
Frequency modulation of neural oscillations according
to visual task demands
Andreas Wutza,b,1,2, David Melchera, and Jason Samahac,1,2

aCenter for Mind and Brain Sciences, University of Trento, I-38068 Rovereto, Italy; bThe Picower Institute for Learning and Memory, Department of Brain
and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; and cDepartment of Psychology, University of Wisconsin–Madison,
Madison, WI 53706

Edited by Ranulfo Romo, Universidad Nacional Autonóma de México, Mexico City, D.F., Mexico, and approved December 22, 2017 (received for review July
26, 2017)

Temporal integration in visual perception is thought to occur
within cycles of occipital alpha-band (8–12 Hz) oscillations. Succes-
sive stimuli may be integrated when they fall within the same
alpha cycle and segregated for different alpha cycles. Conse-
quently, the speed of alpha oscillations correlates with the tem-
poral resolution of perception, such that lower alpha frequencies
provide longer time windows for perceptual integration and
higher alpha frequencies correspond to faster sampling and seg-
regation. Can the brain’s rhythmic activity be dynamically con-
trolled to adjust its processing speed according to different
visual task demands? We recorded magnetoencephalography
(MEG) while participants switched between task instructions for
temporal integration and segregation, holding stimuli and task
difficulty constant. We found that the peak frequency of alpha
oscillations decreased when visual task demands required tempo-
ral integration compared with segregation. Alpha frequency was
strategically modulated immediately before and during stimulus
processing, suggesting a preparatory top-down source of modula-
tion. Its neural generators were located in occipital and inferotem-
poral cortex. The frequency modulation was specific to alpha
oscillations and did not occur in the delta (1–3 Hz), theta (3–7 Hz),
beta (15–30 Hz), or gamma (30–50 Hz) frequency range. These results
show that alpha frequency is under top-down control to increase or
decrease the temporal resolution of visual perception.

visual perception | temporal integration | alpha oscillations | oscillation
frequency | top-down control

Visual perception is tasked both with constructing stable
representations over time as well as maximizing sensitivity to

transient changes. A large body of work has shown that neural
oscillations in the alpha band (8–12 Hz) are partially responsible
for determining the temporal resolution of perception, such that
when discrete events occur within the same oscillatory cycle they
can become perceptually integrated (1–8). For instance, indi-
viduals with higher peak alpha frequencies have perception with
higher temporal resolution (2, 9), indicating that lower peak
frequencies correspond to integration over longer time windows.
Furthermore, trial-to-trial variability in spontaneous alpha fre-
quency predicts accuracy in a temporal discrimination paradigm
(9) and the rate of illusory flicker (10).
These findings raise the question of whether variability in peak

alpha frequency is stochastic, varying randomly across persons and
fluctuating over time within the same person, or might instead be
strategically modulated based on task demands. It is known that
the temporal resolution of visual perception can be modulated by
attention (11–13), and oscillatory phase and power can be con-
trolled by top-down factors (14–18). Here, we investigated whether
the peak frequency of alpha oscillations is subject to attentional
control, increasing or decreasing so as to effectively lengthen or
shorten the temporal window of perceptual integration.
To examine this question, we recorded magnetoencephalography

(MEG) data while observers performed two different tasks, one
requiring visual integration over time and the other involving visual
segregation over time. Both tasks are variants of a classical perceptual

integration paradigm called the missing-element task (MET) (19).
In the MET, an array of elements is presented in two successive
frames, separated by a short interstimulus interval (ISI). When
superimposed, the elements in both frames occupy all but one of
the positions in the array and the observer’s job is to identify the
position with the missing element (Fig. 1A, blue). As ISI decreases,
the two frames become perceptually integrated and identifying the
missing element is simple. We introduced another condition that
we term the odd-element task (OET) (20). In the OET, one-half of
one of the elements is presented in the first frame and the other
half is presented in the second (Fig. 1A, red). Here, the observer’s
task is to decide which location contained this odd element, which
becomes easier as ISI increases and the frames are perceptu-
ally segregated. Critically, the use of these two tasks allowed us
to determine whether modulations of peak alpha frequency
were specifically tied to temporal resolution, as opposed to a
more general fluctuation in attention or in visual sensitivity or
criterion (21, 22). We hypothesized that if frequency modula-
tion of alpha supports top-down control over temporal in-
tegration, then we should observe higher frequencies during the
OET (when segregation is beneficial) compared with the MET
(when integration is beneficial).

