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Introduction

» The conceptual framework: analogies and toy models

Analogies are fundamental in the way we think about anything and consist in a
transfer of information from a subject to another. It is a cognitive process and a poetic
mean that also naturally found its way into scientific thinking, where concepts and
processes pertaining a particular situation are used to consider and understand new
problems from an intuitive point of view. Even when studying a well solved scientific
problems it is usual to resort to analogies with more familiar settings, depending on
one’s expertise and familiarity.

Besides being used as a qualitative comparison tool, analogies in physics can be
made quantitative, that is a formal mathematical mapping between two different physical
systems. This is the case of Analogue Gravity [1], a research field that aims at finding
condensed matter analogues of the physics of curved spacetimes as described by General
Relativity that may provide new perspectives on open problems of gravitational physics.
In this case the analogy relies in the parallelism between the propagation of sound in a
non-uniform medium and the behaviour of fields in a curved spacetime and is formally
expressed by the fact that sound, under appropriate approximations, can be described
with the Klein—Gordon equation associated to a Lorentzian metric describing a curved
spacetime. The resulting acoustic metric depends on the properties of the medium
(typically a fluid) in which the sound is propagating, but is not determined by the
Einstein equations, so that the analogy is not with the equations governing spacetimes,
but with the ones describing the propagation of fields in a fixed spacetime. In other words
Analogue Gravity provides an analogy of the physics of fields in a curved spacetime.

One can hence try to construct configurations in which the resulting acoustic met-
ric replicates a solution of the Einstein equations of general relativity, thus obtaining a
laboratory-sized model of, for example, a black hole spacetime that can be probed in
a way that is not possible for real astrophysical black holes. Unfortunately exact ana-
logues of general-relativistic spacetimes are typically difficult (when not impossible) to
construct, but interesting things can already be said by simply considering toy models
of curved spacetimes.

Toy models are another important conceptual tool in physics, corresponding to a
simplified description of a physical system focusing on replicating qualitatively some
behaviour with the least possible amount of details. The aim of a toy model is usually
to extract the essential ingredients of some phenomenon typically happening in a com-
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Figure 1: A de Laval nozzle is a tube shaped in such a way that the gas passing through
it is accelerated to supersonic speeds. For sound propagating in the gas this is analogous
to the horizon of a black hole.

plex setting; formally this corresponds to isolating the minimal mathematical structures
responsible for the phenomenon. This is done by performing simplifications that may
also not correspond to any physical system (for example considering a reduced number
of spatial dimensions), but that make the problem easier to analyze. In doing this, one
is constructing an idealized version of the phenomenon, that can then be recognized in
more complex settings; in some sense, one is defining the phenomenon.

This toy-model approach can also be used in Analogue Gravity, that is instead of
focusing on replicating the solutions of General Relativity one can think about simplified
spacetimes displaying the phenomena one is interested in. The great advantage given by
the analogy with respect to the purely theoretical consideration of these toy spacetimes
is that these models can be physically built in a laboratory. To get an idea of how
interesting acoustic spacetimes can be built with a moving fluid consider the de Laval
nozzle depicted in Figure 1, that is a tube designed to accelerate a gas passing through
it and bring it to a supersonic speed. The circles indicate successive wavefronts of the
sound emitted by a point source in different points. When the fluid velocity is subsonic
sound can propagate in all directions, but when it becomes larger than the speed of
sound the waves cannot anymore move upstream and are trapped inside the region of
supersonic flow. This is similar to the behaviour of light near the event horizon of a
black hole, so that this configuration is called a dumb hole.

A prototypical example of the effects one can study in dumb holes is Hawking ra-
diation, a phenomenon that raised many fundamental conceptual issues since its very
discovery [2]. The possibility to observe this effect in a laboratory is what brought
Unruh to introduce the idea of Analogue Gravity [3] and, since that seminal idea, Hawk-
ing radiation in gravitational analogues was object of intense study, that also lead to
its experimental observation [4,5]. This also brought to a general definition of Hawking
effect 6], not restricted to gravitational physics, in the spirit of what we discussed above.

While analogies are built through similarities, part of their interest in the present
context comes from the differences between the systems they connect. In fact, even



if the gravitational analogy allows to predict the occurrence of, for example, Hawking
radiation in the analogue from its occurrence in gravitational systems, the explanation
in terms of the physics of the analogue may be very different, providing an alternative
picture for the peculiar phenomena of curved spacetimes in a different language. Besides
this, the analogy usually relies, as we will see, on some large-scale approximation in
the analogue system, so that the gravitational analogy is not exact and a breaking
of the emergent Lorentz symmetry is present at small scales; this allows to test the
effects of an underlying short-distances physics on the phenomena predicted for (Lorentz
invariant) curved spacetimes. This has been a very important topic regarding Hawking
radiation, related to the fundamental trans-Planckian problem, that is to the arbitrarily
large frequencies involved in Hawking’s original derivation. Moreover, analogue models
provide examples of physical systems that on large scales can be described geometrically,
but also whose microphysics is usually well known; the analogy can hence provide ideas
for the still unknown microscopic (quantum) physics of gravity.

Besides this promising flow of information from the analogue system to the grav-
itational one, the arrow of the analogy also points in the other direction, that is the
knowledge of the physics occurring in a gravitational context can provide new perspec-
tives and predictions on the one of the system providing the analogue.

» The physical phenomena: superradiance

The work presented in this Thesis is an application of the concepts and methods we
just delineated to another intriguing phenomenon concerning black holes: superradiance.
The effect was predicted as an amplified reflection of radiation impinging on a rotating
black hole, and is closely related to the possibility of negative energies (from the perspec-
tive of an asymptotic observer) in a region around the event horizon called ergoregion.
This was first exploited by Penrose to propose a mechanism to extract energy from a
rotating black hole [7].

Even since its first conception [8,9], it has been known that superradiance is not
restricted to black holes; the first derivation by Zel’dovich concerns in fact the scattering
of electromagnetic waves on a rotating cylinder of conducting material. The effect has
been widely studied in and out of gravitational physics [10] making it a very general
phenomenon based on the extraction of energy from the object on which the radiation is
scattering. This can usually be pictured as a scattering process in which negative energy
waves are transmitted, leaving an extra positive energy to the reflected wave.

Through the gravitational analogy superradiance is expected in realizations of toy
models of rotating spacetimes. A widely considered configuration is the one based on a
vortex such as the one of a draining bathtub [11]; the scattering of surface gravity waves
in water on such a vortex was recently used to obtain the first experimental evidence of
superradiant scattering [12].

Besides amplified scattering, various dynamical instabilities are also associated to
superradiance. Dynamically stable amplified scattering is obtained if the amplified radi-
ation and its transmitted partner are removed from the system. In black hole spacetimes



this job can be provided asymptotically by the infinite external space and internally by
the event horizon that, working as a one-way membrane, automatically evacuates ev-
erything that enters it. When these boundary conditions of the system are changed,
dynamical instabilities can emerge [10]: for example by putting a rotating black hole in
a confining geometry one obtains a so-called black hole bomb, or by removing its horizon
the so-called ergoregion instability occurs, as happens for example in rapidly spinning
stars.

Despite the impressive advances in the understanding and investigation of super-
radiance, some intriguing open points remain. The most fundamental is perhaps the
role of dissipation, such as the one provided by an horizon, that is often regarded as a
necessary ingredient. We just said that removing absorption implies the emergence of
dynamical instabilities, but does this preclude the possibility of amplified scattering as
is sometimes suggested? Another open point is the effect of the short distance physics
on superradiant effects; we saw that this was a main topic in the study of Hawking
radiation in analogues, while it has been hardly considered for superradiance.

The first aim of this work is to address these questions, and, as a wider scope, to
obtain a clearer, more intuitive and more general picture of superradiance. We attempt
at this by proposing new and conceptually simpler toy-model spacetimes, with the usual
advantage in analogue models that they can be realized for experimental investigations.

