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SQLR: Short-Term Memory Q-Learning
for Elastic Provisioning
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Abstract—As a growing number of service and application
providers choose cloud networks to deliver their services on a
software-as-a-service (SaaS) basis, cloud providers need to make
their provisioning systems agile enough to meet service level
agreements (SLAs). At the same time, they should guard against
over-provisioning, which limits their capacity to accommodate
more tenants. To this end, we propose Short-term memory Q-
Learning pRovisioning (SQLR, pronounced as “scaler”), a system
employing a customized variant of the model-free reinforcement
learning algorithm. It can reuse contextual knowledge learned
from one workload to optimize the number of virtual machines
(resources) allocated to serve other workload patterns. With
minimal overhead, SQLR achieves comparable results to systems
where resources are unconstrained.

Our experiments show that we can reduce the amount of
provisioned resources by about 20% with less than 1% overall
service unavailability (due to blocking), while delivering similar
response times to those of an over-provisioned system.

Index Terms—Provisioning; Service management; Optimiza-
tion; Q-Learning; SLA;

I. INTRODUCTION

A growing tendency among application service providers
(ASPs) is to leverage cloud networks to deliver services to
consumers [1]. Cloud networks help reduce capital expen-
diture (CAPEX) as ASPs can host their services by leasing
computing infrastructure from cloud service providers (CSPs),
rather than owning it. ASPs also reduce operating expenditure
(OPEX), because they only pay for the resources they use, and
do not incur maintenance costs.

As a consequence, CSPs face increasing demands on finite
resources from ASPs that typically have high expectations
on performance [2]. CSPs must therefore balance the need
for high quality of service (QoS) guarantees with just the
right amount of resources. In this way, cloud services can
be delivered cost-effectively, without violating service level
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objectives (SLOs). Two such SLOs are service availability and
response time. These are usually stipulated in a service level
agreement (SLA) between a CSP and an ASP.

SLO violations can have grave consequences for an ASP,
including loss of users and revenue [3]. Depending on the SLA
contract signed, the ASP may even seek compensation from
the CSP for such violations [4]. For CSPs, this creates the need
for dynamic provisioning/scaling tools. Such tools increase the
resources allocated to an application when sudden increases
in demand occur (or are foreseen), and release resources
when they are no longer needed. The adaptations of allocated
resources (i) save costs for ASPs and (ii) free capacity for
other CSP tenants.

Most state-of-the-art solutions to this problem guide scal-
ing by continuously monitoring application and system met-
rics [5]. Other recent proposals addressing similar resource
allocation problems, such as those presented in [6], leverage
model-based machine learning. Though computationally effi-
cient, they rely on extensive modelling and simulations, which
may not always correspond to real-world demand and cloud
application dynamics. Significantly different applications may
require very different scaling configurations. Therefore, the
challenge is to minimize the resources assigned to any ap-
plication, while guaranteeing service quality in the face of
variable demand.

To address this challenge, we developed an application-
agnostic Short-term memory Q-Learning pRovisioning

TABLE I
LIST OF KEY ABBREVIATIONS EMPLOYED IN THIS PAPER

5G Fifth-Generation Cellular Networks
AC Admission Control
ASP Application Service Provider
BTU Billing Time Unit
CAPEX Capital Expenditure
CSP Cloud Service Provider
EKF Extended Kalman Filter
LB Load Balancer
LSTM Long-Short Term Memory
MDP Markov Decision Process
MEC Multi-access Edge Computing
NUMA Non-Uniform Memory Allocation
OPEX Operating Expenditure
QoS Quality of Service
RL Reinforcement Learning
RLPAS Reinforcement Learning-based Proactive Auto-Scaler
SaaS Software-as-a-Service
SLA Service Level Agreement
SLO Service Level Objective
SQLR Short-term memory Q-Learning pRovisioning
VM Virtual Machine
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(SQLR) system. Our scheme leverages two distinct and
co-operating model-free reinforcement learning (RL) agents.
The first agent uses conventional Q-Learning to make
admission control decisions. Specifically, it learns the
utilization threshold of compute resources that would make
further task admissions inconvenient. The second RL agent
uses a customized, context-aware Q-Learning algorithm to
make resource scaling decisions when the system is exposed
to dynamic and stochastic workloads. Since RL works
by learning from experience rather than training on static
data-sets, RL offers a practical and adaptive solution to the
problem. Concretely, our main contributions are:

1) A configuration-agnostic admission control agent based
on Q-Learning, that learns the most appropriate action to
take given the level of resource utilization reported by a
virtual machine (VM) instance.

2) A flexible RL scaling agent that
• is horizontal, i.e., it adapts resources in terms of the

number of VMs allocated to a service, without resizing
them by changing, e.g., the number of virtual CPUs,
or the amount of memory allotted;

• given high-level objectives, learns and enforces the
best tradeoff between service availability and resource
costs, even in the presence of challenging workloads;

• quickly adapts to previously unexplored workloads by
learning from observed resource utilization patterns
rather than from the workloads per se;

• progressively improves with every scaling decision,
resulting in better service reliability and availability as
time passes by.

3) A weighted fair learning mechanism to scale resources
horizontally. This scheme encourages the exploration of
new system states, while consistently exploiting better
known states; this increases the likelihood of selecting
near-optimal actions prior to completing the exploration
of all possible states, i.e., much before reaching full
policy convergence.

Our work is also relevant for modern cloud deploy-
ments such as multi-access edge computing (MEC) for fifth-
generation (5G) networks. Here, vertical scaling (which entails
adjusting the capacity of running VMs) is not preferred given
the constraints on MEC deployments, and horizontal scaling
represents a more viable solution [7], [8].

The remainder of this article is organized as follows: Sec-
tion II examines prior work on the scaling of cloud resources;
in Section III, we discuss the II conventional Q-Learning
algorithm and some ancillary modifications we made to it.
In Section IV, we present the design of our system. In
Section V, we outline the experiments made to test the scaling
and admission control algorithms. We discuss the results of
our approach compared to other methods in Section VI. In
Section VII, we finally provide the main conclusions and
discuss future directions along this line of research. A listing
of the abbreviations used in this work is given in Table I.

II. RELATED WORK

In Table II, we present a summary of recent research on
auto-scaling. The most common approaches for automated
scaling decisions are rule-based, and rely on fixed resource
utilization thresholds. This is the case for such commercial
tools as Rightscale [9] and Amazon’s EC2 [10]. The fuzzy
logic variants in [11]–[13], among others, rely instead on
loosely defined thresholds. These methods require sufficient
knowledge of the cloud application in order to define the
operating bounds correctly. Recent work on communication
security [14] has shown that RL can be exploited to learn
threshold values for attack detection. Our work demonstrates
that it is similarly applicable to resource provisioning. In
addition, the authors of [15] demonstrate that deep RL can
be leveraged for resource scheduling in a cloud network
consisting of Internet of Things (IoT) devices.

The authors of [16] propose a theoretical, model based, RL
approach to cloud resource allocation which factors in both
SLO violations and net gains for the CSP. Their model, how-
ever, assumes high predictability in arrival rates and system
responses, both of which are highly stochastic.

In [17], the authors propose an on-policy reinforcement
learning-based proactive auto-scaler (RLPAS). Their technique
leverages a one-step temporal difference scheme with multiple
coordinating agents. Application-specific targets for through-
put and response time drive reward functions. However, this
method requires to approximate the action-values, and tends to
bias action selection. This makes it ill-suited to highly dynamic
workloads.

The authors of [18] implement a vertical scaling agent based
on Q-learning. Distributed RL agents adjust the CPU, memory
and bandwidth allocations to a set of active VMs handling
different applications. The effect on the applications’ response
time and throughput act as inputs for the rewards fed back
to the agent. Application agents maintain fine-grained SLA
metrics for each application.

The work in [25] proposes an RL-based agent that triggers
the migration of VMs from under-utilised servers, in order to
power them off. Utilization bounds that trigger decisions in
this scheme are predetermined. This implies that the response
of the agent will be compromised, should the system config-
uration change in a significant way.

The authors of [19] use a queue model and an extended
Kalman filter (EKF) for horizontal scaling. They use a 3-tier
cloud application with 3 classes of requests to generate the
measurement model. The model, enhanced by EKF, estimates
the response times given the workload as input. These esti-
mates trigger an appropriate horizontal scaling operation.

Other methods seek to characterize the workload and make
resource allocations accordingly. In [20], Vasic et al. classify
workloads based on recurring patterns. They derive optimized
resource allocations for these patterns, and re-use them every
time the same patterns appear in a new workload.

Ibidunmoye et al. [21] use a modified Q-Learning scheme
in order to carry out vertical scaling, defined as the addition
of system resources, e.g., virtual CPUs on VMs, while they
are running. Their state space is based on a fuzzy logic
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TABLE II
SUMMARY OF RELATED WORK

Reference Parameters
Considered

Scaling
type Technique used Limitations

Rightscale
[9]

Configurable triggers
(e.g., memory,
utilization, etc.)

Horizontal Application dependent rule-based
threshold setting

Requires knowledge of cloud application and underlying
configuration. Our scheme is application and configuration
agnostic.

Alsarhan
et al. [16]

Theoretical: arrival
rates, service times Horizontal Theoretical model-based

reinforcement learning.

Dependent on workload profiling. Our scheme learns how
to adapt to different workloads, and reuses knowledge for
similarities between them.

Benifa et
al. [17]

Measured arrival
rates, response times,
throughput

Horizontal Q-Learning with function
approximation.