Results
By mapping psychometric functions relating performance on
both tasks to ISI (sigmoid fit R2 = 0.94 for OET, R2 = 0.93 for
MET), we could identify intersection points for each observer
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where the same ISI produced the same performance across tasks
(Fig. 1B; mean ± SD, 61 ± 22 ms). This allowed us to equate
performance [Fig. 1C; mean ± SD, 55 ± 11% correct for OET,
58 ± 11% for MET; t(18) = −1; P = 0.35] and use the same
physical stimuli, while manipulating only whether perceptual
integration or perceptual segregation was required for task
performance (MET and OET, respectively).
We analyzed whole-brain MEG data from 19 observers while

they performed separate blocks of the OET and MET with an
ISI fixed at a psychometric intersection point determined before
MEG acquisition (Fig. 1B). The signal at each MEG sensor was
bandpass filtered for alpha (8–12 Hz) and the phase angle time
series was extracted via Hilbert transform (Materials and Meth-
ods). The temporal derivative of the phase angle time series was
computed as an index of the instantaneous frequency of the
band-limited signal (9, 23). In support of our hypothesis, we
found a significant (P < 0.002, cluster corrected) spatiotemporal
cluster of higher alpha frequencies during the OET than during
the MET (Fig. 2 A and B). Significant frequency modulation
emerged 360 ms before stimulus onset, suggesting a preparatory
top-down effect, and lasted for 500 ms afterward (Fig. 2 A and
C). We observed this effect both in induced alpha activity (Fig. 2)
and in the evoked alpha response (P < 0.022, cluster corrected;
Fig. S1). Oscillatory power during this timeframe was not reliably
modulated by task (after correction for multiple comparisons)
but was primarily restricted to the alpha and beta band (Fig. S2).
To verify the results of the instantaneous frequency analysis

while taking into account individual variability in peak alpha
frequency, we conducted a separate fast Fourier transform
(FFT) analysis of prestimulus and poststimulus time windows
(−0.5–0 and 0–0.5 s). Alpha peaks averaged over the significant
sensors from the instantaneous frequency analysis (Fig. 2B)
varied between 8.7 and 14.7 Hz (Figs. S3 and S4). [Note that the
difference in frequency estimated from the instantaneous fre-
quency analysis (∼9.9 Hz; Fig. 2A) and the FFT peak detection
analysis (∼11.1 Hz; Fig. 3A) results from the fact that the data
were filtered into an a priori band of 8–12 Hz for the in-
stantaneous frequency analysis, whereas the FFT peak detection

analysis searched a large window of 8–15 Hz. Repeating the
instantaneous frequency analysis with an 8- to 15-Hz bandpass
filter did not change the frequency modulation effect, and the
resulting frequency estimates were more closely aligned between
the two analyses (Fig. S9).] Critically, a 2 × 2 repeated-measures
ANOVA revealed a main effect of task (OET, MET: F(1,18) =
10.7, P < 0.005) and interval (pre, post: F(1,18) = 5.5, P < 0.03) on
peak alpha frequency, with no interaction (P = 0.42; Fig. 3A).
Paired t tests indicate that both prestimulus [t(18) = 2.44, P <
0.026] and poststimulus [t(18) = 2.36, P < 0.03] alpha peaked at a
lower frequency during the MET. These results confirm the in-
stantaneous frequency finding and indicate that the prestimulus
result is not an artifact of temporal smoothing in the analysis.
We used a linear constrained minimum variance (LCMV)-

beamforming algorithm (Source Localization) to localize the neural
generators of the observed, sensor-level effects. Given the visual
nature of the task and prior expectations about the significance of
alpha in visual cortex (24), we investigated a region of interest
(ROI) defined from bilateral early visual (calcarine) cortex. A 2 ×
2 repeated-measures ANOVA revealed a main effect of task
(OET, MET) on alpha frequency [F(1,18) = 7.15, P < 0.016], with
no effect of hemisphere (P > 0.07) and no interaction (P > 0.85), in
early visuocortical source estimates (Fig. 3B). To test for a po-
tential contribution of motor-cortical alpha rhythms, we also con-
trasted alpha frequencies in bilateral primary and supplementary
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Fig. 1. Task and behavioral data. (A) Stimuli for the missing/odd-element
task (MET/OET). (B) Behavioral data for the psychophysical threshold as-
sessment. Lines show the sigmoid fit. Inset circles show the 50% threshold of
the sigmoid fit for each task (red, blue) and the between-task intersection
point (black). Error bars show ±1 SE. (C) Behavioral data during MEG re-
cording. (D) Trial sequence.
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Fig. 2. Instantaneous alpha frequency. (A) Instantaneous frequency in the
alpha band over time (relative to display 1 onset) averaged over significant
channels (shown in B). Shaded areas show ±1 SE. The horizontal line shows
the significant time epoch. Asterisks indicate the significance level (with
**P < 0.01, sensor-time cluster corrected). (B) MEG-sensor topography av-
eraged over the significant time epoch (shown in A) for the contrast OET vs.
MET. Nonsignificant channels are masked. (C) MEG-sensor topographies
(OET vs. MET) over time in steps of 0.25 s. The white outline shows significant
channels for the time epoch from −0.36 to 0.5 s.
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motor cortex (Fig. S5B), which revealed no main effect of task or
interactions with hemisphere (all values of P > 0.41).
To ensure that we did not miss other important effects with our

