 7.11 summarizes all the parameters considered to characterize our
application and create a first scenario. We want to highlight that these
parameter can be set at any other values to adapt to other situations or
scenarios, based on the reader experience, or the particular case to study.

Once we have characterized our application, we can evaluate the scenario.
From equation 7.4 we obtain that the bootstrap costs is 2300 USD, which
includes deploying the marketplace and register the first 100 actors.

11https://etherscan.io/chart/etherprice

139

7.2. COST MODEL CHAPTER 7. APPLICATIONS COSTS

Table 7.11: Parameters for the cost model of the marketplace using in a public blockchain.

Parameter Description Value

A0 Number of expected initial actors 100
P (m) Average Month Price in 2020 (USD) 307
µ Time factor for processing transactions 30 gwei
CCC Computational cost of creation transactions 3032280
CCR Computational cost of registration transactions 2467789
CCI Computational cost of interactions Transactions 327090
CCV Computational cost of value Transactions 1144229
Fg Factor of growth 0.01
Fi Factor of interaction 2
Fv Factor of value transfer 0.5
Fk Value unit factor 1
Vs Total Monetary value of a value-unit 30

Using Equation 7.6 for the number of actors (A(m)), Equation 7.5 for
the cost (C(m)), and Equation 7.8 for the benefits (B(m)) we evaluate the
operation phase for 12 months. The results are displayed on Table 7.12.
The evaluation shows that, on average, the monthly costs are lower than the
benefits by approximately 26%. Thus, in this scenario, the application is
economically viable.

The first scenario considered a fixed price for cryptocurrency, however,
the volatility of the cryptocurrency price could greatly change results. Thus,
a second scenario is evaluated using a variable function for P (m) based on
the average price for each month of 2020. Figure 7.7 shows the benefits per
transactions (

∑
B(m)/I(m)) and the costs per transaction (

∑
C(m)/I(m))

compared with the first evaluation. Results show that the price volatility
drastically changes the costs of the system. Furthermore, the system is not
economically viable in the last two months of the year.

140

CHAPTER 7. APPLICATIONS COSTS 7.2. COST MODEL

Table 7.12: Cost scenario for a decentralized marketplace on a public blockchain.

m A I(m) C(m) B(m)
∑
C(m)

∑
B(m)

Txs USD USD USD USD

1 100 251 1152 1500 1152 1500
2 101 254 1163 1515 2315 3015
3 102 256 1175 1530 3490 4545
4 103 259 1187 1545 4677 6090
5 104 261 1199 1561 5876 7651
6 105 264 1211 1577 7087 9228
7 106 266 1223 1592 8310 10820
8 107 269 1235 1608 9545 12428
9 108 272 1247 1624 10792 14052
10 109 275 1260 1641 12052 15693
11 110 277 1272 1657 13324 17350
12 112 280 1285 1674 14609 19024

AVG 106 265 1217 1585

SUM 3184 14609 19024

Figure 7.7: Cost and benefits per transaction in the marketplace reflecting the volatility
of the cryptocurrency in 2020.

7.2.6 Conclusions

In this section, we presented a cost model for a blockchain-based application
on permissionless networks. The model includes a transaction taxonomy and

141

7.2. COST MODEL CHAPTER 7. APPLICATIONS COSTS

an application life-cycle to characterize blockchain-based applications. To
illustrate the model usability, we quantitatively analyze the cost and bene-
fits of an existing blockchain-based application. Results highlighted that the
number of interactions is the main factor defining the cost of a blockchain
application. Results also showed how the price volatility of the cryptocur-
rency radically changes the economical feasibility of the application. Thus,
the proposed model is a useful tool for identifying the diverse factors charac-
terizing blockchain-based applications and their costs in a public blockchain
network infrastructure.

Future works include the evaluation of other applications to better define
the parameters and provide reference values for the model. Another inter-
esting research path is the development of a similar model for permissioned
networks.

142

Chapter 8

Data-sharing and decentralised storage
in blockchain-based applications

This chapter contains text taken from the published work:

– M. Pincheira, E. Donini, R. Giaffreda & M. Vecchio (2020, March). A Blockchain-Based Ap-
proach To Enable Remote Sensing Trusted Data. In 2020 IEEE Latin American GRSS & ISPRS
Remote Sensing Conference (LAGIRS) (pp. 652-657). IEEE.

This chapter presents the second exploratory analysis on the challenges
of blockchain-based applications. The main objective is to investigate the
potentials and limitations of using a blockchain-based application for secure
data sharing. Section 8.1 proposes an architecture and its analysis in the
contexts of a remote sensing use case of precision farming. Section 8.2 extends
the proposed architecture to include decentralized storage and provides an
experimental evaluation of the proposed solution.

8.1 A blockchain-based approach to enable remote sens-
ing trusted data.

8.1.1 Introduction

Recently, space agency policies on open data access encourage the develop-
ment of various automatic methods to extract useful information for a wide

143

8.1. DATA SHARING CHAPTER 8. DECENTRALIZED STORAGE

range of Earth and Planetary science and applications. For instance, the
European Space Agency provides Sentinel-2 data with a globe coverage and
a high revisit frequency at no cost to the public though the Copernicus Pro-
gramme. The spatial resolution (10 to 60 m) of these images is relatively
high, but not enough for all applications. Hence, data fusion methods con-
sider data from different short-range sources as complementary of remote
sensing sensors.

The philosophy of open data becomes more relevant with the enormous
quantity of data collected nowadays by close-range sensors, e.g., personal
drones, IoT sensor networks, and open government data. Even if close and
far range sensors acquire data on the same scene, they focus on different
properties. These two types of data are complementary, and remote sensing
(RS) can take advantage of close-range data and integrate them to generate
more consistent, accurate, and useful products. For instance, close-range
data as IoT measurements have a higher spatial and temporal resolution
than ESA’s Sentinel-2, but limited coverage. On the contrary, far-range
data provide full coverage of the terrestrial surface with a relatively low
spatial resolution. Moreover, close-range data available from in-situ (e.g.,
IoT measurements) are of particular importance for the validation of RS
methods and products. However, owners of short-range data are part of a
heterogeneous group, e.g., research institutions or startup owners, and are
often unknown. Therefore, the owners and the data are not fully trustable,
and thus, using the data may compromise the associated research outcome.

Currently, sharing and retrieving close-range data is possible through some
tools mostly managed by intermediaries, e.g., open data portals. Interme-
diaries define the policies for data ownership and access and set the rules
to evaluate data reliability and integrity. These tools tend to favor usabil-
ity over transparency since they aim at connecting data owners with users.
Therefore, a need emerges for a system that enables sharing and retrieving

144

CHAPTER 8. DECENTRALIZED STORAGE 8.1. DATA SHARING

data without a limiting central authority.
This section proposes an architecture based on the blockchain to build a

network to share and validate data acquired by untrusted sources. Blockchain
acts as an intermediary connecting data owners and users– its is a decentral-
ized database of trusted data accessible to all the participants. The intrinsic
properties of blockchain enable trust and remove the necessity to have a third
party validating the interactions among the participants. To investigate the
proposed architecture, we analyze a use case to identify the critical issues
and the potentialities of the system. We consider precision agriculture as it
is well known for combining different types of data, e.g., IoT measurements
and satellite optical images, to monitor the status of crop fields.

Related work

Recently, the interest in blockchain increased since users can monetize their
resources and profit from them without an intermediary. Energy trading [151]
and IoT data marketplaces [140] are just two examples where blockchains
enable direct interactions between participants without a validating interme-
diary. Moreover, the auditability property allows the identification of the
owner of each resource and the direct incentivizing of the participants con-
tributions.

In remote sensing, only a few works explore the benefits of blockchain.
In a whitepaper, ESA highlighted the importance of integrating blockchain
in remote sensing applications [152]. On the one hand, blockchain enables
the transfer of value– it is a public network where to share and retrieve data
without a central authority. Moreover, smart contracts allow automating
the actions, such as elaborating information. On the other hand, short-range
sensors acquire everyday a large amount of data useful for Earth Observa-
tion. However, data owners lack a tool where to share data while keeping
ownership. Further, the data cannot be trusted since data owners are un-

145

8.1. DATA SHARING CHAPTER 8. DECENTRALIZED STORAGE

known and thus, not reliable. Blockchain is the solution to build a system to
generate trust among users without an intermediary.

Blockchain is a decentralized database that keeps track of the flow of in-
formation. Blockchain technology is verifiable and immutable by default– all
the actors can access the information and its changes over time. For this
reason, blockchain is suggested as a distributed database to share the knowl-
edge on land ownership [84] [85], geohashing [84], i.e., to create a geodesic
grid of the world [84], and to share geodata in an open way, e.g., public map,
without relying on a central authority, e.g., Google Maps or OpenStreetMap.

In the literature, there exist few works exploiting blockchain to store and
share data in a trustworthy and auditable manner. [153] propose a blockchain
as a database to track satellites and debris orbits. The database has two
configurations– history data configuration and sliding window configuration.
In the first, all the information is available to all the network peers. In the
second, only the information on the last 48 hours is available to all the net-
work, while selected peers stores all history. Here, blockchain technology
preserves data integrity and provides smart contract to automatize some ac-
tions on the data. However, the system does not exploit other advantages of
the technology, e.g., trust and incentives, as all the actors are already known.
In [154], a blockchain database stores the national data on water quality ac-
quired by an irrigation system spread in the Taiwan area. The data benefit
of the blockchain characteristics, i.e., decentralization, immutability, and au-
ditability, however, trust is not a necessary since all the data sources are
known. Moreover, the system stores only data from IoT sensors, which is far
from the purpose of this research. Finally, [155] proposes a blockchain sys-
tem to store and share geospatial data among users, particularly researchers.
The system uses blockchain and smart contracts to develop a complex re-
ward mechanism to engage the participants. However, the data are in global
storage, which eliminates the decentralization and introduces a controlling

146

CHAPTER 8. DECENTRALIZED STORAGE 8.1. DATA SHARING

authority that decide the rules to access the data.
The rest of this section is organized as follows– Section 8.1.2 proposes

architecture with the details on the actors, the interactions, and the smart
contracts. In Section 8.1.3, we analyze the proposed architecture with a use
case on precision agriculture to identify its potentialities and issue. Finally,
Section 8.1.4 concludes the case study and presents future works.

Figure 8.1: Proposed architecture – Untrusted actors interact using the smart contracts
to share, search, retrieve, and score metadata and receive rewards.

8.1.2 Proposed architecture

This section aims at defining a distributed architecture that collects the in-
formation on the data, i.e., the metadata, shared by untrusted data sources.
We use a blockchain-based approach to collect, validate, and track the meta-
data. Blockchain acts as a distributed infrastructure that provides a secure,
immutable, and transparent record of the metadata. This Section will de-
scribe the architecture with a focus on the actors and the interactions. We
first describe the actors, which are the blockchain peers that share and vali-
date the metadata. Then, we analyze the possible interactions between the
actors and the blockchain. Finally, we describe the smart contracts that
enables the interaction between the actors.