Too sensitive to transients in workload and CPU utilization.
Given the use of global average metrics, our scheme does
not react to transients but to trends instead.

Rao et al.
[18]

CPU, memory and
I/O utilization Vertical Model-free reinforcement learning

with distributed agents.

VMs require autonomous control of host resources. Our
scheme employs horizontal scaling, and executes it centrally
as is common practice for most CSPs.

Gandhi et
al. [19]

Measured arrival
rates, response times

Vertical
and
Horizontal

Application modeling and
extended Kalman filter (EKF).

Produces stiff scaling response, requires knowledge of ex-
pected response times. Our system is more responsive to
workload trends and does not require any knowledge of the
cloud application.

Vasić et
al. [20] Measured arrival rate Horizontal Workload profiling, classification

and pattern matching.

Unexpected workloads may cause erratic behavior. Our
scheme does not require workload profiling and can learn
how to respond to unexpected workloads.

Ibidun-
moye et
al. [21]

CPU utilization,
response times Vertical

Model-free reinforcement learning
based on fuzzy logic with multiple
agents.

Fuzzy state classification requires knowledge of cloud ap-
plication and configuration. Our scheme is both application
and configuration agnostic.

Liu et al.
[22]

CPU and memory
utilization Horizontal

Standard reinforcement learning
with aggressive rewards for
over-provisioning.

Prone to wasteful over-provisioning. Our learning objective
optimizes the use of resources to a necessary minimum.

Fernandez
et al. [23]

Measured arrival
rates, CPU utilization
and throughput

Horizontal Threshold-based technique based
on short-term capacity forecasts.

Vulnerable to over/under provisioning when faced with
unpredictable workloads. Our provisioning scheme progres-
sively learns on new workloads and as such over time is less
vulnerable to unpredictable workloads.

Xu et al.
[24]

Pricing and
availability of
transient servers

Horizontal Long-short term memory price
prediction of transient servers.

Relies on short-lived virtual instances, possibly yielding in-
consistent application performance. In contrast, our learning
approach centers on application performance, correlated to
CPU utilization.

combination of response times and utilization levels. They
employ several cooperating agents to simultaneously explore
the state space, in order to speed up policy convergence.

The authors of [22] propose a scheme based on Q-Learning
and heuristics that immediately over-provisions resources
when it detects an increase in the workload. It then gradually
de-allocates extra resources. The objective of this scheme is to
reduce SLO violations that occur when the workload increases
suddenly, but resources are added conservatively.

In [23], the authors propose a system which profiles re-
source capacities, predicts the subsequent workload pattern
over a monitoring window, and scales the system accordingly
based on a tradeoff between scaling costs and SLOs.

The authors of [24] develop a long-short term memory
(LSTM) algorithm to offload big data analytics to Amazon
EC2 spot instances. The scheme trades off the very cheap
prices of these transient servers with their unreliability due to
revocation. Given its focus on ASP costs, this work is largely
orthogonal to our approach, as we rather consider CSP costs.

Leitner et al. [26] consider the provisioning problem in
terms of costs for the provider. The authors propose a system
that schedules resources in a bid to minimize the costs incurred
due to SLO violations and those resulting from leasing cloud
resources. This work assumes that such costs are known well
in advance, and that billing time units (BTUs) for leasing

resources are both coarse-grained (in the order of hours) and
fixed. However, recent proposals on cloud brokerage [27]
promise greater flexibility by making BTUs much more fine-
grained. This would be much more cost-effective for tenants
with short-lived requirements.

In summary, whereas rule-based schemes are simple and
easy to implement, setting the correct thresholds requires
both specialized cloud application domain knowledge and
awareness of resource configurations. Other state-of-the-art
scaling methods require to continuously measure and monitor
the service response times, the workload, or both. In many
cases, obtaining such data requires real-time analysis of logs,
which may lead to significant overhead in large-scale systems.
Workloads, in particular, may also exhibit unpredictable be-
havior [28], resulting in premature scaling directives.

Our scheme, instead, infers the changes in workloads by
monitoring how the system responds to them. This provides
a more robust basis for decision-making, even in large de-
ployments. Different workloads trigger distinct system state
transition sequences, resulting in the learning of new policies,
in addition to those already learned. Hence, the system will
scale for future workloads that exhibit combinations of the
already observed patterns, without need for further training.
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III. RL MODELING AND MODIFIED Q-LEARNING
APPROXIMATION

A. Key idea

We assume a resource scaling system that allocates tasks
to available VMs in a cloud computing environment, and that
horizontally scales the number of VMs in face of time-varying
workload. The scaling system is composed of three agents: a
load balancer (LB) agent, an admission control (AC) agent,
and a scaling agent. The LB assigns each incoming tasks to
a VM, then the AC decides whether or not to admit the task
to that VM. Periodically, the scaler oversees the utilization
of active VMs and adapts their number to match workload
requirements.

By design, our system is oblivious to the particular ap-
plication that runs in the cloud: therefore, we only rely on
system-level metrics (e.g., CPU utilization and time evolution
thereof) in order to make admission and scaling decisions. We
tackle the complexity of this scenario while keeping the system
responsive to changes in stochastic workload patterns. To do
so, we design our AC and scaling agents as sequential decision
processes, where optimal decisions are identified thanks to a
Q-learning approach.

In the following, we detail our system model for decision
making (Section III-B), discuss the admissible actions and
state space of the AC and scaling agents (Section III-C),
explain our decoupled learning mechanisms (Sections III-D
and III-E) and how we drive the exploration of new decisions
against the exploitation of best decisions found up to a certain
time (Section III-F).

B. System model for decision making

Like in [16], we treat AC and horizontal scaling as sequen-
tial decisions, and assume that load balancing policies exist
to evenly share workload among active VMs in the long run.
Specifically, we consider a simple load balancer that dispatches
incoming tasks to VMs by privileging the least utilized VM.
We can then approximate the admission control and scaling
processes as two separate classes of Markov decision processes
(MDPs) with distinct sets of actions A, states S, state transition
probabilities T and reward functions R.

We consider separate admission control and scaling deci-
sions because: (i) the AC needs to operate at a much shorter
time scale than resource scaling, and (ii) resource scaling
cannot instantaneously obviate a lack of resources, because
starting VMs up takes a non-negligible time. Moreover, the AC
dropping rate for a given workload offered to a VM depends on
the utilization of that VM and not on the number of deployed
VMs. Therefore we can make AC decisions locally at each
VM, in contrast with the necessarily global scope of scaling
decisions.

We remark that treating our decision processes as MDPs re-
quires a necessary approximation. The transition probabilities
of a standard MDP are well defined: by way of contrast, our
transition probabilities depend on the input workload, which is
not necessarily stationary or known. Moreover, instantaneous
fluctuations in the workload patterns are possible, which

may lead to unexpected transitions. For such events, a plain
memory-less decision process is inadequate [29, §17.3].

Yet, approximating a decision process through the MDP
framework is still feasible, because we can track stochastic
workload fluctuations by incorporating some memory of the
past in the state definition, as will become clear later.

C. RL short-memory decision agents

Our system encompasses a load balancing component, a
scaling component, and an AC component. We implement AC
and scaling as reinforcement learning agents, whereas the load
balancing component does not require learning in our setup.

A learning step,1 or epoch, consists of the agent observing
its state, taking some action allowed in that state, and monitor-
ing the environment to compute and accrue some positive or
negative reward as the environment transitions to a new state.

For an AC agent, the permissible actions are to either
(i) pass an incoming request on to the VM that will serve
the request, or (ii) refuse service to an incoming request.
Either action results in a VM transitioning from one level of
utilization to another with some probability. By defining the
state as the utilization level of the VM handling the request, we
are able to formulate this process as a per-VM reinforcement
learning problem. We structure the reward values of the AC
agent based on the predictability of job service times, which
in turn relates to VM utilization level. For a given machine,
the service time increases exponentially with its load [30].
The role of the AC agent is therefore to infer the next VM
utilization level after an AC decision.

For the horizontal scaling agent, the actions are: (i) increas-
ing, (ii) decreasing, or (iii) maintaining the same number of
VMs. The state, in this case, is defined by three values:

1) the average system-wide utilization over the previous
epoch;

2) the average system-wide utilization in the current epoch;
3) and the number of active VMs.

The action of the scaling agent changes this set of values,
hence the system state. Therefore, unlike conventional RL,
decisions depend not only on the current state, but also on
the transition that led to the current state. This means that
decisions are not memory-less. Rather, the agents have to
embed some short-term memory in their decisions. To make
this setting compatible with an MDP model, we define the
system state such that it includes the average utilization level
in the previous state, along with the previous number of active
VMs. Thus, our modified RL algorithm retains a memory of
the immediate past in the present state.

Thanks to this definition of state, our scaling agent exploits
the rate of change in global average utilization levels, and
can thus distinguish different workload patterns. This allows
the agent to cumulatively learn different VM scaling policies
for different workload profiles without overriding previously
learned policies. We structure the reward function of the
scaling agent to include both the blocking rate resulting from
AC and the number of VMs used.

1Also called time-step in RL literature.
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D. Decoupled learning of agents

Given that the AC decision is local to each VM, the AC
agent must learn admission policies before the scaling agent
can refine scaling policies. AC policies can be learned offline
for a single VM, and do not need later refinements. Once AC
policies have stabilized, the scaling agent can continuously
learn its policies as new workloads are observed. For this
purpose, the scaling agent simply needs to use a reward
function that includes the blocking rate resulting from the use
of the AC.