ROI analysis, we additionally ran a whole-brain contrast. Con-
straining activations to extend a minimum of at least two adjacent
significant voxels (P < 0.05, uncorrected), we observed only two
significant clusters. One bilaterally in visual cortex (maximum
voxel in cluster, left BA 17, MNI coordinates (mm) = [−5–65 10];
right BA 19, MNI (mm) = [55–65 10]) and one in the right inferior
temporal gyrus (BA 37, MNI (mm) = [55–50 −20]; Fig. S5A). This
suggests a contribution of right-lateralized inferotemporal regions,
in addition to bilateral early visual cortex, which may underlie the
lateralization evident in the sensor topography.
A number of oscillatory frequencies have been linked to

temporal and perceptual processing, in general. For example,
theta-band rhythms have been claimed to segment inputs into
semantic temporal chunks (20, 25), whereas beta and gamma
oscillations may mediate the interplay between bottom-up, sen-
sory processing and top-down control (26, 27). We reconducted
the instantaneous frequency analysis (Fig. 2) but with data fil-
tered into different canonical frequency bands. Averaging over
prestimulus (−0.3–0 s) and poststimulus (0–0.3 s) windows
(where the alpha effect was maximal), we found that the task-
related modulation of peak frequency was specific to alpha [pre:
t(18) = 3.92, P < 0.001; post: t(18) = 4.75, P < 0.0002 Fig. 3C].
There was no significant difference in the delta, theta, beta, or
gamma bands, either prestimulus or poststimulus, when tested in
the channel group of interest (all P > 0.13) or across all MEG
sensors (all P > 0.19, cluster corrected).
To relate alpha frequency modulation to behavior, we examined

instantaneous frequency for each task as a function of trial accu-
racy (correct or incorrect). We observed frequency modulation for
both correct (−0.27–0.13 s, P < 0.012, cluster corrected) and in-
correct trials (−0.07–0.48 s, P < 0.004, cluster corrected, Fig. 4A),
but correct trials were associated with an earlier onset of fre-
quency modulation. We formally tested this by contrasting OET >

MET instantaneous frequency across trials for each subject in-
dividually and extracting the earliest onset of a significant differ-
ence (P < 0.05, or the smallest P value in the case of subjects
with no significant differences; MEG Data Analysis). Fifteen of
19 subjects had significantly higher alpha frequencies during the
OET than theMET on correct trials, and 12 of 19 had a significant
difference on incorrect trials, highlighting the reliability of the
frequency modulation effect at the single-subject level. Impor-
tantly, the onset of significant frequency modulation occurred
earlier on correct (mean = −0.45 s, relative to target onset),
compared with incorrect trials (mean = −0.14 s; z = −2.9, P <
0.004, Wilcoxon signed rank test; Fig. 4A, Bottom).
Variability in instantaneous alpha frequency across subjects