Even if the vortex spacetimes, and more in general rotation, permitted many impor-
tant steps in the approach to superradiance, the cylindrical geometry of these systems
only allows a limited tuning, so that it is difficult to separate the different elements of
the spacetime and their role in superradiant phenomena. Here we propose a new kind
of analogue toy model, providing the possibility of a local tuning of the flow velocity of
the fluid and thus a larger freedom in the control of the features of the resulting space-
time. In this way we obtain a comprehensive understanding of the basic superradiant
phenomena and of the related dynamical instability mechanisms.

With particular attention to role of dissipation, we will show that superradiance
can be understood as mode conversion at the edge of an ergoregion. This implies that
the absence of absorption in the system prohibits superradiance as a stationary and
dynamically stable process, but does not prevent amplified scattering as a transient
phenomenon involving finite-width packets of waves. A related question is also if an
horizon does in general provide the necessary dissipation to assure stable scattering, as
is usually considered the case in black holes spacetimes. We will instead show that this
is not a general feature of horizons and depends on their smoothness.

Our analogue model also has the interesting feature of being the quantitative analogue
of another physical system: a relativistic charged and massive scalar field coupled to an
electrostatic potential. Superradiance for this kind of field is known as the bosonic Klein
paradoz [13] and instabilities associated to electrostatic potential boxes are known as the
Schiff-Snyder—Weinberg (SSW) mechanism [14]. These examples, given their simplicity,
are actually toy models, for example the SSW effect was first derived with a toy model
for nuclear physics in mind, that was in turn used as toy models for rotating spacetime
in [15]. Our simple analogue spacetime is hence a first viable realization of these toy



models in a laboratory.

» The system: atomic Bose—Einstein condensates

The platform we chose for our studies are atomic Bose-Einstein condensates (BECs) [16].
These quantum fluids are interesting to construct analogue models of gravity because of
the good theoretical understanding that was built in the last decades and because of the
remarkable control that has been reached experimentally'. In the context of Analogue
Gravity, these advances were recently used to propose [17,18] and realize a series of
experiments that led to the observation of analogue Hawking radiation in an effectively
one-dimensional condensate [4, 5].

Particular tools for the manipulations of atoms that we are interested in exploiting
are periodic potentials [19] and, especially, synthetic gauge potentials [20], that are
techniques to make neutral atoms behave as if they were charged and coupled to an
electromagnetic field. The feature of these tools that we will exploit is that they can be
used to induce in a BEC velocity fields that are rotational (that is with a non-vanishing
curl). This circumvents the standard requirement of irrotationality that is made in the
derivation of the gravitational analogy and allows the building of what we call a planar
ergosurface.

Other features of BECs that make them intriguing from the point of view of Ana-
logue Gravity are the superluminal dispersion relation of acoustic excitations, that allows
for a study of the influences of the short-wavelength physics, and the low temperatures
allowing the quantum features of sound of sound to emerge, that are an opportunity to
investigate very quantum aspects of field theories in curved spacetimes (such as Hawking
radiation). We will exploit both these facts and will show how a superluminal dispersion
relation can lead to the suppression of superradiance at high frequencies and how the
quantum nature of fluctuations determines a spontaneous pair creation in the modes in-
volved in superradiant scattering, expected to happen in rotating spacetimes and related
to Hawking emission.

Our results summarized up to now exploit the flow of information from the analogue
model to the gravitational case, i.e. these are lessons from Bose—Einstein condensates for
the understanding of superradiant phenomena. We already said that also the opposite
arrow of the analogy can be interesting. Here we will adopt this perspective to reconsider
the problem of the stability of quantized vortices in BECs and to investigate peculiar
instabilities occurring in non-uniformly flowing BECs resembling hydrodynamic parallel
shear flows. Through the gravitational analogy we will understand the physics at play
and will predict surprising phenomena; these are hence lessons from superradiance for
BECs.

The irrotationality of the flow of a condensate implies that vortices can only occur
with a quantized circulation, displaying a purely rotating velocity field. Thinking about

nterestingly, the concept of dilute weakly-interacting BEC was first introduced by Bogoliubov as a
toy model of real, strongly-interacting superfluids such as Helium, and only later their relatively simple
description was found sufficient for an experimentally achievable system.



them in terms of the analogue spacetime they provide shows that they display ergoregion
instabilities, modified by the microscopic physics of the condensate in a similar way we
find for our toy model. This perspective provides a new way to look at the known features
of quantized vortices in different geometries and allows to prove the poorly understood
fact that vortices with multiple quanta of circulation are dynamically unstable in an
infinite condensate, and to make new predictions of unexpected behaviours.

Finally, we consider a configuration analogous to our planar ergosurface, but without
external tricks to obtain rotational velocity fields. Considering two parallel channels in
which a BEC flows with different speeds, a line of quantized vortices will develop in the
region of transition between the two flows. We will see that this configuration displays
instabilities analogous to the Kelvin—Helmholtz instability of shear layers in hydrody-
namics, that are however surprisingly suppressed for high enough relative velocities and
replaced by an instability analogous to the SSW effect. This last topic summarizes the
many connections delineated in this Thesis between different physical contexts, involving
gravitational systems, relativistic charged fields, BECs and fluids.

= Structure of the thesis

In closing this Introduction, we summarize the structure with which the above men-
tioned topics are presented in this Thesis. The first two chapters are introductory and
summarize known results that we will need in the following of the work:

e In Chapter 1 we give an introduction to Analogue Gravity in Bose-FEinstein con-
densates. We first discuss the description of atomic BECs, starting from the mean
field Gross—Pitaevskii equation and with particular attention to the characteriza-
tion of the linear stability of stationary solutions and other properties of small
amplitude (acoustic) fluctuations. We then show how a description of sound via
an acoustic metric emerges in a BEC and discuss acoustic black holes starting from
examples of black hole spacetimes in general relativity. We then give a comparison
of the Bogoliubov and the Klein—-Gordon problems by showing different represen-
tations and by analyzing the associated dispersion relations. Finally, we review
an example of an Analogue Gravity study of a gravitational phenomenon, that
is Hawking radiation in BECs and associated dynamical instabilities, that were
object of recent experimental investigations.

e In Chapter 2 we give an introduction to superradiant phenomena. We start from
some examples coming from the physics of non-gravitational systems, that show
how superradiance is a phenomenon occurring in many physical contexts. We then
pass to black holes and discuss the Penrose process to extract energy from a ro-
tating black hole with a particle decaying into photons. After this we show two
examples of superradiance in black holes: the scattering of acoustic fluctuations in
the vortex geometry and the one of a charged field on a Reisser—Nordtrom black
hole. Finally we summarize the essential aspects of superradiant dynamical in-
stabilities in black holes and we show how the so-called Schiff-Snyder—Weinberg



(SSW) effect for a charged Klein—Gordon field is a good toy model for these insta-
bilities.