147

8.1. DATA SHARING CHAPTER 8. DECENTRALIZED STORAGE

Actors

Data comes from different sources that are trusted, e.g., space agencies and
universities, or untrusted, e.g., private companies and volunteers. In this
architecture, the peers are untrusted since we aim at providing value to the
data that otherwise cannot be trusted. We consider as untrusted actors those
that voluntarily collect and share data, as Figure 8.1 shows. Some examples
of common actors are– the company sharing data acquired by IoT sensors on
the temperature and the humidity of a crop field; the research group sharing
a database on multitemporal images acquired by optical and SAR sensors;
and finally, the people that shares pictures taken by a drone or a cellphone.

Interactions

Interactions happen between actors and the blockchain-based system. Here,
actors can (i) share the metadata of a dataset via a transaction to a smart
contract, (ii) use smart contracts to search in the dataset list, and finally (iii)
use smart contracts to retrieve the dataset metadata. These interactions are
associated with a reward for the actor and a quality evaluation of the dataset
as an incentive to use the system. The score indicates the experience that the
actor had with the dataset, including how representative the metadata are of
the dataset, the quality of the data and of the dataset structure. However,
the quality score should be define with criteria specific for the use case. The
following paragraphs describe the interactions and the reward and evaluation
mechanisms.

Sharing information. In this architecture, the blockchain is a con-
tainer of information on different datasets. Blockchain maintains a list whose
records are the metadata of the dataset shared by actors. The metadata is
shared by sending transactions to the smart contract in a standard format.
The smart contract verifies the transactions with predefined rules and re-

148

CHAPTER 8. DECENTRALIZED STORAGE 8.1. DATA SHARING

wards the actors. Moreover, the contract inserts the metadata in the dataset
list– it adds a new record for a new dataset or updates the record for an
existing one. Blockchain stores a history of all the events so that changes are
traceable and accountable.

Searching for information. Actors looking for a specific dataset can
query the smart contract for matching records in the dataset list. The smart
contract searches the list with some criteria given by the actor. The contract
retrieves the information on the matching datasets and provides it to the
actor. Thus, the actor receives the part of the metadata and the current
quality score of each the dataset. With this information, the actor can decide
which dataset to use and require the complete metadata.

Accessing information. Considering the blockchain as a list of datasets,
an actor can ask the smart contract to access the information related to
a particular dataset. Retrieving the data implies that the smart contract
transmits the complete metadata of that dataset to the actor. With this
information, the actor can access and use the data. In exchange for the
metadata, the actor is asked to give an evaluation of the quality of the dataset.
If the actor provides this evaluation, it receives a positive reward, otherwise
a negative one. Based on these rewards, smart contracts can limit the actor
to have further access to other datasets.

Smart Contracts

Transactions are the interactions between actors and the blockchain system,
i.e., the smart contracts. The smart contracts define rules and methods to
validate and process the information in the transactions. They provide an
interface to access information, making it available for actors and other smart
contracts. Moreover, a relevant characteristic of smart contracts is the ability
of creating and adding information in the blockchain. Here, these interactions
translate into rewards for the actors and a quality score for the datasets. We

149

8.1. DATA SHARING CHAPTER 8. DECENTRALIZED STORAGE

employ three types of smart contracts: Participant, Dataset, and Detail.

Participant smart contract. The Participant smart contract manages
the rewards of each actor according to predefined rules. The Participant
contract receives transactions by the (i) Dataset contract when the latter
adds a new record in the dataset list and (ii) Detail contract when an actor
uses a dataset. The transaction contains the information on the actor and its
rewarding. Hence, the contract manages the list of the actors and the history
of their rewards. The list is accessible by actors and other smart contracts
at any time, which is central for granting or denying access to datasets.

Detail smart contract. The Dataset contract creates a new Detail
contract for each new dataset shared in the network to store metadata. Each
Detail contract manages the metadata of a database and accepts the updates
coming from the actor who originally shared the data. Each Detail contract
is an independent unit of information more accessible than the blocks in
the chain. Saving the information in the blockchain grants trust, while the
contract provides a simpler way to access the metadata. Moreover, the Detail
contract can provide the information in a meaningful way to the actor, e.g.,
only specific fields of the metadata.

The Detail smart contract implements the methods to (i) update and (ii)
access the metadata. (i) Updating the metadata requires a transaction with
the changes of the dataset. The contract processes only the transactions
coming from the same actor who originally shared the dataset. Detail smart
contract keeps track of all the changes, which are accessible by anyone in the
system. (ii) Accessing dataset metadata requires a transaction to the Detail
contract asking for that particular dataset. The contract first verifies if the
actor is allowed to access the data in the Participant contract. Secondly, after
sharing the metadata, the contract requests the actor to provide a quality
score to the Datasets contract. Evaluating the dataset grants a positive
reward and the further use of the system. On the contrary, the actor receives

150

CHAPTER 8. DECENTRALIZED STORAGE 8.1. DATA SHARING

a negative reward when refusing to provide the quality score. Evaluating a
dataset is of critical importance for the system– it helps in validating the
information shared by the actors and thus checking the quality of the data
in the blockchain.

Dataset smart contract. The Dataset smart contract keeps a list of
the existing datasets and their quality scores. Moreover, it indicates how to
(i) share, (ii) browse, and (iii) score the datasets in the systems. (i) To share
an dataset, an actor sends a transaction with the dataset metadata coded in
a standard format. First, the contract verifies the format of the metadata,
then it adds a new record in the dataset list, and finally, it rewards the actor.
When adding a new record, the contracts generate a Detail contract with a
unique blockchain address stored in the dataset list. (ii) Browsing a dataset
implies that an actor sends a transaction with search criteria. The contract
uses the criteria to filter the dataset list and returns the results to the actor.
The results contain the identifier of the datasets matching the criteria, part
of the related metadata, and the current quality score. (iii) Scoring a dataset
is done by the actors analyzing the datasets. Actors are asked to send a
transaction indicating the quality evaluation of the data they analyzed.

Challenges

The success of participatory systems strongly depends on the number of
participants– here the participants are the actors sharing and using the in-
formation in the blockchain network. The more are the actors involved, the
more the blockchain will be successful and collect further information. Thus,
a crucial element is the definition of an incentive mechanism to attract actors
in the system. The main incentive is the possibility to browse in the list of
datasets stored in the blockchain and then acquiring the information on ac-
cessing the dataset. Nevertheless, we decided to add a rewarding mechanism
based on a gaming approach to engage more the actors. Each actor, accord-

151

8.1. DATA SHARING CHAPTER 8. DECENTRALIZED STORAGE

Figure 8.2: Geographic extension of the datasets shared in the blockchain system– in blue,
the IoT raw and processed data, and in yellow, the processed Sentinel-2A data.

ing to its actions, receives a positive or negative reward that accumulates
over time. Here, we propose a set of rules for the rewarding mechanism, but
any other can be integrated since the system is modular. Thus, actors are
encouraged to participate actively to increase their score and gain reliability.

Another critical issue is the definition of a standard format for the inter-
actions between actors and smart contracts. The actors must send messages
satisfying a shared and previously agreed protocol. The protocol indicates
the message structure for all interactions, e.g., the fields required and their
order. Having a structured information allows smart contracts to automatize
the tasks required by the actor. Smart contracts automatically interact with
the actors and elaborate the data in the blockchain. Thus, blockchains can
be considered autonomous systems able to self-organize.

152

CHAPTER 8. DECENTRALIZED STORAGE 8.1. DATA SHARING

8.1.3 Use case: precision agriculture

This Section analyzes the proposed architecture by describing a use case
where actors interact with the blockchain to share and retrieve information
to investigate the potentialities and critical issues. We consider a use case
in precision farming where the aim is monitoring the phenological cycle of
crop fields by fusing different data. As an example, let us assume three
actors interacting on the blockchain with different willings and needs. The
following paragraphs describe the actors, their needs, and the issues that a
blockchain-based system can help to overcome.

Actors

Actor A is a landowner that aims at developing an automatic system to
manage crop fields, in green in Figure 8.2. He wants to estimate several
parameters to monitor the evolution of crop fields and control actuators,
such as those for watering and giving fertilizer. Actor A wants to retrieve
these parameters, or in the worst-case estimate them, from a reliable list
of datasets. Hence, actor A needs an easily accessible system, without a
central control setting the rules to limit the actions of the users. Further,
the system needs to guarantee the integrity of the data, i.e., the data can not
be modified. As an extra feature, the system provides feedback as a quality
score assigned by the other users according to their experience.

Actor B is a researcher developing methods for extracting parameters to
monitor the phenological cycles of crop fields from Sentile-2A images, in
yellow in Figure 8.2. B wants to share the research outcome while preserving
the authorship of the data, and thus the credit. Hence, B needs a sharing
system that i) tracks the origin and possible changes, ii) guarantees data
integrity, i.e., data cannot be modified, and iii) assures access to everyone.
As an additional feature, the system can provide feedback to the data owner

153

8.1. DATA SHARING CHAPTER 8. DECENTRALIZED STORAGE

based on the scores from the actors that used those data.

Actor C is an IoT startup that deploys sensors to monitor crop fields,
in blue in Figure 8.2– the startup installed 20 sensors in 1 km2 crop field,
which acquire temperature and humidity measurements every 15 minutes.
C owns raw data from the sensors and processed data, i.e., the tempera-
ture and humidity profile for the past years. C wants to have a record of
the startup achievements and thus share the data in a transparent external
system. Sharing the data is a way to present the outcome of the startup
to investors and to attract new clients. However, actor C needs to preserve
the ownership of the data, which is challenging with the existing centralized
tools. The central authority sets the rules for sharing and retrieving data in
the system. Hence, C may face several problems, e.g., with data ownership
and data monetization.

The willingness and needs of the actors are diverse and hardly fulfilled
by existing systems to share and retrieve data. Existing tools rely on a
central authority that acts as an intermediary between untrused actors. The
central control sets the rules of the system and thus should be blindly trusted
by the actors. The rules indicate ownership and access policies– the former
defines the possible change in ownership when uploading the data. The latter
shows the accessing mechanism and requirements, which can be restrictive
to some actors. Further, the intermediary is the single point of failure of
the entire system– any interruption of the services directly compromises the
data availability. Finally, actors must trust the central authority on the data
integrity since the existing tools usually do not provide enough information
to check the validity of the data, i.e., understand if the data are modified. In
fact, the central authority has the complete control of the shared data and
thus can modify the data or the quality evaluation.

A blockchain-based system overcomes these issues– the decentralized na-
ture of the blockchain eliminates the controlling authority, and thus, the

154

CHAPTER 8. DECENTRALIZED STORAGE 8.1. DATA SHARING

actors can directly interact with the network without the intermediary. Fur-
ther, since blockchain is a distributed database, there is not a single point
of failure, and the data is always accessible to any network peer. Moreover,
the blockchain tracks all the interactions with the actors creating a history
of the data origin and updates. This information is validated with cryptog-
raphy techniques and agreed by all the network peers– this guarantees and
preserves the data ownership and integrity. Finally, actors provide an eval-
uation of the data quality, removing any third-party interference as in the
case of the existing tools.

A blockchain-based system is highly modular and enables the smooth in-
tegration of further services. For example, cryptocurrencies can easily be
integrated to monetize the data and incentive participants. The blockchain
system facilitates cryptocurrency payments with a marginal cost, which can
be done automatically by smart contracts after each transaction. On the con-
trary, a centralized system does not enable such an effortless way to monetize
the data.