E. Modified Q-learning approximation

Since our RLs can be described by MDPs, the optimal AC
and scaling decision policies could be determined by evaluat-
ing the corresponding MDPs. This entails tracking how much
reward an action receives and obtaining the state transition
probabilities that yield the highest accumulated reward given
a particular system state. Then, we can program an agent via
either value or policy iteration, in order to execute the resulting
policies.

However, policy evaluations of the MDPs are impractical
given that transition probabilities can vary widely depending
on the workload and configuration of the system. A practical
solution that applies to this case is Q-Learning [31]. Here,
the agent develops a mapping of states to actions (known as
the Q function) by tracking the accumulated reward (or “Q-
value”) for each state-action pair. With reference to Table III,
which summarizes the key notations used in this paper, we
now explain the design principles and behavior of the scaling
and admission control agents. From [29], at learning step t,
the optimal action-value function q∗ is approximated as:

Q(S(t), A(t))← αR′ + (1− α)Q(S(t), A(t)), (1)

where
R′ = R(t+1) + γmax

a
Q(S(t+1), a), (2)

Q(S(t), A(t)) is the action-value,2 and R(t+1) is the immediate
reward the agent receives after taking action a and ending up
in state S(t+1), whose action-value is Q(S(t+1), a). The factor
γ anticipates the contribution of future rewards towards the
immediate reward [31].

However, the use of a fixed learning rate α in (1) assumes
that all states are visited evenly during training [29]. Given
the formulation of the state space, this may not always be
the case for our AC and scaling agents. Further, the update
process in (1) typically leads to a stochastic policy, with Q
function values oscillating slightly about an estimated expected
value. To ameliorate this effect, we employ a modified reward
mechanism, which takes into account the number of times that
the agent visited the given state. This method follows closely
the algorithm for the online computation of the mean:

µk =
1

k

k∑
j=1

(Xj) =
1

k
(Xk + (k − 1)µk−1) . (3)

2In this paper, we use the terms action-value and Q-value interchangeably.

The Q function update then becomes:

Q(S(t), A(t))← 1

k

[
∆ + (k − 1)Q(S(t), A(t))

]
, (4)

where ∆ = R′−Q(S(t), A(t)), and k is the number of learning
steps (prior to the current action) when the agent found itself
in state S(t) and acted with action A(t).

Note that we modify the commonly adopted update mech-
anism by using the discounted reward ∆ instead of the im-
mediate reward R′ in (4). This reduces the chance of wrongly
estimating the mean action value at the initial learning phases.
The update equation in (4) also guarantees that the policy will
eventually converge, since the update value on the right-hand
side of (4) becomes progressively smaller as the number of
learning steps increases.

F. Exploration/exploitation tradeoff mechanism

For both AC and resource scaling, we train the agents by
initially encouraging random actions (exploration phase). As
the agent develops a policy, it progressively acts less randomly,
i.e., it chooses those actions that are known to yield the highest
reward (exploitation phase). We accomplish this by employing
ε-greedy action selection [29]. In this scheme, the agent selects
the action that yields the highest reward with probability 1−
ε(s), and a random action with probability ε(s).

We remark that the agent does not visit all states with the
same frequency. Therefore, a global assignment and decrease
of ε may bias the learned policy towards the most visited
states. To avoid this, we employ a scheme that reduces ε
independently for each state, proportional to the number of
times i(s) that state s is visited. This accelerates the learning
process by encouraging exploration for the least visited states,
while exploiting optimal actions for the most visited states.
Specifically, we set:

ε(s) =

1− i(s)

M
, if i(s) < M

εmin, if i(s) >M,
(5)

where M is a design parameter representing the number of
statistically significant visits that should result in convergence
to a stable policy. We consider that state s has achieved
convergence when ε(s) equals εmin > 0. For clarity, in what
follow we drop the dependence of ε and i on the state s.

In order for the system to perform satisfactorily prior to
convergence, we devise a weighted fair guided exploration
scheme. Consider learning instance i. If the most rewarding
action is not chosen (which occurs with probability ε) the
conditional probability P (i)

a of selecting any of the L possible
actions depends on its present action-value Q(i)(s, a), and on
the number of times k(i) that action a has previously been
selected when the system was in state s:

P (i)
a =


1

L
, for Ψ

(i)
a = 0

Ψ
(i)
a (1− tanhφ

(i)
a )∑L

j=1 Ψ
(i)
j (1− tanhφ

(i)
j )

, for Ψ
(i)
a > 0

(6)
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where

Ψ(i)
a = Q(i)(s, a) +

L∑
j=1

∣∣Q(i)
j (s, a)

∣∣,
φ(i)
a =

k(i)

i
.

(7)

Note that, in (6), Ψ(i) > 0 is used in place of the action
value Q(i)(s, a) which, if negative, would result in unfeasible
probabilities. We choose the hyperbolic tangent as a suitable
weighting function since 0 6 tanh(φ) 6 1 for φ > 0.

The above strategy achieves a tradeoff between exploration
and exploitation, and curtails the detrimental effects of un-
guided exploration on performance.

IV. SQLR DESIGN

A. Key idea

In Section III, we have described a system that performs
load balancing, admission control and horizontal scaling.
The load balancer is simple and fair to active VMs, and
optimizes resource utilization while minimizing AC blocking
events [32]. The AC agent runs based on a QoS consideration:
accepted tasks should receive a reasonably predictable service
time. Another learning agent runs the third and most central
component of our algorithm: horizontal resource scaling. This
agent decides based on a cost-benefit tradeoff: utilize the least
number of VMs so that the AC blocking rate be under a target
threshold. With the above, we can formalize an optimization
problem and design a framework to dynamically optimize the
resources allotted to service a workload, as shown hereon.

B. Problem formalization

With the learning model described in Section III, the re-
source adaptation problem we tackle in this paper can be
stated as follows: Maximize the number of served tasks by
horizontally scaling the number of VMs as workload evolves
over time. Minimize the number of instantiated VMs that run
a given service, under the constraint that the probability to
block a service request remains below a predefined threshold.

Formally, let Xji(t) = 1 if task j arrives at time t and
is assigned to VM i, and Xji(t) = 0 otherwise. Also, let
Yji(t) = 1 if task j is running on VM i at time t, and 0
otherwise. Call V (t) the number of VMs activated at time t,
Vmax the maximum number of VMs reserved for an ASP, A(t)
the set of tasks arriving at time t, and J (t) the set of tasks to
be served at time t. Let Pblk be the ideal blocking probability
set out in the SLA, and ρj be the contribution of task j to the
utilization level of a given VM. Finally, call xlim the utilization
level above which response times become unpredictable.
We can express our problem formally as:

min
1

T

∫ T

0

V (t) dt (8a)

s.t.:

∫ T
0

∑V (t)
i=1

∑A(t)
j=1 Xji(t) dt∫ T

0
A(t) dt

> 1− Pblk , (8b)

1 6 V (t) 6 Vmax ∀t , (8c)∑V (t)
i=1 Xji(t) 6 1 , (8d)∑V (t)
i=1 Yji(t) 6 1 , (8e)∑
j∈J (t) ρjYji(t) 6 xlim, 1 6 i 6 V (t) . (8f)

Constraint (8b) ensures that the number of tasks dropped
remain within SLA bounds for service unavailability. Con-
straint (8c) ensures that the number of VMs reserved for an
ASP is bounded. Constraint (8d) mandates that each task be
assigned to a single VM, and (8e) indicates that each task
can only be running on one VM at a time. Constraint (8f)
avoids driving the utilization of the VM above an allowable
level xlim, which is the threshold learned by the AC agents.
This ensures that tasks admitted to a VM will not suffer
from unpredictable response times. Fig. 1, extracted from the
extensive analysis in [30], illustrates what AC agents typically
observe. Section IV-D details how the AC agents detect and
learn the knee of the curve, so as not to drive a VM’s CPU
utilization beyond limits that would make the response time
unpredictably high.

Besides A(t) and ρj being unknown functions, the problem
presented in (8a) is a variant of the knapsack problem, which

TABLE III
KEY NOTATION EMPLOYED IN THE DEFINITION OF SQLR

Variable Meaning Description

Q(S(t),A(t)) Action-value The value of the Q function at time t.
R(t+1) Immediate reward The reward the agent receives after taking action a and ending up in state S(t+1).
α Learning rate A fraction that modifies the reward update and influences the speed of convergence.
ε Randomness factor The probability of selecting an exploratory action prior to convergence.
εmin Minimum randomness factor The minimum probability of selecting an off-policy action after convergence. We set this at 0.
k State visits/action counter The state- and action-dependent number of times the system was in state s and selected action a.

M
Visits to state s after which
ε(s) = εmin

A statistically significant number of visits to achieve a stable policy for a given state. For the AC, we set
M = 1000. For the scaling agent, we set it at ten times the number of actions allowed in that state.

γ Discount rate ∈ (0, 1] Expresses the current value of a future reward due to the present action. We set γ = 0.8.
xbnd Utilization upper bound The utilization level above which response times become unpredictable [30]. We set xbnd = 60%.
xn Highest quantized utilization The quantized utilization level closest to xbnd used in the AC policy (see Fig. 4). We set n = 3 in (9).
xlim Utilization admission limit The practical limit of resource utilization obtained after training the AC.
θ Resource cost modifier Multiplier that weighs the cost of deploying resources in the reward function.
β Blocking probability modifier Multiplier that weighs the blocking rate in the reward function.
Pblk Target blocking probability We set Pblk = 0.001, corresponding to service availability of 99.9%.
Rmin Minimum reward Small, positive reward for maintaining the blocking probability lower than Pblk. We set Rmin = 0.001.
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Fig. 1. Response time variation with load based on queuing theory re-
sults [30]. The variation is approximately linear just below the “knee” of
the curve. If utilization levels remain below this value, response times are
highly likely to be predictable and reliable.

is NP-hard and cannot be solved exactly in polynomial time.
Furthermore, the analytical modelling of ρj is impractical in
real environments, because of the excessively high number of
concurrent factors that affect it. These include the complexity
of an incoming task, the architecture of computing hardware,
operating system scheduling and thread handling, the presence
of ongoing background processes, etc.