The following chapters contain instead original work, some of which has already been
published and some of which will be object of future publications:

e In Chapter 3 we present the idea of a planar ergosurface constructed using a rota-
tional flow for a BEC. Two methods are proposed to obtain such a configuration:
the use of a synthetic vector potential and the one of a periodic lattice poten-
tial. After showing how a synthetic vector potential can expand the set of possible
acoustic metric, we consider superradiant scattering from a planar ergosurface ob-
tained by applying such a potential. The analysis is performed with an analytical
and graphical study of dispersion relations and with numerical calculations. We
highlight the exact mapping of this configuration to the bosonic Klein paradox
and the effects of a superluminal dispersion relation. The work presented in this
first part of the Chapter was published in the preprint [21] and is currently under
review. We then apply a semi-analytical input-output approach to the Bogoliubov
problem in the vector-field-induced planar ergosurface. This allows to predict
amplification factors for superradiant scattering and to treat the quantum effect
of spontaneous pair production in the superradiant modes, that is characterized
through density-density and momentum correlations of the fluctuations. We finally
show how physics analogous to the one of the planar ergosurface can be obtained
with periodic potentials used to change locally the dispersion relation of the atoms.
These last two topics are still unpublished and will be object of future articles.

o In Chapter 4 we address superradiant instabilities obtained by changing the bound-
ary conditions around a planar ergosurface. We concentrate for simplicity on the
configuration obtained with a synthetic vector potential field, that is simpler be-
cause of its constant density. We show the result of numerical simulations of
the Gross—Pitaevskii equation showing dynamically unstable behaviours. These
are better characterized by numerically studying the spectra of the correspond-
ing Bogoliubov problem, showing that these instabilities are an analogue version
of the SSW effect, modified by superluminal effects. Dynamical instabilities are
then studied by matching the Bogoliubov modes at the interface; this approach
also provides a proof of the dynamical stability of the planar ergosurface. The
role of dissipation in superradiance is then discussed, showing that the presence
of superradiant dynamical instabilities does not prevent the possibility of ampli-
fied scattering. Finally, the role of horizons is investigated; by adding a third
region to our setup we include an acoustic horizon, thus reproducing schematically
the structure of a rotating black hole. Horizons are shown to avoid superradiant
(ergoregion) instabilities only if they are smooth enough to prevent sizable reflec-
tion of fluctuations. The work presented in this Chapter included in the already
mentioned work [21].

e In Chapter 5 we use the concepts presented in the previous chapters to study



the stability properties of quantized vortices in effectively-two-dimensional con-
densates. After a brief introduction to vortices in trapped condensates we analyze
a doubly quantized vortex in an infinite BEC and show, with the combination of an
infinite-size limit procedure and of a simulation of outgoing boundary conditions,
that it is dynamically unstable in an otherwise homogeneous condensate. This
result is then extended to vortices of higher quantizations, whose instabilities turn
out to be ergoregion instabilities of the resulting acoustic geometry, modified by
the effects of superluminal dispersion. Related to these phenomena, a surprising
dynamical instability of a singly quantized vortex in an inhomogeneous geometry
is discussed. Finally, we use quantized vortices to provide another example of su-
perradiant scattering in a dynamically unstable system. The work of this Chapter
was published in [22].

In Chapter 6 we consider BECs moving with flows analogous to the one of a planar
ergosurface, but for rotational velocity fields, with the idea to study the effect of
the superradiant mechanisms presented in the previous Chapters on the dynamics
of a nontrivial interface between two parallel flows. This interface is constituted
by an array of vortices that is shown to display different instability mechanisms
depending on the relative velocity of the flows. This is first demonstrated with
GPE numerical calculations, showing significantly different behaviours for relative
velocities below and above two times the speed of sound. Using a decomposition
in Bloch waves, we numerically study the spectra of linear excitations, that well
characterize the two instability regimes. The one for lower velocities is analogous
to the Kelvin—Helmholtz instability of parallel flows in hydrodynamics, the other
one is instead an instability of the SSW kind for finite systems and displays instead
a continuous emission of phonons from the vortex array in an unbound system; we
call this regime radiative instability. A third instability regime for small velocity
is also found. The work presented in this Chapter will be object of a future
publication.

Finally, in the Conclusions we summarize the main results presented in this Thesis
and sketch some possible future developments.



Chapter 1

Analogue gravity in Bose—Einstein
condensates

Starting with an idea by Unruh [3], Analogue Gravity is based on the fact that sound
fluctuations in a moving perfect fluid can be described geometrically as a massless scalar
field obeying a Klein—Gordon equation in a curved-spacetime metric. The usefulness
of this peculiar connection relies in the possibility to experimentally and conceptually
address the formalism and the predictions of field theories in curved spacetimes, most
famously Hawking radiation, whose validity is subject to conceptual issues and for which
experimental evidence is presently not available.

Since its first conception, this research programme has gathered a wide number
of different ideas and platforms to reproduce the physics of curved spacetimes: from
classical and quantum fluids to optical systems and lattice models. We focus here on
the case of atomic Bose-Einstein condensates (BEC) and refer to the comprehensive
review [1] for a full catalogue of models.

Among the other possibilities one is particularly close to atomic BECs: quantum
fluids of light [23]. Photons can show properties similar to fluids of matter when confined
in one direction in an optical cavity, that has the effect of giving the photon an effective
mass, and in a nonlinear medium, providing an effective photon-photon interaction. The
resulting two-dimensional system has been shown to undergo Bose—FEinstein condensation
and the description of this state of the photon fluid is very similar, except for the driven-
dissipative nature of the system, to the one we are now going to introduce for the atomic
counterpart. Another alternative is given by light propagating in a bulk Kerr nonlinear
medium, that under the paraxial approximation is described by an equation analogous
to the mean field Gross-Pitaevskii equation for condensed atoms [24]. Our discussion
can hence be easily transposed to these other platforms.

Configurations based on Bose-Einstein condensates were first proposed as gravita-
tional analogues in [25-27]. The choice of these quantum fluids is convenient for many
reasons. From the experimental point of view the control over these systems has gotten
better and better in these 25 years since the first realization of condensates in the labo-
ratory [28,29] and now a rich tuning of the system’s parameters can be performed, thus
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allowing the engineering of configurations aimed at specific Analogue Gravity problems.
From the theoretical point of view the description of these systems is very well known
and tested, thus providing a system that on large scales falls in the gravitational anal-
ogy, but also whose microphysics, playing the role of the unknown short-scales physics
of gravity, is under control. Moreover the low temperatures allow the emergence of very
quantum features of the fluctuations, allowing investigations on very quantum features
of field theories in curved spacetime (see also [30]). Similar considerations also hold
for fluids of light, whose use as platforms for analogue gravity is currently under active
consideration [31-35].

The aim of this Chapter is to introduce Analogue Gravity in BECs, starting from the
main theoretical tools for the description of the condensates we will need in the following
of our work. The derivation of the acoustic metric for the description of sound through
the gravitational analogy is then reviewed and acoustic black holes are introduced in
analogy with the solutions of general relativity. Subsequently, a detailed formal and
physical comparison between the properties of fluctuations in BECs and the ones of
the corresponding curved-spacetime Klein—Gordon description is made. The Chapter is
closed with an exposition of the important and guiding example of Hawking radiation
in BECs.

1.1 The basic equations of Bose—Einstein condensates

We review here some basic physics of the weakly interacting Bose gas in the condensed
state. The main theoretical approaches we are interested in are the mean field description
of the condensate, giving the famous Gross—Pitaevskii equation (GPE), and the linear
Bogoliubov—de Gennes equations (BdG) for fluctuations around steady states, to which
we will also refer as the Bogoliubov problem.

After a summary of the main properties of these approaches, we will show how from
the GPE we obtain the equations for a perfect fluid in the so-called hydrodynamic limit
and from the BAG we obtain, in the long-wavelength limit, a metric description of sound
through a Klein-Gordon (KG) equation in curved-spacetime.

The presentation on Bose-Einstein condensates will here be limited to our needs, for
comprehensive expositions refer to the standard textbooks [16,36,37]. The basic tools we
will use stem from a treatment of the condensate as a coherent state with a well-defined
phase, that in the thermodynamic limit is equivalent to a fixed-number state, and from a
description of non-condensed atoms that does not conserve the overall number. A more
rigorous number-conserving treatment was developed in [38], that however goes beyond
our present scope.

1.1.1 The Gross—Pitaevskii equation

The system we have in mind is an interacting gas of bosons in which the average
distance between particles d is much larger than the interatomic forces range rg. In
this case the gas is said to be dilute and one can neglect interaction processes involving
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more than two particles. Moreover, since the particles are in average very far from
each other, one can describe them with the asymptotic wavefunctions of their scattering
problem, with momenta p < hi/rg. The relevant quantity to describe their interaction
is the scattering amplitude, that at such small momenta becomes independent of energy
and is dominated by the s-wave scattering length a, that is hence the single parameter
characterizing interactions. In addition, the gas is said to be weakly interacting if |a| < d.

