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Abstract

Generalized Linear Models are routinely used in data analysis. Classical es-
timators are based on the maximum likelihood principle and it is well known
that the presence of outliers can have a large impact on them. Several ro-
bust procedures have been presented in the literature, being redescending
M-estimators the most widely accepted. Based on non-convex loss functions,
these estimators need a robust initial estimate, which is often obtained by
subsampling techniques. However, as the number of unknown parameters
increases, the number of subsamples needed in order for this method to be
robust, soon makes it infeasible. Furthermore the subsampling procedure
provides a non deterministic starting point. A new method for computing
a robust initial estimator is proposed. This method is deterministic and
demands a relatively short computational time, even for large numbers of
covariates. The proposed method is applied to M-estimators based on trans-
formations. In addition, an iteratively reweighted least squares algorithm is
proposed for the computation of the final estimates. The new methods are
studied by means of Monte Carlo experiments.
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1. Introduction

Robust estimators for generalized linear models (GLM) have been studied
by many authors in recent years. Among them, we may cite Kiinsch et al.
(1989), Cantoni and Ronchetti (2001), Bergesio and Yohai (2011), Bianco
et al. (2013), Valdora and Yohai (2014) and Alqgallaf and Agostinelli (2016).
These proposals either lack robustness or require a robust initial estimator.
We propose a method for computing an initial estimator which can be used to
start an iterative algorithm, as needed by redescending estimators. We apply
this method to the computation of M-estimators based on transformations
(MT), proposed by Valdora and Yohai (2014). MT-estimators are a family
of redescending M-estimators based on variance stabilizing transformations.
A variance stabilizing transformation is a function, such that, if applied to a
random variable with a distribution in a one—parameter family, the resulting
random variable has an almost constant variance. For example in the case of
the Poisson family, a function with this property is the square root (See, for
example, Section 2.2 in Valdora and Yohai, 2014). Stabilizing the variance
allows the correct scaling of the loss function used in the definition of M-
estimators.

Consider a GLM in which y is the response and x is a p -dimensional
vector of explanatory variables. We assume that

g(ﬂ) - ,BS—X, (1>

where 3, € R? is an unknown vector of parameters and g : R — R is a
known link function. We further assume that

y|XN F/u (2)

where F), is a discrete or continuous distribution function in the exponential
family of distributions in R with a density of the form

fuly) = exp (yp — b(p) + c(y)) , (3)

for given functions b and c.
Let t be a variance stabilizing transformation and p(u) be a function such
that:



(1) p(u) is a non-decreasing function of |ul,

(2) p(0) =0,

(3) there exists k > 0 such that p is strictly increasing in (0, k) and p is
constant in (k, +00).

MT-estimators are defined as

~ ~

ﬂ = arg mﬁmL(,@), (4>

where

L(B)=>_p(ty) —m (s (x/3)),

and m is the function defined by
m(p) = argminE,, (p (t(y) — 7)), (5)

where E,,(y) denotes the expectation of y when y ~ F},. It is assumed that m
is univocally defined, therefore (5) implies the Fisher consistency of B. Other
assumptions necessary to have consistency and asymptotic normality of these
estimators are listed in Valdora and Yohai (2014). The solution to (4) can be
found by iterative methods which typically solve the corresponding system
of estimating equations

wai,yiﬁ) = 0. (6)

where 1 (x;, y;, 3) is the derivative with respect to 8 of p (t(yz-) —m (gfl(xjﬁ))).
In Appendix A we provide an iteratively reweighted least squares (IRWLS)
algorithm to find a solution of equation (6). The difficulty in the case of
redescending M-estimators is that the objective function L(8) may have sev-
eral local minima. As a consequence, the iterative procedure may converge to
a solution to equation (6) that is not a solution to the optimization problem
(4). To avoid this, one must begin the iterative algorithm at an initial esti-
mator which is a very good approximation of the global minimum of L, i.e.
the solution of (4). If p is small, this approximate solution may be obtained
by the subsampling method (see, Valdora and Yohai, 2014). Based on the
algorithm described in Rousseeuw and Leroy (1987) for linear models, this
method consists in computing a finite set A of candidate solutions of (4) and
then replace the minimization over RP by a minimization over A. The set



