
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School

A trustless architecture for
blockchain-based IoT applications

using constrained devices

Miguel Rodrigo Pincheira Caro

Advisor

Fabio Antonelli

Fondazione Bruno Kessler

Co-Advisor

Prof. Massimo Vecchio

Fondazione Bruno Kessler

May 2021

Abstract

Despite the increasing interest in blockchain as a possible solution to re-
place centralized IoT architectures, previous work failed to provide a direct
role for the sensing devices, i.e., direct interaction with the blockchain with-
out additional components. Moreover, few studies focus on permissionless
blockchains, even if it is the most secure platform for developing blockchain-
based applications.
This thesis presents an architecture that considers constrained sensing de-
vices as direct actors on a public blockchain network. A public blockchain
network allows the seamless inclusion of several unknown actors, and smart
contracts provide a platform to develop complex IoT applications. The re-
search followed an iterative DSR approach; designing, building, and evaluat-
ing new IT artifacts using two case studies in the agricultural IoT domain.
These cases fostered two exploratory studies that diverged from the main IoT
domain; however, they also provide novel contributions to blockchain-based
applications.
Thus, the novel architecture tackles three problems of current blockchain-
based IoT systems i) constrained sensing devices as direct actors on a blockchain
system, ii) permissionless blockchain networks and iii) smart contracts as
an IoT application platform. Furthermore, the exploratory analyses exam-
ine two challenges of blockchain-based applications i) user experience and
monetary costs and ii) data sharing and decentralized storage.

Keywords
[Internet of Things; Blockchain; Smart Contracts; Distributed Ledger]

Acknowledgements

This work is the conclusion of a journey full of challenges and difficulties
but always supported by family, friends, and colleagues to whom I am deeply
thankful. First, I would like to thank my supervisor, Mr. Fabio Antonelli,
for the opportunity to take this motivating journey under his tutelage, sup-
port, and experience. Next, I would like to thank my co-supervisor, Dr.
Massimo Vecchio, who has been a constant source of motivation and support
throughout my learning experience, always encouraging my academic and
professional growth. I also thank Mr. Raffaele Giaffreda for sharing his valu-
able experience and knowledge. A special thanks to the OpenIoT unit that
welcomed me to a warm and enjoyable working environment full of coffee,
laughs, and food tips.

I want to thank my friends and family in Chile. Our shared memories
overcame the distance and always remind me of the happiness of life. And to
new friends, that provided a home away from home, with laughs, food, and
wine. I am particularly grateful to Elena, who not only offered her friendship
but selflessly shared her time and knowledge through this Ph.D. journey.

My most important thank is to my family, Tamy. She is the source of
strength and encouragement. Without her unconditional love and support,
this journey will not have been possible. I thank my father for his continuous
support. I thankful to my Socia and those who are not with me. Finally, I
thank my mother for all that she taught me. Her memory is and always will
be a continuous light of guidance.

The works in this thesis was partially supported by (1) the AGILE project
(G.A. No 688088) and (2) the DECENTER project (G.A No 815141) within
the Horizon 2020 Programme of the EU, and (3) the SAPIENCE project
within the Climate KIC programme (P.ID No 200081) of the EIT.

5

6

Contents

1 Introduction 1

1.1 Towards decentralization of the Internet of Things 2
1.2 Sensing devices in blockchain-based IoT systems 3
1.3 A novel trustless architecture for blockchain-based IoT appli-

cations . 4
1.3.1 Design Science Research approach 5
1.3.2 Case studies . 5
1.3.3 Exploratory analyses 6
1.3.4 Innovative aspects . 7

1.4 Structure of the thesis . 8

Part I: Background on blockchain technology and IoT 13

2 A primer of blockchain technology 13

2.1 Blockchain working principles 14
2.1.1 Transactions and digital signatures 16

2.2 Taxonomy of blockchain networks 18
2.2.1 Public/permissionless blockchains 19
2.2.2 Private/permissioned blockchains 19

2.3 Decentralized consensus algorithms 20
2.3.1 Consensus on permissionless blockchains 21

i

2.3.2 Consensus on permissioned blockchains 24
2.3.3 Comparison of permissionless and permissioned con-

sensus algorithms . 27
2.4 Smart contracts . 28
2.5 Salient features of blockchain technology 30

3 State of the Art in integrating blockchain and IoT 33

3.1 IoT layered architectures . 35
3.1.1 Requirements of IoT systems 38
3.1.2 Challenges in centralized IoT architectures 41
3.1.3 Decentralization of IoT through blockchain technology 43

3.2 Integration schemes for blockchain and IoT 44
3.2.1 Cloud-level integration 47
3.2.2 Edge-level integration 47
3.2.3 Device-level integration 49

