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A B S T R A C T   

Humans profoundly affect animal distributions by directly competing for space, not only transforming, but 
actively using their habitat. Anthropogenic disturbance is usually measured via structural proxies such as 
infrastructure and land use that overlook the impact of human presence, or functional disturbance. In this study, 
we propose a methodology unifying two paradigms, human mobility and animal movement, to fill this gap. We 
developed a novel spatially-explicit index of anthropic disturbance, the Cumulative Outdoor activity Index (COI), 
and validated it with ground truth observations derived from camera trapping (r = +0.63, p < 0.001). Building 
on previous work from Peters et al. (2015, Biol. Cons. 186, 123–133) on a Critically Endangered brown bear 
population in the Alps, we used Resource Selection Analysis to assess the influence of different forms of 
anthropogenic disturbance on the relative probability of habitat selection. The intensity of COI provided an 
effective measure of functional anthropogenic disturbance, and it outperformed all alternative and commonly- 
used proxies of structural disturbance in predicting bear habitat use. Our predictions suggest that brown bear 
shrinks its ecological niche as a consequence of intense human use of otherwise suitable habitat. These con-
straints may limit the potential range expansion of bears to establish a viable Alpine-Dinaric metapopulation. 
Conclusive conservation and future land use planning towards human-wildlife coexistence should account for the 
functional presence of humans on the landscape. The proposed COI could help determine where mitigation 
measures should be enforced.   

1. Introduction 

Human impact has become the most relevant determinant of animal 
species distribution and persistence, with the extirpation of populations 
and extinction of species occurring at an unprecedented rate (Ceballos 
et al., 2015). Alongside indirect modification of abiotic conditions (i.e., 
pollution, climate change) (Pecl et al., 2017), harvesting (Ripple et al., 

2016), and the introduction of invasive species (Gallardo et al., 2016), 
humans affect animal distribution by directly competing for space. 
Several methods have been applied to assess the effect of habitat frag-
mentation, urbanisation and connectivity loss on animal population 
distribution, occurrence, and space use behaviour (Compton et al., 2007; 
Crooks et al., 2011; Panzacchi et al., 2016; Prokopenko et al., 2017). 
Recently, by using the Global Human Footprint Index, Tucker et al. 
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(2018) showed that mammal species moved shorter distances under 
high human exposure. These analyses mainly utilized structural (i.e. 
passive) proxies of human competition for space based on infrastructure, 
land use, human accessibility (e.g., linear features such as roads, land- 
and waterways), and encroachment (e.g., population density, night-
lights). However, direct competition for space should emerge by func-
tional (i.e. active) utilisation of the aforementioned infrastructures, 
specifically human mobility. 

Human mobility has exponentially grown in the Western world after 
WWII (Freund and Martin, 1993), and globally in the last 3 decades 
(Susilo et al., 2007). An entire branch of human geography is dedicated 
to the measurement and analysis of human mobility (Barbosa et al., 
2018) and has been spurred by the global spread of personal tracking 
devices (e.g., navigation systems, mobile phones, GPS watches). Human 
mobility big data are analysed for many applications, from marketing 
(Wedel and Kannan, 2016), to traffic control (Herrera et al., 2010), and 
rescue services (Amin et al., 2012), which target human behaviour and 
space use. Only a few studies can be found that assess the impact of 
human mobility on wildlife, with the exception of a wide literature on 
traffic and roadkills (Trombulak and Frissell, 2000; Coffin, 2007; Dean 
et al., 2019). Beyond motorized mobility, human presence in wild 
habitats at the fine scale has been assessed using camera traps (Oberosler 
et al., 2017) or handheld tracking devices (Moen et al., 2012; Squires 
et al., 2019). 

Recently, a diversity of mobile device software applications to track 
recreational outdoor activities, such as hiking, running or cycling, have 
become increasingly popular. In particular, the tools provided by Strava 
(San Francisco, CA, USA) are used worldwide to track user movements 
and access a crowdsourced Global Heatmap (Strava, 2018a). The Global 
Heatmap is a visualisation of the cumulative outdoor activity tracks 
recorded and marked as public by users, with monthly updates. Since its 
establishment as a tracking app, trajectories have been uploaded at an 
exponential rate, reaching over two billion records (Strava Press, 

2018a), making the Global Heatmap the world’s largest freely-viewable 
collection of GPS-tracked human outdoor activities of its kind. Strava 
data (Strava, 2018b) have been used for urban planning purposes or 
public health studies (Table S1.1). Despite this great potential, Strava- 
derived data have never been integrated into ecological studies. 