Interactions

Sharing information. In our use case, B and C are the actors willing to
share data– they send transactions to the blockchain with the information on
the datasets. The blockchain validates the transactions with cryptography
techniques and stores the data. Hence, blockchain-based systems remove the
third-party intermediary that manages the data. Further, since the network
peers have a copy of the blockchain, the system lacks a central authority
overcoming the issues of existing tools to share and retrieve data.

Searching for information. Here, actor A wants to browse the list
of shared datasets– A sends a transaction to the blockchain with filtering
criteria. The blockchain system replies with the list of datasets matching the
filters. Actor A can trust the integrity of the data since blockchain enables the

155

8.1. DATA SHARING CHAPTER 8. DECENTRALIZED STORAGE

immutability of the stored data. Moreover, the decentralized architecture of
blockchain guarantees these results not to be accessible to everyone, without
being censored or promoted.

Accessing information. Actor A is interested in the raw and processed
data previously shared by B and C. Hence, A requests access to the datasets,
by sending a transaction to the blockchain. The blockchain returns access
information, which includes the integrity check and access credentials. The
metadata accounts for the dataset updates and the change history of the
dataset. Hence, the blockchain keeps track of the data owner and the up-
date of the data, e.g., analyses and processing by other actors. Further, the
blockchain provides the information to verify the validity of the dataset, i.e.,
if any modification occurred in the originally shared data.

8.1.4 Conclusions and future works

In this section we proposed a blockchain-based architecture that (i) enables
data owners to share the data without an intermediary, (ii) keeps track of
the data updates and provides a quality score, and (iii) overcomes the issue
of the untrusted data owners. Any actor can share and retrieve data from
the blockchain without caring for the reliability of the data source. Thus,
there is no need for a third party that validates the data as the blockchain
enables trust among the actors. We analyzed the critical issue and the po-
tentialities of the proposed architecture with a remote sensing use case, i.e.,
precision farming. We conclude that such a system provides benefits to all
the actors since sharing and retrieving data do not require the presence of
an intermediary.

As future works, we plan to analyze other use cases with a higher number
of shared datasets to examine the system scalability and robustness. Further,
we plan to study an innovative storage system to decentralize not only dataset
metadata but also the data.

156

CHAPTER 8. DECENTRALIZED STORAGE 8.1. EVALUATION

8.2 Decentralized storage for trusted data sharing

8.2.1 Introduction

The architecture presented in Section 8.1 uses blockchain to maintain a record
of all the interactions between actors on a data-sharing application. However,
blockchain does not support the storage of a large quantity of data given
different constraints imposed by each blockchain implementation (e.g., block
size and transaction fees) [40, 46]. Therefore, other technologies, such as
Decentralized File System (DFS), should be coupled with blockchain to store
the data. In this section, we extend the architecture to include DFS to achieve
a fully decentralized data-sharing application.

The rest of this section is structured as follows. Subsection 8.2.1 describes
the working principles of DFS and its potential benefits to blockchain-based
applications. Subsection 8.2.2 describes the proposed architecture. Subsec-
tion 8.2.3 reports the metrics for the evaluation of the system performances,
the set-up of the experiments, and the performances of the proposed archi-
tecture. This section finalizes with conclusions on the proposed architecture
based on its evaluation.

A primer of DFS

Distributed File Systems received a large amount of attention with the ap-
parition of peer-to-peer sharing applications such as Napster, Gnutella, and
Kazaa in the early 2000s [156]. Lately, DFS has re-gained attention from the
blockchain space as an additional component to create decentralized appli-
cations.

A DFS provides a complementary layer of decentralized storage to a
blockchain, while a blockchain can provide an additional layer of security
and incentives for the peers to cooperate in storing and distributing data.
[157] . Therefore, protocols such as Storj [158], Sia[159], and Arweave[160]

157

8.2. EVALUATION CHAPTER 8. DECENTRALIZED STORAGE

Figure 8.3: Simplification of decentralized storage protocol (based on IPFS and Swarm).

aim to achieve this blockchain and DFS integration. According to authors
on [161], two of the most representatives protocols are the InterPlanetary
File System (IPFS) and Swarm. IPFS [162] is the most mature in terms of
development and adoption, while Swarm is a DFS developed and integrated
with the Ethereum protocol [116] profiting also from the smart-contracts of
the blockchain. Both IPFS and Swarm aim to provide a multi-purpose de-
centralized distributed storage solution with a content delivery protocol, but
with differences in both design and implementation (e.g., the network layer,
the peer management protocol, the data structure used).

DFS Working principles

DFS implementations typically have different protocols. Nonetheless, IPFS
and Swarm share several similarities in both design and implementation,
see Figure 8.3. When uploading a file F, the DFS divides it into N smaller
pieces Pn so that F = {P1, . . . , PN}. Each Pn is processed by a cryptographic
hashing function H(·) that generates a unique cryptographic hash. For each
Pn, the hash H(Pn) acts as unique identifier. A Merklee data structure
(Merkle Tree for Swarm and Merklee DAG for IPFS, respectively) connects
all the hashes of all the pieces at different levels. At the bottom level of the
tree, the hashes H(Pn) and H(Pn+1) of pieces Pn and Pn+1 are connected to
generate H(H(Pn),H(Pn+1)). Finally, at the root of the tree, a unique hash
for each file H(F) is generated (see Figure 8.3). The use of Merklee data-

158

CHAPTER 8. DECENTRALIZED STORAGE 8.2. EVALUATION

structures [163] creates a unique identifier for the file based on its content.
Merklee data-structures provide beneficial properties for content addressing,
optimizing disk usage, and file integrity. Each piece of file Pn is stored on
different network peers along with the related hash H(Pn+1). Using the
hashes in a Distributed Hash Table provides an efficient routing mechanism
to address uploaded files and their pieces among the network peers. If any Pn
is corrupted or tampered with, the hash changes for the entire file, enabling
quick integrity verification.

DFS Benefits

DFS overcomes several challenges of centralized cloud storage, such as data
reliability, availability, and integrity. The underlying peer-to-peer network
enables an efficient auto-scaling system without a single point of failure,
creating a highly reliable storage infrastructure [161]. Since a DFS simulta-
neously stores the files in several locations, the content is censorship-resistant
with higher availability despite individual failures of particular nodes [161].
Regarding security and privacy, the use of cryptographic data-structures pro-
vides embedded tamper-proof of the content, creating an additional layer of
integrity verification.

8.2.2 Proposed Architecture

This section proposes a fully decentralized architecture to share and retrieve
data in a trusted and traceable way without an intermediary. The archi-
tecture integrates a permissionless blockchain (BC) and a decentralized file
system (DFS). BC provides an immutable and transparent record to all the
users (actors or network peers) and thus, guarantees traceability and trust.
The decentralized file system network guarantees data availability and in-
tegrity as data are encrypted and always available. Hence, the proposed

159

8.2. EVALUATION CHAPTER 8. DECENTRALIZED STORAGE

architecture guarantees the integrity, ownership, and availability of the data
on the network to all the actors in a trusted and decentralized way.

We assume a group of X = {Xi, i ∈ [1, . . . , NX]} actors that are willing
to share and retrieve data. Since the actors are unknown to each other, they
are untrustable. Therefore, the data they want to share and retrieve cannot
be trusted, which means that the integrity, availability, and accessibility of
the data cannot be guaranteed. The actors sharing the data are called data-
owners and are the owners of the intellectual property of the group of datasets
Y = {Yj, j ∈ [1, . . . , NY]}. We assume that data-owners are willing to share
the data, but in a secure and traceable way to preserve the ownership and
the intellectual rights. In the context of scientific research, they also want
recognition and acknowledgment for the data usage. The actors willing to
retrieve data are called data-users, and they need a way to verify the dataset
origin, integrity, and changes, i.e., evolution over time. Normally, this task
is done by an intermediary that connects and mediates between two users –
here, the BC acts as an intermediary, enabling trusted and direct interactions
between unknown actors. Note that an actor can act both as data-owner and
data-user within different interactions in the proposed architecture. Here,
we assume that each datasets Yj, j ∈ [1, . . . , NY] consists of the metadata
Mj, j ∈ [1, . . . , NY] and the data Dj, j ∈ [1, . . . , NY]. The metadata Mj

collect all the information describing the data, e.g., the data owner, the time
of acquisition, and the data source. The numbers and types of fields of the
metadata depend on the data type. Dj is of the data to share that can have
a different structure, e.g., a 1D signal measured by IoT sensors, a 2D matrix,
such as a satellite image.

The proposed architecture consists of an interface that connects two net-
works (see Figure 8.4), i.e., a public blockchain (BC) and a distributed file
system (DFS). The BC network stores the metadata and keeps track of all
the actor interactions with each dataset. For each dataset, the BC records

160

CHAPTER 8. DECENTRALIZED STORAGE 8.2. EVALUATION

Figure 8.4: Proposed architecture based on blockchain, smart contracts, and DFS to
provide an infrastructure for sharing datasets among untrusted actors.

the ownership and the evolution (i.e., updates and changes), the identifica-
tion (ID) of actors downloading it, and the evaluation. Evaluations are given
by actors that previously downloaded the dataset. They can provide a score
of the dataset goodness, such as the structure and quality. To increase the
system openness, we propose to integrate a permissionless blockchain that is
open to any untrusted actor. The advantages of using a public blockchain in
terms of transparency, availability, and openness are greater than the disad-
vantages, which include costs, latency, and transaction throughput. A public
blockchain enables any data-owner to use the infrastructure as a trustless
platform for directly interacting with unknown data-users. As blockchain
storage capacity is limited [11], data are stored in a DFS network to avoid
any centralization. DFS increases the system liveness as data is stored across
multiple network peers. DFS provides each dataset with a unique identifier
based on the data content. The ID is securely linked to the data-owner to
reduce possible data mismanagement. Moreover, DFS has faster download
and upload times than a centralized storing platform because of the multi-
ples nodes storing the data. Finally, the decentralized interface (DI) acts as
a coordinator, providing an interface to the blockchain and the decentral-

161

8.2. EVALUATION CHAPTER 8. DECENTRALIZED STORAGE

ized storage networks. The decentralized interface interacts with the smart
contracts and performs off-chain tasks, such as encryption and decryption of
datasets. Each actor stores a copy of DI to enhance the system decentraliza-
tion.

8.2.3 Experimental setup

This Section evaluates the performance, potentialities, and criticalities of the
proposed architecture in terms of processing time, cost, resources for both
the blockchain and distributed network. To this end, we implemented a fully
functional Proof of Concept (PoC). We consider Ethereum as a public im-
plementation of blockchain. We evaluated the performance of two different
DFS protocols, i.e., IPFS and Swarm. The architecture setup and param-
eter range, e.g., data and file size, are defined by identifying a realistic use
case, i.e., precision agriculture, that highly benefits from data-sharing among
untrusted actors as described on Section 8.1.

