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Abstract

In this paper we consider a particular class of polynomials arising
from the solutions of the Diophantine equation (x+y−1)2 = wxy. We
highlight some interesting aspects, describing their relationship with
many iportant integer sequences and pointing out their connection with
Dickson and Chebyshev polynomials. We also study their coefficients
finding a new identity involving Catalan numbers and proving that
they are a Riordan array.

1 A class of polynomials related to integer sequences,
Dickson and Chebyshev polynomials

In [1], the authors solved the Diophantine equation

(x+ y − 1)2 = wxy, (1)

where w is a given positive integer and x, y are unknown numbers, whose
values are to be sought in the set of positive integers.
In particular, (x, y) is a solution of the Diophantine equation (1) if and only
if (x, y) = (um+1(w), um(w)), for a given m ∈ N, where (un(w))+∞n=0 is the
following linear recurrent sequence:{

u0(w) = 0, u1(w) = 1, u2(w) = w

un(w) = (w − 1)un−1(w)− (w − 1)un−2(w) + un−3(w) ∀n ≥ 3.
(2)

This polynomial sequence is very interesting. Indeed, for several values of
w, the polynomial sequence (un(w)) coincides with some well–known and
studied integer sequences. For example, for w = 4, (un(4)) = n2, that is
the sequence A000290 in OEIS [7]. When w = 5, (un(5)) is the sequence
of the alternate Lucas numbers minus 2 (see sequence A004146 in OEIS). If
w = 9, (un(9)) = F 2

2n, where (Fn) is the sequence of the Fibonacci numbers.
For w = 4, ..., 20, the sequence (un(w)) appears in OEIS [7]. In Table 1, we
summarize sequences un(w) for different values of w.
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w (un(w))+∞
n=0 OEIS reference

4 0, 1, 4, 9, 16, 25, ... A000290=(n2)+∞
n=0,

5 0, 1, 5, 16, 45, 121, ... A004146=Alternate Lucas numbers - 2
6 0, 1, 6, 25, 96, 361, ... A092184
7 0, 1, 7, 36, 175, 841, ... A054493 (shifted by one)
8 0, 1, 8, 49, 288, 1681, ... A001108
9 0, 1, 9, 64, 441, 3025, ... A049684=F 2

2n (Fn Fibonacci numbers)
10 0, 1, 10, 81, 640, 5041, ..., A095004 (shifted by one)
11 0, 1, 11, 100, 891, 7921, ..., A098296
12 0, 1, 12, 121, 1200, 11881, ... A098297
13 0, 1, 13, 144, 1573, 17161, ... A098298
14 0, 1, 14, 169, 2016, 24025, ... A098299
15 0, 1, 15, 196, 2535, 32761, ... A098300
16 0, 1, 16, 225, 3136, 43681, ... A098301
17 0, 1, 17, 256, 3825, 57121, ... A098302
18 0, 1, 18, 289, 4608, 73441, ... A098303
19 0, 1, 19, 324, 5491, 93025, ... A098304
20 0, 1, 20, 361, 6480, 116281, ... A049683=(L6n − 2)/16 (Ln Lucas numbers)

Table 1: Sequence un(w) for different values of w

In the following, we prove that polynomials un(w) are related to some
well–known and studied polynomials like Chebyshev polynomials of the first
and second kind, respectively Tn(x) and Un(x) (see, e.g., [5]), and Dickson
polynomials Dn(x) and En(x) = Un

(
x
2

)
(see, e.g., [3]).

Here we define Tn(x) and Un(x) as the n–th element of the linear recurrent
sequence (Tn(x))+∞n=0 and (Un(x))+∞n=0 with characteristic polynomial t2 −
2xt+ 1 and initial conditions T0(x) = 1, T1(x) = x and U0(x) = 1, U1(x) =
2x, respectively.
We recall that Dickson polynomials are defined as follows:

Dn(x) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−1)ixn−2i

and

En(x) =

bn/2c∑
i=0

(
n− i
i

)
(−1)ixn−2i.

We also recall that for Dickson polynomials the following identities hold

Dn

(
x+ x−1

)
= xn + x−n, En

(
x+ x−1

)
=
xn+1 − x−(n+1)

x− x−1
(3)

Theorem 1. We have

un(w) =
Dn(w − 2)− 2

w − 4
= 2

Tn(w−22 )− 1

w − 4
, ∀n ≥ 0 (4)
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and in particular for all n ≥ 1

u2n(w) = wE2
n−1(w − 2) = wU2

n−1

(
w − 2

2

)
(5)

u2n−1(w) = (En−1(w − 2) + En−2(w − 2))2 =

=

(
Un−1

(
w − 2

2

)
+ Un−2

(
w − 2

2

))2 (6)

Proof. The recurrence relation described in (2) clearly shows that the char-
acteristic polynomial of (un(w)) is

x3 − (w − 1)x2 + (w − 1)x− 1 = (x− 1)(x2 − (w − 2)x+ 1)

whose zeros are x1 = 1 and x2,3 = w−2±
√
w2−4w
2 . If we set x2 = ζ we easily

observe that x3 = ζ−1 so that ζ + ζ−1 = w − 2 and ζ − ζ−1 =
√
w2 − 4w.