A is obtained by randomly drawing subsamples of size p and then comput-
ing the maximum likelihood (ML) estimator based on the subsample. If the
original sample contains a proportion € of outliers, then the probability that
a given subsample is free of outliers is (1 — €)? and the probability of having
at least one subsample free of outliers is 1 — (1 — (1 — €)?)Y, where N is the
number of subsamples drawn. If we want this probability to be greater than
a given «, we must draw a number of subsamples such that

I—(1—(1-eP)N > q,

that is to say,
log(a) log(a)
log(1—(1—¢)?)7 |(1—¢)”

This makes the algorithm infeasible for large p. Pena and Yohai (1999)
studied this problem in the case of linear models, introducing an alternative
method to compute the set of candidate solutions A. Their proposal succeeds
in obtaining a set A which contains very good approximations of the actual
solution and, on the other hand, requires the computation of a small number
of subsamples, namely 3p + 1. This makes the algorithm much faster and
feasible even for very large values of p.

We modify the method introduced by Pena and Yohai (1999) in order
to apply it to generalized linear models. We study its application to MT-
estimators by means of an extensive Monte-Carlo study, which shows that
the method is very fast and robust for large values of p.

As a particular case of the MT-estimator we define the Least Squares
estimator based on Transformations (LST), which corresponds to p(u) = u?,
in the following way

N >

p=argnn - (40 — By (60 (7)

This estimator can be seen as a natural generalization of the Least Squares
estimator (LS) for linear models to the case of GLM. LST estimators are
Fisher consistent, however since the corresponding p is not bounded, they
are, in general, non robust.

The paper is organized as follows. In Section 2 we define the principal
sensitivity components and explain how they can be used to detect outliers.
In Section 3 we describe the proposed procedure in detail. In Section 4 we
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describe the simulation study used to compare the proposed procedure with
existing methods and give a summary of its result. In Section 5 we apply the
proposed method to a real data example and compare the results to those
obtained by other methods. In Section 6 we summarize our conclusions. In
Appendix A we provide an iteratively reweighted least squares algorithm to
find the solution to the optimization problems (4) and (7). We also provide
supplementary material that contains a pseudo code of the proposed proce-
dure, the complete results of the simulation study and the code necessary to
reproduce the analysis of the real data example.

2. Detecting Outliers Using Principal Sensitivity Components

The classical statistic used to measure the influence of an observation is
the Cook statistic introduced by Cook (1977) for linear models, which can
be adapted for generalized linear models (see Chapter 12 of McCullagh and
Nelder, 1989). This statistic is a measure of the distance between B, the
maximum likelihood estimator and B(i), the maximum likelihood estimator
computed without observation i. However, as it is well known (Maronna
et al., 2006), this measure is non-robust and therefore, when there are several
ouliers, it may be completely unreliable.

The proposal of Pefia and Yohai (1999) follows the same idea as the sub-
sampling method, i.e., the candidate solutions A are obtained by computing
the least squares estimates on subsamples. However, the subsamples are not
chosen at random. Instead, they are chosen by deleting from the sample
groups of outliers, which can potentially cause a masking effect. The set A
will, in this way, contain candidates which are already quite robust estimates
and therefore there is no need to have a large number of candidates as it is
necessary for randomly chosen subsamples. In fact, the number of candidates
in the set A is only 3p + 1.

Let (x1,v1),--.,(Xn,¥yn) be random vectors which follow a generalized
linear model as defined by (2) and (1). Let B be the LST estimator and let

/:l’ = (lala s 7[}%)T = gil(XB)u

be the vector of fitted values. Let fi;;) be the fitted value for observation
i computed without using observation j, that is f;;) = ¢7'(x; B(j)), where
B(j) is the LST estimate based on the original sample without observation
j. We define the i-th residual, e;, as the difference between ¢; = t(y;) and



its predicted value #; = m(gil(xiTB)), that is e; = t; — t;. Following the
ideas introduced by Pena and Yohai (1999) for linear models, we define the
sensitivity vectors as the vectors r; with entries

rij = ti — i),

where t}(j) = m(ﬂi(j)) is the predicted value of t; computed without using
observation j. Then, r;; is the sensitivity in forecasting ¢; to the deletion of
observation j and the sensitivity vectors are defined by

r; = (T, Tin) 1<i<n.