The Hamiltonian involving only two-body interactions can be written in terms of the
position-space atomic field operators \i/(r) as

2
H= /dr (%V@Wr)V@(r)) + ;/drdr’ )T )V (e — )T ()T (r), (1.1)

where M is the atomic mass. V(r) is the interatomic potential, that in real systems
contains a sharp short-range behaviour that is difficult to treat and complicates the use
of perturbation theory even at small energies.

However, in a dilute gas only momenta p < h/rg are involved in the scattering
processes and the actual short-range shape of the potential is hence not important:
what matters is that the potential gives the correct large-distances scattering behaviour.
It is hence convenient to replace the physical potential V' with an effective potential
Vert(r) (Fermi pseudo-potential) providing the same scattering length a. This corre-
sponds to considering only the zero-momentum component of the (effective) potential
Vo = [ dr Veg(r), whose value is related to the scattering length calculated in the so-
called Born approximation a = #VO. This constant potential in momentum space
corresponds in coordinate space to a contact potential

Vegr(r.17) = gd(x — 1), (1.2)
where we defined the interaction coupling constant

_47rh2a
=7

9:=W (1.3)
From the Hamiltonian (1.1) with this contact potential, and also including the possibility
of an external trapping potential, one obtains the Heisenberg equation for the field
operator

272
in2 = [0, H] = (—h A Vext + g\iﬁ@> 0. (1.4)
2M

The crucial step is now to substitute the quantum field operator ‘if(r, t) with a scalar
field W(r,t), a recipe that is called Bogoliubov prescription. The meaning of this sub-
stitution is related to the fact that, for a large number of particles and in the absence
of interactions, at zero temperature the atoms will condense and will occupy the same
single-particle state. In the presence of interactions this in not exactly true but the hy-
pothesis of weak interactions allows to use this (Hartree-Fock) approximation, in which
correlations among particles are not considered. The depletion of the condensate due
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to interactions can hence be neglected and one is left with the famous Gross—Pitaevskii
equation (GPE)

0 v 2
zh&\lf(r,t) =\ T Vext(r) + ¢ |¥(r,t)|” | U(r,t) =: Hop¥(r, 1), (1.5)

describing a dilute, weakly interacting Bose gas at zero temperature in terms of a
macroscopic scalar order parameter ¥(r,t), normalized to the total number of atoms
[dr |[U|* = N.

Equation (1.5) can be also obtained by imposing the stationarity condition to the
action

5 (—ih/drdt U0, +/ th) : (1.6)

where the energy functional is
E=/dr ﬁ|W|2+vext|\IJ|2+grw4 (1.7)
2M 2 ’

obtained by taking the expectation value of the quantum Hamiltonian on the Hartree—
Fock product state under the same assumptions that led to the GPE.

With a variational principle applied to the energy functional with the constraint that
the total number of atoms is conserved, that is minimizing

E’:E—,u/dr\\II\Q, (1.8)

one obtains the time-independent GPE

h2v? 2
o T Vext +9[%o(r)]” — p | Yo(r) =0. (1.9)
Analogously to the Schréodinger equation this is the equation for stationary solutions of
the shape

U(r,t) = Uo(r)e #/", (1.10)

where, instead of the energy of the solution, we have the Lagrange multiplier p that is
the chemical potential p = g—f].
It is also interesting now to consider a density-phase representation of the order

parameter
U(r,t) = \/n(r, )T (1.11)

In terms of n and © the GPE (1.5) can be expressed by a pair of equations, the first
being the continuity equation

on hrVO
v (”M ) 7 (1.12)
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expressing the conservation of matter and from which one can can see that the gradient
of the phase determines the velocity of the condensate

IAYS)
=—. 1.13
ve (1.13)
that has hence a vanishing curl. The second equation is
00  (hVO)? h2 V2/n
h—+ ———+— xt — —— =0, 1.14
ot " aar 9T Vea T opr o =0 (1.14)
that can be expressed in terms of the velocity (1.13) as
ov v? R V2%/n
M— M— Vext — —— =0. 1.15
8t+v< o TNt Ve T on T (1.15)

This equation is analogous to the Euler equation for an ideal fluid subject to an external
force foxt = —nV Ve, except for the last term that is the only one left in which & enters
explicitly. This term has the role of an additional pressure and is hence referred to as
quantum pressure Vj.

This last term can be neglected if density variations occur over large enough length
scales. In particular if these variations occur over a length scale A, the quantum pres-
sure term is proportional to V, o €2/02) where ¢ is the so-called healing length of the
condensate

¢ = (1.16)

Mgn’
that can be interpreted as the length scale over which the microscopic physics of the
condensate becomes important. Away from this regime, for A > £, we are left with
the equations of an inviscid, barotropic and irrotational fluid. We will call this the
hydrodynamic approximation.

1.1.2 Elementary excitations: the Bogoliubov problem

A picture of the dynamical properties of condensates can be obtained with a linearized
analysis of the Gross—Pitaevskii equation, in which one considers small deviations of
the order parameter from a stationary configuration satisfying equation (1.9). This
approach, besides showing the emergence of sound excitations and allowing a linear
stability analysis of the stationary states, gives insight regarding the non-condensed
particles.

Let us consider a stationary solution Wy(r) of the GPE and a perturbation of this
state

U(r,t) = e M0 [y (r) 4 1 (r, t)] . (1.17)

Inserting this equation in (1.5) and keeping only linear terms in ¢ and 61* one obtains
. h2 2 2 2 *

ihoonp = V= o+ Vext — p| 09 + 29 [Wo|” o) + ggoy™. (1.18)

oM
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Notice that this equation is not strictly speaking linear in v since it also involves
its complex conjugate. To end up with a linear problem one could take as variables the
real and imaginary parts of d¢ or, as we will do, is to consider d¢ and dy* as formally
independent variables and write the linear problem for the two-component vector

|6¢p) = (;f) = (Zgi) : (1.19)

We can hence rewrite equation (1.18) as

' 51/} HGP"‘Q’\I’O‘Z_,U/ g\II% 6’¢ 5¢
AL — (Hgp + g|%ol|* — p)
(1.20)

This is the Bogoliubov (or Bogoliubov—de Gennes) problem for the elementary excitations
of a condensate. A generic solution of this problem can be decomposed in eigenmodes

satisfying
c (“’) = Fw; (“’) . (1.21)
(v (Y

Since the matrix in (1.20) is not hermitian, the eigenfrequencies w; will not in general
be real. If an eigenfrequency has a positive imaginary part the corresponding mode am-
plitude will exponentially grow in time. This behaviour is called a dynamical instability.

The Bogoliubov problem is however o3-pseudo-hermitian, that is

o3lios = L. (1.22)

This implies that the non-positive-definite inner product

Wloslo) = [ dr ¢l (k)osd(r) = [ dr [u(wus(r) = vj (¥)os(r)] (123
is conserved on the evolution, so that we can define the norm of an eigenmode

[¢llB == {¢|o3]9) (1.24)

that can be positive, negative or zero. Property (1.22) also implies that, since £ and its
adjoint are related by a unitary transformation, if w; is an eigenfrequency, also w; will
be, so that complex-frequency modes come in pairs and are called pseudo-degenerate.
Moreover, the following orthogonality relation between eigenmodes holds

(wi —wj) (@)l o3 |¢i) =0, (1.25)

from which one can see that eigenmodes relative to different eigenfrequencies are orthog-
onal and that modes with a complex frequency have vanishing norm.
A second symmetry of the £ matrix is

o1Loy = —L7, (1.26)
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which implies that if (u;,v;)? is an eigenmode with eigenfrequency w;, then (v}, u})? is

an eigenmode with eigenfrequency —w;, the two modes have opposite norms. This is a
doubling of the modes that is actually not physical but depends on the choice (1.19) we
made of treating the fluctuation field and its complex conjugate as independent variables.
This expands the space of solutions of the linear problem and the physically relevant
result is obtained by taking a linear combination between the spinor components of the
form

Sty (r, ) = Agug(r)e” ™ 4 Afvf (r)et™it, (1.27)

giving the overall fluctuation on the order parameter. This shows that the two modes
connected by the symmetry (1.26) are the same physical mode of complex amplitude
A;.