In this work we introduce the Cumulative Outdoor activity Index 
(COI), a novel spatially-explicit index of anthropic disturbance based on 
the Strava heatmap, and used to assess active competition for space as 
opposed to structural indicators of anthropic disturbance (i.e., human 
settlements and linear features such as trails or roads). Building on 
previous work from Peters et al. (2015), we modelled habitat selection 
by a brown bear population reintroduced in the Eastern Italian Alps 
(Fig. 1) as a critical case study. Brown bears were reintroduced in 
Western Trentino in the early 2000, after the local population had been 
functionally extirpated, with the goal to reestablish a Alpine-Dinaric 
metapopulation (Duprè et al., 2000; Kaczensky et al., 2012). Despite 
the steady population increase in the first period after reintroduction, it 
did not substantially expand its range, nor was the goal to reestablish an 
Alpine-Dinaric metapopulation met. As a result, the Alpine brown bear 
population remained isolated and was listed as Critically Endangered 
due to the low number of mature individuals (< 50, Criteria D1; IUCN, 
2001) (Huber, 2018). Conversely, human-bear conflict emerged (Groff 
et al., 2019) and several bears died from anthropogenic causes (Tenan 
et al., 2016). We hypothesise that direct competition for space with 
humans has limited the selection of preferred sites within the home 
ranges of bears, more so than environmental restrictions and structural 
proxies identified in previous studies (Duprè et al., 2000; Peters et al., 
2015). Given that biological processes can be observed and interpreted 
differently at various scales (Ciarniello et al., 2007; Mateo Sanchez et al., 
2014), we considered the relative effect of anthropogenic disturbance at 
the home range scale (i.e., third-order selection; Johnson, 1980). 

Fig. 1. Digital Terrain Model of the study area. The Adige river watershed divides the area in two sectors: Western and Eastern Trentino. The brown bear area 
(vertical hatching) is represented by a 95% Kernel Density Estimation of all GPS locations. The area of validation of the Cumulated Outdoor activity Index with 
ground truth from camera trap observations is indicated by horizontal hatching. 
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2. Materials and methods 

2.1. Assessing functional anthropic disturbance: the Cumulative Outdoor 
activity Index 

In order to assess the active competition for space between humans 
and wildlife, we developed an index measuring the effective use of 
structural linear features, or any portion of the habitat, through outdoor 
activities. For this purpose, we visualised and processed the Strava 
Global Heatmap (Strava, 2018a) at the highest resolution freely view-
able online without registration (i.e. 20 m, or zoom level 13 Open-
StreetMap Wiki contributors, 2019). 

2.1.1. Strava Global Heatmap structure 
The Strava Global Heatmap displays a colour gradient of outdoor 

activity tracks (rides, runs, water, and winter activities) recorded by 
users, where brighter tones (i.e., higher heat) represent an intense use, i. 
e. many overlapped activity tracks. Activity tracks are recorded as ‘pixel 
paths’ connecting consecutive GPS locations (Robb, 2017), so that the 
count of paths overlapping in each pixel corresponds to a raw ‘heat’ 
count. Such counts are then normalised to the bounded range (0,1) using 
a Cumulative Distribution Function (CDF), and weighted with respect to 
the neighbour context of intensity of use (i.e., the heat values are not 
comparable at a large distance, but are comparable in the proximity- 
about 50 km diameter at our zoom level, see below). For more technical 
details on how the Strava Global Heatmap is built, see Supporting in-
formation S2. 

2.1.2. Deriving the Cumulative Outdoor activity Index 
We derived the Cumulated Outdoor activity Index using the freely 

viewable Strava Global Heatmap. The approach requires few parameters 
and it is best achieved in a GIS environment. The extraction took place as 
follows: (i) an area of interest (Western portion of Trento Province, 
Fig. 1, and paragraph ‘Study area’) was displayed in the Strava Global 
Heatmap website (Strava, 2018a); (ii) we set the zoom level to 13 
(OpenStreetMap Wiki contributors, 2019), the highest displayable 
without the need to register with a private account; (iii) we set the 
Heatmap Colour as “blue” (see below), the desired Activity Type to 
“All”, the Heat Opacity to 100%, and we removed all background layers; 
(iv) we took a screenshot of the displayed area and saved it as a raster 
PNG image; (v) we georeferenced the raster image in a GIS environment 
using 6 control points. We used the WGS 84/Pseudo-Mercator Coordi-
nate system (EPSG: 3857), as it was the projected coordinate system 
used to build the Global Heatmap (Robb, 2017); (vi) we repeated the 
procedure as many times as needed to cover the entire study area, and 
merged all the georeferenced raster layers; (vii) we manually removed 
the activities overlaying ski slopes and water bodies, which were not of 
interest for the purpose of this study, using subtracting masks obtained 
from local geographic layers (Autonomous Province of Trento, 2019); 
(viii) we displayed single pixels as a 256-element colour spectrum array 
(Robb, 2017), so that when the aggregated activities are shown as 
“blue”, the array matches perfectly the Blue colour spectrum of an RGB 
colour model (0, 255); (ix) we rescaled the value so the index (COI) 
ranged from 0 to 1. 