Instead, the Q-Learning approximation described in Sec-
tion III solves the NP-hard problem near-optimally, under
the uncertainty of operational system conditions. Indeed, Q-
Learning is known for its versatility in finding near optimal so-
lutions in uncertain settings [29]. We remark that problem (8a)
optimizes VM provisioning. This means that the horizontal
scaler should learn the behavior of the AC agent so as to
block the least number of tasks with the least possible number
of VMs. Therefore, we chain two separate learning processes:
first the AC agent learns how to accept or reject workload to
avoid unpredictable service times; then the scaler learns how
to act around the AC’s behavior to avoid blocking with the
least number of VMs.

For a practical implementation of the optimization, we use
the block diagram shown in Fig. 2. We call the resulting
system SQLR, read as “scaler,” because we have crafted a defi-
nition of state that embeds short-term memory, as described in
Section III-C, for the scaling agent, and because SQLR can be
classified as a dynamic resource-provisioning scheme. SQLR
comprises: a LB, AC and a scaling agent. We describe each
component in the following subsections.

C. Load balancer

As this component does not constitute a contribution of our
work, we only mention it briefly here. We log CPU utilization
at 1 s intervals. Our LB works by delivering an incoming
task to the VM with the lowest, most recently logged CPU
utilization at the time such task arrives. This policy is similar
to server state-based strategies used for classic web traffic [33],
and yields a high probability that the available resources are
evenly loaded in the long run. Hence, the disparity in overall
response times is also reduced.

D. Admission control

In a resource-constrained system, admission control ensures
that the system does not take on more tasks than it can

LB

AC

VM1

VM2

VMn

Hypervisor

Scaling Engine

Monitor

Action
Analyzer

Scaler

Action
Evaluation

SQLR

Fig. 2. SQLR block diagram. “LB” is the Load Balancer agent and “AC” is
the Admission Control agent.

satisfactorily handle. According to [30], it is possible to use
the theoretical utilization bound (xbnd) to make the admission
decision. However, to obtain the best results for an actual
system, the admission control agent must learn an appropriate
admission limit (xlim) that takes the system configuration into
account. As mentioned in Section III, we do this by treating
admission control as an MDP.
AC action and state spaces—The action space of the AC
agent consists of the mutually exclusive options:

1) ADMIT: allow an incoming task to be served by a VM;
2) DROP: refuse service to an incoming task.
The state space derives from the quantized levels of resource

utilization on the VM serving the task. The resource we
consider in this work is CPU utilization. This low-level metric
correlates well with the workload, and does not require any
domain-specific knowledge of the deployed application [22].
Bearing in mind that CPU utilization greatly impacts response
times, we choose the upper utilization threshold as the one
beyond which the service times will likely violate the agreed
SLO. We use this threshold as a target to determine the
rewards/penalties the admission controller will accrue as it
builds a policy using Q-Learning. Building an AC policy
therefore consists in identifying the most rewarding action
(ADMIT or DROP) for each state.
Discretized AC state space—In order to obtain a discretized
state space, we partition the utilization values corresponding
to predictable response times into regions. To this end, we
employ the geometric quantizing function:

xj =

⌊(
1−

(1

2

)j)
xbnd

⌋
, j = 0, 1, . . . , n, (9)

All values above xn (which correspond to a CPU utilization
greater than

(
1 − (1/2)n

)
xbnd) can be regarded as a single,

undesired state, and need no further quantization. Note that
xn is the quantization level closest to the ideal utilization.
Therefore, operating a VM beyond xn likely leads to service
times that violate SLOs.
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Fig. 3. Influence of CPU utilization on service response times.

By using the geometric quantizer provided in (9), we
achieve both coarse and fine adjustment. The quantizer is
coarse and reduces the state space (and hence the time needed
to train the agent) by sparsely quantizing the load levels just
below xbnd. At loads closer to xbnd, the quantizer becomes
fine-grained, Therefore, the AC agent learns how the VM
responds to such high loads with a small quantization error.
Indeed, it is fundamental to accurately learn which load value
xlim < xbnd ensures predictable service times in a real system.
In fact, the value of xbnd is inferred from ideal theoretical
analysis, hence it is practically too high and may lead to
undesirable service times. Therefore the AC agent employs
xlim < xbnd to make admission choices.

We now explain the details of load limit calculations in
theory (xbnd) and in practice (xlim).
Theoretical AC admission bound—We choose the CPU
utilization threshold xbnd based on the analytical results
described in [30], and relating response times to occupancy in
a processor sharing queue. The time T , taken by a processor
with capacity C operations per second to serve a request
requiring ` operations is given by:

T (ρ) =
`

C − ρ , ρ =
λ

µ
, (10)

where λ is the arrival rate (i.e., the workload) and µ is the
departure rate. The occupancy of the processor ρ is here
considered as its utilization level.

We refer the reader back to Fig. 1, which plots Eq. (10).
The point at which the gradient of the curve changes from an
almost constant value to an exponential rise is chosen as the
threshold beyond which service times become unpredictable
and unreliable. We compute this value by taking the intersec-
tion of the tangent to the curve at the initial point with 0%
utilization with the tangent at the point where the gradient is
approximately 0.5s per 1% rise in utilization. This queuing
theory result for xbnd assumes Poisson arrivals, but it fits
well our experimental observations. An example of such an
observations is depicted in Fig. 3, for the hardware/software
configuration of a VM in our testbed. Considering tasks that
require about 1.2 s to complete, we observe that service
times are relatively constant around 1.2 s for utilization values
lower than 62%. Instead, service times vary wildly for higher
utilization levels. Accordingly, we set xbnd = 60% to ensure
a safety margin when building the discretized state space.
AC admission bound based on learned rewards—The
immediate reward R for the action taken by the AC agent

0

x0 x1 x2
... xn

1xbnd

DROP

ADMIT

A
ct
io
n
S
p
ac
e

State Space

Fig. 4. Q function table to train the AC. The gray area represents the ideal
operating region at which resources are highly utilized and the service times
are within SLOs. The red-shaded area on the right represents the region where
VM operation is likely to cause SLO violations.
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Fig. 5. SQLR action and state space. K is the current number of active
VMs, N∆ is the number of VMs that can be added and N∇ is the number
of VMs that can be removed. In general, N∆ 6= N∇. The state space, whose
parameters are prefixed by (*), comprises the number of active VMs and the
quantized values of the average CPU utilization for the set of active VMs.

is the load x, discretized to the nearest quantized level
boundary (downwards for a DROP decision or upwards for an
ADMIT decision), after an AC decision is made. Therefore,
with reference to Fig. 4, we calculate the reward for making
a decision while the quantized load is xi and observing a
resulting level of utilization x as:

R(x | xi) =

{
xk, if DROP;
xk+1, if ADMIT,

(11)

where k = arg maxj(xj < x). At the boundary, xk = xn, and
xk+1 = xbnd. Beyond the boundary, when x > xbnd, R(x) is
defined as

R(x | xi) =

{
xbnd, if DROP
1
2 (xbnd − 1), if ADMIT.

(12)

As xbnd < 1, Eq. (12) states that the reward for an ADMIT
decision beyond the boundary is negative. This represents a
penalty for violating the allowable CPU utilization limit.

For each xi, the AC agent learns the optimal ADMIT/DROP
policy by using the weighted fair exploration mechanism
detailed in Section III-F: initially, the agent drops the tasks
with probability 0.5, and subsequently it drops or accepts them
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according to the action that corresponds to the highest Q-value
(as computed with (4)) with probability 1 − ε. The training
continues until each state (i.e., each quantized load region) is
eventually marked as either ADMIT or DROP. This is when
the AC policy converges. To do so, the final ADMIT/DROP
marking of a region is determined after a minimum number
of visits. In our case, ε goes to 0 after 1000 learning steps per
load interval, so that if the accumulated Q-value for ADMIT is
higher than the one for DROP, the load region will be marked
as ADMIT, and DROP otherwise. Therefore, by training the
AC agent with stochastic load variations, we can identify xlim

as the highest quantized value xi for which the AC agent
admits tasks.

Given the structure of the chosen reward function, xlim

prudently aims at maximizing the utilization of resources at a
VM without violating response time requirements. Therefore,
the scaling agent can use xlim to make optimal scaling
decisions, as shown in the next subsection IV-E.
Training the AC agent in practice—Having determined xbnd

to be 60%, the geometric quantizer is fully defined and the
AC training phase can start. In practice, we only need to
train one VM, because we have assumed homogeneity across
VMs. Thus, we send tasks towards one VM and start updating
the Q-values for ADMIT an DROP actions in each state. To
explore all quantized levels of CPU utilization, we generate
workload with high variability in inter-arrival times. When we
visit a state for the number of times prescribed in (5), this state
converges, and we lock the policy for this state into either an
ADMIT or DROP decision, according to which one has the
highest accumulated Q-value (4).