The sensitivity matrix R is defined as the matrix whose rows are the
vectors r;. The vector r; expresses how sensitive the prediction of y; is to
the deletion of each observation. The main idea in Pena and Yohai (1999) is
to obtain candidates to start the algorithm to compute the robust estimator
defined by (4), by eliminating those observations with large sensitivity. Since
the sensitivity vectors have n componentes, which in general is a very large
number, by similarity to what is proposed in Pena and Yohai (1999), we
compute the first p principal components of R. Let vy be defined by

n
V| = arg max (VTI'i)z . (8)
Ivil=1 <=
Note that vy is the direction in which the projections of the sensitivity vectors
are the largest and

Zy = RV1 (9)

is the first principal component of the dataset whose elements are the rows
of R. Therefore, the largest entries in z; correspond to the largest terms in
the sum in equation (8), which in turn correspond to the observations that
have the largest projected sensitivity in the direction v.

In the same way, we can define recursively v;, 2 < ¢ < p as the solution
to

n

v; = arg ﬁz'ix (VTri)2 ) (10)
v||=1
i=1

subject to v;v; =0 for all 1 < j <. (11)



The vectors vy,...,v, are the directions in which the projected sensitivity
of the observations are the largest. The corresponding projections,

Z; = RVZ‘, (12>

are the principal components of R which will be called principal sensitivity
components. The entries of z; are the projections of the sensitivity vectors on
the direction v;. Large entries correspond to observations whose projected
sensitivity in the direction v; is large. Therefore, large entries are considered
potential outliers.

In the case of linear models, Pena and Yohai (1999), showed that, if the
sample is contaminated with less than (n —p+1)/(2n — p+ 1) high leverage
outliers, then, either the least squares estimate is bounded or at least for one
of the directions {vy,...v,}, the absolute values of the entries corresponding
to the outliers are larger than the median of these absolute values. For this
reason, high-leverage outliers are expected to be extreme entries in at least
one of the principal sensitivity components. The theorem implies that, if the
sample is contaminated with less than (n —p+1)/(2n — p+ 1) high leverage
outliers, the estimator will remain bounded.

3. Procedure for obtaining a robust initial estimate in generalized
linear models

Consider a random sample following a generalized linear model as defined
by (1), (2) and (3). We introduce a procedure to compute an approximation
of B, that will be used as an initial estimator in the IRWLS algorithm used
to solve the estimating equation given in (6). The procedure has two stages:
stage 1 aims at finding a highly robust but possibly inefficient estimate and
stage 2 aims at increasing its efficiency.

Stage 1. In this stage, the idea is to find a robust, but possibly inefficient,
estimate of 3, by an iterative procedure. In the k-th step of this iteration
method, for £ > 1, we set

3" = arg min L(B). (13)

In the first iteration (k = 1) the set A; is constructed as follows. We begin
by computing the LST estimate with the complete sample and the principal
sensitivity components. For each principal sensitivity component z; we com-
pute three estimates by the LST method. The first estimate is computed

7



after eliminating the half of the observations corresponding to the smallest
entries in z;, the second, after eliminating the half of the observations cor-
responding to the largest entries in z; and the third, after eliminating the
half corresponding to the largest absolute values in z;. To these 3p initial
candidates we add the LST estimate computed using the complete sample,

obtaining a set of 3p + 1 elements. Once we have A; we obtain B(l) by
minimizing L(B) over the elements of A;.

Suppose now that we are at iteration £ > 1. Let 0 < o < 0.5 be a quantile
filtering constant; in all our simulations and examples we set a = 0.05. For
k > 1, we first delete the observations (i = 1,...,n) such that y; > Fl;il(l —

a/2) or y; < F;f(a/?) where f1, = g‘l(xj,@(kil)); then with the remaining

o (k
observations, we compute the LST estimator BéS)T and the corresponding
principal sensitivity components. Let us remark that, for the computation

~ (k
of 6(LS)T we have deleted the observations that have large residuals, since

N . . ~(k—1 . . .
f; is the fitted value obtained using B( ). In this way, while candidates
on the first step of the iteration are protected from high leverage outliers,

~ (k
candidate ,BIES)T is protected from low leverage outliers, which may not be
extreme entries of the z,.