3.3 Interactions through smart contracts 49
3.4 Summary and gap analysis 54

Part II: Blockchain-based decentralized IoT applications 59

4 A novel trustless architecture for blockchain-based IoT ap-
plications 59

4.1 High-level architecture . 60
4.2 Novel contributions . 61

4.2.1 Constrained sensing devices as direct actors on the
blockchain system . 61

4.2.2 Permissionless blockchain as the underlying network . 62
4.2.3 Smart contracts as a software platform 62

4.3 Blockchain-based decentralized IoT framework 63

ii

4.3.1 M1: Device module 65

4.3.2 M2: Gateway module 67

4.3.3 M3: Blockchain module 68

5 A blockchain-based IoT system for traceability in Agri-Food

71

5.1 Introduction . 72

5.2 Related work . 73

5.3 Proposed system architecture 75

5.4 Architecture evaluation . 80

5.5 Conclusions . 81

6 Cost-e�ective IoT devices in a blockchain-based water man-

agement system 83

6.1 Introduction . 84

6.2 State of the art and rationale 87

6.3 Proposed system architecture 89

6.4 Implementation . 93

6.4.1 The Device module 94

6.4.2 The Gateway module 96

6.4.3 The Blockchain module 97

6.5 Architecture evaluation . 98

6.5.1 Device module footprint 100

6.5.2 Device module performance 100

6.5.3 Transaction compression 101

6.5.4 Transaction cost and processing time 103

6.5.5 Device power consumption and energy budget 104

6.6 Conclusions . 107

iii

Part III: Exploratory analyses of blockchain-based appli-

cations challenges 111

7 Cost and user experience in blockchain-based applications 111

7.1 Rationale and practical assessment of a fully distributed blockchain-

based marketplace of Fog/Edge computing resources 112

7.1.1 Introduction . 112

7.1.2 Related work . 114

7.1.3 Proposed system architecture 116

7.1.4 Experimental setup 119

7.1.5 Architecture evaluation 121

7.1.6 Conclusions and future works 128

7.2 Cost Model for blockchain-based applications 130

7.2.1 Introduction . 130

7.2.2 Application description and requirements 131

7.2.3 Proposed transaction taxonomy 132

7.2.4 Cost model for permissionless networks 133

7.2.5 Evaluation of the marketplace application 138

7.2.6 Conclusions . 141

8 Data-sharing and decentralised storage in blockchain-based

applications 143

8.1 A blockchain-based approach to enable remote sensing trusted

data. 143

8.1.1 Introduction . 143

8.1.2 Proposed architecture 147

8.1.3 Use case: precision agriculture 153

8.1.4 Conclusions and future works 156

8.2 Decentralized storage for trusted data sharing 157

8.2.1 Introduction . 157

iv

8.2.2 Proposed Architecture 159

8.2.3 Experimental setup 162

8.2.4 Evaluation results . 164

8.2.5 Conclusions . 170

9 Conclusions 173

9.1 Novel contributions . 174

9.2 Future works . 176

Bibliography 177

Appendix A: List of Abbreviations 200

v

List of Tables

2.1 Comparison of public and private blockchains. 29

3.1 Node types in blockchain networks 45

5.1 Performance of AgriBlockIoT in terms of latency, network traf-

�c, and CPU load. 81

6.1 Components of a transaction in the Ethereum blockchain. . . 94

6.2 Main characteristics of the hardware platforms used in the

evaluation campaign. 99

6.3 Device module program size footprint (in bytes). 100

6.4 Device module memory footprint (in bytes). 101

6.5 Average processing time overhead of the device module (in

milliseconds). 102

6.6 Transaction costs for di�erent values ofTp (slow, avg, and fast

correspond to 2, 5, and 10 gwei, respectively, while1 ETH =

205USD is the exchange rate). 104

6.7 Average energy consumption of the device module at 5V (in

Joules). 105

7.1 Average cost for creating reservations

(Tp = 10 gwei and Ce = 205 USD). 121

7.2 Average cost for creating and updating advertisements

(Tp = 10 gwei and Ce = 205 USD). 123

vii

7.3 Average transaction cost for creating the marketplace

(Tp = 10 gwei andCe = 205 USD). 124

7.4 Average time response (in seconds) for querying the list of

advertisements from the MSC. 125

7.5 Average time response (in seconds) for querying details of all

the advertisement. 126

7.6 Average time response (in seconds) for querying the detailed

list of advertisements using local bu�er. 127

7.7 Average processing time (in seconds) and cost of the function-

alities in a live network (Tp = 10 gwei and Ce = 205 USD). . 128

7.8 Basic requirements of blockchain-based application on permis-

sionless networks. 132

7.9 Parameters for the cost model of infrastructure using a per-

missionless blockchain. 134

7.10 Basic transactions for a marketplace classi�ed using the CRIV

taxonomy. 139

7.11 Parameters for the cost model of the marketplace using in a

public blockchain. 140

7.12 Cost scenario for a decentralized marketplace on a public blockchain.141

8.1 Transaction size and cost. 165

8.2 Transaction processing times in terms of minimum, maximum,

average, and variation on a Ropsten and a Goerli network. . . 166

8.3 Upload times expressed in seconds. 168

8.4 Download times expressed in seconds. 170

viii

List of Figures

2.1 Blockchain data structure. 15

2.2 Transactions in a Merkle Tree. 16

2.3 Public key signature process. 17

2.4 Performance and scalablity of di�erent consensus (adapted

from [1]). 28

2.5 Main features of blockchain technology. 31

3.1 Component-Oriented Architecture for modern IoT systems. . 36

3.2 Service-Oriented Architecture for IoT systems (extracted from

[2]) . 37

3.3 Blockchain integration for IoT systems 46

3.4 Two examples of IoT architectures integrating blockchain at

Edge-level. 53

4.1 High-level overview of the novel trustless architecture for blockchain-

based IoT applications . 60

4.2 Blockchain-based decentralized IoT framework. 63

4.3 Trustless architecture: Constrained Sensing devices (D) pro-

vide trustworthy information to a permissionless blockchain

(B) where unknown users (U) securely interact with decen-

tralized IoT applications. 66

4.4 Class diagram of a sample application using Smart Twins, and

Smart Twin Apps. 69

ix

4.5 Example interactions over the proposed architecture. 70

5.1 Simpli�ed version of the Agri-Food supply chain management

process. 76

5.2 Layered architecture of AgriBlockIoT. 77

6.1 Typical high-level 3-layer architecture of modern IoT systems. 87

6.2 High-level architecture of the proposed blockchain-based sus-

tainable water management system. 90

6.3 Software modules of the proposed architecture. 92

6.4 Device module footprint in terms of program size (in percentage).101

6.5 Device module footprint in terms of memory (in percentage). 102

6.6 Average current consumptions at 5V. 105

6.7 Estimated daily energy budget distribution for (a) reactive

and (b) continuous monitoring. 106

7.1 The proposed fully-distributed e-marketplace software archi-

tecture. 117

7.2 Sequence diagram of the interactions within the proposed e-

marketplace. 119

7.3 Average time response (in seconds) for querying the list of

advertisements . 125

7.4 Average time response (in seconds) for obtaining the details of

all advertisements. 126

7.5 Average time for all advertisements using local bu�er. 127

7.6 Life-cycle of a blockchain-based application 133

7.7 Cost and bene�ts per transaction in the marketplace re�ecting

the volatility of the cryptocurrency in 2020. 141

x

8.1 Proposed architecture � Untrusted actors interact using the

smart contracts to share, search, retrieve, and score metadata

and receive rewards. 147

8.2 Geographic extension of the datasets shared in the blockchain

system� in blue, the IoT raw and processed data, and in yel-

low, the processed Sentinel-2A data. 152

8.3 Simpli�cation of decentralized storage protocol (based on IPFS

and Swarm). 158

8.4 Proposed architecture based on blockchain, smart contracts,

and DFS to provide an infrastructure for sharing datasets

among untrusted actors. 161

8.5 Transactions processing times histograms 167

8.6 Comparison of upload and download times for di�erent �le size.169

xi

Chapter 1

Introduction

In recent years, the Internet has expanded its limits from business to social

interactions and from people to everyday things. Today, not only computers

connect to the Internet, but also objects such as televisions, cars, and bikes,

interact over the network under the �eld of the �Internet of Things� (IoT).

Everyday objects now incorporate technical capabilities to connect the digital

and physical world. IoT is growing at such a speed that in December 2017,

the number of connected objects was over 8 billion1, and the number of

Internet users was about 4 billion2. Moreover, recent studies estimate that

by 2025, the number of connected devices will be over 30 billion3. The

IoT aims to make the Internet more immersive and pervasive by enabling

easy interaction with a wide variety of devices [3], fostering the development

of applications to provide new services to individuals [3] and transforming

existing industrial operations [4].

1https://www.gartner.com/
2https://www.internetworldstats.com/stats.htm
3https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-

�rst-time/

1

1.0. INTERNET OF THINGS CHAPTER 1. INTRODUCTION

1.1 Towards decentralization of the Internet of Things

Billions of sensing devices build the core of IoT, collecting information from

the physical world. These devices interact with each other and with other

technological components, creating complex IoT systems for several appli-

cations [5]. The ubiquity of Internet connections fosters a steady growth of

IoT systems worldwide, which is also encouraged by the decreasing price and

size of embedded computers [6]. Every day, smaller and cost-e�ective devices

empower new kinds of IoT applications including infrastructure monitoring,

smart homes, precision agriculture, personal healthcare, and industrial man-

ufacturing [7]. As billions of devices are connected, it is necessary to de�ne

appropriate architectures that allow easy communications, control, and func-

tional applications [8].

Centralized cloud-based architectures are the current choice for IoT sys-

tems, where a validating third party provides services such as authentication,

authorization, and data handling for both sensing devices and end-users [9].

These architectures simplify the design and the deployment of IoT systems

and applications. However, they introduce additional concerns regarding

data management and privacy, as well as an over-exposition to several cyber-

security threats [10]. Moreover, the presence of the intermediary decreases

the e�ciency of interactions between devices, reducing the potential growth

of the IoT applications [7]. These challenges require radically new approaches

for the architectures behind the next-generation IoT systems and applica-

tions.

In recent years, there has been a growing interest in integrating blockchain

technologies into IoT [11] for enabling trustless architectures. Blockchain uses

a unique combination of cryptography, data structures, and incentive mech-

anisms to maintain a particular type of distributed database (i.e., aledger)

in a peer-to-peer network. The distributed ledger is immutable by design

2

CHAPTER 1. INTRODUCTION 1.1. SENSING DEVICES

and o�ers an auditable and transparent source of information. Integrating

blockchain into IoT could enable decentralized applications without a val-

idating central authority [12]. Blockchain provides a trusted repository of

information for IoT systems, where data is secure and traceable, and the

data source can be precisely identi�ed [13]. Moreover, blockchain directly

bene�ts several business processes (e.g., accounting, billing [14]) by enabling

the seamless inclusion of several actors [15] and making their interactions

leaner, faster, and more transparent [11].

1.2 Sensing devices in blockchain-based IoT systems

Despite the growing interest in blockchains, one aspect that previous works

have failed to consider is a direct role for the sensing device, i.e., the ca-

pability of devices to interact with the blockchain without the intervention

of an additional system component. The sensing devices are typically the

most constrained hardware component of the technology stack. Thus, de-

vices that autonomously interact with the blockchain might o�er limited

onboard computing resources with restricted energy budgets [16, 17]. Cur-

rent studies consider scenarios without communications or energy restrictions

[18, 19, 20]. This approach contrasts with the average requirements of IoT

applications favoring power e�ciency and low-cost to ensure cost-e�ective

and long-term operations (e.g., agriculture, smart cities) [21, 22]. For re-

stricted scenarios, the current research focuses on sensing devices that rely

on another component to interact with the blockchain (e.g., gateway nodes

[23, 24, 25]). However, the intermediary still introduces security concerns [6],

reducing the trustworthiness of the sensed data [11]. Another aspect missing

in the current literature is the bene�ts of using permissionless blockchain

infrastructures as most of the studies focus on permissioned infrastructures

[18, 26, 27]. However, a permissioned blockchain does not provide the same

3

1.2. NOVEL ARCHITECTURE CHAPTER 1. INTRODUCTION

level of openness, decentralization, and neutrality as a permissionless net-

work. Moreover, the type of consensus and the size of existing permissionless

blockchains networks o�er a more secure platform for developing decentral-

ized applications [28, 29]. Thus, a need emerges for an architecture that

acknowledges constrained devices on permissionless blockchain networks and

provides the tools to develop new types of decentralized IoT applications.

1.3 A novel trustless architecture for blockchain-based

IoT applications

This thesis presents an architecture that integrates blockchain technology

into the Internet of Things, enabling the development of next-generation

IoT applications. The architecture relies on blockchain inherent features to

mitigate some of the main challenges in centralized IoT architectures. The

architecture assumes that each device securely manages its cryptographic

keys. Although this is a strong assumption, it is aligned with the state of the

art [30, 31]. Furthermore, blockchain holds the potential to more complex

identity schemes as key-building blocks for realizing completely decentralized

public key infrastructures [11]. However, this research falls outside the focus

of this thesis.

The proposed architecture considers the sensing devices as direct actors

on a permissionless blockchain network to guarantee aroot of trust for the

sensed data [32]. Moreover, the integrity, auditability, and traceability of the

sensed data are maintained and enforced by the blockchain network [12].

In the proposed architecture, smart contracts provide a platform to de-

�ne complex business logic by autonomously enforcing agreements between

untrusted actors [33], based on trusted values coming from ubiquitous IoT

devices. We argue that this tamper-proof, immutable, and decentralized

repository of sensed real-world information is the key to build novel decen-

4

CHAPTER 1. INTRODUCTION 1.3. NOVEL ARCHITECTURE

tralized IoT applications.

1.3.1 Design Science Research approach

�Design science research (DSR) is a research paradigm in which a designer

answers questions relevant to human problems via the creation of innova-

tive artifacts, thereby contributing new knowledge to the body of scienti�c

evidence. The designed artifacts are both useful and fundamental in under-

standing that problem�[34].

The DSR process starts with a problem with practical signi�cance and

involves two essential stages, building and evaluating. The building stage is

required to produce a new Information Technology (IT) artifact. The evalua-

tion involves the assessment of the newly created IT artifact. The evaluation

process provides feedback and generates new knowledge, improving both the

design and artifact [35]. Thus, a rigorous DSR approach guides towards more

general and more valuable contributions. In this thesis, the DSR approach

enables the generation of theoretical insights rather than starting with a core

theory, similarly to [35, 36]. We believe that a DSR approach is favorable

for this research, considering the early stages of research and development of

blockchain technology.

1.3.2 Case studies

The proposed architecture is the result of a DSR process using two case

studies in the agricultural IoT domain. The �rst iteration addressed the

problem of reconstructing a centralized IoT application with a decentralized

blockchain-based architecture. We targeted food traceability applications

(Agri-Food), considering the growing adoption of IoT in this domain. Cur-

rent IoT-based traceability systems for Agri-Food supply chains are built

on top of centralized infrastructures, leaving unsolved issues and concerns

5

1.3. NOVEL ARCHITECTURE CHAPTER 1. INTRODUCTION

such as data integrity, tampering, and single points of failure. We propose

a blockchain-based traceability architecture for Agri-Food supply systems

that seamlessly integrates IoT devices producing and consuming digital data

along the process. Building and evaluating the IT artifact provided valuable

knowledge about blockchain-based IoT applications. These steps clari�ed the

requirements of large-scale IoT deployments and highlighted a crucial prob-

lem with current blockchain-based IoT applications� the role of constrained

sensing devices in the architecture.

The second iteration explored the use of constrained IoT devices on pub-

lic blockchains networks for incentivizing and rewarding sustainable water

management practices in agriculture. Current IoT precision agriculture ap-

plications focus on energy e�ciency, which generally translates into power-

and-resource-constrained sensing devices. We proposed an architecture that

enables a trustless water management system where constrained IoT devices

can directly transact sensed data on a public blockchain network. We imple-

ment the proposed solution on o�-the-shelf hardware devices and quantita-

tively assess the impact in terms of memory, program size, communication

overheads, and power consumption. The encouraging results and the bene-

�ts of public blockchain networks as open and trustless application platforms

further de�ned the proposed architecture.

1.3.3 Exploratory analyses

The iterative process over these two cases generated new knowledge about the

strengths and challenges of blockchain-based IoT applications and fostered

two exploratory studies. These case studies diverged from the main IoT

domain of the thesis; however, they provide novel contributions to blockchain-

based systems.

The �rst exploratory analysis focuses on the performance and cost eval-

uation of a blockchain-based application. Current blockchain-applications

6

CHAPTER 1. INTRODUCTION 1.3. NOVEL ARCHITECTURE

tend to use additional components for compensating the current limitations

of public blockchains (e.g., data storage). We describe a case study where

smart contracts provide all the functionalities needed by the blockchain-based

application. We develop a full-�edged e-marketplace and evaluated several

design decisions in terms of cost and performance. Furthermore, we propose

a �nancial cost model for blockchain-based applications on permissionless

networks.