E. Scaling agent

We design and implement a Q-Learning scaling agent whose
objective is to achieve as low a blocking rate as possible with
as few resources as possible, according to the task admission
policy AC agents previously learned.
Action and state spaces for horizontal scaling—The scaling
agent adds VMs (scale-out) or removes VMs (scale-in) as
appropriate, given the recent history of utilization of active
VMs. Therefore the action space for the scaling agent is given
by the range of VMs that can be added or removed. The state
space consists of three values (i) the current number of VMs,
(ii) the quantized values of the average CPU utilization for the
set of active VMs in the previous epoch, and (iii) the quantized
values of the average CPU utilization for the set of active VMs
in the current epoch.

We show the state and action spaces for our horizontal
scaling agent in Fig. 5. We represent each permissible action
as a “card” indicating the number of VMs that must be added
or removed when taking the action associated with the card.
Moreover, each card consists of a grid (see Fig. 6) whose
rows and columns are indexed with load levels. These levels
represent the immediate past load and the current quantized
load, respectively, thus expressing the short-term memory
hidden in the state. The cells contain the cumulative reward
obtained by a given state-action pair. Here, we quantize VM
loads uniformly, so as to obtain a more granular view of
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Fig. 6. State space detail for a “card” in the action space. Each cell’s index
pair is given by the quantized level of average system-wide resource utilization
in successive epochs.

system-wide resource utilization than a geometric quantizer
would achieve. We choose uniform steps of 2% in the region
between 0 and 20% of utilization, and steps of 5% in the
region between 20% and xlim. The finer sampling between 0
and 20% utilization yields better control when the workload is
low: in these cases, only a marginal change is observed when
a VM is added or removed. By way of contrast, if utilization
is already high, adding or removing a VM causes significant
utilization changes. Thus, quantizing utilization more coarsely
already enables the detection of such changes, while reducing
the state space. Finally, the region above xlim conglomerates
into a single, large level. In fact, at this region of utilization, a
coarse scale-out decision is most likely, and does not require
a fine resolution in the state space representation.
Scaling rewards—The scaling reward function (Rsqlr) con-
sists of two components: (i) Rblk, computed by comparing the
blocking probability P observed after a scaling to the maxi-
mum allowable blocking rate Pblk, and (ii) Rres 6 0, which
expresses the cost of resources, and depends on the number
K of active VMs after the scaling decision). Specifically:

Rsqlr = Rblk +Rres;

Rblk =

{
Rmin, if P 6 Pblk;

θ (Pblk − P ) , if P > Pblk;

Rres = β(1−K),

(13)

where Rmin is a small positive reward that the agent accrues
as an incentive for keeping the system within the allowable
service outage limits. The training parameters θ and β act
as modifiers, so that blocking probability violations receive
a different penalty than the use of unneeded extra resources.
This makes the scaling agent flexible. In fact, different CSPs
may give different weight to SLOs violation penalties and cost
savings achieved by reducing resource usage.
Initialization—As stated earlier, each card in the bubble
shown in Fig. 5 consists of a grid, whose cell indices cor-
respond to the average level of utilization of the active VMs
over the previous epoch and the current epoch (cf. Fig. 6).
We initialize the diagonal elements for the cases where the
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number of VMs remain unchanged (card “0” in Fig. 5) as non-
zero values. This helps drive initial decisions, e.g., to penalize
scale-in and promote scale-out if the average utilization of the
current number of VMs is too high. We set these diagonal
values based on the following rationale: if the average utiliza-
tion is below xlim, i.e., the safe limit learned by the AC agent,
no blocking is expected (zero probability). Conversely, if the
utilization exceeds xbnd, blocking is almost sure to happen.
Instead, intermediate utilization values xlim < x < xbnd yield
a blocking probability that increases with x. Formally, we
set the diagonal elements to equate the blocking probability
P0(x), defined as follows:

P0(x) =


0, x < xlim

1, x > xbnd

1

2

[
1 + erf

(
η(x)

e√
2

)]
, otherwise

(14)

where
η(x) =

x− xlim

xbnd − xlim
, (15)

and x = x
(t)
1 , x

(t)
2 , . . . , x

(t)
n , 1. The above definition for the

case xlim < x < xbnd yields a smooth transition between
blocking probabilities 0 and 1, as shown in Fig. 7. We recall
the AC agent adaptively learns xlim during its own training
phase, so we can assume that the scaler knows the safe value
of xlim for any admissible number of active VMs. The diag-
onal elements computed above serve as the reference action
values, Q(S(t+1), a), for the updates in (4) after horizontal
scaling.
The scaling procedure—With the above described actions,
states, rewards and initialization, the scaling process is un-
rolled in Algorithm 1. Fig. 8 details a scale-out action. To
describe the latter, we consider starting after a previous action
having taken place at instant t − 1. The first cell index is
the quantized level of the average utilization in the interval
[t−2, t−1). At instance t (bottom bubble), our scaler obtains
the quantized level of the average utilization in the interval
[t−1, t). This serves as the second cell index to be considered
in selecting the action. The current number of active VMs, K,
is also evaluated.

With this triplet of values, the current state is established,
and we are ready to choose a scaling action (i.e., scale-in,
scale-out, or keep the current number of VMs) based on (5)
and (6). To do so, recall that every card corresponds to a
scaling action, e.g., add 1 VM, remove 2 VMs, etc. We check
the convenience of every action by reading the Q-value of the
cell indexed by the quantized average utilization values at the
current epoch (t), and at the previous one (t − 1). Then, we
choose a scaling action based on (5) and (6), by leveraging
the above Q-value entries in every card of the action space
within the bubble defined by K VMs.

For later reference we term the cell of the chosen action
card as R-Cell (marked red in Fig. 8). After waiting shortly
for the VMs to start up or shut down, and for the effect of
the change to become manifest, we reach instant t + 1. We
can now compute the immediate reward as described in (13):
this accounts for the blocking probability observed between

Algorithm 1: Scaling Agent Algorithm
Result: Scaling action, updated table of Q-values
RunCount← 0
n← 0
while True do

Nt ← GETACTIVEVMS()
Ucurrent ← 0
foreach vm ∈ VMs do

Ucurrent ← Ucurrent + GETUTILS(interval , vm)
end
xt = GETQUANTIZEDUTIL(Ucurrent/Nt)
if RunCount >= 2 then

Qt+1 = READQTABLE(Nt, xt, xt−1)
n = GETSTATEVISITS(Nt, xt, xt−1)
Qt = READQTABLE(Nt−1, xt−1, xt−2)
R = COMPUTER(Nt, GETBLOCKING(interval))
R′ = R+ γ ∗Qt+1

∆ = R′ −Qt
// update Q-value
Q(S(t), A(t))← (n/(n− 1)) ∗Qt + (1/n) ·∆
// update state visits
N(S(t), A(t))← n+ 1

end
if n < NRefVisits then

ε← 1− (n/NRefVisits)
else

ε← εmin
end
ArrWFE = 01000ε×1000ε

ArrGRD = 11000(1−ε)×1000(1−ε)
ArrALL = CONCATENATE(ArrWFE ,ArrGRD)
if ArrALL[RANDOMINT()] == 0 then

Scale with weighted fair exploration
else

Scale according to
max(READQTABLE(Nt, xt, xt−1))

end
Nt−1 ← Nt
xt−2 ← xt−1

xt−1 ← xt
RunCount ← RunCount + 1

end

time instants t and t+1, and for the number of active VMs at
instant t+1. We also take into account the accumulated reward
stored in card “0” at the diagonal cell indexed by the quantized
average utilization value over the interval [t, t + 1) (this cell
is colored green in Fig. 8). The above two values are used to
update the Q-value in R-Cell as prescribed in (4).
How to train the scaling agent—After having trained the AC,
we need to create a set of tables of the Q-values for all scaling
actions. The number of tables depends on the highest number
of VMs that can be provisioned, as well as on the number of
VMs that can be added or removed within a single scaling
decision. Then, with an instance of the (already trained) AC
running at each active VM and a global scaling agent running,
we expose the system to varying offered load profiles, and



AYIMBA et al.: SQLR: SHORT-TERM MEMORY Q-LEARNING FOR ELASTIC PROVISIONING 11

0.5

1.0

xlim xbnd

x

B
lo
ck
in
g
P
ro
b
ab

il
it
y

Average system-wide CPU utilization

Fig. 7. Modified error function to estimate the blocking probability component
of the initial Q values of card “0” (Fig. 5) diagonals.

+1
+2

0
-1
-2

+1
+2

0
-1
-2

Update the Q-value
of the red cell based on
that of the green cell

A
ct
io
n
a
:
ad

d
1
V
M

{K}

{K + 1}

s(t+1)

s(t)
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value in the red cell receives the update as specified in (4). One component
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act according to Algorithm 1. As the scaling agent adds or
removes VMs from the host, we monitor the blocking rates
experienced and the number of running VMs, and generate
rewards to update the table of Q-values related to the scaling
agent’s decision.

We check the relevant table every 120 seconds, which
constitutes one epoch, and immediately call for a scaling
decision whose action is selected according to (5) and (6).
When the number of visits of a state reaches the prescribed
count level M , then ε = εmin and the policy for that state has

Fig. 9. Testbed setup. (1) Dell T640 server: Hosts KVM hypervisor, VMs,
Admission controllers and Scaling Agent. (2) Client PCs: Generate requests
towards the server according to demand profile. (3) Gbps switch: Creates LAN
between Clients and Server.

converged.