Hardware and Software setup

As software tools for the Ethereum blockchain, we used the official Geth
client (version 1.9.18-stable) to run two independent blockchain nodes: one
node for the Ropsten network, working with PoW consensus, and the other
node for the Goerli network, working with PoS. We used two identical vir-
tual machines on an OpenStack server with 4 GB of Ram, 20 GB of SSD,
and 4 vCPU, and running clean Linux Ubuntu installation (version 18.04).
For the decentralized storage module, we choose the IPFS 1 and Swarm 2,
two of the most representatives DFS implementations [161]. IPFS [162] is
the most mature in terms of development and adoption, while Swarm is a
DFS developed and integrated with the Ethereum protocol [37] profiting also

1https://ipfs.io/
2https://ethersphere.github.io

162

CHAPTER 8. DECENTRALIZED STORAGE 8.2. EVALUATION

from the smart-contracts of the blockchain. For a complete comparison of
these two DFS, challenges, and limitations, the reader is referred to [161].
As software tools for the decentralized storage module, we ran two indepen-
dent nodes, using the official IPFS client (version 0.5.1) and official Swarm
client (version 0.5.7-5ccfd995). We used two identical virtual machines on
an OpenStack server, with 4 GB of Ram, 20 GB of SSD disk, and 4 vCPU,
running a clean Linux Ubuntu installation (version 18.04).

The client module was implemented using Python (version 3.6) and ran
on a Lenovo T490s notebook, with 16 GB of Ram 256 SSD disk, and an
Intel i-7 processor at 1.90 GHz over a clean install of Linux Ubuntu (version
18.01).

Data and Metadata

Metadata are managed through transactions and stored in the blockchain.
We defined 8 transactions to implement the functionalities of the PoC, i.e.,
Create, Update, Authorize, Reject, Search, Request, Details, and Score. Ad-
ditionally, we consider a Bootstrap transaction to deploy the system on the
blockchain network. To create a new dataset, we considered seven fields based
on the ISO 19115-2 standard (a metadata profile for precision agriculture:
3): identifier, title, abstract, keywords, spatial extension, time extension, and
contact information). To update and search for a dataset, we considered only
four fields. The transactions for request, details, accept, and reject access are
only considered a message text field. Finally, the score dataset transaction is
based on an ERC20 Token transfer transaction. The ERC20 is an Ethereum
standard ensuring exchangeability and interoperability for all the blockchain
tokens. The same token standard is used for rewarding the users.

For the data stored on the decentralized file system, we considered seven
sizes of files: 01, 05, 10, 50, 100, 250, and 500 MB based on the file sizes

3https://www.iso.org/standard/67039.html

163

8.2. EVALUATION CHAPTER 8. DECENTRALIZED STORAGE

in literature [164]. Each file is a consolidated Unix archive (tar), including
a single random bytes file, and a text file with a unique timestamp and
description for each experiment. While an exhaustive list of all possible file
sizes is beyond the scope of this paper, the selected sample provides a general
overview suitable for different use cases.

Metrics

To evaluate the blockchain performance, we consider transaction cost and
transaction processing time as main metrics from a user perspective working
with the metadata. For each transaction, we run a series of experiments on
each network (i.e., Ropsten and Goerly) at different times during the day.
In each experiment, a transaction with random metadata was created and
sent to the respective network node. We used a python script that created
the transaction, sent it to the network, and monitored the time until the
transaction was processed.

The proposed architecture uses a decentralized file system (DFS) to store
the data. Regarding decentralized storage, we evaluate the upload and down-
load times of datasets. For both experiments, we also provided an evaluation
in terms of network traffic and CPU usage.

8.2.4 Evaluation results

Blockchain Transaction Costs

To evaluate the blockchain performance, we consider transaction cost and
transaction processing time as main metrics from a user perspective working
with the metadata. For each transaction, we run a series of experiments on
each network (i.e., Ropsten and Goerly) at different times during the day.
In each experiment, a transaction with random metadata was created and
sent to the respective network node. We used a python script that created

164

CHAPTER 8. DECENTRALIZED STORAGE 8.2. EVALUATION

Table 8.1: Transaction size and cost.

Transaction
Metadata Tx Size Gas Cost

(byte) (byte) (units) (USD)

0) Bootstrap 10 18971 3946432 11.83

1) Create 509 817 2141905 6.42

2) Update 236 529 77068 0.23

3) Authorize 50 239 93864 0.28

4) Reject 50 238 31991 0.09

5) Search - - 0 0

6) Request 14 206 46665 0.13

7) Details - - 0 0

8) Score 10 239 73439 0.22

the transaction, sent it to the network, and monitored the time until the
transaction was processed.

The proposed architecture uses a decentralized file system (DFS) to store
the data. Regarding decentralized storage, we evaluate the upload and down-
load times of datasets. For both experiments, we also provided an evaluation
in terms of network traffic and CPU usage.

Table 8.1 shows the average size (in bytes) of the metadata and the re-
sulting transaction, gas cost, and monetary cost (in USD) for each of the 7
transactions. The ’Bootstrap’ and ’Create’ transaction is the most expensive
in terms of gas and cost as the cost in USD is equal to 11.83 and 3.42, respec-
tively. In terms of blockchain memories, ’Create’ and ’Update’ transactions
are the most expensive transactions, occupying 509 and 236 bytes, respec-
tively. ’Search’ and ’Detail’ transactions have no gas cost as they require the
querying of the local version of the blockchain.

165

8.2. EVALUATION CHAPTER 8. DECENTRALIZED STORAGE

Table 8.2: Transaction processing times in terms of minimum, maximum, average, and
variation on a Ropsten and a Goerli network.

Transaction
Ropsten (PoW) Goerli (PoS)

Min Max Avg σ Min Max Avg σ

0) Bootstrap 06 40 19.14 10.74 08 24 17.00 5.92
1) Create 04 68 19.03 15.27 02 32 15.30 5.38
2) Update 04 48 17.50 10.81 12 30 17.20 5.05
3) Authorize 06 50 24.61 11.14 12 30 17.13 7.11
4) Reject 08 60 22.83 14.26 10 30 17.40 7.08
6) Request 06 42 17.69 10.19 02 32 16.57 5.23
8) Score 04 40 13.56 8.82 14 32 17.53 5.72

Blockchain Transactions processing times

To measure the processing time, we created 36 instances of each transaction
type (see Section 8.2.4). We send all the transactions approximately 15 apart
from each other to have different network conditions. Table 8.2 shows the
minimum, maximum, mean, and standard deviation of the processing time in
seconds for ten instances using a gas price of 10 gwei for both PoW (Ropsten)
and PoS (Goerli) networks. Figure 8.5a and 8.5b show the histogram of the
processing times for all types of transactions on both PoW and PoS networks,
respectively. In a Ropsten network (PoW) with µ = 18.35 and σ = 12.39,
the transactions were more frequently executed with less than 20 s but could
take up to 68 s. In a Goerli network (PoS) with µ = 16.69 and σ = 5.8, the
transaction processing time was never larger than 32 s and more frequently
around 15-18 s.

DFS Upload Times

We created and uploaded ten different files of each size. To evaluate different
network conditions, we uploaded one file approximately every 30 minutes. To

166

CHAPTER 8. DECENTRALIZED STORAGE 8.2. EVALUATION

(a) Ropsten network (PoW) transactions processing time his-
tograms for µ = 18.35 and σ = 12.39 for 36 transactions of each
type.

(b) Goerli network (PoS) transactions processing time histograms
with µ = 16.69 and σ = 5.8 for 36 transactions of each type.

Figure 8.5: Transactions processing times histograms

167

8.2. EVALUATION CHAPTER 8. DECENTRALIZED STORAGE

Table 8.3: Upload times expressed in seconds.

File Size Swarm Ipfs Git
- Min Max Avg σ Min Max Avg σ Min Max Avg σ

001 MB 1 72 12 16.11 <1 1 <1 0.47 4 6 4 0.75
005 MB 1 45 11 9.89 <1 1 <1 0.44 5 8 6 1.02
010 MB 1 40 10 8.42 <1 1 <1 0.49 6 7 6 0.49
050 MB 9 67 13 14.26 1 2 1 0.25 16 17 16 0.4
100 MB 7 98 40 30.49 1 5 2 0.91 29 30 29 0.49
250 MB 22 522 105 120.03 8 18 9 2.36 82 85 83 1.36
500 MB 58 741 194 155.79 8 18 9 2.36 210 218 214 3.12

Avg. peers: 29 Avg. peers: 164 Ping time: 23 ms
σ = 3.35 σ = 63.54 σ = 0.55

get a reference time, we also uploaded the files to a Git repository, pushing a
new commit, and we used a shell script to measure the elapsed time. Table
8.3 shows the minimum, maximum, average, and standard deviation of the
uploading time for Swarm, IPFS, and Git. The table includes the average
peers connected to each node and the average ping time to the Git repository.
The IPFS protocol requires on average a lower uploading time with a lower
variance (see also Figure 8.6a) than Swarm and Git. This is because the
IPSF normally split the data into fewer pieces and send them to a closer
node. Swarm protocol privileges more split and farther nodes. finally, Git is
a centralized system, and thus, the uploading time depends on the workload
of the central node.

DFS Download Times

To assess the performance of the proposed architecture in retrieving the data,
we downloaded each file approximately 30 minutes after the upload. As
reference time, we download the test file from the Git repository. We made a
pull from the command line, using a pair of register keys as the authentication

168

CHAPTER 8. DECENTRALIZED STORAGE 8.2. EVALUATION

(a) Average upload times for different file sizes.

(b) Average download times for different file sizes.

Figure 8.6: Comparison of upload and download times for different file size.

169

8.2. EVALUATION CHAPTER 8. DECENTRALIZED STORAGE

method. Table 8.4 shows the minimum, maximum, average, and standard
deviation of the download time for Swarm, IPFS, and Git. The table also
includes the average peers connected to each node and the average ping time
of the Git repository. For all the file sizes, the download time is lower for the
Swarm and IPFS protocol than Git (see also Figure 8.6b). The download
time for files up to 100 MB is almost constant for Swarm and IPFS protocols.
For larger files than 100 MB, the performance degrades slightly for the IPFS
and highly for the Swarm protocol.

Table 8.4: Download times expressed in seconds.

File Size Swarm Ipfs Git
- Min Max Avg σ Min Max Avg σ Min Max Avg σ

001 MB <1 1.0 <1 0.22 <1 1.0 <1 0.24 2 3 2 0.49
005 MB <1 1.0 <1 0.22 <1 1.0 <1 0.22 3 20 5 5.4
010 MB <1 1.0 <1 0.22 <1 1.0 <1 0.25 2 9 5 2.42
050 MB <1 2.0 1 0.46 <1 1.0 <1 0.25 12 43 18 12.12
100 MB 1 4 2 0.7 <1 28.0 2 6.77 5 52 23 17.55
250 MB 4 205 18 49.9 <1 2.0 1 0.32 53 87 64 13.63
500 MB 8 1218 90 301.38 1 86 7 21.03 104 156 120 18.29

Avg. peers: 44 Avg. peers: 933 Ping time: 42 ms
σ = 11.32 σ = 79.99 σ = 25.93

8.2.5 Conclusions

In this section, we extend the architecture described on Section 8.1 to include
DFS as an additional decentralized component for blockchain-based applica-
tion. Blockchain stores the metadata, and the DFS stores the encrypted data
split among several peers.