The second exploratory analysis provides a performance evaluation of de-

centralized storage to complement blockchain-based applications. Currently,

sharing and retrieving data is possible through tools managed by interme-

diaries. We present an architecture based on blockchain to build a system

to share and retrieve data acquired by untrusted sources in a decentralized

way. We analyze a case study on precision agriculture, and we evaluate de-

centralized storage as a possible solution to the current limitations of public

blockchain in terms of data storage.

1.3.4 Innovative aspects

The proposed architecture tackles three main problems of current blockchain-

based IoT systems:

ˆ Constrained sensing devices as direct actors on a blockchain

system. Current blockchain-based IoT systems favor powerful sensing

devices or require additional elements to integrate the sensors. However,

the majority of IoT applications promote less-constrained sensing de-

vices for cost-e�ective and large-scale IoT systems. In our architecture,

constrained sensing devices are direct actors on the blockchain without

relying on another system component.

ˆ Permissionless blockchain networks. Current blockchain-based

IoT systems favor permissioned blockchain implementations. However,

7

1.4. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

the most secure approach to develop blockchain applications is on top of

a permissionless network. The proposed architecture utilizes a permis-

sionless network. On the one hand, a majority of honest peers ensures

the integrity of the sensed data. On the other hand, a majority of hon-

est peers avoid dishonest peers to compromise the integrity of the entire

system [28].

ˆ Smart contracts as an IoT application platform. Currently,

smart contracts are mainly used for �nancial applications or providing

basic functionalities such as asset registers. In the proposed architec-

ture, smart contracts de�ne complex business logic that autonomously

enforces agreements between untrusted actors based on the trusted val-

ues coming from the ubiquitous IoT devices.

1.4 Structure of the thesis

This chapter presented the context of the research, the proposal, and its novel

contributions. The rest of the thesis is organized into three parts as follows.

Part I provides a detailed context of blockchain technology and the Inter-

net of Things. Chapter 2 presents the main concepts of blockchain, working

principles, taxonomy, decentralized consensus, and smart contracts. Chapter

3 reviews the state of the art on blockchain and IoT, including current IoT

architectures, integration schemes for blockchain and IoT, and smart con-

tracts as an interaction platform. The chapter concludes with a gap analysis

on blockchain-based architectures for the IoT.

Part II describes novel blockchain-based decentralized IoT applications.

Chapter 4 presents a novel blockchain-based architecture that considers con-

strained IoT devices. The architecture is conceptualized as a layered-framework

to develop new types of IoT applications and evaluated with two case stud-

8

CHAPTER 1. INTRODUCTION 1.4. STRUCTURE OF THE THESIS

ies in the agricultural domain. Chapter 5 introduces a blockchain-based

IoT system for traceability in agri-food applications. Chapter 6 describes

a blockchain-based IoT system to foster sustainable agriculture practices by

incentivizing virtuous behaviors in water management.

Part III presents exploratory analyses on two challenges identi�ed on novel

blockchain-based applications. Chapter 7 analyses the monetary costs asso-

ciated with blockchain infrastructure to support the application. Chapter 8

evaluates decentralized storage to compensate for the current limitations of

blockchain implementations to store large amounts of data.

Chapter 9 summarize the thesis and discusses possible future works. Fi-

nally, Appendix A lists all abbreviations used in the thesis.

9

Part I: Background on blockchain

technology and IoT

Chapter 2

A primer of blockchain technology

This chapter contains text taken from the published work:

� Ali, M. S., Vecchio, M., Pincheira, M., Dolui, K., Antonelli, F., & Rehmani, M. H. (2018).Appli-
cations of blockchains in the Internet of Things: A comprehensive survey. IEEE Communications
Surveys & Tutorials, 21(2), 1676-1717.

Blockchain technology combines data structures, incentive mechanisms,

and cryptography techniques to maintain a distributed database on a peer-

to-peer network [37, 38, 39]. This database stores the information by using

logical blocks linked to each other, creating a chained data structure. All

the peers (i.e., computers in the network) maintain identical copies of the

database (i.e., the blockchain). New blocks are added to the blockchain

using a decentralized consensus algorithm. The consensus algorithm de�nes

how to validate new blocks and reach a unique global state that is agreed

upon by all the network peers. Blockchain is also called adistributed ledger

as the information stored represents transactions, i.e., interactions occurring

within users of the system [15].

Using blockchain technology, two mutually unknown actors (i.e., users of

the system) can interact without the need for a third-party intermediary.

This trustless environment is enabled by a unique combination of elements

(e.g., incentives, cryptography, peer-to-peer network) inherent to a system

using blockchain technology. Cryptocurrencies are the �rst use case of a

13

2.1. BLOCKCHAIN WORKING PRINCIPLES CHAPTER 2. BLOCKCHAIN

blockchain-based system; however, the technology is increasingly attracting

interest from several other domains and applications [12, 15].

This chapter introduces the working principles and essential concepts re-

quired to understand a blockchain system. First, we describe the di�erent

components (i.e., transactions, blocks, and signatures) and their role in en-

abling decentralized trust. Section 2.2 presents a taxonomy for the di�erent

types of blockchains using two categories: public and private. Section 2.3 de-

scribes the most used decentralized consensus algorithms used for each type

of blockchains to coordinate the peer-to-peer network. In Section 2.4, we in-

troduce the concept of smart contracts as a tool for programming blockchain-

systems. We conclude the chapter by summarizing the inherent salient fea-

tures of blockchain technology.

2.1 Blockchain working principles

A blockchain, as described on Bitcoin [40], is a distributed timestamped data-

structure built on blocks containing details of transactions that have occurred

within the network. Transactions represent the interactions among actors and

hold information regarding value transfer or data exchange. Blocks are data

structures that aggregate transactions and are divided into two parts, .i.e.,

the header and the body [40]. The body stores the transactions. The header

contains several �elds, including a timestamp, an identi�er, and the identi�er

of the previous block. The blocks are linked, creating a chain of blocks (i.e.,

the blockchain), as shown in Figure 2.1. The blockchain is an append-only

data structure. Blocks can not be updated or deleted after adding them to

the blockchain, and the �rst block in the chain is called genesis block.

The block identi�er is the cryptographic hash of its content, creating an

integrity check for the entire block [12]. Linking the blocks helps to preserve

14

CHAPTER 2. BLOCKCHAIN 2.1. BLOCKCHAIN WORKING PRINCIPLES

Figure 2.1: Blockchain data structure.

the integrity of all the information in the blockchain. An attack that alters

the content of a block changes its identi�er, making the block invalid. This

change triggers a domino e�ect, invalidating the following blocks. Therefore,

to successfully modify a single block, the attack must alter all the subsequent

blocks as well. Moreover, the attack must compromise the majority of nodes

in the network for the peers to reach a consensus on this altered blockchain. If

the blockchain network comprises a considerable number of nodes, this attack

is complex to perform and requires a substantial amount of computational

power, making the blockchain practically immutable [28].

The header of the block also contains the Merkle tree root for all the

transactions stored [41]. All transactions have a unique transaction ID that

is the cryptographic hash of the data in the transaction. The transaction

IDs are hashed together in pairs, and a hash tree is built within the block

as seen in Figure 2.2. As part of the consensus algorithm, transactions are

veri�ed each time that a new block is broadcast on the network. The Merkle

tree signi�cantly reduces the time to verify a transaction, as the veri�cation

can be done using the Merkle tree branch containing the transaction. A

tampered transaction would produce altered hashes within its branch and

would be detected with a low computational e�ort.

Veri�ed transactions are grouped in a new block that is broadcast from

one node to the rest of the network, and each peer appends it to the local

copy of the blockchain after validation. Appending a new block implies the

15

2.1. BLOCKCHAIN WORKING PRINCIPLES CHAPTER 2. BLOCKCHAIN

Figure 2.2: Transactions in a Merkle Tree.

agreement of its contents, updating the agreed state of the blockchain system

[15]. Since the blockchain replicates in each peer, the entire system has a

fault-tolerant architecture, i.e., if one peer fails, any other peers can replace

it [37]. Moreover, since all the information is always accessible by any peer,

blockchain is considered fully auditable [12].

Having the blockchain replicated in all the peers provides several bene�ts;

however, it also requires handling some particular scenarios [15]. For in-

stance, when multiple nodes in the blockchain network produce valid blocks

simultaneously, the blockchain can fork. In this case, maintaining a single

accepted state of the blockchain becomes an issue for the system. Typically,

blockchains resolve this issue by considering the longest fork as canon and

discarding the blocks in the other forks [40, 42].

2.1.1 Transactions and digital signatures

Transactions represent the interactions among the actors of a blockchain-

based system. Each actor has a unique address associated with a pair of

cryptographic keys. Actors use the keys (i) to sign their transactions to

16

CHAPTER 2. BLOCKCHAIN 2.1. BLOCKCHAIN WORKING PRINCIPLES

certify their origin and (ii) to validate the integrity and the origin of the

transaction they receive. Thus, all the interactions in blockchain are made

through digitally signed transactions.

In Bitcoin, transactions are signed using the Elliptic Curve Digital Sig-

nature Algorithm ECDSA[43], an asymmetric cryptographic algorithm that

uses a public/private key pair. The public key is shared to all the actor of

the system while the private keys must be kept secret. Signing a transaction

with the private key produces a unique signature composed pair of numbers

(r; s). Anyone in possession of the public key can easily have an unequivocal

con�rmation that the signature was generated by the matching private key,

as shown in Figure 2.3.

Figure 2.3: Public key signature process.

Transactions can be considered as an arbitrary data arrayTx. The �elds

of the array vary with each implementation; however, most of them share

common �elds. Based on [40, 42, 44, 45, 46], a general transaction structure

for Tx can be considered as

Tx = f Theader; Tdestination ; Tdata; Tvalue; Tsignature ; Textra g (2.1)

WhereTheader is the header of the transaction typically including a unique

identi�er. Tdestination is the identi�er of the transaction recipient normally

derived from the public key.Tdata is the information that is exchange between

the interacting parties.Tvalue represent value transfer among the parties (i.e.,

17

2.1. TAXONOMY CHAPTER 2. BLOCKCHAIN

cryptocurrency exchange).Textra represents all the additional information

pertinent to each blockchain implementation. Finally,Tsignature is the digital

signature ofT, represented by(r; s) and is normally appended to the end.

From the signature is possible to obtain the public key of the transaction

sender and thus, the sender identity.

2.2 Taxonomy of blockchain networks

Bitcoin introduced blockchain technology for storing the �nancial transac-

tions of a decentralized payment scheme using a public peer-to-peer network

[40]. After this �rst use case, several new implementations appeared, intro-

ducing modi�cations to the original protocol to provide additional features.