We call this property particle-hole symmetry since, as we will see multiple times in
the rest of this thesis, we can think of negative-norm modes as antiparticles. To obtain a
complete description of the fluctuations one can hence construct a basis by considering
only the modes with one sign of the norm. As we will see, it is instead sometimes more
convenient to consider only positive frequencies and keeping modes of both norms; this
provides an equally good basis of the space of fluctuations.

» An example: the uniform condensate

Before discussing instabilities let us consider the simplest example of a condensate
of uniform density at rest, described by the real order parameter Wy = y/n. In this case
the eigenmodes will be plane waves of the shape |¢r) = ™™ (uy, v)”. The Bogoliubov
matrix (1.20) at fixed momentum k becomes (using p = gn)

i

SAar T an an
Ly = ) (1.28)
21.2
g~ (57 +om)
whose eigenvalues are
h2k? [ h2k?
hwy = £ 2 . 1.2
k \/2M<2M+gn> (1.29)

This is the famous Bogoliubov dispersion relation for the elementary excitations of a
uniform BEC, that is completely real for repulsive interactions g > 0. The plus sign
refers here to positive-norm modes, while the minus refers to the particle-hole-symmetric
negative-norm modes.

This dispersion law goes from a linear behaviour w o k at small momenta k < !
to a quadratic one w o k% at the opposite regime. The proportionality factor between
wavenumber and frequency at small momenta is the speed of sound

(1.30)

that coincides with the one calculated in the hydrodynamic fashion from the compress-
ibility of the condensate. The presence of a sonic behaviour at small momenta, besides
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being fundamental for the superfluidity of BECs, is crucial for the gravitational analogy,
that works exactly only in this long-wavelength limit.

1.1.3 Energetic and dynamical instabilities

It is useful to consider the energy of Bogoliubov fluctuations. One can insert a
fluctuation around a stationary state (1.17) in the grand canonical energy functional
(1.8). We can than expand the energy functional in terms of increasing order in the
fluctuations F = E(© + EM 4 F@) | The first-order term vanishes because the functional
is stationary on a stationary state, the second-order term is hence the first contribution
to energy due to the fluctuations and has the shape

h2
E® = [ar [QM [VOUL + (V 42 [ o — ) [0f* + £ (W5)260° + T3 (60°)?

(1.31)

This can be conveniently written with the vectorial convention as

1
E® = (60| M [6y), (132)
where the matrix
Hgp + g|Wo|* — p 993

M = (1.33)

gy Hgp + g|Wo|* — p

is essentially the Bogoliubov matrix without the minuses in the second row, i.e. £ =
o3M. By expanding the vectors |61) in terms of eigenmodes of the Bogoliubov matrix
(1.21) the second order energy variation becomes

1
=3 > okl osllg)) = (orl o3 |dr) hoy (1.34)

k,l k,l k

B = 25" (on M)

where the sum runs over the eigenfrequencies of the Bogoliubov matrix. One can see that
the energy of an eigenmode is not simply given by its frequency, but is also proportional
to its norm. This implies that the modes connected by the particle-hole symmetry (1.26),
having both opposite frequency and opposite norm, have the same energy.

In the previous section we introduced the concept of dynamical instability associated
with the non-hermiticity of the Bogoliubov problem. From the properties listed above
we can see that complex-frequency modes emerge as couples of zero-norm modes with
complex conjugate frequencies, a growing one and a decaying one. Given that the energy
of a mode is proportional to its norm we can see that dynamically unstable norms have
ZEero energy.

A second notion of instability is energetic instability, that is the existence of eigen-
modes with a negative energy. According to (1.34) this can happen if a positive-norm
mode has a negative frequency or if a negative-norm mode has a positive one; these two
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kinds of modes are related by the particle-hole symmetry. The presence of an energetic
instability signals that the stationary solution around which we calculated the fluctua-
tion modes does not correspond to a minimum of the energy functional and hence the
energy of the condensate can be decreased by populating this mode.

Increasing the amplitude of an energetically unstable mode is hence a process that
does not conserve the energy and is only possible if some dissipation is present within
the system, for example, at finite temperatures, the presence of thermal atoms to which
the extra energy can be transferred. Dynamically unstable modes instead, after being
populated by some fluctuation, can grow without the need of external degrees of free-
dom since they carry zero energy. The growth of dynamically unstable modes is hence
typically faster than the one of an energetically unstable one, since this last one relies
on external fluctuations.

Even if the linear theory predicts an exponential growth in time of the dynamically
unstable modes, this does not of course occur indefinitely. At some point the mode
amplitude will enter a regime in which the perturbation theory is no more a good de-
scription and nonlinear effects requiring the full GPE start being important. Dynamical
instabilities are often related to a significant change in the stationary state around which
the linearization is made, that may be thought as a change of phase in analogy to spon-
taneous breaking of symmetries in field theories. We will see an example of this when
dealing with multiply quantized vortices in Chapter 5.

» Two simple examples of energetic and dynamical instabilities

A first simple and important example of energetic instability is the one that occurs
when a uniform condensate is moving with a supersonic speed. This is an expression
of Landau’s criterion for superfluidity, according to which frictionless flow for a fluid is
possible if there is not the possibility of creating excitation in an energetically favourable
way, that is if there are no energetic instabilities [16,39]. Landau provided the definition
of a critical velocity, in terms of the dispersion relation of excitations, above which
superfluidity breaks down since the fluid begins to be subject to friction.

How this applies to a BEC can be easily understood by studying the Bogoliubov
problem for a condensate of uniform density that is moving with a uniform flow. Take
for simplicity one spatial dimension and a condensate stationary order parameter

Wo(t, z) = /ne'Keemt/h (1.35)

that has a uniform velocity v = hK /M associated to it. By taking fluctuations of the
shape . ‘
U(x,t) = e /KT (/4 (1)) (1.36)

and considering plane waves as we did in the derivation of (1.28) we can easily obtain
the dispersion relation

h2k? ([ W2k
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Figure 1.1: Examples of instabilities. On the left the dispersion relation of excitations in
a uniformly moving condensate, in which energetic instabilities emerge when the flow is
faster than the speed of sound (here v = 1.5 ¢5). On the right the Bogoliubov dispersion
relation of a uniform condensate with an attractive interaction displaying dynamical
instabilities. Black, red and green lines correspond respectively to positive-, negative-
and zero-norm modes.

The choice (1.36) corresponds to measuring momenta with respect to the condensate
momentum and the frequencies with respect to the chemical potential. The term added
to the Bogoliubov dispersion relation is hence a Doppler shift due to the change of
reference frame.

The effect of such a shift, as can be seen in the left plot of Figure 1.1, is to tilt
the dispersion relation. If the velocity is larger than the speed of sound c¢s = \/gn/M,
part of the negative-norm branch of the dispersion relation (corresponding to the minus
in the dispersion relation) raises to positive frequencies, or, equivalently, part of the
positive-norm branch lowers to negative frequencies. According to what we discussed
above, the modes laying on these parts of the dispersion curves have a negative energy
and are thus energetically unstable.

A simple example of dynamical instability can instead be obtained by considering
a uniform condensate at rest but with an attractive interaction constant g < 0. The
analysis is identical to the one performed in the derivation of the Bogoliubov dispersion
relation (1.29) and also the eigenvalues are the same. This time however they are not

all real, in fact for
R2k?

they are purely imaginary. This is shown in the right plot of Figure 1.1, where green
lines indicate zero-norm pseudo-degenerate imaginary eigenvalues, corresponding to a
dynamically unstable modes and their decaying partners. Interestingly, the depicted
dispersion relation is similar to the one of a tachyonic field, that is a field with an
imaginary mass.