To quantitatively evaluate the system performance, we implemented a
fully functional PoC, considering Ethereum as a public blockchain and two
DFS implementations, namely IPFS and Swarm. The experiments showed

170

CHAPTER 8. DECENTRALIZED STORAGE 8.2. EVALUATION

that a permissionless blockchain is viable in terms of monetary costs and
performance for data sharing. The system costs 12 USD to deploy, and the
majority of the transactions cost less than one USD. Regarding the time re-
sponse, the average transaction processing time is less than 20 s, and it can
go maximum up to 68 s in a Ropsten network and 37 in a Goerli network,
respectively. The experiments showed that both implementations of decen-
tralized storage achieve good results in terms of data, cost, and impact on the
node resource. Under the same conditions, the DFS implementations (Swarm
and IPFS) require less time than a centralized storing system (Git) for both
data upload and download. IPFS provides a faster upload and download
than Swarm at the cost of splitting of the data in a fewer number of pieces
that are sent to close nodes. Swarm split the file into more pieces that are
stored into several far and close nodes. Although this strategy increases the
time response of the system, it provides a higher level of data availability.

Future works include evaluating and comparing additional DFS imple-
mentations and centralized platforms. Further evaluations also involve the
time response of read-only transactions and the impact of different encryption
methods on the shared data from both security and usability perspectives.

171

Chapter 9

Conclusions

In recent years, there has been a growing interest in integrating blockchain
technologies into IoT systems to create a trustless architecture without the
need for an intermediary. However, works in the literature have failed to
consider a direct role for the sensing device in these blockchain-based IoT
systems. These devices are the core of the IoT and typically the most con-
strained hardware elements of the technology stack. Furthermore, state-
of-the-art works focused on permissioned networks that do not provide the
same level of openness, decentralization, and neutrality as a permissionless
network.

The thesis presents an architecture that integrates blockchain technology
into the Internet of Things, enabling the development of next-generation IoT
applications. The architecture relies on blockchain inherent features to miti-
gate some of the current challenges in centralized IoT systems. The proposed
architecture considers constrained sensing devices as direct actors on a pub-
lic blockchain network, i.e., the devices interact with the blockchain without
an additional system component. This approach guarantees a root of trust
for the sensed data that is later maintained and enforced by the permis-
sionless blockchain network. In the proposed architecture, smart contracts
provide a platform to define complex business logic autonomously enforcing

173

9.1. NOVEL CONTRIBUTIONS CHAPTER 9. CONCLUSIONS

agreements between untrusted actors based on trusted values coming from
ubiquitous IoT devices.

The research followed an iterative DSR approach; designing, building, and
evaluating new IT artifacts using two case studies in the agricultural IoT do-
main. The iterative process generated new knowledge about the strengths
and challenges of blockchain-based IoT applications. These challenges fos-
tered two exploratory studies that diverged from the main IoT domain; how-
ever, they also provide novel contributions to blockchain-based applications.

9.1 Novel contributions

The novel architecture tackles three problems of current blockchain-based
IoT systems i) constrained sensing devices as direct actors on a blockchain
system, ii) permissionless blockchain networks, and 1ii) Smart contracts as
an IoT application platform.

Chapter 5 addressed the exponential rise in adoption of IoT devices ap-
plications in Agri-Food supply chains. The chapter described an architec-
ture for a fully decentralized, blockchain-based traceability IoT application
for Agri-Food supply chain management. The proposed solution is devel-
oped, deployed, and evaluated for a farm-to-fork use-case using two differ-
ent blockchain implementations. The evaluation unveiled that a blockchain-
based IoT system provides several advantages over a centralized system. Our
results showed that a private implementation had better performance (i.e.,
latency, network traffic, and CPU load). Private blockchains also provide
several programming languages for developing applications and allow cus-
tomization of the blockchain records, allowing the faster development of
more sophisticated applications. However, private blockchains are still far
from being considered a mature implementation in terms of security and
interoperability when compared with a public blockchain.

174

CHAPTER 9. CONCLUSIONS 9.1. NOVEL CONTRIBUTIONS

Chapter 6 explored how the energy-efficient integration of blockchain and
IoT can incentivize virtuous behaviors in agricultural practices. The chap-
ter described an architecture that includes constrained sensing IoT devices,
smart contracts, and a public blockchain network for a water management
system. By implementing a complete proof-of-concept, we evaluated the im-
pact of the architecture in terms of memory, program size, communications,
and power consumption. The results showed that off-the-shelf, cost-effective
IoT devices are can interact directly with a public blockchain even over LP-
WAN. Regarding energy budget, the blockchain operations required only an
additional 6% of the energy concerning traditional IoT operations (i.e., with-
out blockchain involvement) and account for only 0.004% of the total daily
energy budget. Moreover, the use of a permissionless blockchain allows the
seamless inclusion of several water management stakeholders, increasing the
value of the system and the scope of the proposed architecture.

The exploratory analyses examine two challenges of blockchain-based ap-
plications i) user experience and monetary costs and ii) data sharing and
decentralized storage.

Chapter 7 presented a blockchain-based application where smart contracts
alone provide all the functionalities needed by a marketplace of Fog/Edge
computing resources. We developed a full version of the proposed architec-
ture and evaluated several design decisions in terms of cost and user expe-
rience. Compared to the state-of-the-art approaches, our fully-decentralized
architecture provides response times within the same range as those with
partially-decentralized architectures. Complementing this case study, Section
7.2 presented an economic cost model that includes a transaction taxonomy
and an application life-cycle. The evaluation showed that the proposed model
is a step towards a better characterization of blockchain-based applications
and a better comprehension of their monetary costs.

Chapter 8 proposed a decentralized blockchain-based architecture for trusted

175

9.2. FUTURE WORKS CHAPTER 9. CONCLUSIONS

open data sharing. We analyzed the proposed architecture with a remote
sensing use case, i.e., data fusion for precision farming. The analysis showed
that the proposed architecture fulfills the requirements of the use case and
removes the intermediary. Section 8.2 extends the architecture to include
DFS to compensate for the storage limitations of existing permissionless
blockchain networks. We implemented a PoC to quantitatively evaluate the
proposal using the two more mature DFS implementations, i.e., IPFS and
Swarm. Our results showed both decentralized systems provide similar up-
load and download times of a centralized alternative (i.e., data storage) with
a series of extended advantages such as availability and resiliency.

9.2 Future works

Future works for the proposed framework include evaluating metrics related
to the smart contracts and a formal security analysis. Exploring the use
of layer-2 architectures on public blockchains (e.g., lightning network, state
channels, plasma network) is another intriguing research path for the pro-
posed framework. Further, evaluating other constrained communications
technologies (e.g., NB IoT) could provide interesting information for addi-
tional IoT use cases.

From the first exploratory analysis, new research paths include developing
more complex smart contracts to improve the proposed cost model for the
economic evaluation of blockchain-based IoT applications. Future works from
the second exploratory analysis include integrating decentralized file systems
on IoT architectures towards the next generation of blockchain-based decen-
tralized IoT applications.

176

Bibliography

[1] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication,” in International Workshop on Open Problems in
Network Security, pp. 112–125, Springer, 2015.

[2] W. Viriyasitavat, L. D. Xu, Z. Bi, and D. Hoonsopon, “Blockchain
technology for applications in internet of things—mapping from system
design perspective,” IEEE Internet of Things Journal, vol. 6, no. 5,
pp. 8155–8168, 2019.

[3] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet of Things Journal, vol. 1,
no. 1, pp. 22–32, 2014.

[4] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[5] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Comput. Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[6] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, vol. 4,
no. 5, pp. 1125–1142, 2017.

177

BIBLIOGRAPHY BIBLIOGRAPHY

[7] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “In-
dustrial internet of things: Challenges, opportunities, and directions,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724–
4734, 2018.

[8] J. A. Stankovic, “Research directions for the internet of things,” IEEE
Internet of Things Journal, vol. 1, no. 1, pp. 3–9, 2014.

[9] A. R. Biswas and R. Giaffreda, “Iot and cloud convergence: Opportuni-
ties and challenges,” in 2014 IEEE World Forum on Internet of Things
(WF-IoT), pp. 375–376, IEEE, 2014.

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[11] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H.
Rehmani, “Applications of blockchains in the internet of things: A
comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1676–1717, 2018.

[12] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts
for the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[13] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, “On blockchain
and its integration with iot. challenges and opportunities,” Future Gen-
eration Computer Systems, 2018.

[14] C. Lazaroiu and M. Roscia, “Smart district through iot and blockchain,”
in Proc. of the IEEE 6th International Conference on Renewable Energy
Research and Applications, pp. 454–461, 2017.

178

BIBLIOGRAPHY BIBLIOGRAPHY

[15] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A techni-
cal survey on decentralized digital currencies,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[16] D. Minoli, K. Sohraby, and B. Occhiogrosso, “Iot considerations, re-
quirements, and architectures for smart buildings—energy optimization
and next-generation building management systems,” IEEE Internet of
Things Journal, vol. 4, no. 1, pp. 269–283, 2017.

[17] K. Georgiou, S. Xavier-de-Souza, and K. Eder, “The iot energy chal-
lenge: A software perspective,” IEEE Embedded Systems Letters,
vol. 10, no. 3, pp. 53–56, 2018.

[18] J. Huang, L. Kong, G. Chen, M. Wu, X. Liu, and P. Zeng, “Towards
secure industrial iot: Blockchain system with credit-based consensus
mechanism,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 6, pp. 3680–3689, 2019.

[19] K. Zhang, Y. Zhu, S. Maharjan, and Y. Zhang, “Edge intelligence and
blockchain empowered 5G beyond for the industrial internet of things,”
IEEE Network, vol. 33, no. 5, pp. 12–19, 2019.

[20] I. Mistry, S. Tanwar, S. Tyagi, and N. Kumar, “Blockchain for 5G-
enabled IoT for industrial automation: A systematic review, solutions,
and challenges,” Mechanical Systems and Signal Processing, vol. 135,
p. 106382, 2020.

[21] O. Khutsoane, B. Isong, and A. M. Abu-Mahfouz, “Iot devices and ap-
plications based on lora/lorawan,” in Proc. of the 43rd Annual Confer-
ence of the IEEE Industrial Electronics Society, pp. 6107–6112, 2017.

179

BIBLIOGRAPHY BIBLIOGRAPHY

[22] T. Bouguera, J.-F. Diouris, J.-J. Chaillout, R. Jaouadi, and G. An-
drieux, “Energy consumption model for sensor nodes based on lora and
lorawan,” Sensors, vol. 18, no. 7, p. 2104, 2018.

[23] A. Bahga and V. K. Madisetti, “Blockchain platform for industrial in-
ternet of things,” Journal of Software Engineering and Applications,
vol. 9, no. 10, p. 533, 2016.

[24] S. Cha, J. Chen, C. Su, and K. Yeh, “A blockchain connected gateway
for ble-based devices in the internet of things,” IEEE Access, vol. 6,
pp. 24639–24649, 2018.

[25] O. Novo, “Blockchain meets iot: An architecture for scalable access
management in iot,” IEEE Internet Things Journal, vol. 5, no. 2,
pp. 1184–1195, 2018.

[26] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium
blockchain for secure energy trading in industrial internet of things,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3690–
3700, 2018.