One example are blockchain systems such as Hyperledger [47], Stellar [48],

and Multichain[49] that propose permissioned peer-to-peer networks suit-

able for use cases where a certain level of trust among the peers exists. This

assumption softens some security concerns and increases the overall perfor-

mance of the system (e.g., latency, transaction throughput)[50].

Another example is IOTA [13] that proposes a directed acyclic graph ap-

proach (DAG) instead of a single sequence of blocks to achieve the higher

scalability and data throughput required by some use cases. This proposal

is ledger built and maintained by peers, but without using a blockchain (i.e.,

a sequence of blocks forming a chain) as the underlying data structure. In

the literature, these approaches (i.e., without using a chain of blocks) belong

to the Distributed Ledger Technology DLT class, of which blockchain-based

approaches only represent a subset. For a more formal taxonomy and de-

scription, the interested reader is referred to [11, 18, 51] and the references

therein.

Currently, there is no standard taxonomy for the blockchain-based ap-

proaches of the DLT. For instance, authors in [52], [13] and [33] classify

18

CHAPTER 2. BLOCKCHAIN 2.2. TAXONOMY

blockchain by generations, being Bitcoin the �rst generation. However, there

is not a clear separation between generations or how many generations ex-

ist. In this thesis, we consider the two-type taxonomy agreed by several re-

searchers and practitioners, i.e., public and private blockchain [53, 54, 55, 56].

2.2.1 Public/permissionless blockchains

Public blockchains rely on unknown users willing to operate the network

peers in exchange for incentives paid in cryptocurrencies [56]. The peers

in the public blockchain can choose to validate new blocks or merely issue

transactions. Each transaction has a processing fee that serves as an incentive

to the peers for creating and publishing new blocks onto the blockchain[15].

Since the users operating the nodes are unknown, malicious actions can occur.

To mitigate dishonest behaviors, publishing new blocks typically requires

spending computational resources by solving a cryptographic puzzle [40] or

staking a prede�ned cryptocurrency amount [57]. These requirements aim to

discourage dishonest users from wrongly validating blocks as this malicious

behavior impacts the user resources [29]. Examples of public blockchain are

Bitcoin [40], Ethereum [42], and Litecoin [29], to name a few.

2.2.2 Private/permissioned blockchains

Private blockchain arepermissioned, and the infrastructure supporting this

network is managed by a stakeholder (or a group of stakeholders). The

stakeholders can de�ne di�erent roles and permissions for the users, restrict-

ing their access to the system. Examples of these types of blockchain include

Hyperledger [47], or Multichain [49]. Private blockchains do not require

cryptocurrency to operate, and there are no processing fees included in the

transactions. Blocks are published by authorized nodes, reducing the security

constraints and thus, increasing the performance of the system [50]. How-

19

2.2. DECENTRALIZED CONSENSUS CHAPTER 2. BLOCKCHAIN

ever, a private blockchain is not as tamper-resistant as a public blockchain,

and the organization may choose to roll back the blockchain to any point in

the past. Even if a private blockchain provide auditability and o�ers better

performance (e.g., lower latency, higher transaction throughput) is not en-

tirely decentralized or censorship-resistant as a public blockchain [58].

2.3 Decentralized consensus algorithms

Both types of blockchain systems use consensus algorithms to coordinate the

peers of the network. In any blockchain, a system based on �state machine

replication", consensus protocols ensure all replicas of the shared state are

synchronized and in agreement at any given point in time. Earlier works

on consensus protocols [59] involved cryptography and partial concurrency

[60], and precursor designs and proposals of digital currency [61, 62] were the

building blocks that went into developing decentralized consensus algorithms

used in blockchain networks.

Core principles applied in designing consensus algorithms are safety, live-

ness, and fault tolerance. Safety is the extent to which a system can tolerate

failures, say in an(n; f) fault-tolerant system, wheren is the total number

of processes, the system should be able to tolerate at mostf faults. Safety

is the ability to mitigate corrupted or out-of-order messages so that all non-

faulty nodes reach consensus. The liveness of a fault-tolerant system means

that despite the presence off faults, all correctly participating nodes should

be able to move forward with their distributed processes.

Maintaining fault tolerance in a consensus protocol becomes di�cult when

nodes can fail or start acting dishonestly. This fault is termed the �Byzan-

tine Generals Problem� [63]. In a distributed system running a consensus

protocol, a node can fall under a Byzantine fault as a result of software bugs

20

CHAPTER 2. BLOCKCHAIN 2.3. DECENTRALIZED CONSENSUS

or by being compromised. Byzantine faults occur when a node sends false

messages and misleads the other nodes participating in the consensus proto-

col. Several algorithms are proposed in the literature, as surveyed by authors

in [64]. These algorithms approach Byzantine faults on many types of dis-

tributed systems by making assumptions on di�erent parameters such as the

speci�c use-cases, the network performance, or the type of node failure.

In this chapter, we discuss a few decentralized consensus algorithms rel-

evant to both permissioned and permissionless blockchains. The main goal

of these consensus algorithms is the agreement on which new information is

added to the blockchain. Authors on [65], [58], and [50] contain exhaustive

details on consensus algorithms for both types of blockchain networks.

2.3.1 Consensus on permissionless blockchains

Reaching consensus using votes in a permissionless blockchain is problematic.

Participants can use multiple accounts on the blockchain and launch a Sybil

attack [66] to drive decisions in their favor. Therefore, consensus algorithms

in permissionless blockchain are based on a lottery-based selection of a single

node (i.e., peer in the network) that will add a new block. On a public

blockchain, adding a new block needs to be expensive, so the resources of a

single peer are insu�cient to bias the consensus of the entire network.

Proof of Work (PoW)

The �rst public blockchain consensus protocol was the Proof of Work as de-

scribed by Bitcoin [40]. Any node can add a block to the blockchain by

showing that it has performed a computationally expensive amount of work.

Adding new blocks with PoW is called mining, and miners (i.e., nodes cre-

ating blocks) engage in a race to solve a cryptographic puzzle. The puzzle

consists of �nding a nonce that, when hashed with the hash of a block,

produces a resultant smaller than a prede�ned threshold. The proportional

21

2.3. DECENTRALIZED CONSENSUS CHAPTER 2. BLOCKCHAIN

inverse of this threshold is called thedi�culty level , which is stored in the

block header, and gets adjusted with the increasing number of participants,

to maintain an average block processing time [15, 29]. The calculated nonce

is the proof of the spent resources a miner does. The miner adds the nonce

to the block header and broadcasts the block to the network. All partici-

pating nodes need to verify the block published by the miner. Subsequently,

the miner claims the processing fees associated with the transactions stored

within the block as a reward for mining [40]. In PoW consensus, the compu-

tationally expensive block creation and transaction fees secure the network

against DDos attacks and false block creation [40, 29].

PoW also de�nes how to handle the case of two nodes publishing a block

almost concurrently [62]. Consider the case where after a blockn, a node

in Australia mines a valid block(n + 1) , and at the same time, a node in

Sweden mines another valid block(n + 1) 0. This event creates a temporary

fork, i.e., two groups of peers having a di�erent version of the blockchain.

After the blockn, one fork has the block(n + 1) and the other has the block

(n + 1) 0. Moreover, both forks continue adding blocks to their version of the

blockchain. In this case, the consensus algorithm de�nes that the fork with

the most work committed to it (i.e., more blocks) is hence canon, and the

other fork is orphaned [40, 46].

PoW consensus is vulnerable when an attacker takes control of 51% of

the processing power of the network [67][68]. Therefore, PoW provides fault

tolerance as long as the total computational power isn � 2f +1 wheref is the

computational power occupied by a single malicious user [29]. To overcome

this type of attack, and considering the append-only nature of blockchain,

Pow blockchain such as Bitcoin and Ethereum introduced the concept of

delayed �nality for a block. Before the �nality, the blockchain can be rolled

back to a previous block in the event of a 51% attack. After reaching �nality,

a block is irreversible. Ethereum and Bitcoin consider a block �nalized after

22

CHAPTER 2. BLOCKCHAIN 2.3. DECENTRALIZED CONSENSUS

six con�rmations, i.e., after six new blocks are added [29].

Proof of Stake (PoS)

The Proof of Stake algorithm aims at reducing the ever-increasing electricity

consumption of mining in PoW blockchain networks [69]. PoS aims to stake

peers' economic share in the network [70]. Here, the term miner is replaced

with validators, and similar to the PoW, one of the validators is chosen to

publish (i.e., add) a new block onto the blockchain. The di�erence lies in

how the validator is chosen. In PoS, a validator is selected in a pseudo-

random fashion, with the probability of being selected proportional to the

validator's share in the network [71] [72]. NaivePoSconsensus mechanisms

are prone to attacks like the �nothing at stake� attack and require further

considerations to be consensus-safe [73]. Block �nality is faster compared

to PoW blockchains since there is no computational puzzle solving involved

in choosing the validator. Ethereum's Casper [57] is currently one of the

most advanced implementations of the PoS and punishes malicious nodes by

subtracting their funds in case of dishonest behavior.

Proof of X

Other alternative consensus algorithms for public blockchain are classi�ed as

�Proof of X�. In [50], the author presents an exhaustive study of these algo-

rithms. However, most of these algorithms are suited for private blockchains,

and those proposed for public scenarios, lack the maturity of PoW and PoS.

For instance,Proof of activity (PoA) [74] was proposed as an alternative to

Bitcoin mining and combines aspects of the PoW and PoS. Computational

puzzle-solving in PoA only involves �nding a nonce against the block header

without considering the transactions in the block. A random group of valida-

tors is chosen to vote the validity of the mined block header. Similar to PoS,

the probability of the validators being chosen is proportional to their share

23

2.3. DECENTRALIZED CONSENSUS CHAPTER 2. BLOCKCHAIN

in the network. Transaction fees are split between the miner and validators.

Concerns towards PoA include the high computational power requirements

and the fact that a naive implementation can be prone to nothing at stake

attacks [1]

2.3.2 Consensus on permissioned blockchains

In permissioned blockchain deployments, only a limited number of known

participants have a copy of the entire blockchain [75]. Maintaining consen-

sus, therefore, is straightforward and does not require costly proofs for pub-

lishing a new block. Since participants are known, there is no risk of a Sybil

attack, therefore voting mechanisms are used to achieve consensus. Hence

permissioned blockchains have a much higher performance than permission-

less blockchains in terms of latency, transaction throughput, and power con-

sumption [1, 50].