V. EXPERIMENTS

A. Testbed

In order to evaluate the effectiveness of our scheme, we run
experiments on a testbed that mirrors the operations of a CSP.
We set up the testbed as shown in Fig. 9. The architecture of
our Dell T640 server consists of two processor sockets with
non-uniform memory allocation (NUMA), 10 hyper-threaded
CPU cores per socket for a total of 40 logical cores with a
variable clock rate. The server memory is 128 GB.

The server runs Ubuntu 18.04 LTS as its operating system
and acts as a host for VMs. The client PCs run on Ubuntu
16.04.3 LTS. We use the KVM hypervisor, and manage the
VMs using libvirt [34]. Each instance of a VM is configured
with 4 virtual CPUs and 4 GB of memory. The client PCs and
the server are connected via a Cisco switch to form a Gigabit/s
local area network. The PCs function as ASPs running bash
scripts that generate requests to the server with varying rates
as depicted in Figs. 10 and 11.

As our cloud application, we choose the algorithm used
for proof-of-work computation in bitcoin mining [35]. It
is a suitable stand-in for resource-hungry, computationally
challenging tasks that are commonly deferred to the cloud such
as encryption [36] and transcoding [37], [38]. Each iteration
of this computation involves incrementing a counter variable
(nonce), hashing it together with a given hash code and
merkle root, and then hashing the outcome again. The hashing
mechanism is the 256-bit Secure Hash Algorithm (SHA-256).
We will use the word job to refer to one proof-of-work
iteration from hereon. In order to mimic the varying degrees
of complexity of typical cloud applications, we consider a
different number of iterations for each request. Specifically,
a request can generate any number of iterations in the discrete
set {300k, 400k, . . . , 1200k}.

The server launches VMs to handle incoming requests
according to one of the following schemes: static provisioning,
extended Kalman filtering based prediction [19], RLPAS [17]
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and our proposed scaling scheme. All agents, including the ad-
mission control and load balancer, are implemented in Python
and run within the host operating system. For reproducibility,
we fully share SQLR’s code.3

As mentioned in Section II, the scheme in [19] leverages a
queuing system model enhanced with an EKF. It makes near
time predictions of response times based on measurements
of arrival rates and system utilization. Using a queue model
refined by a tuned EKF with the maximum allowable response
time (from an SLA) as input, the scheme then calculates the
number of nodes needed and scales appropriately to approach
this number.

We make some slight modifications to the EKF algorithm
to make it more robust. We increase the interval between the
predict and update phases from 10s to 90s. This provides
sufficient time for starting up a VM and letting it handle tasks.
Additionally, instead of the instantaneous measured system
utilization and response times, we provide their average over
the predict and update intervals of the filter as input to the
EKF. This prevents the scaler from over/under estimating
input parameters, and thus yields a fairer comparison to our
scheme. Further, we dispense with the network delay in the
system model as the response times are taken directly on the
server. We consider a single-tiered application, and one class
of requests. This also has the effect of simplifying the process
and measurement noise covariance matrices to have size 2×2
(as only two parameters are taken into account in each case),
thereby enhancing the tuning of the EKF.

We also compare our scaling system to the state-of-the-art
RLPAS proposed in [17]. We only consider the response time
parameter in our implementation and not throughput, since our
stand-in cloud application is compute-intensive. Owing to the
use of the load balancer, which distributes the offered load
evenly, we set the ratio of utilized to provisioned VMs to 1.

For our scheme, we limit the number of VMs that can
be added or removed within a single scaling action to 2.
This truncates the action space, reducing the number of visits
required for a state to achieve a stable policy to M = 50
(cf. Table III). Therefore, it also limits the number of learning
steps needed to attain a stable policy.

As part of the training for our scheme, we combine several
workload profiles with different averages, resulting in the
composite shown in Fig. 10.

For the test workload, we again use a combination of several
profiles with different averages to obtain the composite shown
in Fig. 11. To achieve this, we configure requests to be sent
with inter-arrival times ω drawn uniformly at random from
the set of values {0, 1, · · · , ωmax} seconds, for each hour
slot. For example for the busy-hour slot ωmax = 5 s and
the for low workload period ωmax = 9 s. This results in
high entropy (given the uniform distribution of inter-arrival
times) but still allows us to procure similarities between
workloads, and evaluate contextual knowledge re-use. Our
choice of inter-arrival statistics leads to patterns encountered
in real workloads, with rapid variations over short intervals,
but with veritable trends over longer observation windows. It

3https://github.com/Constantine-Ayimba/SQLR
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Fig. 10. Pre-training workload profile. The red line is the moving average of
the number of requests per minute, computed over windows of 30 samples.
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Fig. 11. Test workload profile. The red line is the moving average of the
number of requests per minute, computed over windows of 30 samples.

also includes sudden bursts and drops, such as those observed
at the start of hours 8, 10, 14 and 18.

B. Implementation on large scale

Although our experiments took place on a small testbed,
our scheme still lends itself well to large-scale deployments,
e.g., in data centers. The latter can be achieved via the
modular approach presented in [38]. A conventional layer-4
load balancer such as [39] can be used to route tasks to
physical servers as shown in Fig. 12. Given the cost benefits of
operating homogeneous hardware in large scale settings [40],
most servers in a data center will have the same specifications.
This means that, in most cases, the scaling policies learned for
one server can be re-used with no need for retraining.

VI. RESULTS

In this section, we show the effectiveness of the AC and
scaling policies. We then examine the results with respect to
two SLOs: service availability (as measured via blocking rates)
and response times.

A. Admission control policy convergence

First, we briefly discuss our AC agent. We recall that this
component learns the appropriate utilization limit, xlim, that
ensures bounded response times.

Fig. 13 shows how the learning algorithm for the AC
trades off exploration and exploitation using our weighted

https://github.com/Constantine-Ayimba/SQLR
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Fig. 12. Schematic of a modular large-scale deployment. (From [38].)

fair exploration scheme, cf. Eq. (6). The evolution of the
accumulated reward for a subset of three state-action pairs is
shown in Fig. 13a. Red, blue and teal-colored lines denote the
Q-value evolution for low, intermediate, and high utilization
levels, respectively. Dashed lines refer to Q-values for drop
decisions, wheres solid lines refer to admit decisions. In the
initial learning phases, the difference between the values is not
as distinct, and the admission control agent makes a DROP or
ADMIT decision with about the same probability. After 1000
learning steps, the agent has understood which decisions yield
better rewards (or at least lower penalties). For example, in
high utilization regimes (teal lines), DROP decisions (dashed
line) have a much higher Q-value, and are thus much more
likely than ADMIT decisions (solid line). Conversely, at low
utilization (red lines), ADMIT decisions are much more likely.
At intermediate utilization, the difference between the Q-
values of ADMIT and DROP decisions is not as stark, but
still associated with a DROP decision.

The above results suggest that utilization levels up to 0.45
result in ADMIT decisions, whereas levels exceeding 0.45 start
making DROP decisions more convenient. In other words, the
scaling agent learns the limiting value of utilization xlim to be
45%. Therefore, once the LB has chosen a VM that should
serve an incoming task, the AC agent drops the task if the
VM’s utilization is higher than this learned value of xlim, and
accepts the requests otherwise.

B. Scaling agent’s policy convergence and complexity

In order to characterize the overall state of convergence of
the scaling agent, we consider the probability of randomness
in action selection, ε. Recall that, for each state, we decrease
ε from 1 down to 0 linearly with the number of visits to that
state. Therefore, we use 1−ε to express the convergence level,
where ε is the average value of ε computed across all states.

As shown in Fig. 14a, in the initial stages, e.g., after one
full cycle of the test workload in Fig. 11 (green curve), ε
is high in every state, such that its distribution has a mean
ε̄ = 0.97, corresponding to approximately 3% convergence.
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Fig. 13. Admission Control training. Red curves: low utilization level between
30% and 45%. Blue curves: intermediate utilization levels between 45% and
53%. Cyan curves: high utilization levels of 60% and above. Dashed lines
convey the Q-values of DROP decisions, solid lines of ADMIT decision.

The scaling agent progressively gains greater experience about
the workload profile and the corresponding system states.
Thanks to this, the agent develops the appropriate scaling
policy for each state, and acts less randomly. This yields
diminishing values of ε in the related states and its distribution
shifts leftwards and upwards, such that ε̄ = 0.065 at the
30th cycle (brown curve) in Fig. 14a, which corresponds to
approximately 93.5% convergence.

Over subsequent runs, the weighted fair exploration mech-
anism drives the scaling agent to visit the most pertinent
states more often, as they procure better rewards. These states
correlate more strongly to the underlying workload profile.
At advanced levels of convergence, with low values of ε̄,
the scaling agent chooses actions promising higher rewards,
resulting in more visits to familiar states with fully converged
policies. This is shown in Fig. 14b, where those states for
which the policy has converged (yellow bars) are visited most
likely as expected. However, weighted fair exploration still
ensures a few visits to less familiar states (blue and green bars),
and guarantees that the agent will be able to learn different
policies, should it observe different workload patterns in the
future.

For a reinforcement learning agent, the ultimate aim is take
actions that maximize the accumulated reward; or minimize
the penalties (negative rewards). Fig. 15 shows the sum of
all the Q-values corresponding to any action, computed at
different snapshots. For an increasing number of learning
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(b) State visitation probability with convergence at approx 93.5% (ε̄ =
0.065). The scaling agent acts more greedily, exploiting actions in the
converged states.