[27] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain, “En-
abling localized peer-to-peer electricity trading among plug-in hybrid
electric vehicles using consortium blockchains,” IEEE Transactions on
Industrial Informatics, vol. 13, pp. 3154–3164, 12 2017.

[28] M. Conoscenti, A. Vetrò, and J. C. De Martin, “Blockchain for the
internet of things: A systematic literature review,” in 2016 IEEE/ACS
13th International Conference of Computer Systems and Applications
(AICCSA), pp. 1–6, 2016.

[29] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work

180

BIBLIOGRAPHY BIBLIOGRAPHY

blockchains,” in 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS), p. 3–16, ACM, 2016.

[30] U. Chatterjee, V. Govindan, R. Sadhukhan, D. Mukhopadhyay, R. S.
Chakraborty, D. Mahata, and M. M. Prabhu, “Building puf based au-
thentication and key exchange protocol for iot without explicit crps
in verifier database,” IEEE Transactions on Dependable and Secure
Computing, vol. 16, no. 3, pp. 424–437, 2019.

[31] M. Dammak, S. M. Senouci, M. A. Messous, M. H. Elhdhili, and
C. Gransart, “Decentralized lightweight group key management for dy-
namic access control in iot environments,” IEEE Transactions on Net-
work and Service Management, vol. 17, no. 3, pp. 1742–1757, 2020.

[32] J. Heiss, J. Eberhardt, and S. Tai, “From oracles to trustworthy
data on-chaining systems,” in 2019 IEEE International Conference on
Blockchain (Blockchain), pp. 496–503, 2019.

[33] X. Xu, C. Pautasso, L. Zhu, V. Gramoli, A. Ponomarev, A. B. Tran,
and S. Chen, “The blockchain as a software connector,” in 2016 13th
Working IEEE/IFIP Conference on Software Architecture (WICSA),
pp. 182–191, 2016.

[34] A. Hevner and S. Chatterjee, “Design science research in informa-
tion systems,” in Design research in information systems, pp. 9–22,
Springer, 2010.

[35] R. Beck, J. Stenum Czepluch, N. Lollike, and S. Malone, “Blockchain–
the gateway to trust-free cryptographic transactions,” Proceedings
of the Twenty-Fourth European Conference on Information Systems
(ECIS), 2016.

181

BIBLIOGRAPHY BIBLIOGRAPHY

[36] S. Chatterjee, J. Byun, K. Dutta, R. U. Pedersen, A. Pottathil, and
H. Xie, “Designing an internet-of-things (iot) and sensor-based in-home
monitoring system for assisting diabetes patients: iterative learning
from two case studies,” European Journal of Information Systems,
vol. 27, no. 6, pp. 670–685, 2018.

[37] A. M. Antonopoulos, Mastering Bitcoin: Unlocking Digital Crypto-
Currencies. O’Reilly Media, Inc., 1st ed., 2014.

[38] M. Pilkington, “Blockchain technology: principles and applications,”
Research Handbook on Digital Transformations, 2015.

[39] R. Beck, J. S. Czepluch, N. Lollike, and S. Malone, “Blockchain-the
gateway to trust-free cryptographic transactions.,” in 24th European
Conference on Information Systems (ECIS), (Istanbul, Turkey), 2016.

[40] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Bitcoin
white paper - Available at https://bitcoin.org/bitcoin.pdf, 2008.

[41] R. C. Merkle, “A digital signature based on a conventional encryp-
tion function,” in Advances in Cryptology – CRYPTO’87, pp. 369–378,
2000.

[42] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Technical Report - Available at https://gavwood.com/paper.pdf,
pp. 1–32, 2014.

[43] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ecdsa),” International journal of information se-
curity, vol. 1, no. 1, pp. 36–63, 2001.

[44] D. Schwartz, N. Youngs, and A. Britto, “The ripple protocol consensus
algorithm,” Ripple Labs Inc White Paper, vol. 5, 2014.

182

BIBLIOGRAPHY BIBLIOGRAPHY

[45] J. Kwon, “Tendermint: Consensus without mining,” Technical Report -
Available at https://tendermint.com/static/docs/tendermint.pdf, 2014.

[46] V. Buterin, “Ethereum: A next-generation smart contract and de-
centralized application platform,” Technical Report - Available at
http://ethereum.org/ethereum.html, 2014.

[47] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
et al., “Hyperledger fabric: a distributed operating system for permis-
sioned blockchains,” in Proceedings of the thirteenth EuroSys confer-
ence, pp. 1–15, 2018.

[48] D. Mazieres, “The stellar consensus protocol: A federated model
for internet-level consensus,” Technical Report - Available at
https://www.stellar.org/papers/stellar-consensus-protocol.pdf/, 2014.

[49] G. Greenspan, “Multichain private blockchain-white pa-
per,” Technical Report - Available at http://www.multichain.
com/download/MultiChain-White-Paper.pdf, 2015.

[50] C. Cachin and M. Vukolić, “Blockchain consensus protocols in the wild,”
in Leibniz International Proceedings in Informatics, LIPIcs, 2017.

[51] M. Pustišek, A. Umek, and A. Kos, “Approaching the communica-
tion constraints of Ethereum-Based decentralized applications,” Sen-
sors, vol. 19, no. 11, p. 2647, 2019.

[52] P. Rimba, A. B. Tran, I. Weber, M. Staples, A. Ponomarev, and X. Xu,
“Quantifying the Cost of Distrust: Comparing Blockchain and Cloud
Services for Business Process Execution,” Information Systems Fron-
tiers, vol. 22, pp. 489–507, 4 2020.

183

BIBLIOGRAPHY BIBLIOGRAPHY

[53] F. Wessling, C. Ehmke, M. Hesenius, and V. Gruhn, “How much
blockchain do you need? towards a concept for building hybrid dapp
architectures,” in 2018 IEEE/ACM 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB),
pp. 44–47, 2018.

[54] M. Schäffer, M. Di Angelo, and G. Salzer, “Performance and scalabil-
ity of private ethereum blockchains,” in International Conference on
Business Process Management, pp. 103–118, Springer, 2019.

[55] K. Wüst and A. Gervais, “Do you need a blockchain?,” in 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT), pp. 45–54,
2018.

[56] H. M. Kim, H. Turesson, M. Laskowski, and A. F. Bahreini, “Per-
missionless and permissioned, technology-focused and business needs-
driven: Understanding the hybrid opportunity in blockchain through
a case study of insolar,” IEEE Transactions on Engineering Manage-
ment, pp. 1–16, 2020.

[57] V. Buterin, D. Reijsbergen, S. Leonardos, and G. Piliouras, “Incen-
tives in ethereum’s hybrid casper protocol,” in 2019 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), pp. 236–244,
IEEE, 2019.

[58] Z. Zheng, S. Xie, H. N. Dai, and H. Wang, “Blockchain challenges
and opportunities: A survey,” International Journal of Web and Grid
Services, pp. 1–23, 2017.

[59] D. Malkhi and M. Reiter, “Byzantine quorum systems,” Distributed
Computing, pp. 203–213, 1998.

184

BIBLIOGRAPHY BIBLIOGRAPHY

[60] L. Law, S. Sabett, and J. Solinas, “How to make a mint: The cryptog-
raphy of anonymous electronic cash,” National Security Agency Office
of Information Security Research and Technology, Cryptology Division,
1996.

[61] N. Szabo, “Bit gold,” Technical Report - Available at
https://nakamotoinstitute.org/bit-gold/, 2005.

[62] W. Dai, “B-Money,” Technical Report - Available at
http://www.weidai.com/bmoney.txt, 1998.

[63] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[64] M. Correia, G. S. Veronese, N. F. Neves, and P. Verissimo, “Byzan-
tine consensus in asynchronous message-passing systems: a survey,”
International Journal of Critical Computer-Based Systems (IJCCBS),
vol. 2, pp. 141–161, July 2011.

[65] A. Baliga, “Understanding blockchain consensus models,” tech. rep.,
Persistent Systems Ltd, 2017.

[66] J. R. Douceur, “The sybil attack,” in International Workshop on Peer-
to-Peer Systems, pp. 251–260, 2002.

[67] A. Miller and J. J. LaViola Jr, “Anonymous byzantine consensus
from moderately-hard puzzles: A model for bitcoin,” Technical Report
- Available at https://socrates1024.s3.amazonaws. com/consensus.pdf,
2014.

[68] D. Bradbury, “In blocks [security bitcoin],” Engineering Technology,
vol. 10, pp. 68–71, Mar. 2015.

185

BIBLIOGRAPHY BIBLIOGRAPHY

[69] K. J. O’Dwyer and D. Malone, “Bitcoin mining and its energy foot-
print,” in 25th IET Irish Signals Systems Conference and China-Ireland
International Conference on Information and Communications Tech-
nologies (ISSC/CIICT), pp. 280–285, June 2014.

[70] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake,” self-published paper, August, vol. 19, p. 1, 2012.

[71] Nxt Community, “Nxt whitepaper,” Technical Report - Available at
https://nxtdocs.jelurida.com/Nxt_Whitepaper, 2014.

[72] P. Vasin, “Blackcoins proof-of-stake protocol v2,” Technical Re-
port - Available at https://blackcoin.co/blackcoin-pos-protocol-v2-
whitepaper.pdf, 2014.

[73] N. Houy, “It will cost you nothing to kill a proof-of-stake crypto-
currency,” Available at SSRN 2393940, 2014.

[74] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of activity: Ex-
tending bitcoin’s proof of work via proof of stake [extended abstract]y,”
SIGMETRICS Perform. Eval. Rev., vol. 42, pp. 34–37, Dec. 2014.

[75] M. Walport, “Distributed ledger technology: Beyond blockchain,” UK
Government Office for Science, 2016.

[76] M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, pp. 173–186, 1999.

[77] C. Cachin, S. Schubert, and M. Vukolić, “Non-determinism in byzantine
fault-tolerant replication,” arXiv preprint arXiv:1603.07351, 2016.

[78] K. Olson, M. Bowman, J. Mitchell, S. Amundson, D. Middleton, and
C. Montgomery, “Sawtooth: an introduction,” The Linux Foundation,
2018.

186

BIBLIOGRAPHY BIBLIOGRAPHY

[79] V. Costan and S. Devadas, “Intel sgx explained.,” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016.

[80] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for
iot security and privacy: The case study of a smart home,” in IEEE In-
ternational Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), pp. 618–623, 2017.

[81] J. Eberhardt, M. Peise, D. H. Kim, and S. Tai, “Privacy-preserving
netting in local energy grids,” in 2020 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), pp. 1–9, 2020.

[82] G. Grigoras, N. Bizon, F. M. Enescu, J. M. Lopez Guede, G. F. Sal-
ado, R. Brennan, C. O’Driscoll, M. O. Dinka, and M. G. Alalm, “Ict
based smart management solution to realize water and energy savings
through energy efficiency measures in water distribution systems,” in
Proc. of the 10th International Conference on Electronics, Computers
and Artificial Intelligence, pp. 1–4, 2018.

[83] C. Rottondi and G. Verticale, “A privacy-friendly gaming framework
in smart electricity and water grids,” IEEE Access, vol. 5, pp. 14221–
14233, 2017.