Practical Byzantine Fault Tolerance (PBFT)

The Practical Byzantine Fault Tolerance (PBFT) algorithm [76] involves

multiple rounds of voting by all nodes of the network to commit a state change

(i.e., add a new block). The PBFTalgorithm includes an optimized encrypted

message exchange for making global voting more practical. This algorithm

requiresn � 3f +1 nodes to toleratef failing nodes. In PBFTconsensus, one

node is chosen to be the leader, who assembles a set of ordered transactions

into a block. The validating peers in the network calculate a hash of the block

and broadcast it. Validating peers observe the hashes they receive from the

rest of the network, which can be seen as votes over multiple rounds. If 2/3

votes are in favor of the candidate block, the peers add it to their copy of

the blockchain. PBFTconsensus provides high throughput and low latency

in validating transactions. However, the overhead incurred by broadcasting

blocks and votes in PBFTconsensus set a maximun of tens of validators.

24

CHAPTER 2. BLOCKCHAIN 2.3. DECENTRALIZED CONSENSUS

Hyperledger Fabric uses a variation of PBFTcalled Sieve [77], designed to

perform consensus while executing a non-deterministic chaincode.

Tendermint

Tendermint [45] is a Byzantine Fault Tolerant consensus algorithm, that, sim-

ilarly to PBFT, provides ann � 3f +1 fault tolerance. Tendermint usesPoSin

combination with principles of PBFTto provide security, high throughput,

and low block processing times of about 1-3 seconds. Tendermint uses the

lottery-based properties ofPoSto select the leader node with probability pro-

portional to the node share in the network. Tendermint performs multiple

rounds of voting to reach a consensus on a new block and requires a superma-

jority or 2/3 of its validators to maintain 100% uptime. If more than 1/3 go

o�ine, the network may stop progressing and lose liveness. Assuming that

less than a third of all validators are faulty, Tendermint provides a safety

guarantee that no con�icting blocks are created and no forks appear in the

blockchain. Transaction �nality in Tendermint is approximately 1 second,

and the protocol is compatible with public and private chains. However, it

has a lower level of scalability than PoW orPoS[13].

Federated BFT (FBFT)

Blockchain implementations in Ripple [44] and Stellar [48] extended the tra-

ditional Byzantine Fault Tolerance to scenarios involving a consortium of

nodes (i.e., subnetworks). Ripple consensus begins with a unique node list

(UNL) of active validator in the network. Each node has a UNL with 100+

nodes in it. Each nodes UNL has to overlap by at least 40% with the UNLs

of other nodes. Ripple carries out multiple rounds of voting, where nodes as-

semble transactions into candidate blocks and broadcast them to the nodes

in their UNL. Nodes then broadcast votes on each candidate block. Each

round of voting helps nodes re�ne their candidate block, and a new block

25

2.3. DECENTRALIZED CONSENSUS CHAPTER 2. BLOCKCHAIN

is added to the ledger once it receives a supermajority vote of 80%. Even

though Ripple carries out multiple rounds of votes, it provides a fault toler-

ance ofn � 5f + 1 [44]. The consensus in the entire network is based on

consensus within subnetworks, so Ripple allows open-ended participation of

users, market entities, and gateways to other subnetworks [44].

Stellar introduces the idea of quorums in blockchain networks, where a

quorum is a set of nodes used to reach consensus. A node in such a network

can be part of multiple quorum slices, where each quorum slice securely

reaches consensus through voting. Since the quorums and quorum slices are

allowed to intersect, Stellar allows open participation of nodes in di�erent

subnetworks within the main Stellar network. Stellar opts for safety over

liveness, with malicious behavior, the blockchain does not progress till the

malicious behavior is resolved. Stellar provides �exible trust and low la-

tency since it is computationally inexpensive, and quorums contain a limited

number of nodes that share vote messages [48].

Proof of Elapsed Time (PoET)

Among the Proof of X protocols for permissionless networks, one example

is Proof of Ellapsed Time by Hyperledger Sawtooth [78]. PoET runs in a

Trusted Execution Environment (TEE), such as Intel Software Guard Ex-

tensions (SGX) [79]. A trusted voting model built on SGX helps electing

a validator for publishing a new block. PoET is lottery-based without ex-

pensive computational puzzle solving or monetary stake. Nodes in the PoET

network request a wait time from a trusted function within the SGX. The val-

idator with the shortest wait time is selected as the leader. Another trusted

function attests if the validator waited an allotted amount of time before pub-

lishing a new block. Even if the algorithm meets the prerequisites of a viable

lottery-based consensus algorithm, its limitation is in the use of specialized

hardware.

26

CHAPTER 2. BLOCKCHAIN 2.3. DECENTRALIZED CONSENSUS

2.3.3 Comparison of permissionless and permissioned consensus

algorithms

Table 2.1 summarizes the di�erences and similarities between public and pri-

vate blockchain, including the consensus algorithms and examples for each

blockchain type. The decision of the blockchain type depends on the require-

ments (e.g., permissions and performance) of each use-case.

Permissionless blockchains are open systems designed to accommodate

several unknown and widely disperse actors[28]. However, permissionless

blockchain must have slow block creation speeds, taking into account the

propagation speeds of nodes within the network. Permissionless blockchain

work with unknown users, which requires additional security measurements

to prevent abuses and guarantee the integrity of the information[15]. These

measurements increase the system latency, providing a limited throughput

in terms of transactions per second. At the time of writing, Bitcoin process

around �ve transactions per second, while Ethereum process close to 20 per

second [29].

Permissioned blockchains have much lower latency but su�er from a severe

scalability issue. The networking overhead incurred from voting mechanisms

limits permissioned blockchains to scale to only hundreds of nodes[50], as

shown in Figure 2.4. Despite the decentralized architecture, permissioned

blockchains are not entirely decentralized in terms of administration as peers

have di�erent levels of permissions [13].

For early adopters of this new technology, private blockchains present a

harmless transition from traditional centralized systems [13]. Access con-

trol and higher throughput enable cross-organization business processes [52],

which has proven bene�cial on domains such as Manufacturing [23], Smart

Homes[80], and Communications[20], to name a few.

However, an increasing number of blockchain-based systems are thriving

27

2.4. SMART CONTRACTS CHAPTER 2. BLOCKCHAIN

Figure 2.4: Performance and scalablity of di�erent consensus (adapted from [1]).

from permissionless networks. Applications in Energy Trading [81], Utilities

management [82, 83], Land ownership [84] [85], Remote Sensing [84] are a

few examples embracing the unique bene�ts o�ered by public blockchain

networks and the possibility to securely interact with unknown actors.

2.4 Smart contracts

Smart contracts are scripts stored in the blockchain, roughly similar to stored

procedures in a database [12]. Bitcoin o�ers limited scripting capabilities

through a restricted set of instructions that allow, for example, multi-signature

transactions and escrow agreements [15]. To overcome the scripting limita-

tion, Ethereum [42] extended Bitcoin to include a Turing-Complete program-

ming language, allowing the development of more complex software applica-

tions called smart contracts [46]. The term �smart contract� was coined by N.

Szabo with the objective of�securing relationships on public network�[86].

In blockchain networks, smart contracts perform the function of carrying out

28

CHAPTER 2. BLOCKCHAIN 2.4. SMART CONTRACTS

Table 2.1: Comparison of public and private blockchains.

Public Blockchain Private Blockchain

Participation in Consensus All nodes Selected Nodes

Access Public read/write Can be restricted

Identity Pseudo-anonymous Approved participants

Immutability Yes Partial

Transaction Processing Speed Slow Fast

Permissionless Yes No

Consensus Algorithms PoW [29], PoS [57]
PBFT [77], FBFT [48] [77]

Tendermint [45]

PoET [78]

Implementations
Bitcoin[40], Ethereum[46]

Litecoin [29]

Hyperledger Fabric[77],

Hyperledger Sawtooth [78]

Stellar [48]

Multichain [49]

transactions in a predetermined fashion agreed by interacting actors.

A smart contract is a distributed software stored in the blockchain that

implements functions callable by any actor using transactions. Once on the

blockchain, the code in the smart-contract is immutable [13]. Every time a

smart contract is called, the software runs deterministically in all the peers

at the same time. The exact execution output enforces the agreement among

actors without the need for any third-party validator. The trust in the valid

execution of the code arises from the trust in the underlying blockchain

system[52].

Smart contracts have an internal state composed of storage and a bal-

ance. The storage is a private data repository, and the balance allows the

smart contract to generate transactions [12]. Smart contracts can process in-

formation from the blockchain, create new transactions, and make decisions

on behalf of their creators [87]. Moreover, smart contracts can instantiate

and invoke other smart contracts [52]. Thus, smart contracts can be seen as

29

2.4. SALIENT FEATURES CHAPTER 2. BLOCKCHAIN

�autonomous agents" as they have their own identity and are considered an

actor on the blockchain system [88].

While Bitcoin is considered the reference implementation for the blockchain

protocol, the reference for smart contracts is Ethereum [89]. Permission-

less blockchains have taken Ethereum as the model for implementing smart

contract functionalities or provide direct compatibility with Ethereum smart

contracts [47]. Thus, smart contracts provide a general-purpose programmable

infrastructure [33] to implement di�erent types of processes [52] and create

new types of decentralized applications.

2.5 Salient features of blockchain technology

Blockchain provides a decentralized, trustless environment where mutually

untrusted actors can interact without a validating intermediary [13]. Appli-

cations that previously required a trusted intermediary can now work in a

decentralized manner [12]. Blockchain enables this secure environment by a

unique combination of inherent properties and working principles. Accord-

ing to current literature, the following are the most important features of

blockchain technology enabling decentralized trust.

Transparency On a public blockchain, there are no restrictions to access

the system, and all transactions are visible to any system actors, creating a

real transparent environment. [25, 55, 90, 28, 12].

Auditability Any actor can download a copy of the blockchain, making

the information available for everyone to query, verify, and audit. The use

of digital signatures adds non-reputability to this public veri�cation of the

blockchain. [37, 32, 12, 25, 55].

Immutability Once a transaction reaches �nality, it becomes immutable.

Transactions can not be modi�ed or deleted without a substantial amount of

computing. [13, 91, 25, 90, 37].

30

CHAPTER 2. BLOCKCHAIN 2.5. SALIENT FEATURES

Integrity The cryptographic hashes of blocks and transactions combined

with asymmetric cryptography protect from unauthorized changes on the

information. [13, 91, 25, 90, 33, 37].

Openness On the one hand, blockchain implementations typically open-

source. On the other hand, public blockchains are open to any user to join

the system. [90, 13, 12, 87].

Scalability Distributed systems can dynamically adjust their resources.

Moreover, they remove the bottleneck imposed by the presence of centralized

services. [23, 90, 87, 13, 12].

Neutrality New information added to the blockchain is agreed upon by

the peers via decentralized consensus making the system censorship-resistant.

On a public blockchain, all peers have the same rights, creating a system

based on distributed power. [87, 12, 37, 33].

Fault-tolerance The decentralized nature of blockchain eliminates the

existence of a single point of failure in the architecture. All blockchain peers

contain identical replicas of the ledger records, adding inherent redundancy.