was marginally predictive of behavioral thresholds (ISI with 50%
correct responses) for the OET, in accordance with previous
findings (2, 9), indicating that subjects with higher alpha fre-
quencies can segregate stimuli over shorter temporal windows
(r = −0.47, P < 0.066; 0.17–0.27 s, time-cluster corrected; Fig.
4B). A similar trend was not present, however, between alpha
frequency and MET thresholds (Fig. S7). This is perhaps un-
surprising given that OET and MET thresholds were themselves
not reliably correlated across subjects (r = 0.20, P > 0.42), which
likely indicates that additional factors beyond the temporal res-
olution of perception contribute to difficulty for each task (e.g.,
contrast, crowding). Interestingly, we also observed a strong
positive correlation between the magnitude of change in alpha
frequency (OET − MET) and perceptual thresholds for the
MET (r = 0.62, P < 0.002; 0.2–0.5 s, time-cluster corrected).
Subjects who could modulate alpha frequency more strongly
could also integrate over longer temporal windows (see Fig. S7
for the temporal evolution of these correlations).
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Fig. 3. Prestimulus/poststimulus peak frequency, neural source, and fre-
quency specificity. (A) Alpha peaks with FFT analysis averaged over the chan-
nels of interest (Fig. 2B) for prestimulus (−0.5–0 s, Left) and poststimulus time
epochs (0–0.5 s, Right). (B) Source localization in visual cortex (ROI) for the
contrast OET vs. MET averaged between 0 and 0.3 s. Bar plots show source-
localized alpha frequency by visuocortical hemisphere and task. (C) Difference
(OET − MET) in instantaneous frequency in the delta (1–3 Hz), theta (3–7 Hz),
alpha (8–12 Hz), beta (15–30 Hz), and gamma bands (30–50 Hz) averaged
between −0.3 and 0 s (prestimulus) or 0 and 0.3 s (poststimulus) and over the
channels of interest (Fig. 2B). Error bars show ±1 SE. Asterisks indicate the
significance level (with n.s. indicating not significant, *P < 0.05, ***P < 0.001).
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Fig. 4. Correct vs. incorrect trials and correlations between instantaneous
alpha frequency and behavior. (A) Instantaneous frequency in the alpha band
averaged over the channels of interest (Fig. 2B) for correct (Upper) and in-
correct trials (Middle). The Lower shows the average first significant time point
during correct (green) and incorrect trials (black). Shaded areas show ±1 SE.
The horizontal lines show the significant time epoch. Asterisks indicate the
significance level (with *P < 0.05, **P < 0.01, time-cluster corrected). (B) Each
subject’s alpha frequency averaged over the time epoch (0.17–0.27 s; Fig. S7)
and the channels of interest (Fig. 2B) plotted against the ISI that yielded 50%
correct trials in the OET. Line shows the linear fit. (Right) MEG-sensor topog-
raphy for the correlation between 0.17 and 0.27 s. The white outline shows the
channels of interest. (C) Each subject’s difference in instantaneous alpha fre-
quency between tasks (OET − MET) averaged over the time epoch (0.2–0.5 s;
Fig. S7) and the channels of interest (Fig. 2B) plotted against the ISI that
yielded 50% correct trials in the MET. Line shows the linear fit. (Right) MEG-
sensor topography for the correlation between 0.2 and 0.5 s.
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Discussion
We contrasted neural activity during two tasks with identical
stimulus displays and matched difficulty that varied in their in-
structions to either integrate or segregate the stimuli over time.
We found the frequency of neural oscillations in the alpha band
differed between these tasks, such that alpha frequencies in-
creased when task demands required temporal segregation
compared with integration. These results suggest that alpha
frequencies can “speed up” when task demands require that vi-
sual information be sampled more frequently. Alternatively, al-
pha may “slow down” when information needs to be combined
over longer timescales. The direction of this effect—faster alpha
for segregation and slower alpha for integration—is predicted by
current theories, which postulate that alpha oscillations are
critically involved in determining the temporal resolution of
perceptual processing by integrating over inputs occurring within
the same oscillatory cycle (reviewed in ref. 7). This finding
constitutes an instance of top-down control over the frequency of
alpha oscillations, revealing a unique mechanism for dynamically
controlling the temporal resolution of visual perception.
By analyzing the instantaneous frequency of oscillations in the

alpha band, we observed the temporal dynamics of top-down
frequency modulation. This analysis indicated that alpha fre-
quency modulation occurred in anticipation of the target stim-
ulus and was sustained throughout stimulus processing. To rule
out the possibility that the prestimulus result reflected a
smearing of poststimulus differences into the prestimulus win-
dow (due to smoothing inherent in the analysis), we conducted
an FFT analysis of alpha peaks based only on the prestimulus
data. This analysis confirmed frequency modulation in the
prestimulus window, which strongly suggests that alpha fre-
quency is under endogenous control. Notably, frequency modu-
lation was not sustained throughout the entire trial epoch.
Instead, it was strategically timed just before target onset (and
emerged ∼500 ms after trial onset; Fig. S8), suggesting that the
underlying process involves dynamic control as opposed to a
state change in peak frequency lasting for the entire duration of a
task block. Furthermore, the onset of frequency modulation was
predictive of behavior, such that correct trials were associated
with an earlier onset modulation, underscoring the importance
of preparatory frequency modulation for task performance.
Changes in oscillatory frequency have previously been ex-

plored in response to visual stimuli of varying luminance, where
it was observed that alpha frequencies increase with increasing
luminance (23). Alpha frequency has also been targeted with
transcranial alternating current stimulation, which may exoge-
nously drive alpha at higher or lower frequencies. This external
stimulation, in turn, impacts the duration of cross-modal tem-
poral integration windows (2), and illusory jitter perception of a
moving stimulus (10), lending causal support to the relationship
between alpha frequency and temporal integration. The present
results indicate that alpha frequency can be controlled endoge-
nously, and thereby also suggests a possible mechanism un-
derlying the recent finding that the phase of alpha oscillations
may be guided by top-down control (refs. 14 and 15; but see ref.
28). By fine-tuning oscillatory frequency over the course of
learning, the phase of ongoing oscillations can be aligned to
expected inputs in a top-down manner.
Consistent with previous effect sizes based on instantaneous