[84] J. Ellehauge, “Blockchain in geospatial applications,” GIM Interna-
tional - Magazine for Geomatics, vol. 31, no. 5, pp. 43–45, 2017.

[85] M. Kempe, “The land registry in the blockchain–testbed,” A devel-
opment project with Lantmäteriet, Landshypotek Bank, SBAB, Telia
company, ChromaWay and Kairos Future, 2017.

[86] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

187

BIBLIOGRAPHY BIBLIOGRAPHY

[87] D. Tapscott and A. Tapscott, Blockchain Revolution: How the Tech-
nology Behind Bitcoin Is Changing Money, Business, and the World.
Portfolio, 2016.

[88] J. Fairfield, “Smart contracts, bitcoin bots, and consumer protection,”
Washington and Lee Law Review Online, vol. 71, no. 2, pp. 35–50, 2014.

[89] M. Kondo, G. A. Oliva, Z. M. J. Jiang, A. E. Hassan, and O. Mizuno,
“Code cloning in smart contracts: a case study on verified contracts
from the ethereum blockchain platform,” Empirical Software Engineer-
ing, vol. 25, no. 6, pp. 4617–4675, 2020.

[90] S. Seebacher and R. Schüritz, “Blockchain technology as an enabler of
service systems: A structured literature review,” in Exploring Services
Science, pp. 12–23, Springer International Publishing, 2017.

[91] J. L. Zhao, S. Fan, and J. Yan, “Overview of business innovations and
research opportunities in blockchain and introduction to the special
issue,” Financial Innovation, vol. 2, no. 1, p. 28, 2016.

[92] N. Kshetri, “Can blockchain strengthen the internet of things?,” IT
professional, vol. 19, no. 4, pp. 68–72, 2017.

[93] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
things (iot): A vision, architectural elements, and future directions,”
Future generation computer systems, vol. 29, no. 7, pp. 1645–1660,
2013.

[94] R. Perrey and M. Lycett, “Service-oriented architecture,” in 2003 Sym-
posium on Applications and the Internet Workshops, 2003. Proceed-
ings., pp. 116–119, 2003.

188

BIBLIOGRAPHY BIBLIOGRAPHY

[95] M. L. Das, “Privacy and security challenges in internet of things,” in
Distributed Computing and Internet Technology, pp. 33–48, Springer
International Publishing, 2015.

[96] S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K. Kwak,
“The internet of things for health care: A comprehensive survey,” IEEE
Access, vol. 3, pp. 678–708, 2015.

[97] S. R. Niya, S. S. Jha, T. Bocek, and B. Stiller, “Design and implemen-
tation of an automated and decentralized pollution monitoring sys-
tem with blockchains, smart contracts, and lorawan,” in Proc. of the
IEEE/IFIP Network Operations and Management Symposium, pp. 1–
4, 2018.

[98] M. Samaniego and R. Deters, “Internet of smart things-iost: Using
blockchain and clips to make things autonomous,” in 2017 IEEE inter-
national conference on cognitive computing (ICCC), pp. 9–16, IEEE,
2017.

[99] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vi-
sion and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5,
pp. 637–646, 2016.

[100] M. Torky and A. E. Hassanein, “Integrating blockchain and the internet
of things in precision agriculture: Analysis, opportunities, and chal-
lenges,” Computers and Electronics in Agriculture, vol. 178, p. 105476,
2020.

[101] R. Roman, P. Najera, and J. Lopez, “Securing the internet of things,”
Computer, vol. 44, no. 9, pp. 51–58, 2011.

189

BIBLIOGRAPHY BIBLIOGRAPHY

[102] J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos, “Security and pri-
vacy for cloud-based iot: Challenges,” IEEE Communications Maga-
zine, vol. 55, no. 1, pp. 26–33, 2017.

[103] M. Mohammadi and A. Al-Fuqaha, “Enabling cognitive smart cities us-
ing big data and machine learning: Approaches and challenges,” IEEE
Communications Magazine, vol. 56, no. 2, pp. 94–101, 2018.

[104] V. Gazis, “A survey of standards for machine-to-machine and the in-
ternet of things,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 1, pp. 482–511, 2017.

[105] W. Zheng, Z. Zheng, X. Chen, K. Dai, P. Li, and R. Chen, “Nutbaas:
A blockchain-as-a-service platform,” IEEE Access, vol. 7, pp. 134422–
134433, 2019.

[106] Z. Shi, H. Zhou, J. Surbiryala, Y. Hu, C. de Laat, and Z. Zhao, “An
automated customization and performance profiling framework for per-
missioned blockchains in a virtualized environment,” in 2019 IEEE In-
ternational Conference on Cloud Computing Technology and Science
(CloudCom), pp. 404–410, 2019.

[107] A. Dorri, S. S. Kanhere, and R. Jurdak, “Towards an optimized
blockchain for iot,” in Proceedings of the Second International Con-
ference on Internet-of-Things Design and Implementation, IoTDI ’17,
(New York, NY, USA), pp. 173–178, ACM, 2017.

[108] S.-C. Cha, J.-F. Chen, C. Su, and K.-H. Yeh, “A blockchain connected
gateway for ble-based devices in the internet of things,” IEEE Access,
2018.

[109] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and
R. Hierons, “Smart contracts vulnerabilities: a call for blockchain soft-

190

BIBLIOGRAPHY BIBLIOGRAPHY

ware engineering?,” in 2018 International Workshop on Blockchain Ori-
ented Software Engineering (IWBOSE), pp. 19–25, 2018.

[110] S. Huckle, R. Bhattacharya, M. White, and N. Beloff, “Internet of
Things, Blockchain and Shared Economy Applications,” in (ICTH-
2016) (Shakshuki, E, ed.), vol. 98 of Procedia Computer Science,
pp. 461–466, 2016.

[111] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-
oriented software engineering: Challenges and new directions,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pp. 169–171, 5 2017.

[112] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts,” in Principles of Security and Trust,
pp. 164–186, Springer, 2017.

[113] F. Wessling, C. Ehmke, O. Meyer, and V. Gruhn, “Towards blockchain
tactics: Building hybrid decentralized software architectures,” in 2019
IEEE International Conference on Software Architecture Companion
(ICSA-C), pp. 234–237, 2019.

[114] R. Mühlberger, S. Bachhofner, E. Castelló Ferrer, C. Di Ciccio, I. We-
ber, M. Wöhrer, and U. Zdun, “Foundational oracle patterns: Connect-
ing blockchain to the off-chain world,” in Business Process Manage-
ment: Blockchain and Robotic Process Automation Forum, pp. 35–51,
Springer International Publishing, 2020.

[115] K. R. Choo, S. Gritzalis, and J. H. Park, “Cryptographic solutions for
industrial internet-of-things: Research challenges and opportunities,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3567–
3569, 2018.

191

BIBLIOGRAPHY BIBLIOGRAPHY

[116] A. M. Antonopoulos and G. Wood, Mastering ethereum: building smart
contracts and dapps. O’Reilly Media, 2018.

[117] C. Verdouw, H. Sundmaeker, F. Meyer, J. Wolfert, and J. Verhoosel,
“Smart agri-food logistics: requirements for the future internet,” Dy-
namics in Logistics, pp. 247–257, 2013.

[118] F. TongKe, “Smart agriculture based on cloud computing and iot,”
Journal of Convergence Information Technology, vol. 8, no. 2, pp. 210–
216, 2013.

[119] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
“Provchain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability,” in 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pp. 468–477, IEEE, 2017.

[120] A. Ramachandran, D. Kantarcioglu, et al., “Using blockchain and smart
contracts for secure data provenance management,” arXiv preprint
arXiv:1709.10000, 2017.

[121] D. McFarlane and Y. Sheffi, The impact of automatic identification
on supply chain operations. University of Cambridge, Department of
Engineering, 2003.

[122] C. Sun, “Application of rfid technology for logistics on internet of
things,” AASRI Procedia, vol. 1, pp. 106–111, 2012.

[123] S. Srinivasan, D. Sorna Shanthi, and A. V. Anand, “Inventory trans-
parency for agricultural produce through iot,” MS&E, vol. 211, no. 1,
p. 012009, 2017.

[124] F. Tian, “An agri-food supply chain traceability system for china based
on rfid & blockchain technology,” in 2016 13th international conference

192

BIBLIOGRAPHY BIBLIOGRAPHY

on service systems and service management (ICSSSM), pp. 1–6, IEEE,
2016.

[125] F. Tian, “A supply chain traceability system for food safety based on
haccp, blockchain & internet of things,” in 2017 International confer-
ence on service systems and service management, pp. 1–6, IEEE, 2017.

[126] C. Brewster, I. Roussaki, N. Kalatzis, K. Doolin, and K. Ellis, “Iot in
agriculture: Designing a europe-wide large-scale pilot,” IEEE commu-
nications magazine, vol. 55, no. 9, pp. 26–33, 2017.

[127] J. Helmbrecht, J. Pastor, and C. Moya, “Smart solution to improve
water-energy nexus for water supply systems,” Procedia Eng., vol. 186,
pp. 101–109, 2017.

[128] E. Wang, S. Attard, A. Linton, M. McGlinchey, W. Xiang, B. Philippa,
and Y. Everingham, “Development of a closed-loop irrigation system for
sugarcane farms using the internet of things,” Computers and Electron-
ics in Agriculture, vol. 172, p. 105376, 2020.

[129] M. Á. Pardo Picazo, J. M. Juárez, and D. García-Márquez, “Energy
consumption optimization in irrigation networks supplied by a stan-
dalone direct pumping photovoltaic system,” Sustainability, vol. 10,
no. 11, p. 4203, 2018.

[130] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of
lpwan technologies for large-scale iot deployment,” ICT express, vol. 5,
no. 1, pp. 1–7, 2019.

[131] M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda, “Blockchain-
based traceability in agri-food supply chain management: A practical
implementation,” in Proc. of the IoT Vertical and Topical Summit on
Agriculture, pp. 1–4, 2018.

193

BIBLIOGRAPHY BIBLIOGRAPHY

[132] E. A. Abioye, M. S. Z. Abidin, M. S. A. Mahmud, S. Buyamin, M. H. I.
Ishak, M. K. I. A. Rahman, A. O. Otuoze, P. Onotu, and M. S. A.
Ramli, “A review on monitoring and advanced control strategies for pre-
cision irrigation,” Computers and Electronics in Agriculture, vol. 173,
p. 105441, 2020.

[133] B. Bordel, D. Martin, R. Alcarria, and T. Robles, “A blockchain-based
water control system for the automatic management of irrigation com-
munities,” in Proc. of the IEEE International Conference on Consumer
Electronics, pp. 1–2, 2019.

[134] B. Ortuani, A. Facchi, A. Mayer, D. Bianchi, A. Bianchi, and L. Bran-
cadoro, “Assessing the effectiveness of variable-rate drip irrigation on
water use efficiency in a vineyard in northern italy,” Water, vol. 11,
no. 10, p. 1964, 2019.

[135] J. Huan, H. Li, F. Wu, and W. Cao, “Design of water quality mon-
itoring system for aquaculture ponds based on nb-iot,” Aquacultural
Engineering, vol. 90, p. 102088, 2020.