Fig. 14. Scaling agent convergence behavior.

steps, the scaling agent approaches convergence, and accrues
progressively lower penalties. As depicted in Fig. 15, policy
convergence occurs rapidly within the first 5000 epochs. This
is because the parts of the workload with similar patterns
influence the scaling agent to visit some states more often.
The rate then slows as the scaling agent should observe less
frequent workload patterns repeatedly in order to decide on the
best policy. After about 30k epochs, most pertinent states have
fully converged. The negative values are expected because
of the way we structured the reward function in (13): this
function issues penalties commensurate to the number of VMs
provisioned in excess of the first one.
Complexity—We first consider complexity in terms of the
number of learning steps required to attain convergence. Recall
the representation of utilization in the agent’s state space as
depicted in the “cards” of Figs. 6 and 8. Each cell of a
grid requires M updates (the number of visits until εmin) for
convergence. Call S the utilization component of the agent’s
state space and define χ := |S|. Define also the total number
of actions from all states as ζ :=

∑
i∈n |A(i)| where n is the

maximum number of VMs available to an ASP, and A(i) is
the total number of actions available to the scaling agent when
i VMs are active. In the worst case, the maximum number
of steps required to reach convergence is at most O(Mζχ)
steps. Given that χ < Mζ < χ2 by design, our complexity
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Fig. 15. Cumulative Q-Values, i.e., the sum of Q-values for all states, taken
at different snapshots in the course of the experiment.

{1} {n− 1} {n}{2} {3} {4} {5}

Fig. 16. Markov chain of possible actions from selected states. The numbers
in curly brackets within each bubble, {·}, point to the number of VMs. Right-
pointing arrows from a state indicate scale-out, whereas left-pointing arrows
indicate scale-in. The re-entrant arrows above each bubble indicate no scaling.

is between O(χ2) and O(χ3) which aligns with the classical
analysis presented in [41].

In our implementation, for the worst-case complexity we
have that the total number of VMs is n = 10, and the number
of permissible actions A(i) depends both on the number of
active VMs i and on n. We clarify this through the Markov
chain representation in Fig. 16, which shows all possible
transitions between different numbers of VMs, denoted as the
value {i} inside each bubble, 1 6 i 6 n. For example, when
1 VMs is active, the agent can decide to keep 1 VM or rather
scale out to 2 or 3 VMs. Instead, when 5 VMs are active, the
agent can remove or add up to N∇ = N∆ = 2 VMs, or keep
the current 5 VMs. Therefore, the admissible actions are 3 (for
states having 1 and 10 VMs), 4 (for states having 2 and 9 VMs)
and 5 for the rest. Therefore ζ = 2 · 3 + 2 · 4 + 6 · 5 = 44.
The utilization component of the state space comprises 10
quantized levels (from 0% to 20%), 5 levels (from 20% to
45%) and 1 level (beyond 45%). Therefore, χ = 16·16 = 256.
Because we set M = 10|A(i)|, 1 6 i 6 n, the complexity of
our implementation is O(10 · 44 · 256) = O(112640) steps.
We ameliorate this worst-case complexity by implementing
weighted fair exploration (cf. III-F) and initializing the Q-
values of the diagonal elements (cf. Section IV-E).

Furthermore, the operational complexity of the scaling agent
presented in Algorithm 1 is O(1) for all operations except
for the load summation loop, which is O(it), where it is the
number of active VMs at epoch t.

C. Scaling profiles

We now move to discussing scaling profiles in response
to the test workload of Fig. 11. We do so for all schemes
considered in this work, namely SQLR, RLPAS [17], static
provisioning, and the EKF-based scheme [19]. The latter
produces the profile depicted in Fig. 17. The scaling behavior
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Fig. 17. VM scaling for the EKF-based horizontal scaling scheme proposed
in [19]. We represent resource savings with respect to static over-provisioning
with 10 VMs via the gray-shaded area.
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Fig. 18. VM Scaling for RLPAS: the Q-Learning horizontal scaling scheme
proposed in [17]. We represent resource savings with respect to static over-
provisioning with 10 VMs via the gray-shaded area.

in this scheme is quite stiff, because the EKF tends to filter
out bursty workload, that would require greater agility instead.

The RLPAS scaling profile is depicted in Fig. 18. RLPAS
is quite agile compared to the EKF-based scaler. However, it
is susceptible to premature scaling decisions. In fact, it relies
on the instantaneous workload arrival rate, which is highly
stochastic in the test workload profile. Moreover, both the
EKF-based scaler and RLPAS require some knowledge of
the underlying application, such as its ideal response time.
From empirical observations on our test application, we set
such ideal response time at 5 µs per job for both schemes, as
this amount of time is amply sufficient to serve the greatest
majority of the jobs.

The scaling profile obtained from our proposed scheme,
in reference to the test workload, is shown in Fig. 19.
The behavior of the scaler steadily improves with increased
exposure to the test workload. As more states converge, the
scaling behavior becomes more predictable, as seen by moving
from Fig. 19a to Fig. 19b and Fig. 19c. The number of VMs
provisioned settles around a suitable number that achieves the
best tradeoff between resource cost and penalties as driven
through the training parameters θ and β.

Moreover, in Fig. 19b, we see that the first intervals to
exhibit convergence (hence greater stability in the scaling
behavior) are those with higher similarity to the training
workload of Fig. 10. For instance the intervals of hours 6 to 8
and 16 to 18, with an average of 40 requests per minute (cf.
Fig. 11), closely resemble those of hours 1 to 4 and 20 to 23

0 6 12 18 24
0

2

4

6

8

10

Time [h]

N
u
m
b
er

o
f
V
M
s

(a) After 10 cycles, at 59% convergence (ε̄ = 0.41). With θ = 1,
β = 0.01. We represent resource savings with respect to static over-
provisioning with 10 VMs via the gray-shaded area.
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(b) After 20 cycles, at 89% convergence (ε̄ = 0.11). With θ = 1,
β = 0.01. profile. We represent resource savings with respect to static
over-provisioning with 10 VMs via the gray-shaded area.
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(c) After 30 cycles, at 94.5% convergence (ε̄ = 0.065). The lighter
shade of gray area represents resource savings made compared to static
over-provisioning with 10 VMs for Case 2. The darker shade of gray
represents extra resource savings made in Case 1 compared to Case 2.

Fig. 19. SQLR scaling behavior evolving with experience. For this training
phase, we set Pblk = 0.001.

of the training workload (cf. Fig. 10). This shows that SQLR
can re-use contextual knowledge learned from one workload
on any subsequent one with similar characteristics.

Assigning different values to the training parameters θ and
β results in different scaling responses. As shown in Fig. 19c,
a low value of θ relative to β (Case 1) results in cost-focused
scaling policies that emphasize resource cost more than service
unavailability due to blocking. This is the same configuration
as in Figs. 19a and 19b. When θ � β, as in Case 2, more
service-focused policies are learned, giving greater importance
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Fig. 20. Blocking rates over two-minute intervals. Two SQLR configurations
are shown: Case 1 (θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001). For
clarity, a moving average filter is applied with a window size of 30 samples.

to service availability than to resource cost.

D. Blocking rates

The exploration mechanism of the Q-Learning algorithm at
the core of SQLR means that it may sometimes make sub-
optimal decisions in less known states, resulting in under-
provisioning (such as at hour 18 for case 1, and at hour 5
for case 2 in Fig. 19c). This results in relatively high block-
ing rates, as shown in Fig. 20. Our guided fair exploration
mechanism ameliorates the effects of such under-provisioning,
ensuring that their duration is short.

Since the EKF-based scaler relies on workload measure-
ments to predict response times and scale accordingly, it is par-
ticularly susceptible to under-estimating resource requirements
when demand is low. This is evident at off-peak intervals in
Fig. 20 where, between hours 0 and 7 and between hours 17
and 24, the EKF-based scaler allocates 1 VM on average,
resulting in considerable blocking, much higher than the other
schemes. The RLPAS scaler adjusts resources too abruptly,
resulting in unpredictable blocking at both peak and off-
peak hours. This is due to its dependence on direct workload
measurements, which are highly stochastic.

Static provisioning results in significant under or over-
provisioning, as exhibited by the black (2 VMs) and blue
(10 VMs) curves, respectively. Both situations are clearly
untenable: on the one hand, the CSP risks serious penalties
for service unavailability; on the other hand, the CSP incurs
significant yet unnecessary operational expenditure to maintain
superfluous resources, even though over-provisioning results in
zero blocking.

The distribution of blocking rates is shown in Fig. 21. The
greater the number of VMs provisioned, the lower the blocking
rate, as an incoming request will likely find a sufficiently
under-utilized VM. Given the preceding insight, the EKF-
based scaler that provisions the lowest number of VMs,
exhibits poor blocking rate performance. RLPAS also performs
poorly because of its premature scaling behavior, which oc-
casionally leads to VM removals too soon when workload
transients occur. Consider instead Case 2 of our scaling
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Fig. 21. Blocking rate distribution. Two SQLR configurations are shown:
Case 1 (θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001).

scheme. This configuration penalizes blocking more heavily
than provisioning extra VMs by setting θ � β in Eq. (13).
Hence, it performs nearly as well as over-provisioning with
10 VMs. If lower service availability is acceptable, our scheme
can prioritize resource cost over blocking, but still achieve
reasonably low blocking rates (Case 1).

E. Service times

The distribution of service times is shown in Fig. 22. We
obtain the service time per job by dividing the service time
of each request by the corresponding number of proof-of-
work iterations it generates. These response times include the
administrative overhead that the hypervisor incurs to switch
between the host and guest while managing VMs. It also
includes context switching between user mode and kernel
mode of the corresponding operating systems.