~(k) o~ (k-1
Now, the set A, contains BIES)T, ,8( : and the 3p LST estimates com-

puted by deleting extreme values according to the new principal sensitivity

~(k
components zgk) (t=1,...,n) as in the first iteration. B( ) is the element of

Ay, minimizing L(3).
- (k o (k—1 -

The iterations continue until B( ) B( ). Let B3, be the final estimate
obtained at this stage.
Stage 2. In this second stage we delete the observations y; (i = 1,--- ,An)
such that y; > F,;_l(l —af2) ory < Fl;_l(a/Z), where @1, = g 1(x/ 3)
and compute the LST estimate B(*) with the reduced sample. Then, for
each of the deleted observations we check whether y; > F~! /(1 — a/2) or

[

g*) = g—l(xjﬁ(*)). Observations which are not

yi < F 1 (a/2), where f1
K
within these bounds are finally eliminated; those which are within the bounds

are restored to the sample. With the resulting set of observations we compute
the LST estimate 3, which is our proposed initial estimate.



4. Monte Carlo Study

In this section we report the results of a Monte Carlo study in which
we compare the MT-estimator computed with the proposed initial estimate
(FMT), to the maximum likelihood estimator (ML), the robust quasi like-
lihood estimator (RQL) proposed by Cantoni and Ronchetti (2001), the
Conditionally Unbiased Bounded Influence (CUBIF) estimator proposed by
Kiinsch et al. (1989), and the MT-estimator beginning at an intitial estima-
tor computed by subsampling (SMT). For computing the RQL estimator, we
used function glmrob from the R (R Core Team, 2018) package robustbase
(Maechler et al., 2018), with method “Mqle” and argument weights.on.x
set to “robCov”, so that weights based on a robust Mahalanobis distance of
the design matrix (intercept excluded) were used to downweight potential
outliers in the x-space. The CUBIF estimator was computed using func-
tion cubinf, available in the R package robcbi (Marazzi, 2018a). For the
computation of the SMT estimator, the number of subsamples was set to
2500. Both FMT and SMT were computed using the iteratively reweighted
least squares method described in the appendix and implemented in function
poissonMT of the R package poissonMT (Agostinelli et al., 2018). They only
differ in the starting point, obtained from functions poissonMTinitial and
poissonSSinitial respectively. We study the case of Poisson regression and
log link.

Let x = (1,x*) be a random vector in R such that x* is distributed as
N,-1(0,1) and let y be a random variable such that y|x ~ P (exp(By x)).
Let e; be the vector of RP with all entries equal to zero except for the i-th
entry which is equal to one. We considered five different models: in model 1,
4 and 5, B, = ey; in model 2, 3, = 2e; +e,; in model 3, B, = 2e; + les + Se;.
For each of these models we simulated the case in which the samples do not
contain outliers and the case in which the samples have a proportion € of
outliers. In models 1 to 4, all the outliers were placed at the point (xg, yo),
with x; = e; + 3e, in models 1 to 3, while xy = e; + 3ey + 4e3 in model 4.
The values of yy belong to a grid ranging from p, — K7 to py + Ko, where
po = exp(Byx) = Eg, (y|x = x0). In model 5, the outliers were located at
(X0, %0), with x¢ as in model 4 and yo ~ P(p,). The values of p; belong to
a grid ranging from p, — K; to py + Ko, as before. The values of K; and
K5 and the grid step were chosen in a way such that the maximum mean
squared error of our proposed estimator can be identified.

From our experience on linear models we know that point-mass contam-



ination is, in general, the worst type of contamination. Results on model 5
support this conjecture also for the Poisson regression model.

Given an estimator ﬁ, we denote by MSE, the mean squared error defined
by EgO(HB — Bol|?), where || - || denotes the Ly norm. We estimate the MSE
by

N
R 1 R
MSE = N E 18, — Boll*,
j=1

where Bj is the value of the estimator at the j-th replication and N is the
number of replications which was chosen to equal 1000 for models 1 to 4 and
100 for model 5.