2.1.3. Validation of COI through ground truth observations 
In order to validate the COI as an honest proxy of human use of 

wildlife habitats, we compared its values with human detections ob-
tained via independent counts recorded on camera traps. In a subset of 
our study area (Fig. 1), an extensive, systematic camera trap survey (n =
60) was conducted (Oberosler et al., 2017; see Supporting information 
for details), recording both wildlife and human presence along forest 
roads and trails (30 sites in each category). Humans passages were 
recorded either as pedestrians/bikers or vehicles (cars, motorbikes, 
tractors, and trucks). We considered the former as ground truth obser-
vations, and excluded the latter as not matching the purpose of this 

study. We tested the validity of the COI by comparing it with ground 
truth observations, measured by the number of ‘independent’ human 
events per site, i.e., sequential detection events separated by an interval 
of 1 h. First, we extracted the value of COI associated with each camera 
trapping site. To account for spatial imprecision, we drew a 50 m radius 
buffer around each trapping location and extracted the 95th percentile 
COI value within that buffer. We finally tested the statistical dependence 
between COI values and number of human detection events using 
Spearman’s rank correlation coefficient (Spearman’s ρ). 

2.2. A case study: assessing the effect of anthropogenic disturbance on a 
reintroduced brown bear population 

We applied our proxy for functional human disturbance, measured as 
cumulated outdoor activity, to evaluate habitat selection and predict 
probability of space use in a reintroduced population in Trentino, 
Central-Eastern Italian Alps. We used the same third-order Resource 
Selection Analysis (RSA) as Peters et al. (2015). 

2.2.1. Study area and brown bear population 
The study was carried out in the Province of Trento, a 6.200 km2 

(Fig. 1) area characterized by rugged mountainous terrain (from 65 to 
3769 m a.s.l.) and covered by forests and prairies according to the 
altitudinal succession. Valleys are largely human-dominated (87 in-
habitants/km2), with a developed network of roads and railways (den-
sity = 95 km/100 km2). The vast infrastructural system of the Adige 
basin effectively constitutes a connectivity barrier for many animal 
species, dividing the study areas into two sectors (Fig. 1). Between 1999 
and 2002, 10 adult bears from Slovenia were released in the Adamello 
Brenta Nature Park, Italy (PACOBACE, 2010). The newly established 
population colonized large parts of Western Trentino. In the study 
period, the brown bear population estimates (2012–2018) varied from 
29 to 55, as a result of a positive, albeit variable, growth rate since 2002 
(Groff et al., 2019). However, the population is still listed as Critically 
Endangered due to the small number of mature individuals (<50, 
Criteria D1; IUCN, 2001) (Huber, 2018). The brown bear is currently 
protected under European (Habitats Directive 92/43/EEC) and Italian 
Laws (L. 157/92), except for the removal of bears considered as 
dangerous (PACOBACE, 2010). 

2.2.2. Movement data 
We used the GPS trajectories of animals collared between 2011 and 

2019 (8 females, 4 males; Vectronic GPS–GSM collars, Vectronic Aero-
space GmbH, Berlin, Germany) for a total of 21 animal/year as part of 
monitoring activities undertaken by the Autonomous Province of Trento 
(PACOBACE, 2010; Supporting information for further information on 
trapping and handling). The number of surveyed individuals corre-
sponded to about 25% of the estimated yearly average of bears in the 
study period (about 45 bears/year; Groff et al., 2019). The trajectories 
were limited to non-hibernating periods and regularized at a 6-hour fix 
rate using the functions in the R package adehabitatLT (Calenge, 2006), 
excluding a-priori data collected with less frequent schedules. 

2.2.3. Environmental layers 
First we extracted core environmental covariates based on Peters 

et al. (2015), using newer spatial layers with higher resolution and ac-
curacy where possible, including topographic variables (altitude, slope), 
canopy cover, and land use (cultivated lands without orchards). We used 
the distribution of human settlements and linear infrastructure (trails, 
unpaved forest roads, and main paved roads) as proxies for structural 
human disturbance, as well as a combined composite layer (Table S5.1). 
Finally, we used the newly-derived COI as a proxy of functional anthro-
pogenic disturbance (Table 1). All raster layers were resampled to a 
spatial resolution of 20 m pixel size (see Supporting information S5) and 
were rescaled by min-max normalization to a defined range of 0 and 1. 

To create the structural disturbance layers, we generated a raster 
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proximity map based on Euclidean distance of each cell to the nearest 
infrastructure. We then transformed the maps to exponential decays in 
the form of 

sd = 1 − e− αd (1)  