frequency measurement (9, 23), the change in frequency we
observed was small, on the order of 0.04 Hz. However, it is
difficult to interpret this difference as the true effect size in the
task-relevant neural population given that macroscopic mea-
surements such as MEG and EEG measure a mixture of many
neural sources. It is likely that only a fraction of the alpha gen-
erators contributing to the scalp signal are modulating in fre-
quency, whereas others (for example, in motor cortex; Fig. S5)
are not. The resulting sum of modulating and nonmodulated sources
would make the observed effect at the scalp level much smaller than
that present in the task-relevant neural populations. Consistent
with this reasoning, source-level estimates of instantaneous

alpha frequency in visual cortex (Fig. 3C) showed a mean dif-
ference between tasks about an order of magnitude larger than
that observed on the scalp (Fig. 2A).
The precise neurophysiological mechanisms of endogenous

control over alpha frequencies have not yet been explored. Re-
cordings in the lateral geniculate nucleus (LGN) of the thalamus
have led to the discovery of a specialized subset of thalamo-
cortical neurons that burst at alpha frequencies. Those thalamic
neurons synchronize through gap junctions to form an alpha
pacemaker that is synchronized with scalp-recorded alpha os-
cillations (29–31). Importantly, relay-mode neurons in the LGN,
which are thought to transmit information from retina to visual
cortex, time their spiking in accordance with the phase of the
alpha rhythm established by these pacemaker cells. This thala-
mocortical circuit provides a plausible neurophysiological basis
for the link between alpha and perception (32). Alpha frequency
modulation may therefore involve modulation of LGN pace-
maker cells. One possibility might involve a multisynaptic feed-
back pathway linking goal representations in prefrontal cortex to
the LGN via the thalamic reticular nucleus (33–35). Alterna-
tively, cortical generators of alpha oscillations have also been
proposed in a variety of regions including visual and infer-
otemporal cortex (36–38). These areas may interact with high-
order regions to implement goal-directed control over visual
processing through known cortico–cortico projections between
prefrontal and parietal cortex (27, 39, 40). Our source localiza-
tion results suggest a locus in primary visual and inferotemporal
cortex, although evidence for a thalamic contribution would be
difficult to detect with MEG and cannot be ruled out.
Our results provide an important step toward understanding

the neurophysiological foundation of top-down alpha frequency
modulation in the cortex. These findings inform our understanding
of how the brain dynamically tunes up or down its perceptual
processing speed to master the real-time demands of the visual
environment.

Materials and Methods
All procedures were approved by the ethics committee of the University
of Trento.

Participants. Nineteen participants (nine males; mean ± SD, 27 ± 4.7 y;
17 right-handed) took part in the experiment. All participants had normal or
corrected-to-normal vision, gave written informed consent before the ex-
periment, and received a monetary compensation. One subject was excluded
from the correlation analysis (see Behavioral Data Analysis for details).

Stimuli. The stimulus display contained annuli placed within an invisible 4 ×
4 quadratic element grid [3.5° degrees visual angle (DVA)]. Stimuli were
shown over two different frames separated by a blank display (Fig. 1A).
Seven random locations (14 over both frames out of 16 total) were occupied
with a black annulus on a uniform gray background (0.5° DVA size, 0.06°
DVA line width; 0.5° DVA evenly spaced between grid locations). Each an-
nulus was split by a central gap with a randomly chosen orientation between
0°, 45°, 90°, and 135°. For segregation, an odd element on the display had to
be detected (OET). The odd element was made up as either one-half of the
annulus on one random display location. The partial annuli complement
each other across displays. Thus, to recognize it as an odd element, the
participants had to segregate the displays over time (Fig. 1A, red). For in-
tegration, the target was a missing element on the display (MET). To detect
this empty location, the participants had to integrate information from both
displays over the ISI (41) (Fig. 1A, blue). Both odd and missing elements were
shown on each trial, but the participants were instructed to attend to and
detect only one of the two targets and ignore the other in different blocks.
Thus, the stimuli were physically identical in every block. The blocks only
differed in terms of task instructions (order counterbalanced across subjects).
The time between displays was set at a specific ISI for each subject. This ISI
value was estimated by psychometric curve fitting before the MEG experi-
ment (see below). Performance during recording was monitored after each
block pair (OET, MET) and the stimulus contrast was adjusted in steps of
12.5% within the range from 25 to 100%. This manipulation was necessary
to maintain overall performance in both tasks on a stable level of 50%
correct responses. Between the conditions of interest (OET vs. MET), contrast
and ISI were always identical.