Moreover, using the initial conditions in (2), with standard tecniques we
find the following closed form for every element of (un(w))

un(w) =
ζn + ζ−n − 2

w − 4
=
ζn + ζ−n − 2

ζ + ζ−1 − 2
(7)

. Thanks to the first identity in (3) it is straightforward to observe that

un(w) =
Dn(ζ + ζ−1)− 2

w − 4
=
Dn(w − 2)− 2

w − 4
. (8)

Since x2 − (w − 2)x + 1 is the characteristic polynomial of the sequence
(Tn

(
w−2
2

)
), with roots x2 = ζ and x3 = ζ−1, and the initial conditions are

T0
(
w−2
2

)
= 1, T1

(
w−2
2

)
= w−2

2 we obtain

Tn

(
w − 2

2

)
=
ζn + ζ−n

2
=
Dn(ζ + ζ−1)

2
=
Dn(w − 2)

2
(9)

Thus substituting (9) in (8) we prove equality (4). Now considering the
equality (7) and the second identity in (3) we have

u2n(w) =
ζ2n + ζ−2n − 2

ζ + ζ−1 − 2
=

(ζn − ζ−n)2

(ζ − ζ−1)2
(ζ − ζ−1)2

ζ + ζ−1 − 2
= w(En−1(w − 2))2,

which proves (5), and

u2n−1(w) =
ζ2n−1 + ζ−2n+1 − 2

ζ + ζ−1 − 2
=

(ζ2n−1 + ζ−2n+1 − 2)(ζ + ζ−1 + 2)

(ζ − ζ−1)2
(10)

where we use the identity

(ζ − ζ−1)2 = w(w − 4) = (ζ + ζ−1 + 2)(ζ + ζ−1 − 2).

3



An easy calculation shows that

(ζ2n−1 + ζ−2n+1 − 2)(ζ + ζ−1 + 2) =
(
ζn − ζ−n + ζn−1 − ζ−(n−1)

)2
and substituting in (10) we find

u2n−1(w) =

(
ζn − ζ−n + ζn−1 − ζ−(n−1)

)2
(ζ − ζ−1)2

=

=

(
ζn − ζ−n

ζ − ζ−1
+
ζn−1 − ζ−(n−1)

ζ − ζ−1

)2

=

= (En−1(w − 2) + En−2(w − 2))2 ,

proving (6).

As a consequence of (4) we highlight the following relation, where we
posed w−2

2 = x

Tn(x) = 2Dn(2x) = un(2x+ 2) · (x− 1) + 1 (11)

The coefficients of polynomials un(w) are particularly interesting and we
explicitly determine them in the following

Theorem 2. For any integer n ≥ 1, we have

un(w) =
n∑

k=0

dn(k)wk,

where

dn(k) =
n−k−1∑
i=0

(−1)i
(
i+ 2k

2k

)
, ∀0 ≤ k < n

and dn(n) = 0.

Proof. The theorem can be proved by induction. For n = 1, we have u1(w) =
1 and d1(0)w0 + d1(1)w = 1. Similarly, it is straightforward to check the
theorem when n = 2 and n = 3.
Now, let us suppose that the thesis holds for any integer less or equal than
n, for a given integer n. We have

un+1(w) = (w − 1)un(w)− (w − 1)un−1(w) + un−2(w) =

= (w − 1)

n∑
k=0

dn(k)wk − (w − 1)

n−1∑
k=0

dn−1(k)wk +

n−2∑
k=0

dn−2(k)wk.
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Observing that

dn(k) = dn−1(k) + (−1)n−k−1
(
n+ k − 1

2k

)
we obtain

un+1(w) = (w − 1)
n∑

k=0

dn(k)wk − (w − 1)
n−1∑
k=0

(
dn(k)− (−1)n−k−1

(
n+ k − 1

2k

))
wk +

+

n−2∑
k=0

dn−2(k)wk =

= (w − 1)
n−1∑
k=0

(−1)n−k−1
(
n+ k − 1

2k

)
wk +

n−2∑
k=0

(
dn+1(k)− (−1)n−k

(
n+ k

2k

)
+

−(−1)n−k−1
(
n+ k − 1

2k

)
− (−1)n−k−2

(
n+ k − 2

2k

))
wk.

Thus we have to prove that

(w − 1)

n−1∑
k=0

(−1)n−k−1
(
n+ k − 1

2k

)
wk

+
n−2∑
k=0

(
(−1)n−k−1

(
n+ k

2k

)
−(−1)n−k−1

(
n+ k − 1

2k

)
−(−1)n−k−2

(
n+ k − 2

2k

))
wk

− wn + 2(n− 1)wn−1 = 0 (12)

in order to prove that

un+1(w) =

n+1∑
k=0

dn+1(k)wk.