with sd = structural disturbance, α = 0.002 and d = distance (m) to a 
given linear feature (Nielsen et al., 2009). This transformation drasti-
cally reduced the effect of linear features beyond a few hundred meters, 
making large distances essentially irrelevant (e.g. >1500 m). The 
resulting values for sd range from 0 (at d = 0) to 1 (for large values of d). 
Using Eq. (1), structural disturbance layers were calculated for Distance 
from Human settlements (DHS), Distance from Main Roads (DMR), 
Distance from Forest Roads (DFR), Distance from Human Trail (DHT), 
and Distance from Roads and Trails (DRT) (Table S5.1). Furthermore, 
for both structural and functional disturbance, we computed derived 
spatial covariates expressing the ‘density of disturbance’ (cumulated 
disturbance per spatial unit). Specifically, we summed COI and the 
values of the raster layer combining all linear infrastructure features 
(roads and trails), both ranging (0,1), within a 11 × 11 pixel moving 
window (dCOI, dRTN: Table S5.1). This accounts for the spatial context 
around each pixel and potentially for spatial perception of disturbance 
by bears (~100 m; Moen et al., 2012). We performed a correlation 
analysis (Hinkle et al., 2003; Fig. S5.1) between all variables, thereafter 
building a priori models to evaluate the respective contribution of 
human disturbance metrics to bear habitat selection, with covariates 
within the same model having |r| ≤ 0.6 (Peters et al., 2015). 

2.2.4. Resource Selection Analysis 
We fit a Resource Selection Function (RSF) to estimate the proba-

bility of use by bears of given resource units (Manly et al., 2002). We 
applied a used/available design and estimated selection within indi-
vidual home ranges, i.e. third-order selection scale (Johnson, 1980). We 
considered GPS fixes as used locations and calculated individual bear’s 
annual home range by Kernel Density Estimation (Worton, 1989) using 
the R package adehabitatHR (Calenge, 2006). We calculated 90% fixed 
kernel home ranges using href as smoothing parameters (Worton, 1989). 
We sampled twice as many available than GPS-based used locations to 
have better parameter estimates while maintaining reasonable compu-
tational times (Northrup et al., 2013). We extracted all the environ-
mental covariates described above at each of the used and available 
locations. 

We evaluated how anthropogenic disturbance influences space use 
behaviour of brown bears in Western Trentino by testing five alternative 
hypotheses, corresponding to a set of a-priori RSF models (“Models of 
Disturbance”, MD; Table 1). Specifically, a core environmental model 

with slope, TCD and CORINE land cover as predictors (to represent 
respectively topography, canopy cover and land use effects) was com-
plemented by one or more variables describing different aspects of 
structural disturbance (DHS, DMR, DFR, DHT, DRT, dRTN; giving 
models MD1 to MD4, Table 1). Similarly, we complemented the core 
model with the index of functional anthropogenic disturbance dCOI 
(model MD5, Table 1). We thus fitted each RSF model using a Gener-
alized Linear Mixed Model (GLMM) with a binomial error distribution 
via maximum likelihood, using a Laplace approximation. We included 
all the covariates as additive fixed terms and individuals as random 
intercept to account for autocorrelation (Gillies et al., 2006), as the 
purpose of this study was to quantify population-level variations as a 
response. We performed model selection using the Akaike Information 
Criterion (AIC). 

We predicted the relative probability of use based on selection co-
efficients of the best fitting model for all pixels in the given area (Fig. 1) 
using the function predict in the R package raster (Hijmans, 2017). Af-
terwards, we tested the predictive capability of the RSF model via 10- 
fold cross-validation (Boyce et al., 2002), measuring the performance 
of the spatially explicit predictions with the set of random training and 
test subsets using Spearman’s rank correlation coefficient. We managed, 
processed, and analysed the data entirely on the free and open-source 
software QGIS 3.4.4 (QGIS Development Team, 2019), GRASS 7.4 
(GRASS Development Team, 2018), and R 3.4.3 (R Core Team, 2017) 
under Ubuntu 16.04.3 LTS (Canonical Ltd., London, United Kingdom). 
Results were reported in tables created with the R package stargazer 
(Hlavac, 2018). 

3. Results 

3.1. Validation of COI as an index of functional human disturbance 

The camera trap survey yielded 1262 independent events of humans 
both as pedestrians/bikers over a period of 30 consecutive days across 
the 58 camera traps that functioned well. Of these events, 514 were 
recorded on trails and 748 on unpaved roads. The median count of 
people per camera was 21.76 (IQR 2.25 to 33.50, range 0 to 108), while 
the median of the extracted COI values per camera was 0.08 (IQR 0.00 to 
0.39, range 0 to 0.71). We found a positive, statistically significant 
Pearson correlation between the Cumulated Outdoor activity Index and 
the number of human detection events (r =+0.63, p < 0.001; Fig. S6.1). 