Uniform condensates with attractive interaction are hence dynamically unstable with
respect to sufficiently low-momentum perturbations, causing the collapse of the gas. It
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is interesting to comment, as done in [37], that this does not preclude the experimental
realization of condensates with attractive interactions: if one puts such a condensate in a
confining geometry in which the lowest possible momentum is above the instability con-
dition (1.38), no dynamically unstable modes appear. The system is hence stabilized by
the discrete spectrum of excitations; we will see in Chapter 5 that a similar stabilization
takes place for multiply quantized vortices in harmonic traps.

= Interplay between energetic and dynamical instabilities

Dynamically unstable modes can physically be interpreted as the continuous simul-
taneous creation of excitations with opposite energies. This interpretation is supported
by the fact that dynamically unstable modes can emerge in a dynamically stable system
by the approaching in frequency of two modes of opposite energies when some parameter
is varied.

This can be seen, as was done for example in [40], by considering a variation of some
parameter of the system that causes a dynamically stable linear problem specified by £ to
change as £’ = L+0L. Assume that the new eigenmodes of the system will be determined
simply by a reduced basis of two eigenmodes |¢1) and |¢p2) of the original matrix £ with
close real eigenfrequencies wy 2. We can hence look for new eigenstates of the shape
|¢p) = a1 |p1) + a2 |p2) by projecting the new eigenvalue equation via the inner product
(1.23) (i.e. by applying (¢ o3 on the left). By defining 6L;; := (¢ 036L [¢;) = 6L

one obtains
w1 + [|[¥1]|BOL11 |¥1]|BIL12 ap a
= . 1.39
[ lallpoLt, — wa+ [[ollpoLa| \az2) ~ < \aa (1.39)

The resulting new eigenvalues are

o, 2@t [¥nllBdLu + ws + [¢allBoL
2

N \/(wl —wa + || Y1]|BOL11 — |[¢2]| BOL22
2

(1.40)

2
)+ Irlslvela 161

from which one can see that the eigenvalues can change in a relevant way only if the
difference w1 — wo is not large compared to the magnitude of the perturbations 6L;;.
This justifies our truncation of the eigenmodes basis to two element since only close
eigenvalues matter for the mixing.

Now, if the two modes have the same sign of the Bogoliubov norm the argument of
the square root in (1.40) is always positive and the two eigenvalues undergo an avoided
crossing, that is they approach each other until their separation becomes comparable
with the linear problem perturbation §£ and then move away from each other.

If instead the two modes have have opposite-signed norms the argument of the square
root can become negative and hence the two new eigenfrequencies will have the same
real part and develop opposite imaginary parts. The opposite-normed modes are hence
becoming pseudo-degenerate giving rise to a dynamically unstable mode and its decaying
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Figure 1.2: Possible behaviours of neighboring eigenvalues when a parameter of the linear
problem is changed. On the left avoided crossing for eigenfrequencies relative to modes
of the same norm. On the right coalescence of opposite-normed modes in a couple of
pseudo-degenerate modes signaling dynamical instability. Black lines indicate positive-
norm modes, red lines negative-norm ones and green lines modes with a vanishing norm.

partner. A pictorial representation of these two behaviour depending on the relative sign
of the norms is given in Figure 1.2.

That this is mechanism is essential for the emergence of dynamical instabilities in
condensates was shown for example in [41]. Moreover it is possible to define an energetic
instability as a negative eigenvalue of the matrix (1.33). In this sense it can be shown
that dynamical instabilities can be present only if there is also an energetic instability;
the converse is not true and energetically unstable but dynamically stable systems can
occur. The interplay between energetic and dynamical instabilities will be a Leitmotiv
of this work.

The structure of the Bogoliubov problem and these behaviours are much more general
than the present case of BECs and depend on the symplectic nature of the problem that
is shared with Hamiltonian systems [42,43], where the norm is known as Krein signature.
Another occurrence of this structure is the Klein-Gordon equation [15,44], we will discuss
this after introducing the gravitational analogy in Section 1.4.

1.1.4 Quantization of fluctuations

One of the interesting features of Bose—Einstein condensate is the quantum nature
of fluctuations, that is also relevant for analogue models of gravity since they allow to
study quantum aspects of field theories in curved spacetimes.

Quantization of fluctuations is relatively easy if the system is dynamically stable, in
fact modes with nonzero norm are normalizable. We will follow here the prescription
of associating destruction operators to the u component of the Bogoliubov vectors and
creation operators to the v components, keeping in mind that more rigorous approaches
validating this procedure are available [38]. Under this prescription the classical fluctu-
ation field (1.27) becomes

(e t) = > Ju(r)bre ! 4 vy(r)blet ] (1.41)
k
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with the commutation relations

ok Bl o5 [ b]] = 1okl 50w, (1.42)

that for positive-norm modes is the usual bosonic commutation relations, while for
negative-norm ones implies that creation and annihilation operators are exchanged. This
shows that negative-norm modes correspond to antiparticles (and that creating an an-
tiparticle is equivalent to annihilating a particle) and to remember this it is convenient to
redefine the ladder operators so that for negative-norm modes an annihilation operator
is associated to the v component. We may hence rewrite the quantum fluctuation field
as

S(r,t) = Z [uk(r)l;ke_iw’“t + Uk(r)*lA)LeHwkt]
lléxll5>0
+ Z {uk(r)glte*w’“t + vk(r)*?)ke”“’“t} .
lléxll5<0

(1.43)

We already commented on the particle-hole symmetry and how positive and negative
norm modes with opposite frequencies are the same physical mode, so that in the above
sums one should keep only one mode for each particle-hole pair to avoid overcounting.
One could simply select only the positive-norm modes, but we will see in the following
that it is sometimes useful to construct a basis with modes of both norms.

The second-order energy correction (1.34) becomes the Hamiltonian of the quantum
field. Choosing to construct a basis with positive-norm modes only, the Hamiltonian
hence is [45]

HO - —Z/dr\vk\Q + 3 heoblb, (1.44)
k k

where the operators satisfy bosonic commutation relations [lA)k, lA)}L] = 03 and [Bk, Bl] =0.
If one had chosen to also keep negative-norm modes, they would have entered the sum of
equation (1.44) with a minus. The first term comes instead from commutations between
the operators in the expansion process starting from the energy functional and is an
estimate of the contribution of quantum fluctuations to the ground state energy. While
usually a small correction, this kind of corrections can become important and with a
macroscopic effect in certain situations; for example quantum fluctuations can provide a
repulsive correction to a gas with attractive interactions that can stabilize the collapse
and form the so-called quantum droplets [46].

When dynamically unstable modes are present instead, quantization is less straight-
forward, since the norm of these modes vanishes. This is a solved problem in relativistic
quantum field theories, see for example [15,47], and was adapted to the BEC case
in [26,48]. The idea is that the orthogonality relation (1.25) does not impose for the
Bogoliubov inner product between a mode of complex frequency wy and its pseudo-
degenerate partner (of frequency wy) to vanish. We can hence associate to each mode
k the dual mode k with w; = wj, in terms of which the (non-constant) part of the
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quantized Bogoliubov Hamiltonian can be written

H® =" huybl by (1.45)
k

with the commutation relations
b, b)) = 05, [, b] = . (1.46)

This means that for complex-frequency modes the canonical conjugate of the destruction
operator is not its hermitian conjugate, i.e. the creation operator. A consequence is
that creation and annihilation operators for complex-frequency modes commute, so that
they are not creation and annihilation operators in the usual sense. The quantum field
theory in the presence of dynamically unstable modes does hence not have a particle
interpretation.