We performed an extensive simulation study, considering p = 6, 10, 20, 30,
40,50 and 100, € = 0,0.05,0.1 and 0.15 and n = 100,400 and 1000 (sample
size 100 was not investigated for the case p = 100). Complete results are
reported in the Supplementary Material. In Figures 1 to 5 we plot the MSE
as a function of y, for samples of size n = 400 with covariates of dimension
p = 30 and p = 100. The proportion of outliers is € = 0.10.

Figures 1 to 5 indicate that the proposed estimator has smaller MSE
than all other proposals for almost all the contaminations considered in this
setting. We study the MSE as a function of yy and consider, as a measure
of robustness, the maximum MSE for y, € Z>(. The proposed estimator has
the smallest maximum MSE for all the models considered.

For smaller values of p, FMT performs generally better than SMT and
better than the rest of the estimators as well. The difference in favour of
FMT is larger when the outliers have high leverage and when p is large.

In Figure 6 we report the execution time for the different methods. This
figure indicates that our proposed method is a great improvement over the
subsampling method in these settings, as far as computational time is con-
cerned.

5. Example: Right Heart Catheterization

This data set was used by Connors et al. (1996) to study the effect of
right heart catheterization in critically ill patients. It contains data from
5735 patients from five medical centers in the USA between 1989 and 1994 on
several variables. These variables include laboratory measurements taken on
day one, dates of admission and discharge, category of the primary disease,
and whether or not the right heart catheterization was performed, among
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Figure 1: MSE for model 1, p = 30 (left) and p = 100 (right), n = 1000 with 10% outliers
at xg = le; + 3es. Black: FMT, red: RQL, green: SMT and light blue: CUBIF.
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Figure 2: MSE for model 2, p = 30 (left) and p = 100 (right), n = 1000 with 10% outliers
at xg = le + 3es. Black: FMT, red: RQL, green: SMT and light blue: CUBIF.

11



o — FMT — EMT
o — RQL — RQL
—— SMT —— SMT
~—— CUBIF o —— CUBIF
— ML o — ML
0
@ |
w |
3
jmy jmy
(%2} %]
3z o | H
o o
g 8 o |
3
0
o 7 n
9 |
o | o |
3 3
T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000
Yo Yo

Figure 3: MSE for model 3, p = 30 (left) and p = 100 (right), n = 1000 with 10% outliers
at xg = le; + 3es. Black: FMT, red: RQL, green: SMT and light blue: CUBIF.
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Figure 4: MSE for model 4, p = 30 (left) and p = 100 (right), n = 1000 with 10% outliers
at xg = le; + 3eg + 4ey. Black: FMT, red: RQL, green: SMT and light blue: CUBIF.
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Figure 5: MSE for model 5, p = 30 (left) and p = 100 (right), n = 1000 with 10% outliers
at xg = le; + 3es + 4ey4. Black: FMT, red: RQL, green: SMT and light blue: CUBIF.

other features. A detailed description of the covariates can be found in
Connors et al. (1996). The data were downloaded from the repository at
Vanderbilt University, specifically from

http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/rhc.csv

We concentrate on the data corresponding to patients with congestive heart
failure (CHF) as primary disease category. This leaves us with 456 obser-
vations, for which we want to use the available variables to explain the
length of hospital stay. Since the study only involves patients that have
been in hospital for 2 or more days, we define the response variable as
y = length of hospital stay — 2, computed as discharge date minus admis-
sion date minus 2. The matrix x of covariates contains information on 57
variables for each of the 456 patients. We assume that y|x follows a Poisson
distribution with mean p = exp(,BTx) and we seek to estimate B and to
study its usefulness to explain and predict the length of hospital stay. We
compute all the estimates using the complete sample of patients from CHF
category.