3.2. Anthropogenic disturbance effect on bear habitat selection 

Within their home range (mean home range size = 259.51 km2, with 
IQR 40.50 km2 to 313.43 km2; see Supporting information S7 for de-
tails), bears selected for steep areas and high canopy cover and strongly 
avoided areas with high density of functional disturbance according to 
the newly developed COI (most parsimonious model: MD5, Table 2; 
bdCOI = − 5.048, p < 0.001). Importantly, the effect size of dCOI was 
considerably larger than any other predictor in the candidate models. 
Still, most predictors indicating habitat disturbance showed a significant 
(and often strong) effect in less supported, alternative models. Bears 
avoided proximity to human settlements (MD1: bDHS = 2.584, p < 0.001; 
ΔAIC = 97 with respect to the best model; Table 2) and areas with high 
density of structural disturbance, parameterized in the models by the 
density of roads and trails (dRTN) (MD4: bdRTN = − 2.587, p < 0.001; 
ΔAIC = 328 with respect to the best model; Table 2). When considering 
the influence of specific linear disturbance (MD3, ΔAIC = 362 with 
respect to the best model; Table 2), the bear showed quite different re-
sponses, avoiding areas in proximity to main roads (bDMR = 0.935, p <
0.001), but selecting for human trails (bDHT = − 0.198, p < 0.001). 
Interestingly, bears did not seem to either avoid or select forest roads 
(bDFR = 0.057, p > 0.05). The predictors of the core model maintained 
similar coefficients in all models (Table 2), with the exception of culti-
vated lands without orchards (AGR), not significant in some models and 

Table 1 
Set of a-priori hypothesis and corresponding models to assess anthropogenic 
disturbance on brown bear habitat selection at the third-order of selection 
(within home range). Each a-priori model contained a core set of environmental 
variables (topography, canopy cover, land use) as predictors and in addition one 
or more variable(s) for testing anthropogenic disturbance.  

ID Model Expected disturbance Covariates 

MD1 Aggregate 
disturbance 

Influence of human settlement 
proximity on selection 

Core model + DHS 

MD2 Generic linear 
disturbance 

Influence of generic linear 
infrastructure proximity on 
selection 

Core model + DRT 

MD3 Specific linear 
disturbance 

Influence of specific linear 
infrastructure proximity on 
selection 

Core model +
DMR + DFR +
DHT 

MD4 Density of 
structural 
disturbance 

Influence of infrastructure 
network density on selection 

Core model +
dRTN 

MD5 Density of 
functional 
disturbance 

Influence of human activity 
density on selection 

Core model +
dCOI  
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marginally significant in others (Table 2). However, the core model per 
se was the least supported by the data than all of Models of Disturbance 
but MD2 (Generic Linear Disturbance). The best fitting model (MD5; 
Table 2) led to robust spatial predictions of the relative probability of use 
by brown bear in the study area (Fig. 2; average Spearman’s correlation 
coefficient for the 10-fold cross validation: r = +0.98, p < 0.001). 

4. Discussion 

We demonstrated the possibility of using human movement data, as 
extracted from Strava Global Heatmap, to quantify functional human 
disturbance for wildlife over the landscape. We have provided empirical 
evidence that the cumulated outdoor activity influenced the space use 
behaviour of a Critically Endangered brown bear population (Huber, 
2018). Previously, large carnivores have been shown to fear the human 
‘super predator’ (sensu Smith et al., 2017) so that the spatial pattern of 
human-derived risk perception (Gaynor et al., 2019) can influence large 
carnivore space use (Cristescu et al., 2013; Ladle et al., 2018) and 
foraging behaviour (Ordiz et al., 2017). A recent human-carnivore 
coexistence model (Chapron et al., 2014) put forward a community 
ecology framework where humans are considered as an integral part of 
the community (Chapron and López-Bao, 2016). Our results support and 
integrate such a view by demonstrating that carnivore space use is not 
accurately portrayed when using disturbance metrics that are based 
solely on structural proxies of human presence (infrastructure per se). 
We showed that the functional use of human structures and presence (i. 
e. human mobility) provides a more realistic way to address the inter-
play between carnivore and human use of space. 

4.1. Functional disturbance outperforms structural variables to predict 
brown bear habitat selection in Trentino 

Peters et al. (2015) showed that bears selected mountainous habitat 
with forest cover within the home range, and avoided urban areas and 
linear features linked to human recreation. In this work, we integrated 
those results by demonstrating that bears avoided specific forms of 

structural disturbance, as both density (MD4; Table 2) and proximity of 
man-made infrastructures (MD1, MD3; Table 2) negatively affected 
bear’s space use. Human settlements (e.g. Nellemann et al., 2007; 
Martin et al., 2010; Peters et al., 2015) and paved roads (e.g. Gibeau 
et al., 2002; Whittington et al., 2019) had the strongest negative effect as 
single factors (MD1, MD3; Table 2), whereas trails were mildly attrac-
tive (MD3; Table 2), likely because they can be used by animals in 
moments of low human presence (i.e. night; Tattoni et al., 2015; Ober-
osler et al., 2017; Ladle et al., 2018). However, it was the cumulative use 
of landscape by people which drove bear habitat selection within their 
home ranges (MD5; Table 2). We referred to this effect as functional 
anthropogenic disturbance, i.e. actual human presence in the landscape. In 
a community ecology framework (Chapron and López-Bao, 2016), in 
which humans act as ‘super predators’ (Tenan et al., 2016; sensu Smith 
et al., 2017), large carnivores are expected to avoid areas with human- 
derived risk. If however disturbance occurs in an area of reintroduction, 
where a newly-established population is still at high risk of local 
extinction (i.e. Critically Endangered; IUCN, 2001), carnivores may not 
be able to avoid such risky areas. Bears in our study have demonstrated a 
good spatial perception of human-derived risk (sensu Gaynor et al., 
2019) at the home range scale, scarcely tolerating and thus avoiding 
large volumes of outdoor non-motorized activities. On the other side, 
our findings indicate that brown bear is shrinking its ecological niche 
locally as a result of functional anthropogenic disturbance. 