The meaning of this formalism can be understood by defining new operators

A A "T "T
N ak + ag N o
Cp = Cp=1 1.47
that satisfy ordinary commutation relations [ék,éL] = [é,;,é]%] and are hence ordinary

annihilation operators. The part of the Hamiltonian (1.45) involving complex-frequency
modes can hence be written

Hy = R(wr) [ehen — eleg] — S(wn) [elel + enty] (1.48)
Notice that the imaginary part of the frequency is associated to production of pair of
modes, reflecting the dynamical instability of the condensate.

This kind of construction for the Klein—-Gordon equation (that we will connect with
the Bogoliubov problem in the following of this Chapter) has also been used to treat
the superradiant instabilities of rotating spacetimes [49] and the Schiff-Snyder—Weinberg
effect [15]. These topics will be briefly presented in the following Chapter when discussing
superradiant instabilities and will be a recurring topic in the rest of the work.

1.2 The acoustic metric

1.2.1 Intro: a geometric description of sound

Before proceeding with a derivation starting from the equations of Bose—Einstein con-
densates, let us give a very simple explanation of how we can describe sound propagation
in a moving medium via a relativistic acoustic metric.

Consider a fluid flowing with a (possibly space dependent) velocity field v and sup-
pose that sound propagates in it with a speed c;. With respect to the laboratory sound
propagates, if its wavevector has a direction fi, according to

dx

=Gty (1.49)
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Requiring for i1 to be a unit vector one obtains
dt? = (dx — vdt)? (1.50)

or

S

— (02 — v2> dt? — 2v - dxdt + dx - dx = 0. (1.51)

This clearly has the shape of a null line element in a relativistic language, that is
g dxtdx” = 0 with a metric of the shape

(@0t VT
Juv = Q(t7x) 5 (1'52)
-V I

where Q(t,x) is a conformal factor that cannot be obtained from this simple derivation.
This is telling us that the propagation of sound in a moving medium can be described
with the null geodesics of a Lorentzian metric (that are left invariant by a conformal
transformation changing the overall factor of the metric).

This is the basic fact on which Analogue Gravity is based. We will see in the following
how this idea finds a realization in the emergence of a Klein—Gordon equation for a
(possibly quantum) scalar field in a curved spacetime.

1.2.2 The acoustic metric in a BEC

The argument we just summarized shows in general terms how the presence of a
perturbation propagating with a fixed speed in a moving medium implies the possibility
of a geometric description of sound in terms of a curved-spacetime metric. Here we show
explicitly that this is possible for excitations in Bose—Einstein condensates. This follows
essentially from the fact that their behaviour can be approximated with the one of a
perfect fluid, thus recovering the classical result of Unruh [1,3,11].

Instead of taking fluctuations around a steady state of the shape (1.17), it is con-
venient to consider density and phase fluctuations in the hydrodynamic representation
of the GPE of equations (1.12) and (1.15). This corresponds to considering a different
factorization of the fluctuation field

U(r,t) = e H/Mo(r) 1+ o(r, t)] = e/ /ne’® (1 + 72% + i@l) : (1.53)

where the total density and phase are n = ng + nq and © = Oy + ©1. The resulting
linear equations are

o1+ V- [niv+ nothV@l] =0 (1.54&)

K21 n
h01©1 4+ hv - VO1 4 gng — mﬁv . [nV (1)] =0, (1.54Db)
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where the velocity is given by the background phase v = AVOy/M. The last term of
the second equation comes from the linearization of the quantum pressure term and is
responsible for the deviation from the hydrodynamic behaviour. If we consider density
fluctuations happening over large enough wavelengths A > ¢ (long wavelength limit) we
obtain an algebraic expression for the density variations

ny = (h&t(% + hv - V@l) 5 (1.55)

1

Y
that can be substituted in the first equation, so that we obtain a single equation for the
phase fluctuations

no o
By introducing (3 + 1)-dimensional coordinates x# = (¢, '), with Greek indices

spanning from 0 to 3 and Latin ones from 1 to 3, we can rewrite this equation as
O (f179,01) = 0, (1.57)
where Einstein summation convention for repeated indices is used and

n -1 —vJ
v =0 . (1.58)
s |—vt (269 —vh)

It is now convenient to bring this equation in the shape of a d’Alembertian for a
curved spacetime

1
00, = —0 (w/ g\g“l’ﬁy@l) (1.59)
Vg™

by identifying f* = /|g|¢g"" and inverting the resulting g"” one obtains the acoustic
metric ) ) .
o [F@ =)
S _,Ul 57/]

also expressed by the line element

ds* = ? {—cgdtQ + (dz' — v'dt)d;j(da? — vjdt)} . (1.61)
S

Equation (1.59) shows how, in the long-wavelenght limit, phase fluctuations of a
BEC follow the same equation as a minimally-coupled massless scalar field propagating
in a (3 + 1)-dimensional Lorentzian geometry. This relativistic description comes from
the finite and fixed speed of sound, that plays the role of the speed of light, and has
nothing to do with the background physics of the condensate, that continues to live in
a non-relativistic Galileian world.
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This is the core idea of Analogue Gravity, in which fluid configurations are engineered
so that the acoustic metric reproduces a general-relativistic spacetime of interest, so
that the propagation of fields in this spacetime can be studied in an experimentally
controllable and well-understood setting. Some comments on this research programme
are in order.

First of all the acoustic metric (1.60) is determined by three scalar degrees of freedom,
that is the phase of the condensate (giving the irrotational velocity), its density and the
speed of sound (that can be tuned in a space-dependent way). A general Lorentzian
metric has instead 6 degrees of freedom, so that the acoustic metric can, at best, simulate
a subset of possible metrics. This limitation is however not so stringent because, even
if many metrics of interest in general relativity cannot be reproduced, some simpler toy
model metrics that show the same main characteristics can be obtained. In Chapter
3 we will also see how BECs can be used to extend the class of metrics that can be
reproduced.

A relevant aspect of gravitational analogues in BECs is that the analogy is strictly
true only in the long-wavelength limit, beyond which the superluminal shape of the Bo-
goliubov dispersion relation starts to matter. This is a drawback but also an occasion to
study the effect of high-frequency dispersive effects on the physics of curved spacetimes.
This has been a main topic in the investigation of analogue Hawking radiation, as we
will briefly show in Section 1.5.

Another important point is the fact that here there are no analogue Einstein equa-
tions, that is we cannot simulate the dynamics of the solutions of general relativity but
only the propagation of fields in a given curved background. This is however interesting
enough, especially for the fact that fluctuations in BECs are quantum, so that one can
directly investigate and probe aspects of quantum field theory in curved spacetimes.
The relative simplicity of the physical system also allows to go beyond the physics of
quantum fields in a fixed spacetime and study the back-reaction of quantum fluctuations
on the geometry (see for example [50]).

Besides this a BEC analog model provides a large-scale metric description in a sys-
tem whose small-scales (quantum) microphysics is well known, that is exactly what
is missing in quantum descriptions of gravity. So, even if we are not reproducing di-
rectly Einstein equations, BEC analogue models can provide a playground in which the
interplay between the macroscopic geometric description with the complex quantum mi-
croscopic many-body physics can be studied, possibly giving ideas for the more difficult
gravitational case.

1.3 (Acoustic) black holes

Among the most interesting spacetimes to study there are black holes, that is vacuum
solutions of the Einstein equations that display an event horizon, that is a surface from
which nothing, not even light, can escape. In analogue acoustic spacetimes horizons,
as well as other characteristics of black hole spacetimes, have a very intuitive nature in
terms of the values of the flow velocity. This is because, differently from the case of
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general relativity, the background laboratory gives a natural absolute space with respect
to which it is easy to say what is moving and what is at rest.