[136] A. Khanna and S. Kaur, “Evolution of internet of things (iot) and its
significant impact in the field of precision agriculture,” Computers and
Electronics in Agriculture, vol. 157, pp. 218 – 231, 2019.

[137] S. Cheung, “Reinventing the bazaar: A natural history of markets,”
The Economic Journal, vol. 113, 2003.

[138] H. Subramanian, “Decentralized blockchain-based electronic market-
places,” Commun. ACM, vol. 61, no. 1, pp. 78–84, 2017.

[139] V. P. Ranganthan, R. Dantu, A. Paul, P. Mears, and K. Morozov,
“A decentralized marketplace application on the ethereum blockchain,”

194

BIBLIOGRAPHY BIBLIOGRAPHY

in Proc. of the IEEE 4th Int. Conf. on Collaboration and Internet
Computing, pp. 90–97, 2018.

[140] G. S. Ramachandran, R. Radhakrishnan, and B. Krishnamachari, “To-
wards a decentralized data marketplace for smart cities,” in Proc. of
the IEEE Int. Conf. on Smart Cities, pp. 1–8, 2018.

[141] M. L. Di Silvestre, P. Gallo, M. G. Ippolito, E. R. Sanseverino, G. Sci-
umè, and G. Zizzo, “An energy blockchain, a use case on tendermint,”
in Proc. of the IEEE Int. Conf. on Environment and Electrical Engi-
neering, pp. 1–5, 2018.

[142] A. Hahn, R. Singh, C. Liu, and S. Chen, “Smart contract-based campus
demonstration of decentralized transactive energy auctions,” in Proc.
of the IEEE Conf. on Power Energy Society Innovative Smart Grid
Technologies, pp. 1–5, 2017.

[143] B. Pittl, W. Mach, and E. Schikuta, “Bazaar-blockchain: A blockchain
for bazaar-based cloud markets,” in Proc. of the IEEE Int. Conf. on
Services Computing, pp. 89–96, 2018.

[144] L. Mikkelsen, K. Mortensen, H. Rasmussen, H. Schwefel, and T. Mad-
sen, “Realization and evaluation of marketplace functionalities using
ethereum blockchain,” in Proc. of the Int. Conf. on Internet of Things,
Embedded Systems and Communications, pp. 47–52, 2018.

[145] V. Scoca, R. B. Uriarte, and R. D. Nicola, “Smart contract negotiation
in cloud computing,” in Proc. of the IEEE 10th Int. Conf. on Cloud
Computing, pp. 592–599, 2017.

[146] J. A. F. Castellanos, D. Coll-Mayor, and J. A. Notholt, “Cryptocur-
rency as guarantees of origin: Simulating a green certificate market

195

BIBLIOGRAPHY BIBLIOGRAPHY

with the ethereum blockchain,” in Proc. of the IEEE Int. Conf. on
Smart Energy Grid Engineering, pp. 367–372, 8 2017.

[147] A. Pinna, S. Ibba, G. Baralla, R. Tonelli, and M. Marchesi, “A massive
analysis of ethereum smart contracts empirical study and code metrics,”
IEEE Access, vol. 7, pp. 78194–78213, 2019.

[148] M. Pincheira, M. Vecchio, and R. Giaffreda, “Rationale and practi-
cal assessment of a fully distributed blockchain-based marketplace of
fog/edge computing resources,” in 2020 Seventh International Confer-
ence on Software Defined Systems (SDS), pp. 165–170, 2020.

[149] M. Pincheira, M. Vecchio, R. Giaffreda, and S. S. Kanhere, “Exploiting
constrained iot devices in a trustless blockchain-based water manage-
ment system,” in 2020 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), pp. 1–7, 2020.

[150] M. Spain, S. Foley, and V. Gramoli, “The impact of ethereum through-
put and fees on transaction latency during icos,” in International Con-
ference on Blockchain Economics, Security and Protocols (Tokenomics
2019), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[151] E. Mengelkamp, B. Notheisen, C. Beer, D. Dauer, and C. Weinhardt,
“A blockchain-based smart grid: towards sustainable local energy mar-
kets,” Computer Science-Research and Development, vol. 33, no. 1-2,
pp. 207–214, 2018.

[152] European Space Agency, “Blockchain and earth observation,” in
Whitepaper, 5 2019.

[153] M. J. Molesky, E. A. Cameron, J. Jones, M. Esposito, L. Cohen, and
C. Beauregard, “Blockchain network for space object location gath-
ering,” in 2018 IEEE 9th Annual Information Technology, Electronics

196

BIBLIOGRAPHY BIBLIOGRAPHY

and Mobile Communication Conference (IEMCON), pp. 1226–1232, 11
2018.

[154] Y.-P. Lin, J. Petway, J. Anthony, H. Mukhtar, S.-W. Liao, C.-F.
Chou, and Y.-F. Ho, “Blockchain: The evolutionary next step for ict
e-agriculture,” Environments, vol. 4, no. 3, p. 50, 2017.

[155] E. Leka, L. Lamani, B. Selimi, and E. Deçolli, “Design and implemen-
tation of smart contract: A use case for geo-spatial data sharing,” in
2019 42nd International Convention on Information and Communica-
tion Technology, Electronics and Microelectronics (MIPRO), pp. 1565–
1570, IEEE, 2019.

[156] Kiran Nagaraja, S. Rollins, and M. Khambatti, “From the editors: peer-
to-peer community: looking beyond the legacy of napster and gnutella,”
IEEE Distributed Systems Online, vol. 7, no. 3, pp. 5–5, 2006.

[157] E. Nyaletey, R. M. Parizi, Q. Zhang, and K. R. Choo, “Block-
ipfs - blockchain-enabled interplanetary file system for forensic and
trusted data traceability,” in 2019 IEEE International Conference on
Blockchain (Blockchain), 2019.

[158] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, “Storj a
peer-to-peer cloud storage network,” Technical Report - Available at
http://storj.io/storj.pdf, 2014.

[159] D. Vorick and L. Champine, “Sia: Simple decentralized storage,” Tech-
nical Report - Available at https://sia.tech/sia.pdf, 2014.

[160] S. Williams, V. Diordiiev, L. Berman, and I. Uemlianin, “Arweave: A
protocol for economically sustainable information permanence,” Tech-
nical Report - Available at https://www.arweave.org/yellow-paper.pdf,
2019.

197

BIBLIOGRAPHY BIBLIOGRAPHY

[161] H. Huang, J. Lin, B. Zheng, Z. Zheng, and J. Bian, “When blockchain
meets distributed file systems: An overview, challenges, and open is-
sues,” IEEE Access, vol. 8, pp. 50574–50586, 2020.

[162] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[163] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the theory and application of cryptographic
techniques, pp. 369–378, Springer, 1987.

[164] A. Galletta, J. Taheri, and M. Villari, “On the applicability of secret
share algorithms for saving data on iot, edge and cloud devices,” in
2019 International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), pp. 14–21, 2019.

198

List of Abbreviations

ASC Advertisement Smart Contract.

BLE Bluetooth Low Energy.

CPU Central Processing Unit.

DAO Decentralized Autonomouse Organization.

DDos Distributed Denial of Service.

DFS Decentralized File System.

DLT Distributed Ledger Technology.

DSR Design Science Research.

ECDSA Ellipctic Curve Digital Signing Algorithm.

ETH Ethereum cryptocurrency ETHER.

FBFT Federated Byzantine Fault Tolerance.

FECR Fog-Edge computing resources.

IoT Internet of Things.

IPFS InterPlanetary File System.

IT Information Technologies.

199

List of Abbreviations List of Abbreviations

LCA Life Cycle Assessment.

LPWAN Low Power Wide Area Network.

MCU MicroController Unit.

MSC Market Smart Contract.

OTAA Over-The-Air-Activation.

PBFT Practical Byzantine Fault Tolerance.

PoA Proof of Authority.

PoC Proof of Concept.

PoET Proof of Ellapsed Time.

PoS Proof of Stake.

PoW Proof of Work.

RLP Recursive Length Prefix.

RSC Reservation Smart Contract.

SF Spreading Factor.

SLA Service Level Agreements.

ST Smart Twin Smart Contract.

STA Smart Twin Application Smart Contract.

TEE Trusted Execution Environment.

UML Unified Modeling Language.

UNL Unique Node List.

200

	Introduction
	Towards decentralization of the Internet of Things
	Sensing devices in blockchain-based IoT systems
	A novel trustless architecture for blockchain-based IoT applications
	Design Science Research approach
	Case studies
	Exploratory analyses
	Innovative aspects

	Structure of the thesis

	Part I: Background on blockchain technology and IoT
	A primer of blockchain technology
	Blockchain working principles
	Transactions and digital signatures

	Taxonomy of blockchain networks
	Public/permissionless blockchains
	Private/permissioned blockchains

	Decentralized consensus algorithms
	Consensus on permissionless blockchains
	Consensus on permissioned blockchains
	Comparison of permissionless and permissioned consensus algorithms

	Smart contracts
	Salient features of blockchain technology

	State of the Art in integrating blockchain and IoT
	IoT layered architectures
	Requirements of IoT systems
	Challenges in centralized IoT architectures
	Decentralization of IoT through blockchain technology

	Integration schemes for blockchain and IoT
	Cloud-level integration
	Edge-level integration
	Device-level integration

	Interactions through smart contracts
	Summary and gap analysis

	Part II: Blockchain-based decentralized IoT applications
	A novel trustless architecture for blockchain-based IoT applications
	High-level architecture
	Novel contributions
	Constrained sensing devices as direct actors on the blockchain system
	Permissionless blockchain as the underlying network
	Smart contracts as a software platform

	Blockchain-based decentralized IoT framework
	M1: Device module
	M2: Gateway module
	M3: Blockchain module

	A blockchain-based IoT system for traceability in Agri-Food
	Introduction
	Related work
	Proposed system architecture
	Architecture evaluation
	Conclusions

	Cost-effective IoT devices in a blockchain-based water management system
	Introduction
	State of the art and rationale
	Proposed system architecture
	Implementation
	The Device module
	The Gateway module
	The Blockchain module

	Architecture evaluation
	Device module footprint
	Device module performance
	Transaction compression
	Transaction cost and processing time
	Device power consumption and energy budget

	Conclusions

	Part III: Exploratory analyses of blockchain-based applications challenges
	Cost and user experience in blockchain-based applications
	Rationale and practical assessment of a fully distributed blockchain-based marketplace of Fog/Edge computing resources
	Introduction
	Related work
	Proposed system architecture
	Experimental setup
	Architecture evaluation
	Conclusions and future works

	Cost Model for blockchain-based applications
	Introduction
	Application description and requirements
	Proposed transaction taxonomy
	Cost model for permissionless networks
	Evaluation of the marketplace application
	Conclusions

	Data-sharing and decentralised storage in blockchain-based applications
	A blockchain-based approach to enable remote sensing trusted data.
	Introduction
	Proposed architecture
	Use case: precision agriculture
	Conclusions and future works

	Decentralized storage for trusted data sharing
	Introduction
	Proposed Architecture
	Experimental setup
	Evaluation results
	Conclusions

	Conclusions
	Novel contributions
	Future works

	Bibliography
	Appendix A: List of Abbreviations