[12, 37, 55, 13].

Figure 2.5: Main features of blockchain technology.

31

2.5. SALIENT FEATURES CHAPTER 2. BLOCKCHAIN

These features interconnect, as shown in Figure 2.5, to enable decen-

tralized trust among unknown actors. Moreover, smart contracts provide a

platform to develop new types of decentralized applications. Cryptocurren-

cies are the �rst application of the record-keeping and trustless environment

of blockchains. Despite the current limitations (e.g., latency, transaction

throughput), the technology holds the potential to support other types of

applications that required secure interactions between unknown actors.

32

Chapter 3

State of the Art in integrating

blockchain and IoT

This chapter contains text taken from the published work:

� Pincheira, M., Vecchio, M., Gia�reda, R., & Kanhere, S. S. (2021).Cost-e�ective IoT devices as
trustworthy data sources for a blockchain-based water management system in precision agriculture.
Computers and Electronics in Agriculture, 180, 105889.

� Ali, M. S., Vecchio, M., Pincheira, M., Dolui, K., Antonelli, F., & Rehmani, M. H. (2018).Appli-
cations of blockchains in the Internet of Things: A comprehensive survey. IEEE Communications
Surveys & Tutorials, 21(2), 1676-1717.

The Internet of Things (IoT) is a concept that describes an interconnected

system where billions of everyday objects act as sensing devices creating ubiq-

uitous applications [7]. The main objective of IoT is to connect a heteroge-

neous group of devices. These devices sense, collect, analyze, and store large

amounts of data to improve the awareness of the physical environment [6].

IoT is a disruptive technology solving an increasing number of present-day

issues in domains such as Smart Cities, Agriculture, Health, and Industry,

to name a few [7].

IoT systems are based on computationally-constrained devices capable

of sensing the surrounding environment and interact with several other IoT

devices creating complex systems [4]. Currently, IoT systems are based on

centralized architectures, where an intermediary enables the trust for the

33

CHAPTER 3. STATE OF THE ART

device interactions. Centralized architectures simplify the design and the de-

ployment of IoT systems; however, they also introduce challenges and risks

regarding security and privacy [92]. Furthermore, an architecture that re-

quires an intermediary for trusted interactions between devices will not scale

at the same exponential growth of IoT applications [13].

In recent years there has been growing interest in blockchain as a possible

solution to address these concerns. As described in Section 2.5, blockchain

provides a trustless environment enabling interactions between mutually un-

trusted actors without a validating intermediary. Current literature proposes

di�erent integration schemes for blockchain and IoT. These schemes de�ne

distinct roles for the various types of IoT devices according to their capabil-

ities. However, far too little attention has been paid to how blockchain is

integrated with the core of IoT systems, i.e., the constrained sensing devices.

In this chapter, we present the state-of-the-art regarding the integration

of blockchain technology in the Internet of Things domain. First, we de-

scribe modern IoT architectures using a component-oriented approach and

a service-oriented approach. We identify the requirements and current chal-

lenges of the IoT systems and highlight the bene�ts that blockchain o�ers

to tackle these challenges. Section 3.2 reviews the most relevant blockchain

and IoT integration schemes found in current literature. The schemes are

classi�ed into three categories, considering the architecture of IoT systems.

The chapter concludes with a gap analysis for the integration of blockchain

and IoT, focusing on the constrained sensing devices as direct actors in a

blockchain system. This gap presents the motivation and requirements for

the integration framework proposed in this thesis.

34

CHAPTER 3. STATE OF THE ART 3.1. IOT LAYERED ARCHITECTURES

3.1 IoT layered architectures

Modern IoT systems consist of several components, each of them with unique

constraints and capabilities [4]. These components can be organized using a

layered-architecture working as a reference for IoT systems. Since the coinage

of the term�Internet of Things� in 1999, the reference architecture has gone

through several designs that include up to 7 di�erent layers, as proposed by

Cisco Systems Inc1.

The architecture de�nes each layer and the components within and there

are several ways to approach an architectural design [9]. Typically, IoT

architectures follow a component-oriented approach, a service-oriented ap-

proach, or a mixture of both. A component-oriented approach focuses on the

devices, their requirements, and constraints from a functional perspective

[6]. A service-oriented approach focus on the expected functionalities and

requirements from an application perspective [2].

Following a component-oriented approach, the trend of the literature is a

3-layer architecture [6, 19, 93, 9] , as shown in Figure 3.1. The pyramidal

shape represents the scale (i.e., number of devices) of each of the layers, and

the typical data �ow starts at the bottom layer and moves through the top.

On the bottom, theDevice Layer is the core of IoT systems, comprising

the sensing devices that acquire data from the physical world. These devices

are small and cost-e�ective [7, 3], favoring low-power energy consumption

modes against capabilities such as processing, storage, or connectivity [5, 3].

The Device Layer is also called the perception layer or physically layer [6,

5]. In the middle, theEdge Layer provides connectivity and additional

computational power to the sensing devices. This layer is sometimes also

referred to as gateway layer or network layer [6]) and includes less-constrained

devices in terms of computing capabilities and communications.

1https://www.cisco.com/

35

3.1. IOT ARCHITECTURES CHAPTER 3. STATE OF THE ART

At the top of the architecture, theCloud Layer represents powerful

servers responsible for processing and storing the data [6]. IoT applications

are typically hosted at this layer, giving the users an entry point to the entire

IoT system.

Figure 3.1 shows the estimated scale of each layer (i.e., number of devices).

Following this architecture, the typical data �ow starts at the Device Layer

sensing environmental parameters. The sensed-data is sent Edge Layer that

provides the connectivity required to reach the Cloud Layer. Once the sensed-

data reaches the top layer, it is processed and stored as required by the IoT

application.

Figure 3.1: Component-Oriented Architecture for modern IoT systems.

In recent years, the Service-Oriented Architecture (SoA) [94] approach

is attracting considerable interest as an alternative to describe IoT systems

[6, 4]. The di�erent components of IoT systems work together as networked

devices, presenting the IoT applications as services on service-oriented archi-

tecture [2]. As surveyed on [2], the principal focus for SoA in IoT is security

[95, 2] and the architecture is usually arranged into three layers as shown in

Figure 3.2.

36

CHAPTER 3. STATE OF THE ART 3.1. IOT ARCHITECTURES

Figure 3.2: Service-Oriented Architecture for IoT systems (extracted from [2])

On the SoA architecture, thePhysical Layer groups bothDevice Layer

and Edge Layerof the previous component-oriented architecture. From a

SoA perspective, both components are responsible for interconnecting physi-

cal sensing entities to internet services. One of the key elements that support

the entire architecture is a unique device identi�er [2], as shown in Figure 3.2.

TheNetwork Layer supports the Internet as the communication channel for

connecting the sensing devices, following a network-oriented approach. The

objective of this layer is to enable information sharing between IoT devices

and traditional IT systems. At the top, theService Layer drives towards

the seamless interoperation between IoT and Internet services [2], following

a semantic-oriented approach. At this layer, the identi�cation of traditional

application requirements semantically de�nes an IoT service. Among the re-

quirements, one key element is that the IoT service needs to be accessible by

standard interfaces to support the demands from users and applications [2].

37

3.1. IOT ARCHITECTURES CHAPTER 3. STATE OF THE ART

To summarize, both architectures aim to describe the diverse elements

composing modern IoT systems, their capabilities, and their functionalities

with di�erent levels of abstractions. The �rst approach, as shown in Figure

3.1, is component-oriented. The approach focuses on describing the capabil-

ities and constraints of the devices. The second approach is service-oriented,

as shown in Figure 3.2. This approach focuses on describing the functional-

ities and expected behaviors of each IoT component. Thus, both architec-

tures provide di�erent details to describe the complexities behind modern

IoT systems and should be considered on an blockchain and IoT integration

framework.

3.1.1 Requirements of IoT systems

The requirements of IoT systems vary considerably within domains and use

cases (i.e., IoT applications). For instance, applications in Industrial envi-

ronments [4] favor high connectivity with near real-time response. These

requirements demand IoT devices (at the device layer) with a high compu-

tational capacity and fast network communications, increasing the energy

requirements. Additionally, these environments impose higher restrictions in

terms of access control and permissions at the cloud layer.

Another example is smart-cities[3], where one of the main requirements is

mobility. Sensing devices should be smaller and portable and demand con-

stant connectivity even while changing their location. Applications will favor

low-power consumption devices to achieve more lasting energy autonomy,

lowering communications and processing speeds. Additionally, to compen-

sate for periods without network access, sensing devices favor storage and

memory versus processing power. Similarly, Health Care [96] also values mo-

bility and pervasiveness of the IoT devices but introduces additional security

and privacy requirements. These requirements demand strict security and

privacy policies that need to be de�ned and guaranteed in all architecture

38

CHAPTER 3. STATE OF THE ART 3.1. IOT ARCHITECTURES

layers.

Finally, Agriculture is one of the most restricting IoT domains. Precision

agriculture applications require power e�ciency and low-cost devices to guar-

antee large-scale, cost-e�ective, and long-term installations [21]. Moreover,

agriculture applications in this domain require energy-e�cient communica-

tion networks [97], favoring coverage over speed.

A complete analysis of all possible application requirements is beyond

the scope of this thesis. We focused our research on a subset of system

requirements with a higher impact on the sensing devices. Based on the

surveyed literature, we de�ne the following as a list of traditional constraints

that need to be addressed in IoT systems.

ˆ Connectivity : Communications are the key to the complex intercon-

nections inside of IoT systems. Connectivity requirements (i.e., latency,

bandwidth, coverage, and mobility) directly de�ne each component of

the entire IoT system. For instance, the cloud layer is typically based

on IP Internet access, while the device layer might use RF commu-

nications. This scenario forces the edge layer to implement di�erent

protocols to provide the expected connectivity. Moreover, communica-

tions are typically one of the most power-consuming tasks of the IoT

device work-cycle. [5, 6, 3, 98, 7, 99, 100]

ˆ Computing : The computing power (i.e., processing, memory, and

available storage) is a de�ning requirement for the entire architecture.

Sensing devices are typically resource-constrained to reduce size and

cost, and microcontrollers provide the most suitable platform. If sens-

ing devices are resource-constrained, the edge layer needs to compensate

for the missing computing, storage, or communication capabilities, fa-

voring system-on-a-chip hardware (SoC). The computing requirements

also determine the services required from the provider at the cloud layer.

39

3.1. IOT ARCHITECTURES CHAPTER 3. STATE OF THE ART

[5, 4, 7, 99, 101]

ˆ Energy : This constraint re�ects energy requirements such as the en-

ergy source (e.g., battery, solar-powered, energy-harvesting) and the

autonomy (e.g., days, months, years), particularly at the device and

edge layers. Di�erent communication protocols will have varying en-

ergy requirements where typically faster speeds require additional en-

ergy. The same applies to computing requirements as processing power

increases energy consumption. However, energy is also a restriction

directly imposed by the IoT application. For instance, Smart Cities ap-

plications will require mobile battery-powered devices, while Industrial

applications might provide continuous energy sources for static devices.