Wutz et al. PNAS | February 6, 2018 | vol. 115 | no. 6 | 1349

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

A
pr

il 
16

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1713318115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1713318115/-/DCSupplemental


Experimental Design.
Psychophysical threshold assessment. Before MEG recording, the participants un-
derwent a psychophysical threshold assessment. The stimulus display was pre-
sented centrally after a fixation cross (1° DVA, 0.5-s duration) and a blank period
(duration randomly jittered in steps of 10ms between 0.5 and 1.5 s). On each trial,
a randomly chosen ISI (in 10-ms steps between 30 and 90 ms) separated both
displays (10-ms duration each). Participants had to indicate the target location
(odd or missing element) via mouse click on a number grid (labeled 1–16) pre-
sented after 0.5 s at the prior stimulus display location. OET andMET performance
was measured in separate blocks (two blocks of 70 trials each; order counter-
balanced over subjects; about 10-min experiment duration). For each task, the
proportion of correct responses across ISIs and the difference of the performance
curves were calculated. We computed the zero crossing at the abscissa of the
linear fit to the performance difference (intersection point between fits), tomatch
performance between the tasks. The closest estimate in the range of the tested
ISIs (30–90 ms in steps of 10 ms) was selected for each participant. Each subject
was then run with his/her individually adjusted, performance-matching ISI held
constant in the MEG experiment. Stimuli therefore differed between subjects in
objective, physical duration but instead were equated on a given level of task
difficulty at the subject-specific, psychophysical threshold. Linear curve fitting
yielded an average intersection point of 68 ± 27 ms (SD) and sufficiently good fits
(MET: R2 = 0.93; OET: R2 = 0.9). Post hoc analysis revealed that a sigmoid function
accounted slightly better for the observed data. Thus, sigmoid curve fitting was
used for the later correlation analysis (Behavioral Data Analysis).
Main MEG experiment. In the MEG experiment, the stimulus display was pre-
sented centrally after a fixation cross (1° DVA, 0.5-s duration) and a blank
period (duration randomly jittered between 0.5 and 1.5 s in steps of 10 ms).
On each trial, a subject-specific ISI (ranging between 40 and 90 ms across
subjects) separated both displays (10-ms duration each). Participants had to
indicate the target location (odd or missing element) via mouse click on a
number grid (labeled 1–16) presented 0.5 s after the disappearance of the
second stimulus frame (Fig. 1D). The OET and MET were tested in separate
blocks (10 blocks of 50 trials each, order counterbalanced over subjects). The
experiment lasted about 1 h.

Behavioral Data Analysis. The main aim of the threshold assessment before
themain experiment was to match performance between the two tasks during
MEG recording by choosing a fixed ISI for each participant (Fig. 1C). A second
aim was to capture a behavioral index of task performance for each partici-
pant. To this end, the psychometric curves as a function of ISI were fitted with
a generalized logistic function with four free parameters (sigmoid S, Eq. 1):

S= ðA+BÞ
.�

1+e−ðx−CÞ=D
�
. [1]

On average, a sigmoid function accounted very well for the observed data (MET:
R2 = 0.93; OET: R2 = 0.94; Fig. 1B). The psychometric curve fits for each partici-
pant can be seen in Fig. S6. Overall, the psychometric curve fits yielded the
expected pattern of increasing segregation performance and decreasing in-
tegration performance with longer ISIs. We determined the ISI, at which each
psychometric curve for each participant was closest to 50% correct trials. The
possible ISI thresholds were restricted to the range between 10 and 100 ms, such
that more extreme values were cut off at these bounds. Values outside this
range occurred in 13% of the cases. Negative or very high values occur when
participants are biased toward one or the other task (intercept shift), such that
their 50% point was not accurately assessed within the range of ISIs tested.
Choosing the closest extreme ISI value maintains the effects in an interpretable
range (outlier correction) and accounts for idiosyncratic biases by preserving the
order of the expected effects (i.e., short threshold for above 50% OET perfor-
mance with short ISIs, long threshold for below 50%OET performance with long
ISIs, and vice versa for the MET). For one participant, performance did not follow
the expected sigmoidal pattern: it was low for segregation for all tested ISIs and
a sigmoid fit did not yield a monotonic increase with ISI. This participant was run
with the longest possible ISI (90 ms) during the MEG experiment and was ex-
cluded from the correlation analysis based on the 50% point of the sigmoid fit.