4.2. From functional disturbance to functional connectivity: landscape 
fragmentation from the wildlife’s perspective 

Metrics of structural disturbancemight not be enough to fully un-
derstand the implications of human pervasiveness on animal spatial 
behaviour. Not only do humans consume and change the environment, 
but they also compete directly for space and resources. As a result, their 
active presence over the landscape could trigger animals’ avoidance for 
suitable spaces (e.g. niche partitioning; Squires et al., 2019). If species 
have low plasticity or space is limited, direct human competition for 
space may have serious implications for conservation. Our application of 

Table 2 
Output of the set of a-priori models to assess anthropogenic disturbance on brown bear habitat selection at the third-order of selection (see Table 1 for the set of 
models). The estimated coefficient values (b), the 90% Confidence Interval, and the P-values (*p < 0.01) are reported for each covariate. The models are sorted from 
left to right based on increasing AIC scores (reported at the bottom).   

Model  

MD5 MD1 MD4 MD3 Core MD2 

Slp 2.054* 
(1.885, 2.223) 

2.394* 
(2.228, 2.559) 

2.316* 
(2.149, 2.482) 

2.440* 
(2.273, 2.608) 

2.626* 
(2.463, 2.789) 

2.610* 
(2.443, 2.776) 

TCD 0.831* 
(0.759, 0.903) 

0.840* 
(0.768, 0.912) 

0.894* 
(0.822, 0.966) 

0.924* 
(0.843, 1.005) 

0.813* 
(0.742, 0.884) 

0.825* 
(0.749, 0.900) 

AGR 0.237* 
(0.129, 0.345) 

0.183* 
(0.075, 0.291) 

0.028 
(− 0.077, 0.133) 

0.225* 
(0.115, 0.336) 

− 0.078 
(− 0.181, 0.026) 

− 0.070 
(− 0.175, 0.035) 

dCOI − 5.048* 
(− 5.430, − 4.667)      

DHS  2.584* 
(2.364, 2.803)     

dRTN   − 2.587* 
(− 2.856, − 2.319)    

DHT    − 0.198* 
(− 0.286, − 0.110)   

DFR    0.057 
(− 0.044, 0.158)   

DMR    0.935* 
(0.828, 1.042)   

DRT      0.530 
(− 0.608, 1.667) 

Constant − 1.699* 
(− 1.810, − 1.589) 

− 4.438* 
(− 4.671, − 4.204) 

− 1.879* 
(− 1.982, − 1.776) 

− 2.771* 
(− 2.925, − 2.617) 

− 2.083* 
(− 2.182, − 1.985) 

− 2.099* 
(− 2.203, − 1.995) 

Log likelihood − 13,122 − 13,171 − 13,286 − 13,301 − 13,421 − 13,420 
Akaike inf. crit. 26,257 26,354 26,585 26,619 26,852 26,853 

Note. 
* p < 0.01. 
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the community ecology-based human-carnivore coexistence model 
(Chapron et al., 2014; Chapron and López-Bao, 2016) by using a novel 
metric of functional anthropogenic disturbance indicates that conclusive 
conservation planning - especially in areas with high human density - 
should necessarily take into account human mobility. Future applica-
tions to other contexts and/or other sensitive large carnivore species (e. 
g. Amur Tiger, Kerley et al., 2002; Asiatic leopard, Ngoprasert et al., 
2007; Iberian lynx, Fernández et al., 2003) could further generalise our 
findings and their implications for carnivore conservation in a world 
where human presence is increasingly pervasive, and the community 
ecology coexistence model will likely be the only viable alternative for 
their persistence (Chapron and López-Bao, 2016). 

We were able to take and demonstrate these concepts into a concrete 
case of conservation concern. The predictive map (Fig. 2) showed the 
relative probability of brown bear habitat selection in the area of prime 
establishment of the reintroduced population. In general, when 
compared with Peters et al. (2015; Fig. 2a), areas of high probability of 
use seem to be more distributed, yet more fragmented. Indeed, most of 
the core habitat patches and linking corridors identified in Peters et al. 
(2015) correspond in our map to a matrix of suitable, but very small 
fragments. Our results seem to confirm a certain level of connectivity at 
the small scale, as previously predicted, but also an important 

contraction of large suitable areas when we accounted for functional 
human disturbance. Portions with greater probability of presence were 
found only in the Central-South Western and Central-Northern sectors of 
the area, and along some narrow secondary Alpine valleys, whereas 
extensive human activity and large infrastructures limited the suitability 
of the main valley bottoms, including Adige valley (Fig. 2). 