This overhead increases with the number of VMs being
administered as well as with how often they switch context.
Dynamic scaling, which entails starting up and shutting down
VMs, exacerbates the latter. The combination of these factors
affects SQLR’s case 2 greatly, as it incurs higher penalties
for blocking than resource usage. This is because the policies
of SQLR’s case 2 implicitly employ more VMs. Therefore,
SQLR’s case 2 closely follows the static over-provisioned
case with 10 VMs, that incurs high administrative overhead
throughout.

However, the over-provisioned scenario still provides the
ideal case with the lowest-variance (highly predictable) service
times. Both configurations of our scheme closely approach this
ideal case with about 96% of the requests being served within
5 µs per job, compared to 95.5% for the over-provisioned case,
86.5% for the EKF case and 87.7% for RLPAS.

Moreover, for SQLR’s Case 2 (θ = 10, β = 0.001), the
improvement in the proportion of responses within the cutoff
service time of 5 µs is only marginal, compared to the more
cost-focused Case 1 (θ = 1, β = 0.01). This is despite the
extra amount of resources deployed in Case 2, and is primarily
due to the additional administrative overheads incurred.

In order to compare the scaling schemes without the biasing
effect of the administrative overhead, we carry out a process
akin to noise filtering in communication systems. We do this
by first obtaining the average service times over two-minute
intervals, and then applying a moving average filter having a
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Fig. 22. Service time distribution per job. Two SQLR configurations are
shown: Case 1 (θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001).
The service time for each request is divided by the corresponding number
of iterations it generates to obtain the time per job.

window of 30 samples. Since context switching happens in the
order of clock cycles, these two operations over intervals that
are orders of magnitude longer than a clock cycle spread the
cost of switching overhead over time and smooth the curves.

When we apply the operations stated above to the service
time per job, we obtain the results depicted in Fig. 23.
Both SQLR configurations closely follow the over-provisioned
policy with the ideal response times. At low workload (hours
0-7 and 17-24), the administrative overhead to maintain a large
number of VMs outweighs the gain of better service times
resulting from the use of extra resources. Over these intervals,
our scheme performs slightly better than the 10-VM case by
provisioning fewer VMs. Conversely, the EKF-based scaler
still under-performs: the single VM it provisions over these
intervals is not sufficient to meet the demand within the cut-
off service time. The RLPAS scaler, owing to its abrupt scaling
behavior, exhibits response times that oscillate about those of
the more stable EKF scaler.

This marked difference in response times, owing to differ-
ences in the scaling mechanisms, is clearly depicted in Figs. 24
to 27, where we compare the soft blocking performance (the
proportion of admitted requests whose service times extend
beyond our cut-off of 5 µs per job). In these heatmaps,
we consider only regions with statistical significance (30 or
more responses). Moreover, the white region indicates resource
allocation choices that remain unexplored for the considered
input load. For the severity heatmaps of Figs. 24b, 25b, 26b,
and 27b, the white region indicates those allocations leading
to service times within the limit of 5 µs. The offered load
values on the y-axis indicate the upper bound with the value
immediately below indicating the lower bound, e.g., “<20”
indicates the interval [10,20) requests per minute. Therefore, in
panels (a) of Figs. 24–27, the best behavior is shown as yellow
hues, as opposed to unwanted behavior (blue hues). Moreover,
a larger number of yellow-colored cells denotes greater scaling
agility through appropriate system states. Conversely, panels
(b) of Figs. 24–27 convey best scaling behavior both through
yellow hues and through the presence of a greater number of
white cells.
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Fig. 23. Moving averages of service times (taken over a window of 30 samples
to smooth out switching overheads). Two SQLR configurations are shown:
Case 1 (θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001).

As depicted in Fig. 24, the EKF scaler employed by [19]
is prone to overruns even under light loads, given that it is
very conservative in allocating extra VMs. As a result, this
increases the strain on the few active ones. Fig. 25 shows
that RLPAS, instead, is prone to more widespread overruns
across all loads. This is because it prematurely scales in, even
at high loads, after transients in workload measurements. In
our scheme, whose responses are shown in Figs. 26 and 27,
a significantly smaller proportion of service times exceed the
cut-off time (particularly at moderate to high offered loads). In
fact, our scheme is more sensitive to abrupt workload changes,
and assigns resources in a more agile fashion compared to the
EKF-based scheme. The effect of the EKF is to quench scaling
decisions, especially in the presence of short-lived workload
bursts.

Further, comparing the two configurations of our scheme
shown in Figs. 26 and 27, the provisioning policies of Case 2
result in fewer instances of soft blocking than Case 1. This
is because Case 2 provisions more VMs on average, which
increases the likelihood of operating them at lower CPU loads.
This allows more task admissions and lower service times.
High severity (particularly in Case 2) comes from exploratory
actions at high demand, whereby our scaler momentarily scales
in. However, by evaluating the sub-optimality of these actions,
our weighted fair guided exploration quickly scales out, as is
evident around hours 10 and 12 in Fig. 19c.

F. CPU utilization

The average CPU utilization over the duration of the
experiments is shown in Fig. 28. As before, we apply a
moving average filter with a window of 10 samples to each
curve. SQLR Case 1, SQLR Case 2, and the over-provisioned
case with 10 VMs result in average utilization levels below
20%. The EKF scaler and the under-provisioned case result
in utilization levels above 25% during the peak period. The
RLPAS scaler results in a few excursions into utilization levels
above 25%. Note that no curve passes 45% utilization in
Fig. 28, as the AC learned not to admit tasks beyond this
limit regardless of the employed scaling scheme.
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Fig. 24. Soft Blocking Probability for the EKF scaler. (a) Frequency of blocking: the number of responses exceeding 5 µs as a fraction of the total number
of responses. (b) Severity of blocking: the mean deviation from 5 µs of the responses exceeding 5 µs. 86.5% of the responses are within 5 µs per job.
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Fig. 25. Soft Blocking Probability for the RLPAS Scaler. (a) Frequency of blocking: the number of responses exceeding 5 µs as a fraction of the total number
of responses. (b) Severity of blocking: the mean deviation from 5 µs of the responses exceeding 5 µs. 87.7% of the responses are within 5 µs per job.
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Fig. 26. Soft Blocking Probability for SQLR’s Case 1 (θ = 1, β = 0.01). (a) Frequency of blocking: the number of responses exceeding 5 µs as a fraction
of the total number of responses. (b) Severity of blocking: the mean deviation from 5 µs of the responses exceeding 5 µs. 95.6% of the responses are within
5 µs per job. The instances of high severity are mainly due to exploratory scale-in actions in states where ε > εmin.
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Fig. 27. Soft Blocking Probability for SQLR’s Case 2 (θ = 10, β = 0.001). (a) Frequency of blocking: the number of responses exceeding 5 µs as a fraction
of the total number of responses. (b) Severity of blocking: the mean deviation from 5 µs of the responses exceeding 5 µs. 96.2% of the responses are within
5 µs per job. The instances of high severity are mainly due to exploratory scale-in actions in states where ε > εmin.
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TABLE IV
SUMMARY OF RESULTS

Scheme Resources
saved

Requests served
with <5% blocking

Requests served
with <5µs per job

Static 10 VMs 0.00% 100% 95.47%
Static 2 VMs 80.00% 64.86% 84.89%
SQLR Case 1 55.13% 91.50% 95.60%
SQLR Case 2 20.54% 99.17% 96.17%
EKF [19] 80.15% 65.83% 86.47%
RLPAS [17] 67.30% 71.53% 87.69%

The utilization trends closely follow the service times shown
in Fig. 23, emphasizing the high correlation between these
metrics. This confirms the suitability of CPU utilization as a
metric to define the state of both the AC and the scaling RL.4

G. Summary of results

We summarize a comparison of the performance of the
scaling schemes in Table IV. Here, we take the static over-
provisioned case (with 10 VMs) as a reference benchmark with
0% blocking. We measure resources in terms of VM-hours.
The tradeoff between resource use and service availability is
apparent: schemes that procure lower blocking rates use up
more resources to do so. Both configurations of our scheme
achieve service times comparable to the over-provisioned
benchmark with 10 VMs.

VII. CONCLUSIONS

We have presented an agile horizontal scaling system,
SQLR, that learns the most appropriate horizontal scaling de-
cision to make under highly dynamic workloads, and without
any fore-knowledge of the underlying system configuration.
We show that our modified Q-learning scheme enables our
system to learn multiple policies and re-use any applicable
knowledge to new workload profiles exhibiting previously
encountered characteristics.

SQLR progressively optimizes its policy by tuning the
tradeoff between resource cost and service availability. These
constraints come from the CSP after proper determination
from their business processes. Such high-level objectives make
SQLR easily configurable and adaptable to any cloud ap-
plication, as no domain-specific knowledge is required. We
compare our proposed scheme to different state-of-the-art
scaling systems, and show that our scheme achieves better
performance, similar to that of an over-provisioned system.

As with most machine learning-based schemes, our scheme
is subject to a training overhead. However, because of its ca-
pacity for contextual knowledge re-use, it can be trained offline
with representative workloads. Also, given our weighted fair
exploration mechanism, any subsequent residual learning can
be done in production workloads with a much reduced risk of
poor decisions in the process. We show that even prior to full
convergence, our scheme performs practically as well as the
unconstrained resource benchmark (static over-provisioning).

4Conversely, system memory allocation is not an expressive metric: in all
of our experiments, all scaling agents allocate about 360 MBytes of memory,
with negligible oscillations around this value.
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samples to smooth out switching overheads). Two SQLR configurations are
shown: Case 1 (θ = 1, β = 0.01) and Case 2 (θ = 10, β = 0.001).
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