All error bars (for both behavioral and MEG measures) show the SEM for
repeatedmeasures. Themeanbetween conditionswas subtracted from the data
in each condition before calculating the SE. The resulting error estimatewas bias
corrected by the number of conditions [M, multiplied by √(M/(M − 1))] (42).

MEG Data Analysis.
Data preprocessing. The data were analyzed using custom-built MATLAB code
(MATLAB 8.2; MathWorks) and the FieldTrip toolbox (43). Data were segmented
from 1.5 s before to 1.5 s after display 1 onset and down-sampled off-line to
250 Hz. Data were bandpass filtered between 1 and 100 Hz and band-stop fil-
tered between 49 and 51 Hz with a two-pass Butterworth filter (order 4), applied

in the forward and reverse directions. Only magnetometer information was used
for all reported analyses. Unless otherwise indicated, the trial average was sub-
tracted from each single trial, to obtain induced activity without the contribu-
tion from stimulus-evoked components (except for the instantaneous frequency
analysis for evoked activity; Fig. S1). The conditions of interest (OET, MET) were
equated in trial number by drawing a random subsample of trials equal to the
minimum trial number across conditions. The number of presented trials for each
conditionwas equal by experimental design (250 trials; see above), but the artifact
rejection procedure (see below) introduced small deviations between conditions.
Instantaneous frequency. We calculated a time-varying estimate of the instan-
taneous alpha frequency following previously published procedures (9, 23). First,
single-trial MEG data were bandpass filtered with a zero-phase, plateau-shaped
FIR filter (forward and reverse direction; filter order 94; 15%, transition width).
Different cutoff frequencies were chosen for the different frequency bands
[alpha: 8–12 or 8–15 Hz (for the control analysis, see Fig. S9); delta: 1–3 Hz;
theta: 3–7 Hz; beta: 15–30 Hz; gamma: 30–50 Hz]. The Hilbert transform was
used to compute the instantaneous phase angle over time. The instantaneous
frequency is defined as the time rate of change of the instantaneous phase
angle. Thus, the temporal derivate of the instantaneous Hilbert phase corre-
sponds to the instantaneous frequency in hertz (when scaled by the sampling
rate and 2*pi). The phase angle time series is prone to noise that can cause
sharp, nonphysiological responses in its derivative. Thus, the instantaneous
frequency estimate was filtered 10 times with a median filter (10 equally spaced
window sizes between 10 and 400 ms). Finally, the median instantaneous fre-
quency estimate across the different median-filter windows was calculated and
selected as the instantaneous frequency per subject.

Statistical analysis was done on sensor-level data, unless otherwise indicated.
The average instantaneous alpha frequency over trials was compared between
conditions (OET vs. MET) for the time interval between −0.5 and 0.5 s around
display 1 onset, using a nonparametric, cluster-based permutation test (44). This
procedure controls for the type I error accumulation arising from multiple
statistical comparisons at multiple time points and sensors. First, spatiotemporal
clusters of adjacent suprathreshold effects (dependent-samples t statistics ex-
ceeding P < 0.05, two-sided) were identified. The t values within a connected
cluster were summed up as a cluster-level statistic. Then, random permutations
of the data were drawn by exchanging the data between conditions within the
participants. After each permutation run, the maximum cluster-level statistic
was recorded, generating a reference distribution of cluster-level statistics
(approximated with a Monte Carlo procedure of 1,000 permutations). The
proportion of values in the corresponding reference distribution that exceeded
the observed cluster statistic yielded an estimated cluster-level P value, which is
corrected for multiple comparisons (Fig. 2 A and B and Fig. S1). The resulting
significant channel cluster for the alpha band was selected as channels of in-
terest for subsequent analyses. In addition to the cluster-based permutation
test, the contrast OET vs. MET was tested for alpha, delta, theta, beta, and
gamma frequencies with dependent-samples t tests [averaged over the chan-
nels of interest and between −0.3 and 0 s (prestimulus) and 0 and 0.3 s (post-
stimulus)]. Fig. 3C shows the instantaneous frequency difference between tasks
(OET − MET) for each frequency band and time epoch.