The left member of equation (12) is equal to

n−3∑
k=0

(−1)n−k−1
(
n+ k − 1

2k

)
wk+1 −

n−2∑
k=0

(−1)n−k−1
(
n+ k − 1

2k

)
wk+

+

n−2∑
k=0

(
(−1)n−k−1

(
n+ k

2k

)
− (−1)n−k−1

(
n+ k − 1

2k

)
− (−1)n−k−2

(
n+ k − 2

2k

))
wk =

=

n−2∑
k=1

(−1)n−k
((

n+ k − 2

2k − 2

)
+ 2

(
n+ k − 1

2k

)
−
(
n+ k

2k

)
−
(
n+ k − 2

2k

))
wk

and using the property of binomial coefficients(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
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it is easy to check that(
n+ k − 2

2k − 2

)
+ 2

(
n+ k − 1

2k

)
−
(
n+ k

2k

)
−
(
n+ k − 2

2k

)
= 0.

Thanks to previous theorems and relation (11) we find the following
expression for Chebyshev polynomials

Tn(x) = 1 + (x− 1)
n∑

k=0

dn(k)(2x+ 2)k, ∀n ≥ 1,

and an analogous one for Dickson polynomials

Dn(x) =
1

4

(
2 + (x− 2)

n∑
k=0

dn(k)(x+ 2)k

)
, ∀n ≥ 1.

In the following section, we see that coefficients dn(k) allow us to deter-
mine a new identity for Catalan numbers and they can be used to obtain a
Riordan array.

2 Catalan numbers and Riordan array

Catalan numbers are very famous and interesting, deeply studied for their
significance in combinatorics. In the beautiful book of Stanley [8] many
combinatorial interpretations and identities involving Catalan numbers can
be found. We whish to point out another new identity involving Catalan
numbers and the coefficients dn(k) studied in the previous section.

Theorem 3. For any positive integer n, we have

n∑
k=0

dn(k)Ck = 1,

where (Ck)+∞k=0 is the sequence of the Catalan numbers (A000108 in OEIS)

Proof. Since ∫ 1

−1

Tn(x)
√

1− x2
dx = 0,

by Theorem 1, we have∫ 1

−1

un(2x+ 2)(x− 1) + 1
√

1− x2
dx = 0.
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Posing y = 2x+ 2, we obtain∫ 4

0

(
un(y)(y − 4) + 1

2

)
1√

y(4− y)
dy = 0

and consequenlty ∫ 4

0

un(y)(y − 4)

2
√
y(4− y)

dy = −π,

n∑
k=0

∫ 4

0

dn(k)yk(4− y)√
y(4− y)

dy = 2π.

Moreover, it is well–known that∫ 4

0

yk(4− y)√
y(4− y)

= 2πCk,

thus
n∑

k=0

dn(k)Ck = 1.

Catalan numbers can be arranged in order to define a Riordan array.
We recall that a Riordan array is an infinite lower triangular matrix, where
the k–th column is a sequence having ordinary generating function of the
form f(x)g(x)k, see [6]. Catalan numbers are used to generate a particular

Riordan array defined by f(x) =
1−
√

1− 4x

2x
and g(x) =

1−
√

1− 4x

2
, see

[4]. Thus, considering the previous relation between Catalan numbers and
the coefficients of polynomials un(w), we can suppose that also dn(k) may
generate a Riordan array. Indeed, in the following theorem, we prove that

the sequence (dn(k))+∞n=0 define a Riordan array where f(x) =
x

1− x2
and

g(x) =
x

(1 + x)2
.

Theorem 4. Given an integer k the ordinary generating function of the
sequence (dn(k))+∞n=0 is

x

1− x2
·

xk

(1 + x)2k

Proof. The ordinary generating function of the sequence (dn(k))+∞n=0 is

+∞∑
n=0

dn(k)xn =
+∞∑

n=k+1

n−k−1∑
i=0

(−1)i
(
i+ 2k

2k

)
xn,
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where in the right member the first sum starts from k+1, since for n < k+1
the coefficients dn(k) are not defined. If we pose n−k−1 = m, the ordinary
generating function becomes

+∞∑
m=0

m∑
i=0

(−1)i
(
i+ 2k

2k

)
xm+k+1 = xk+1

+∞∑
m=0

m∑
i=0

(−1)i
(
i+ 2k

2k

)
xm =

= xk+1
+∞∑
i=0

(−1)i
(
i+ 2k

2k

)
xi

+∞∑
m=i

xm−i = xk+1
+∞∑
i=0

(
i+ 2k

2k

)
(−x)i

+∞∑
h=0

xh.

Considering that

1

(1− z)n+1
=

+∞∑
i=0

(
i+ n

n

)
zi,

(see, e.g., [2] pag. 199) we finally have that the ordinary generating function
is

xk+1

1− x
·

1

(1− (−x))2k+1
=

x

1− x2
·

xk

(1 + x)2k
.

Thus the following matrix is a Riordan array

1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
1 −2 1 0 0 · · ·
0 4 −4 1 0 · · ·
1 −6 11 −6 1 · · ·
...

...
...

...
...

. . .


where the k–th column is the sequence (dn(k)).
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