After computing the estimators, we compute and draw boxplots of the
deviance residuals for each fit. These boxplots are given in Figure 7. We also
give the medians of the deviance residuals for each fit in Table 1.
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Figure 6: Execution time, in seconds, for p = 100, n = 1000 and 10% outliers. First row:
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Figure 7: Absolute deviance residuals for RHC data

ML RQL CUBIF FMT SMT
1.88 1.28 1.50 114 1.19

Table 1: Median of absolute deviance residuals

The median of the deviance residuals of the FMT fit is the smallest. On
the other hand the computational time of SMT is approximately 66 seconds,
while the computational time of FMT is only 6 seconds. So we not only
succeed in greatly decreasing the computational time but it seems that we
also find a better solution in the sense that the deviance residuals of FMT are
smaller than those of SMT at least for half the observations. We observe that
FMT is slightly better at finding the minimum of the objective function (4)
than SMT, since L(Bpyr) = 170.4383 while L(Bgyr) = 170.5213, where
BFMT and BSMT are the estimates obtained by the FMT and the SMT
methods respectively.

In Figure 8 we compare other quantiles of the residuals, we plot the g-
quantiles of the absolute deviance residuals versus ¢ for each of the methods.
We see that quantiles of the absolute deviance residuals corresponding to
FMT and SMT are smaller than those of the other estimators for approxi-
mately 75% of the observations.
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Figure 8: Quantiles of deviance residuals for RHC data

RQL CUBIF FMT SMT
84 105 100 97

Table 2: Number of outliers detected by each method

In order to decide which observations are outliers we use the following boot-
strap procedure. We choose a random observation and, using the vector
of covariates x, we generate its response according to the assumed model
and the estimated parameter, that is to say, we simulate the sample from

Y~ P(exp(BTx)). Then, we compute the deviance residual corresponding
to (x,y) and B We repeat this procedure 5000 times and, in this way,
we generate a sample of deviance residuals that follows the nominal model.
Observations that are larger than the 0.9995 quantile or smaller the 0.0005
quantile of this sample are considered outliers. The number of outliers de-
tected by each of the robust estimators considered is given in Table 2.

In Figure 9 we draw scatter plots of the deviance residuals generated using
methods RQL, CUBIF and SMT vs the deviance residuals generated using

16



method FMT. In each plot, red points represent the observations that are
considered outliers by both methods that are being considered, green points
are considered outliers only by FMT and blue points are considered outliers
only by the other method (RQL, CUBIF and SMT respectively). We see
that, while FMT disagrees several points with RQL and CUBIF, it only
disagrees in very few points with SMT. This is expected, since both SMT
and FMT methods minimize the same objective function. However, these
few differences may account for the small improvement in the median of the
deviance residuals and in the minimum attained.

Finally, we compute the robust weights based on each of the methods and
compare them using the scatter plots in Figure 10. In these plots the colours
are chosen according to the FMT and SMT methods. This means that red
points represent the observations that are considered outliers by both FMT
and SMT, green points are considered outliers only by FMT and blue points
are considered outliers only by SMT. This figure again shows the agreement
between SMT and FMT and their disagreement with RQL and CUBIF. It
also shows that both FMT and SMT give zero weights to the outliers, while
RQL and CUBIF give positive weights to all observations. This partly ex-
plains their lower robustness.

6. Conclusion

We introduce a deterministic robust initial estimator for generalized linear
models, which is used as a starting point for an iteratively reweighted least
squares algorithm to obtain an MT-estimator. We illustrate the procedure for
the Poisson model. Monte Carlo experiments show that MT-estimators com-
puted with the proposed initial estimator have a small bounded mean squared
error exhibiting a redescending behaviour. This is not the case for other pro-
posals such as ML, RQL, CUBIF estimators. Finally, MT-estimators com-
puted with an initial estimator based on subsampling, not only have a larger
mean squared error than MT-estimators computed with the proposed initial
estimator, but their computational time is much longer as well.
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RQL deviance residuals

CUBIF deviance residuals

SMT deviance residuals

FMT deviance residuals

Figure 9: Deviance residuals generated by different methods vs deviance residuals gener-
ated by FMT method for RHC data. Dotted lines indicate 0.0005 and 0.9995 quantiles
of the bootstrapped deviance residuals. Red points represent the observations that are
considered outliers by both methods, greerﬂ%oin‘cs are considered outliers only by FMT
and blue points are considered outliers only by the other method considered in the plot
(RQL, CUBIF and SMT respectively).