[5, 98, 4, 7, 3, 99]

ˆ Scale: This requirement re�ects the size of the IoT system in terms

of users and devices. IoT systems usually employ a massive number of

sensing devices to achieve the pervasiveness required by IoT applica-

tions. On the one hand, reductions in hardware costs foster the number

of devices at the lower layers. On the other hand, the broad adoption

of IoT translates into use cases (e.g., Smart Cities) involving thousands

of users at the application layer. [101, 4, 6, 7, 5]

ˆ Costs : Cost becomes a constraint when selecting the sensing devices

which are the core of the IoT system. A sensing device with high

computing power, fast connectivity, and extended energy autonomy is

achievable but with a high monetary cost. Large-scale deployments (i.e.,

with a large number of devices), as applications in smart cities or agri-

culture, demand cost-e�ective devices for achieving economic feasibility.

[101, 3, 7, 6, 5]

This list of requirements, while not exhaustive, provides a general overview

of the typical constraints that IoT systems need to take into consideration.

40

CHAPTER 3. STATE OF THE ART 3.1. IOT ARCHITECTURES

Therefore, a framework that integrates blockchain into the IoT must address

these requirements in all architectural layers.

3.1.2 Challenges in centralized IoT architectures

Centralized cloud-architectures are the predominant scheme for building IoT

platforms [13]. In these architectures, a central server manages several tasks

such as data handling, device coordination, and actors authorization [9]. Cen-

tralized services have contributed to the exponential growth of IoT; however,

they have introduced several concerns regarding trust and data transparency

[28]. Centralized cloud services act as a black box for IoT services and IoT

users do not have control and total con�dence in how the data they share will

be used [13]. Moreover, these centralized servers are intermediaries present

in all interactions of the actors in the system [12]. Based on the surveyed

literature, the following are some of the main challenges currently a�ecting

centralized IoT architectures.

ˆ Security The diverse types of interconnected IoT devices provide sev-

eral attack surfaces that are di�cult to immunize against security threats.

The entire IoT system exposed many entry-points to traditional IT at-

tacks such as phishing, password security, message spoo�ng/alteration,

tra�c analysis, distributed denial of Service, Sybil attack, and eaves-

dropping, among many others[6]. The edge layer is another entry point

to the system with inherent threats and risks. An attack on one gateway

compromises the entire device layer, and thus, the trustworthiness of the

sensed data of several IoT devices [13]. Finally, IoT devices are com-

monly isolated hardware solutions that, depending on their deployment

conditions, are subject to tampering in ways that may be unpredictable

by manufacturers. These attacks can alter how devices measure the

physical world or how they share the data. Moreover, very few systems

41

3.1. IOT ARCHITECTURES CHAPTER 3. STATE OF THE ART

securely handle the device identity, enabling attacks such as node cap-

ture, malicious code injection, false data injection, and message replay,

to name a few[6]. [6, 5, 4, 7, 101, 13, 100, 98]

ˆ Availability The IoT represents a proliferation of always-available smart

devices that continuously collect data from the environment [7]. This

high availability may not always be the case in architectures involv-

ing centralized servers [100]. An attack on the centralized provider can

compromise the entire application, a�ecting hundreds of users and thou-

sands of devices [99]. Moreover, since cloud services are multitenant by

nature, an attack on a single provider can directly reach several IoT

applications, increasing the impact of such an attack. [101, 6, 4, 7, 99]

ˆ Data Managemenet The data generated by IoT devices may o�er

detailed information about the context where the device exists [102]. In

many domains (e.g., Health Care, Smart Home), the data collected by

the IoT devices describe sensitive personal information about individuals

[4]. In the current IoT service provision, users surrender their data to

centralized service providers acting as isolated silos. On the one hand,

the provider might collect this information without any explicit user

consent [100]. On the other hand, this information can be later disclosed

to third parties, withholding users of control on which data and to whom

their data is given access [102]. Additionally, users lack the tools for

verifying the integrity of the data in the IoT system, starting at the

device and �nishing at the application. [7, 102, 6, 4, 100]

ˆ Potential Growth IoT systems are typically composed of numerous

sensing devices to create ubiquitous systems. The volume of data gen-

erated by these sensing devices can be enormous and di�cult to manage

for elaboration, transmission, and storage[4]. IoT systems must scale to

e�ciently handle this massive growing volume of data[103]. However,

42

CHAPTER 3. STATE OF THE ART 3.1. IOT ARCHITECTURES

the presence of a central service-provider can create a bottleneck limiting

the performance of the entire systems[13]. [98, 5, 103, 4, 7]

ˆ Interoperability On the one hand, IoT systems interconnect several

types of devices with a plethora of hardware architectures. This het-

erogeneous system requires the connections between various types of

networks using multiple communications technologies[4]. On the other

hand, the IoT is full of standards supported by multi-national gover-

nance bodies, alliances, or organizations [104]. These standards cover

di�erent aspects of IoT, from communication technologies to architec-

tures [101]. The uncontrolled proliferation of standards only leads to

fragmentation and becomes a real barrier for the IoT adoption in multi-

ple application domains [104]. IoT systems should avoid isolated systems

based on proprietary solutions and enable data sharing and interoper-

ability among these closes subsystems[7]. [5, 101, 4, 104, 3]

These challenges provide a general overview of the problems that IoT

systems are currently facing. Centralized cloud-architectures fostered the

development of the IoT domain. However, the centralized model is also

responsible for several of the reviewed challenges. Therefore, a decentralized

paradigm might be the key to develop new types of decentralized IoT systems.

3.1.3 Decentralization of IoT through blockchain technology

The salient features of blockchain, described in Section 2.5, can help to over-

come several concerns of centralized IoT architectures. Thus, blockchain

technology is an attractive solution for developing a secure decentralized

architecture for IoT systems [12]. The �trustless environment" enabled by

blockchain removes the need for trusted centralized entities to handle device

43

3.1. INTEGRATION SCHEMES CHAPTER 3. STATE OF THE ART

interactions [87]. Moreover, a decentralized system can scale better to �t the

exponential growth of IoT systems [13].

Security on decentralized IoT systems bene�ts directly from several of

the intrinsic features of blockchain [23]. For instance, the cost of creating

transactions (either monetary or computational) protect the network against

�ooding and DDoS attacks. The use of cryptography can prevent and miti-

gate false data injection or node capture attacks [13].

Blockchain-based IoT systems can soften concerns regarding data man-

agement by the inherent properties of auditability and transparency [90].

Regarding data corruption, data integrity is one of the core properties of the

blockchain [25]. Moreover, blockchain networks store redundant replicas of

records over blockchain peers preventing data loss.

IoT systems require high availability, which may not always be the case in

architectures involving centralized servers. Blockchains are Byzantine fault-

tolerant record-keeping mechanisms that can identify failures through dis-

tributed consensus protocols [55].

Finally, blockchain is a big step towards interoperability [23]. On the one

hand, blockchain technology work over heterogeneous hardware platforms,

eliminating the dependency on a particular provider. On the other hand,

smart contracts provide a semantics-independent platform to develop pub-

licly available system interfaces [12].

3.2 Integration schemes for blockchain and IoT

Blockchain is in the early stages of research and development, and there

are still multiple research challenges towards seamlessly integrating IoT and

blockchains [12]. Among these challenges, one critical problem is to de�ne

the roles for each device in a blockchain-based IoT system [13].

The possible role of an actor in a blockchain system depends on the

44

CHAPTER 3. STATE OF THE ART 3.2. INTEGRATION SCHEMES

blockchain implementation. Private blockchains can de�ne di�erent permis-

sion levels that translate into several roles[47, 78]. On the other hand, public

blockchains typically provide a reduced number of roles [42]. However, for

both types of blockchains three major roles are generally accepted, i.e., full

node, light node, and transaction issuer [40, 42, 13].

Full nodes hold the complete copy of the blockchain, issue transactions,

validate transactions, and may add new blocks by participating in the con-

sensus algorithms [40, 42]. Light nodes hold a reduced copy of the blockchain,

issue and validate transactions, but cannot add new blocks. Light nodes are

used as an entry point to the blockchain, using limited computational re-

sources [46]. A Transaction Issuer, also called a blockchain client, does not

have a copy of the blockchain and neither has the capabilities to create a new

block. However, it holds the cryptographic capabilities to create and send

transactions to the blockchain through light or full nodes [13]. These nodes

can be in the same local network as the transaction-issuer, or in the case of

the Ethereum platform, a third-party service like Infura2 and Metamask3.

The former is a more suitable choice since using third-party services nulli�es

the point of decentralization. Table 3.1 summarizes the general roles in a

blockchain system.

Table 3.1: Node types in blockchain networks

Node Type Storage Validator

Full Node Full Blockchain Yes

Light Node Block headers No

Transaction Issuer None No

Based on their capabilities, devices at the cloud layer can assume any role

in the blockchain system and even participate in the consensus algorithms [6,
2www.infura.io
3www.metamask.io

45

3.2. INTEGRATION SCHEMES CHAPTER 3. STATE OF THE ART

13]. Devices at the edge can usually take any role, but they rarely participate

in the consensus. In this case, other full nodes in the blockchain network can

carry out decentralized consensus and block validation [13]. However, sensing

devices typically have limited capabilities, restricting their possible roles in

the blockchain-based system. Thus, integration architectures are essential to

describe blockchain-based IoT systems [13].

While an increasing number of works are integrating blockchain into IoT

systems, few of them provide a direct role for most constrained devices. If

sensing devices are not direct actors on the blockchain, they do not have a

blockchain identity [32]. From the surveyed literature, we have categorized

the proposed architectures into three integration levels: at the cloud, at the

edge, and the device. The layer at which blockchain is integrated re�ects

where the blockchain identity of the IoT device is managed.

Figure 3.3: Blockchain integration for IoT systems

46

CHAPTER 3. STATE OF THE ART 3.2. INTEGRATION SCHEMES

3.2.1 Cloud-level integration

This approach preserves the traditional IoT architecture and the blockchain

act as an additional element in the system. Cloud-level integration is pro-

moted by an increasing number of cloud service-providers o�ering Blockchain-

as-a-Service (BaaS). In BaaS, users access a blockchain node or blockchain-

related services for a �xed monthly price [105, 106]. This integration scheme

o�ers the bene�ts of high computational power, but it fails to achieve full

decentralization. Thus, cloud-level integration might be suitable for a per-

missioned blockchain-based system.