The time courses were aligned to display 1 onset for the main analyses.
Instead, Fig. S8 shows the instantaneous alpha frequency time courses
aligned to the offset of the fixation cross on each trial. We used the cluster-
based permutation procedure to test for differences in alpha frequency
modulation between tasks for the interval from 0.5 to 1.5 s after fixation
offset [averaged over the significant sensors for the instantaneous fre-
quency analysis (26 magnetometer sensors; Fig. 2B)]. This covers the entire
range of possible stimulus onsets, which were randomly jittered on each trial
(Experimental Design). Fig. S8 B and C shows the instantaneous alpha fre-
quency aligned to fixation offset separately for trials with early and later
stimulus onsets (above/below 1 s of prestimulus jitter).
Frequency peak detection. Each participant’s peak alpha frequency was de-
termined for the prestimulus and poststimulus time epoch. To this end, a
Fourier analysis (FFT) in the range between 1 and 50 Hz was applied to two
0.5-s-long time epochs before or after display 1 onset (−0.5–0 s/0–0.5 s). The
epochs were Hanning-tapered and zero-padded to a length of 10 s, to ob-
tain a sufficiently good frequency resolution (0.1 Hz). Frequency peak de-
tection for the resulting power spectra was performed on the significant
sensors for the instantaneous frequency analysis (26 magnetometer sen-
sors; Fig. 2B). For each participant and sensor of interest, we identified the
local maximum in the power spectrum in the range between 8 and 15 Hz
(MATLAB function findpeaks.m). In case no local maximum was detected, we
inserted “NaN.” On average, this happened on 14.8% of the cases (±12.7%
SD). We chose the frequency band of interest to span between 8 and 15 Hz,
because individual subjects showed clear peaks in this range (Figs. S3 and
S4). This choice corresponds with recent reports about individual differences
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in the peak alpha frequency (45). Alpha peaks were averaged over sensors
and compared between conditions (OET vs. MET, prestimulus and post-
stimulus epoch) with a two-way, repeated-measures analysis of variance (2 ×
2 ANOVA) and dependent-samples t tests (Fig. 3A).
Correlation between behavioral thresholds and instantaneous frequency. We tested
the relationship between the behavioral task thresholds and the participant’s
instantaneous alpha frequency. The behavioral variables were calculated as
described in Behavioral Data Analysis (ISI with 50% correct responses based on
the sigmoid curve fit to OET/MET performance). Each participant’s peak in-
stantaneous alpha frequency (averaged between tasks) and the difference in
instantaneous alpha frequency (OET −MET) were averaged over the significant
sensors for the instantaneous frequency analysis (26 magnetometer sensors of
interest; Fig. 2B). The Pearson correlation between behavioral thresholds and
frequency measures across participants was calculated on a time point-by-time
point basis and tested for significance in the 0.5-s time epoch following display
1 onset (0–0.5 s). To correct for multiple comparisons at multiple time samples,
we used the nonparametric, cluster-based permutation test (44) (see above).
Fig. S7 shows the time course for each correlation. Fig. 4 B and C shows behav-
ioral thresholds plotted against frequency measures averaged over (marginally)
significant time epochs and the corresponding MEG sensor topographies.
Correct vs. incorrect trials. We compared the difference in instantaneous alpha
frequency between tasks (OET vs.MET) separately for correct and incorrect trials.
The conditions of interest (correct/incorrect trials for OET/MET) were equated in
trial number by drawing a random subsample of trials equal to the minimum
trial number across conditions. This process was repeated 500 times and then
averaged across the trial subsamples. This yielded a final, representative time
course per condition. The difference between tasks for correct or incorrect trials
averaged over the significant sensors from the initial instantaneous frequency

analysis (26 magnetometer sensors of interest; Fig. 2B) was then quantified with
a dependent-samples t test. A nonparametric, cluster-based permutation pro-
cedure (44) was used to correct for multiple comparisons within the time in-
terval between −0.5 to +0.5 s relative to display 1 onset.

We tested whether the onset of the alpha frequency difference between
tasks occurred at different times (relative to stimulus onset) for correct and
incorrect trials. For each subject, we conducted a one-tailed, independent-
samples t test testing whether single-trial frequencies were higher in the
OET compared with the MET task (P < 0.05), separately for correct and in-
correct trials. We then saved the earliest time point of significant differences
(time to significance) and the associated t value for each subject. The con-
ditions of interest (correct/incorrect trials for OET/MET) were equated in trial
number (see above), to ensure that each t statistic was based on the same
degrees of freedom. This procedure was repeated 500 times. We then cal-
culated the median time to significance and t value across the trial sub-
samples to derive a final, representative estimate. For trial subsamples for
which no time points were significant, we used the point with the smallest
P value (note that the results were the same when we inserted “NaN” in those
instances). We then compared the time-to-significance metric across subjects be-
tween correct and incorrect trials using a nonparametric Wilcoxon sign-rank test.

Supporting Information. See Supporting Information for details on the MEG
and stimulus presentation apparatus, artifact rejection and source re-
construction pipelines, and time–frequency power analysis.
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