In light of these findings, the establishment of a long-term, viable 
Alpine-Dinaric brown bear metapopulation (Kaczensky et al., 2012) may 
be difficult to achieve, as potential expansion eastwards is still severely 
limited by both structural and functional anthropogenic disturbance. As 
bears continue to search for space in this increasingly complex and 
expanding matrix of anthropogenic disturbance, long term population 
viability is at risk. To facilitate this expansion, specific measures could 
be adopted to spatially reduce functional anthropocentric disturbance. 
Temporal trail/road closure, as well as seasonal restriction of areas, have 
shown to improve habitat quality for wildlife while still providing op-
portunities for human use (Lamb et al., 2018, Whittington et al., 2019). 
On the other hand, measures such as the establishment of recreational 
areas, including protected areas, could have an opposite effect to that 
desired, as more people would be locally drawn to outdoor activities (e. 
g. Fredman et al., 2007). The availability of a reliable, yet easy-to-obtain 
metric of functional anthropogenic disturbance, like the index we 

Fig. 2. Predicted relative probability of use by brown bears in Western Trentino, based on third-order (within home range) resource selection coefficients (MD5: 
slope, tree cover density, cultivated without orchards, density of Cumulative Outdoor activity Index). The map has a resolution of 20 m pixel size. 
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developed, is paramount for the effective planning of such mitigation 
measures. 
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Chapron, G., López-Bao, J.V., 2016. Coexistence with large carnivores informed by 
community ecology. Trends in Ecology and Evolution 31 (8), 578–580. 

Chapron, G., et al., 2014. Recovery of large carnivores in Europe’s modern human- 
dominated landscapes. Science 346 (6216), 1517–1519. 

Ciarniello, L.M., Boyce, M.S., Seip, D.R., Heard, D.C., 2007. Grizzly bear habitat selection 
is scale dependent. Ecol. Appl. 17 (5), 1424–1440. 

Coffin, A.W., 2007. From roadkill to road ecology: a review of the ecological effects of 
roads. J. Transp. Geogr. 15 (5), 396–406. 

Compton, B.W., McGarigal, K., Cushman, S.A., Gamble, L.R., 2007. A resistant-kernel 
model of connectivity for amphibians that breed in vernal pools. Conserv. Biol. 21 
(3), 788–799. 

Cristescu, B., Stenhouse, G.B., Boyce, M.S., 2013. Perception of human-derived risk 
influences choice at top of the food chain. PLoS One 8 (12), 82738. 

Crooks, K.R., Burdett, C.L., Theobald, D.M., Rondinini, C., Boitani, L., 2011. Global 
patterns of fragmentation and connectivity of mammalian carnivore habitat. 
Philosophical Transactions of the Royal Society B: Biological Sciences 366 (1578), 
2642–2651. 

Dean, W.R.J., Seymour, C.L., Joseph, G.S., Foord, S.H., 2019. A review of the impacts of 
roads on wildlife in semi-arid regions. Diversity 11 (5), 81. 
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Herfindal, I., Boitani, L., 2016. Predicting the continuum between corridors and 
barriers to animal movements using Step Selection Functions and Randomized 
Shortest Paths. J. Anim. Ecol. 85 (1), 32–42. 

Pecl, G.T., et al., 2017. Biodiversity redistribution under climate change: impacts on 
ecosystems and human well-being. Science 355 (6332), eaai9214. 

Peters, W., Hebblewhite, M., Cavedon, M., Pedrotti, L., Mustoni, A., Zibordi, F., Groff, C., 
Zanin, M., Cagnacci, F., 2015. Resource selection and connectivity reveal 

conservation challenges for reintroduced brown bears in the Italian Alps. Biol. 
Conserv. 186, 123–133. 

Prokopenko, C.M., Boyce, M.S., Avgar, T., 2017. Characterizing wildlife behavioural 
responses to roads using integrated step selection analysis. J. Appl. Ecol. 54 (2), 
470–479. 

QGIS Development Team, 2019. QGIS Geographic Information System. Open Source 
Geospatial Foundation Project. 

R Core Team, 2017. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria.  

Ripple, W.J., et al., 2016. Bushmeat hunting and extinction risk to the world’s mammals. 
R. Soc. Open Sci. 3 (10), 160498. 

Robb, D., 2017. Building the Global Heatmap. Medium Corporation. Retrieved May, 
2019 from www.medium.com/strava-engineering/the-global-heatmap-now-6x- 
hotter-23fc01d301de.  

Smith, J.A., Suraci, J.P., Clinchy, M., Crawford, A., Roberts, D., Zanette, L.Y., Wilmers, C. 
C., 2017. Fear of the human ‘super predator’ reduces feeding time in large 
carnivores. Proc. R. Soc. B Biol. Sci. 284 (1857), 20170433. 