00 02 04 06 08 1.0 00 02 04 06 08 1.0
| | | | 1 | | | |

1
o
oo oo emcomm mmacemy| [ o oo commcme| [0 o o o eo qecmpemm |- ©
A rand o
! ° o ogo 8 8| |o o %, o &8
o
® o, ©0 ° o o o0 © 2% Fog | |o 0 ® Ro Oppoty | @
0 2% oo 0 LRGN S o % fpg“’", 5
%o, oS o, 9 o °
o g oo oo IR S 07 el I R o2 °
00 Poo® 8o 9 & %0 § 880 o 2 | @
® 0 _° %000 % B 2 ° 5 o0 0% o 0% o 00 X =
o® oo R s e . o s o e
W 3 SRy e o @ 0% S, % o
& oy % o o o oo B o0 e, <
29 0 %0 © § o & o o ol If o ® o o.o—d
ool ° 0o o ° o8 B
oo ©° 00 o [
)f" ' A l e 8
o
o
o — =
- oompg ! e 8 o® ogue  cppecmpm—"
8g%0 o (Y 8% o° o o b
o | RSP : . . * o 30
S § & o o e
o 2R ] o 8., 8 o % @ o
o ° "' 8 g o8 ° o 000
© . o g 8o % o @ % °%
> 2 0 H %
5 ', 08°% 00 90 8 8 o 00 Coge
° i wCUBIF S st
° 00,0 ° o o4 % o g
< oe o ° ° °,
5 7 o o o o o o ° o °
s ol . RS SRR Y I oo ® 008,
o P ¥ o o o 0 3° oo o o
o e#op . ° At SCAL S R 5 20, %0 %o &8s
e o o % > °°
) fb
o
° o 000 ° 9 0900 o & 00 Qe
[y 0% & o o
%0 ° 8 B o 09° 0 0500% %0
3 8 °8 o o © °
oo %o o o6 % w i
° ° o O ° o o o
] 0% o 0% o
o
oo
o o ° o o 0% g Lo 8 . g
- ryhe el S s WEMT
9 0o o
P 0° ° & 0% ° % ‘e <
L4 o, ° 4 © o o
0% . 050 © o
00 00‘,;‘ oo 0% @00 o o o
o ©%o0 o g o 00® ° ° ©
° oo ° °
cmmoalh @0 88 000 o o |esmmBiinoo o owBoodeo & @ - L2
9 4 5 = o o
- o @ v ° % 00”20, B0 08w 3 °% o ¥ o0
& o 8o ° %k by 0¥ e0p0 o5
o ° o ek o g0 %o,
3 o o 0% go00 oo ©° ° %% o o 0@ Mo
o, a8 2°. 3% oS
3
© °o o 89 % 0, 0o ° o o °gR,8o
S o § o § o0 NS
AN Soaet, 0" 2 SMT
8 LoeB 8% 0°, o0 ® % 2 8% % o W
3 o %o o %0 o N ¥
=} o o o © 8 ° %, ° °
J o o o © 9
N o 0R? %0 00 %8P0 o8 ‘B’;f,
s A o o o ) s 8 oo
o0 oo @
LYW ° °
9 {omme Bl 2% wo 0 0 of |emmideuirdo o wBx'med of |[B¥o o o o
T T T T T T T T T T T

00 02 04 06 08 10 00 02 04 06 08 10

Figure 10: Scatterplots comparing the robust weights for each of the methods. Red points
represent the observations that are considered outliers by both FMT and SMT, green
points are considered outliers only by FMT and blue points are considered outliers only
by SMT.
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Appendix A. Computational details and algorithms

In this Appendix we describe the iteratively reweighted least squares algo-
rithms that were used to compute the LST and the MT estimators. Suppose
that we have an initial estimator 3, and call s(t) = m(g~'(¢)). Then, using a
Taylor expansion of order one we can approximate m (g‘l(xjﬁ)) =s (xjﬁ)
by

s(x; Bo) + 5'(x{ Bo)x; (B — By)- (A.1)

Then, an approximate value to the LST estimator can be found as the value
B, that minimizes

n

> () = s/ By) = /(] Byx] (B - By)) .