3.2.2 Edge-level integration

IoT devices at the Edge Layer (e.g, a gateway) acts as a transaction issuer,

but it can also serve as a Light Node or Full Node according to the de-

vice capabilities. Devices from the sensing Layer register with the gateway

device, and the gateway issues transactions to the blockchain. The degree

of decentralization achieved through this approach is not as �ne-grained as

device-level integration. This integration scheme is currently the most com-

mon approach for blockchain-based IoT systems. In the following paragraphs,

we discuss relevant edge-level integrations architectures found in current lit-

erature.

One of the �rst architectures integrating blockchain and IoT is presented

by authors in [23] for a Cloud-Based manufacturing platform. Figure 3.4a

shows the system architecture based on a gateway device called BPIIoT.

The device allows connecting existing Industrial Machinery with blockchain

and other Industrial cloud-based services. Blockchain is a service inside the

BPIIoT and interacts with an Ethereum implementation. Thus, the BPIIoT

manages the identity of each IoT device in the system. This architecture is a

clear example of edge-level integration, based on the device used and its role

47

3.2. INTEGRATION SCHEMES CHAPTER 3. STATE OF THE ART

in the architecture.

A layered architecture is proposed in [80] and [107] for a Smart Home use

case. Authors introduce the Smart Home Manager (SHM), a device acting

as a bridge between IoT devices and the blockchain. The device's identities

are managed by the SHM, as it keeps a shared key for local communications

with the devices. Moreover, the architecture includes di�erent blockchains,

as each home has its private instance of Ethereum. Thus, this architecture

presents another edge-level integration, focused on security and privacy in a

smart-home environment, limiting the extension to other use-cases.

Authors of [108] proposed aprivacy-aware gateway, which can connect

BLE-based devices to a private Ethereum network. Blockchain provides a

repository of access and privacy policies for each of the IoT devices. Devices

send their information to the blockchain through the gateway. Moreover,

users also must go through the gateway to access detailed information about

each IoT device. Thus, the gateway becomes a mandatory intermediary for

the interactions of both users and devices.

One of the most cited works integrating blockchain with IoT is by Novo

[25]. The author presents an architecture for managing access policies for IoT

devices through the blockchain. Figure 3.4b shows the proposed architecture

based on amanagement-hub, a device that acts both as a gateway and Full

Node in a private Ethereum implementation. Once again, the integration is

at edge-level. Moreover, the architecture considers that the IoT devices are

not linked nor connected to the blockchain. The IoT devices interact with

the management-hub through typical IoT protocols (i.e., CoAP messages)

for sending and receiving blockchain-information.

To summarize, although this approach is innovative, it does not removes

the intermediary (i.e., the edge-level device) to access the blockchain sys-

tem. The constrained capabilities of the sensing IoT devices may oblige

using these intermediaries to compensate for non-blockchain (e.g., commu-

48

CHAPTER 3. STATE OF THE ART 3.2. SMART CONTRACTS AND IOT

nications, storage, processing power). However, an intermediary managing

the devices identity is a step back towards a decentralized IoT environment.

On the one hand, the sensing device is linked to a particular component,

reducing its mobility and �exibility. On the other hand, the intermediary

introduces security concerns in the system, weakening the trustworthiness of

the acquired data [32]. Moreover, since the intermediary is at the edge layer,

it provides a bigger attack surface for the IoT system.

3.2.3 Device-level integration

Integrating blockchain at the device layer, as mentioned in [13] and [12], is the

optimal approach to extend the bene�ts of blockchain to the IoT systems.

In this scheme, the device itself is the transaction issuer. The IoT device

manages its own identity and does not rely on any other component in the

system. The device interacts directly with the blockchain, creating a trust-

worthy data-source [32]. The trade-o� here is a higher degree of autonomy of

IoT devices and applications, versus increased computational complexity of

IoT hardware. Thus, the main limitation to achieve this scheme is the lack

of computational power to perform the cryptographic primitives necessary to

manage the blockchain identity.

Few works have addressed this scenario and, to the best of our knowl-

edge, no framework grants constrained sensing IoT devices as direct actors

on public blockchains networks.

3.3 Interactions through smart contracts

After integrating blockchain from a component perspective, it also necessary

to integrate blockchain from an application perspective [33]. Smart con-

tracts present a platform to implement the logic enabling the autonomous

interactions of the IoT devices. With this new paradigm, mutually untrusted

49

3.3. SMART CONTRACTS AND IOT CHAPTER 3. STATE OF THE ART

parties interact by placing the trust in the secure and correct execution of the

smart contract[109]. Thus, smart contracts must provide the functionalities

required by the IoT sensing devices as services for the framework.

According to the recent literature, smart contracts mainly provide �as-

sets management� capabilities to IoT applications, i.e., the ability to create,

transfer, and track an asset [15], [110]. Using this functionality, authors

have proposed use cases where autonomous interactions among devices oc-

cur in the context of a data marketplace [12, 13, 28, 110]. In these cases,

the blockchain provides a billing platform where devices can sell data di-

rectly to users or other devices. Similarly, other authors have also presented

a service marketplace [12, 110, 23], where the devices can rent some of their

capabilities (e.g., storage and CPU power). In both cases, smart contracts

provide only implement the basic functionalities for these types of renting

transactions.

Supply Chain Traceability [12, 13, 23] is another application where smart

contracts are used in conjunction with IoT devices. Traceability is a complex

process where several untrusted actors are involved. Blockchain also provides

an additional layer of transparency and trust, enabling a common shared

ledger of transactions. Currently, IoT devices automatize some of the steps

of this process. For example, devices such as RFID tags and RFID readers

can autonomously indicate when a particular asset arrived at a particular

destination, creating a new transaction in the blockchain visible to all the

actors interested in that asset.

However, there is no approach where smart contracts serve as autonomous

agents representing IoT devices. Once the smart contract is deployed, the

inherent properties of blockchain guarantee that the software will continue

to execute as intended[87]. Thus, a smart contract can take information and

make decisions on behalf of an IoT device enabling autonomous interactions

and not storing data.

50

CHAPTER 3. STATE OF THE ART 3.3. SMART CONTRACTS AND IOT

To this goal, smart contracts need to overcome several issues. Smart

contracts have proved to be the weakest link for the security of blockchain-

based systems, particularly in public networks. When a smart contract is

stored on the blockchain, it becomes immutable and can not be updated as

traditional software [12]. This inherent feature of blockchain translates into

a very peculiar software life-cycle, where updates or new releases are not

straightforward [109]. Additionally, the code of a smart contract is public

since it is deployed by a transaction, making any possible vulnerability easier

to �nd [23].

The combination of these two properties (immutability and auditability)

may become a threat to applications, as shown by the �DAO exploit�, where

a vulnerability was uncovered and exploited in a smart contract deployed in

the Ethereum network4. The DAO was a �Decentralized Autonomous Orga-

nization� based on a smart contract that collected venture capital later spent

according to the votes of those who had invested. Without the possibility

of an update to �x the vulnerability, the software remained immutable. An

attacker exploited this vulnerability several times, obtaining over 3.6M of

Ether (near 60M of USD at that time).

Similarly, another vulnerability was found and exploited in the smart con-

tract used by the Parity wallet application5. A function without the appro-

priated access restrictions allowed an attacker to become the owner of the

contract. This attacker later killed the contact (meaning that it was not

usable anymore) and froze over 500.000 Ethers (200M USD at the time)

belonging to the users of the wallet.

Based on the unique properties of blockchain-based software, current liter-

ature highlights the necessity of adapting and adopting software-engineering

best-practices to the design and development of smart contracts [111, 109,

4https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/
5https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/

51

3.3. SMART CONTRACTS AND IOT CHAPTER 3. STATE OF THE ART

112]. On the one hand, smart contract security is an open and growing re-

search topic[109]. On the other hand, the use of software patterns could help

mitigate the current challenges of blockchain software [113, 109]. A recent

study [89] proved that more than 20% of existing smart contracts are cloned

from industry-approved contract templates, implementing the most common

functionalities.

52

	Introduction
	Towards decentralization of the Internet of Things
	Sensing devices in blockchain-based IoT systems
	A novel trustless architecture for blockchain-based IoT applications
	Design Science Research approach
	Case studies
	Exploratory analyses
	Innovative aspects

	Structure of the thesis

	Part I: Background on blockchain technology and IoT
	A primer of blockchain technology
	Blockchain working principles
	Transactions and digital signatures

	Taxonomy of blockchain networks
	Public/permissionless blockchains
	Private/permissioned blockchains

	Decentralized consensus algorithms
	Consensus on permissionless blockchains
	Consensus on permissioned blockchains
	Comparison of permissionless and permissioned consensus algorithms

	Smart contracts
	Salient features of blockchain technology

	State of the Art in integrating blockchain and IoT
	IoT layered architectures
	Requirements of IoT systems
	Challenges in centralized IoT architectures
	Decentralization of IoT through blockchain technology

	Integration schemes for blockchain and IoT
	Cloud-level integration
	Edge-level integration
	Device-level integration

	Interactions through smart contracts
	Summary and gap analysis

	Part II: Blockchain-based decentralized IoT applications
	A novel trustless architecture for blockchain-based IoT applications
	High-level architecture
	Novel contributions
	Constrained sensing devices as direct actors on the blockchain system
	Permissionless blockchain as the underlying network
	Smart contracts as a software platform

	Blockchain-based decentralized IoT framework
	M1: Device module
	M2: Gateway module
	M3: Blockchain module

	A blockchain-based IoT system for traceability in Agri-Food
	Introduction
	Related work
	Proposed system architecture
	Architecture evaluation
	Conclusions

	Cost-effective IoT devices in a blockchain-based water management system
	Introduction
	State of the art and rationale
	Proposed system architecture
	Implementation
	The Device module
	The Gateway module
	The Blockchain module

	Architecture evaluation
	Device module footprint
	Device module performance
	Transaction compression
	Transaction cost and processing time
	Device power consumption and energy budget

	Conclusions

	Part III: Exploratory analyses of blockchain-based applications challenges
	Cost and user experience in blockchain-based applications
	Rationale and practical assessment of a fully distributed blockchain-based marketplace of Fog/Edge computing resources
	Introduction
	Related work
	Proposed system architecture
	Experimental setup
	Architecture evaluation
	Conclusions and future works

	Cost Model for blockchain-based applications
	Introduction
	Application description and requirements
	Proposed transaction taxonomy
	Cost model for permissionless networks
	Evaluation of the marketplace application
	Conclusions

	Data-sharing and decentralised storage in blockchain-based applications
	A blockchain-based approach to enable remote sensing trusted data.
	Introduction
	Proposed architecture
	Use case: precision agriculture
	Conclusions and future works

	Decentralized storage for trusted data sharing
	Introduction
	Proposed Architecture
	Experimental setup
	Evaluation results
	Conclusions

	Conclusions
	Novel contributions
	Future works

	Bibliography
	Appendix A: List of Abbreviations