Squires, J.R., Olson, L.E., Roberts, E.K., Ivan, J.S., Hebblewhite, M., 2019. Winter 
recreation and Canada lynx: reducing conflict through niche partitioning. Ecosphere 
10 (10), e02876. 

Strava, 2018a. Strava Global Heatmap. Retrieved February, 2019 from strava.co 
m/heatmap. 

Strava, 2018b. Strava Metro. Retrieved February, 2019 from metro.strava.com. 
Strava Press, 2018. Strava Upload Rate Surges 5X, Total Uploads Surpass 2 Billion. 

Strava. Retrieved May, 2019 from www.blog.strava.com/press/strava-upload-rate-s 
urges-5x-total-uploads-surpass-2-billion/.  

Susilo, Y.O., Joewono, T.B., Santosa, W., Parikesit, D., 2007. A reflection of motorization 
and public transport in Jakarta metropolitan area. J. East. Asia Soc. Transp. Stud. 7, 
299–314. 

Tattoni, C., Bragalanti, N., Groff, C., Rovero, F., 2015. Patterns in the use of rub trees by 
the Eurasian brown bear. Hystrix, the Italian Journal of Mammalogy 26 (2), 
118–124. 

Tenan, S., Iemma, A., Bragalanti, N., Pedrini, P., De Barba, M., Randi, E., Groff, C., 
Genovart, M., 2016. Evaluating mortality rates with a novel integrated framework 
for non monogamous species. Conserv. Biol. 30 (6), 1307–1319. 

Trombulak, S.C., Frissell, C.A., 2000. Review of ecological effects of roads on terrestrial 
and aquatic communities. Conserv. Biol. 14 (1), 18–30. 

Tucker, M.A., et al., 2018. Moving in the Anthropocene: global reductions in terrestrial 
mammalian movements. Science 359 (6374), 466–469. 

Wedel, M., Kannan, P.K., 2016. Marketing analytics for data-rich environments. J. Mark. 
80 (6), 97–121. 

Whittington, J., Low, P., Hunt, B., 2019. Temporal road closures improve habitat quality 
for wildlife. Sci. Rep. 9 (1), 3772. 

Worton, B.J., 1989. Kernel methods for estimating the utilization distribution in home- 
range studies. Ecology 70 (1), 164–168. 

A. Corradini et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0185
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0185
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0185
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0190
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0190
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0190
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0195
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0195
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0195
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0200
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0200
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0200
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0205
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0205
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0205
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0205
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0210
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0210
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0210
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0215
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0215
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0215
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0220
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0220
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0220
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0225
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0225
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0225
https://www.wiki.openstreetmap.org/wiki/Zoom_levels
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0230
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0230
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0230
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0235
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0235
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0235
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0240
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0240
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0240
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0240
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0245
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0245
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0250
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0250
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0250
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0250
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0255
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0255
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0255
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0260
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0260
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0265
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0265
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0270
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0270
https://www.medium.com/strava-engineering/the-global-heatmap-now-6x-hotter-23fc01d301de
https://www.medium.com/strava-engineering/the-global-heatmap-now-6x-hotter-23fc01d301de
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0275
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0275
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0275
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0280
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0280
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0280
https://strava.com/heatmap
https://strava.com/heatmap
https://metro.strava.com
https://www.blog.strava.com/press/strava-upload-rate-surges-5x-total-uploads-surpass-2-billion/
https://www.blog.strava.com/press/strava-upload-rate-surges-5x-total-uploads-surpass-2-billion/
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0285
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0285
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0285
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0290
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0290
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0290
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0295
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0295
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0295
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0300
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0300
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0305
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0305
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0315
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0315
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0320
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0320
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0325
http://refhub.elsevier.com/S0006-3207(20)30876-4/rf0325

	Effects of cumulated outdoor activity on wildlife habitat use
	1 Introduction
	2 Materials and methods
	2.1 Assessing functional anthropic disturbance: the Cumulative Outdoor activity Index
	2.1.1 Strava Global Heatmap structure
	2.1.2 Deriving the Cumulative Outdoor activity Index
	2.1.3 Validation of COI through ground truth observations

	2.2 A case study: assessing the effect of anthropogenic disturbance on a reintroduced brown bear population
	2.2.1 Study area and brown bear population
	2.2.2 Movement data
	2.2.3 Environmental layers
	2.2.4 Resource Selection Analysis


	3 Results
	3.1 Validation of COI as an index of functional human disturbance
	3.2 Anthropogenic disturbance effect on bear habitat selection

	4 Discussion
	4.1 Functional disturbance outperforms structural variables to predict brown bear habitat selection in Trentino
	4.2 From functional disturbance to functional connectivity: landscape fragmentation from the wildlife’s perspective

	Declaration of competing interest
	Acknowledgements
	CRediT authorship contribution statement
	Appendix A Supplementary data
	References