i=1

Therefore, 8, — 3, is the LS estimator for a linear model with responses
t(y1), ..., t(y,) and regressor vectors s'(x{ By)X1, ..., s (x, By)x, and conse-
quently

By =B+ (XTW(XB,)?X) " XTW(XB,)(T — 5(XB,)),  (A2)
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where X is the nx p matrix whose i-th row is x;, s(X3) = (s(x{ 3),...,s(x,3)) 7,
W (X0) is the diagonal matrix with diagonal elements s'(x{ 3),...,s'(x,. 3)

and T = (t(y1), ..., t(yn)) "
An iterative procedure to compute the LST estimator can be obtained by

Bri = B+ (XTW(XB,)?X) " X W(XB,)(T —s(XB;).  (A3)

Iterations will continue until |8, 4 — ,Bk“ /1Bkll < 0, where ¢ is the error
tolerance.

Suppose that 3, converges to 8%; then this value should satisfy the LST
estimating equation. In fact, taking limit in both sides of (A.3) we get

(XTW(XB")’X) " XTW(XB")(T — s(8")) = 0,
which is equivalent to
X'"W(XB)(T —s(8")) = 0.

Then, 3" satisfies the estimating equation of the LST estimator.
To start the algorithm, it will be convenient to write equation (A.2) in
the following, slightly different, way

B = (XTW(XB,)’X) " (XTW(XB,)*XB, + X W(XB,)(T — s(X8,)))

(A.4)
Observe that, according to (A.4), to compute B, we only need to give n, =
X3,. Then, since for Poisson regression and log link, x; 3 = log(E(y;)), it
seems reasonable to take 1y = (log(y; + 0.1),...,log(y, + 0.1))". The value
0.1 is added to avoid numerical problem when y; = 0. To compute the LST
estimators in our procedure, only one iteration is performed. The reason is
that, for these auxiliary estimators, the accuracy is not as important as the
speed at which they can be computed. Our experiments show that there is
no noticeable loss in the precision of the final estimate by doing this but, on
the other hand, the computation times decrease significantly.

We describe now an analogous iterative algorithm for computing the M'T
estimator. Suppose that we have an initial robust estimator 3,. We compute
a new value using two approximations. As in the case of the LST estimator,
replacing, in (4), m (¢7*(x; 8)) by (A.1) we consider the approximate loss
function

Zp (t(y:) — s(x{ Bo) — 8'(x{ Bo)x; (B~ By)) -

21



Differentiating with respect to 3 we obtain the estimating equation
21/1 (t(yz) —5(x/ By) — 5'(x/ Bo)x; (B — :80)) s'(x; By)xi = 0, (A.5)
i=1

where 1) = p/. Note that this equation can be written as

n

D (1) = s/ B) = 5/ (<! Bo)x[ (B = By)) wix/ B, x] Bo)s' (] By)xi.
- (A.6)

where . )
) — L0 =) = @) =)
t(y:) — s(v) = '(v)(u —v)
Since B should be close to 3, the second approximation is to replace, in
(A.6), w(x{ B,x] By) by w*(x{ By) = w(x] By, x{ By). Then By is defined as

the solution to the approximate estimating equation:

D () = s(x] By) — (] Bo)x{ (B = By)) w*(x{ By)s'(x] By)xi,
i=1
and is given by

By = B+ (X TW2(XB,)W*(XB)X) X W(XB,)W*(XB,)(T—s(X8,)),

where W*(X3) is the nxn diagonal matrix with diagonal elements w*(x{ 3), ..., w*(x,! B3).
Then, the iterative procedure to compute the MT estimator is given by

B = Bt (XTW(XB,)TW* (XB,)X) XTW(XBW (XB,)(T-s(X5,).

Suppose that 3, — 3%, then taking limits in both sides of (A.7), we ge(t &
XTW(XB')W* (XB")(T — s(X8)) = 0,

and this is equivalent to

XTW(XB)¥ (X3 =0, (A.8)

where W(X8) = (6(t(y) — s(x B)), .., 0(t(ya) — s(x] B)))". Then g’

satisfies the estimating equation of the MT estimator.
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