In this Section we want to give some examples of black hole spacetimes in general
relativity and their toy model analogue counterpart in an acoustic setup. We first show
how the most famous black hole solution, the Schwarzschild solution, admits a repre-
sentation in the shape of an acoustic metric. We then give a brief account of the Kerr
rotating black hole as a useful reference for the acoustic case. We then see how the basic
features of a rotating black hole can be reproduced acoustically with a flow in the shape
of a draining vortex.

1.3.1 The Schwarzschild black hole in Painlevé—Gullstrand coordinates

Obtained only some months after the final development of Einstein theory of general
relativity, the Schwarzschild geometry is an asymptotically flat static and spherically
symmetric solution of the Einstein equations. It is the first and easiest example of a
black hole and can be described by the line element

2M 2M\ !
ds? = — (1 - T) de? + (1 — r) dr? + r? (d92 + sin% 0 d¢2) : (1.62)

One can see that the metric components are singular in two points, i.e. r = 0 and
r = 2M. By checking the Riemann tensor it turns out that the first one is also a
true curvature singularity, while the one at rg = 2M is only a coordinate singularity,
corresponding to the so-called event horizon.

This spacetime has a Killing vector t* = dx* /0t associated to the invariance under
time translations (to which also an invariance under time reflections is added), that is a
timelike vector field for the asymptotical Minkowski metric, but becomes spacelike for
r < rpg. Static observers have a four velocity directed along t*, so that this fact implies
that they are not possible inside the horizon.

Let us now consider a different shape of the Schwarzschild metric, that can be ob-
tained by defining a new time coordinate

VM o (1.63)

dtpg = dt + YL
pa 1T 2y

with which the line element (1.62) becomes

2
[o
ds? = —dthg + (dr /== dtpc | +7r*(d0% + sin® 0 dg?). (1.64)

This is known as the Painlevé—Gullstrand line element and it is interesting to notice, as
done in [11], that it has the same shape as the acoustic line element (1.61) with a radial
only velocity v, = —/2M /7.

Notice however that one cannot in general simply set both the density ng and the
speed of sound c¢g as constants, since the continuity equation V - (ngv) = 0 would not
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be satisfied. Continuity requires ng o r3/ 2 so that the overall factor ng/cs in the

acoustic metric will not be a constant. One can hence think of a fluid flow reproducing
the Schwarzschild metric only up to a conformal factor; this is however good enough for
many purposes since the causal structure is not changed.

The Schwarzschild metric expressed in the shape (1.64) has the interesting feature of
having only one singularity at » = 0. The coordinate singularity has hence been removed
and we can recognize the horizon as the points in which the Painlevé-Gullstrand wvelocity
v, becomes larger than one, that in the analogue corresponds to v, becoming supersonic.
We already saw in the Introduction how analogue horizons are related to supersonic flows
and will discuss this more in the following.

1.3.2 Gravitational rotating black holes: the Kerr metric

The Kerr geometry is an asymptotically flat, stationary and axisymmetric vacuum
solution of the Einstein equations describing a rotating neutral black hole. It is a
much more complicated solution than static black holes (Schwarzschild and Reisser—
Nordstrom, that will be briefly discussed in Section 2.4.2) and for this was obtained only
in 1963 [51]. This spacetime has the Schwarzschild black hole as a particular case and is
perhaps the most interesting arena in which superradiance has been predicted in general
relativity.

A full discussion of this spacetime is out of the scope of this introductory chapter
and we will only present some basic facts we will need. A nice introduction can be found
in [52] and presentations can be found in many standard textbooks (for example [53,54]),
with a particularly in depth discussion given in Chandrasekhar book [55].

In Boyer—Lindquist coordinates the Kerr metric is given by the line element

i02 2

ds® = — (1 = 2]‘?”) a2~ S0 s 2 Gin? g dg? 4 K+ p? d6?, (1.65)
P p p

where p? = 72 + a®cos?0, A = r? —2Mr + a? and ¥ = (r? + a®)? — a®Asin?6. Here

M is the mass of the black hole and the parameter a is the ratio between its angular

momentum and its mass.

This spacetime has two Killing vectors t# = Jdz# /0t and ¢* = Ozt /0@, reflecting
the stationarity and the axial symmetry. It is interesting to consider static observers,
that is observers that have a four-velocity proportional to the timelike Killing vector
ut = (—g()())_l/ 2t where the proportionality factor is necessary to have a properly
normalized velocity. These observers cannot exist everywhere, in fact when

re(0) = M + vV M? — a?cos? 0 (1.66)

the time-time component ggg of the Kerr metric vanishes and changes sign for smaller
radii. Correspondingly, the four-velocity of a static observer becomes null and then
spacelike, signalling the impossibility of having such an observer there. Beyond this
limit ggp changes sign and the time-translation Killing vector becomes spacelike: in
some sense here space moves faster than light with respect to an asymptotic observer.
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The surface specified by (1.66) is the so called static limit, that we will call ergosurface
since the region it surrounds is called ergoregion. This name comes from energy and is
due to the fact that inside the ergoregion the conserved energy of a particle as measured
from infinity £ = —p,t" can be negative. As we will see this is the crucial fact that
allows energy extraction from black holes through the Penrose process (Section 2.3).

Although the only curvature singularity of the Kerr spacetime occurs for p? = 0, the
coordinate singularities at A = 0 correspond instead to the two horizons of the spacetime,
occurring inside the ergoregion at r4 = M £/ M?2 — a2. The main characteristics of the
spacetime are represented as circles on the equatorial plane 6 = 7/2 in the left part of
Figure 1.3.

It is important to make a clarification on the different types of horizons. An event
horizon in an asymptotically flat spacetime is the boundary of the black hole region,
from which it is impossible for anything to escape to (future) infinity. This is hence a
global concept, for which we need to know the full future evolution of geodesics; this
may be a problem for acoustic black holes in experimentally realizable settings.

Luckily for stationary spacetimes event horizons coincide with horizons defined in a
local way. These rely on the concept of trapped surfaces, that are closed spacelike surfaces
from which there are no outgoing geodesics, that is geodesics for which r increases!. Such
surfaces are contained in a spacetime region whose boundary is the so-called trapping
horizon or apparent horizon (see for example Section 5.1 of [54]). In stationary space-
times the event horizon is also a trapping horizon. In particular in the Kerr spacetime
both r4 are trapping horizons, with r; being also the event horizon of the spacetime.

The inner horizon r_ is a new very peculiar feature of the spacetime. While inside
the horizon of the Schwarzschild black hole (and between ry and r_ in the present case)
nothing can move outward, this being expressed by the fact that the radial coordinate is
timelike, inside the inner horizon of a Kerr black hole r is spacelike, so that moving in a
direction of increasing r is again possible. The inner horizon can hence be crossed in the
other direction and one enters another copy of the Kerr spacetime. This intriguing causal
structure is however out of the reach of Analogue Gravity, since to describe in a regular
way each crossing of r_ a change of coordinates is necessary and we saw that analogue
spacetimes do not reproduce a full geometry but a metric in specific coordinates. We
hence will not dedicate further attention to this interesting topic and refer the interested
reader to [54].

As a last comment notice that in the static limit @ — 0 one recovers the Schwarzschild
metric (1.62) for which there is only one horizon that also coincides with the ergosurface,
so that there is no ergoregion.

!This fact is often expressed by saying that geodesics outgoing from the surface (a notion that can be
defined formally) do not expand away but converge. For a clarifying discussion see for example Section
5.1.7 of [54].
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Figure 1.3: On the left a schematic representation of the equatorial plane of the Kerr
spacetime (adapted from [56]) with the large circles indicating the important features
of the spacetime: from the exterior the ergosurface, the event horizon r,, the inner
horizon r_ and the singularity. The small circles indicate the wavefront of light emitted
from the dots. Outside the ergosurface light can propagate in all directions, inside the
ergoregion instead it must travel in the direction of rotation but can still move to larger
radii. At r4 lightcones are tangent to the horizon and inside it light is forced to travel
inwards. Finally, at r_ the cones are again tangent while inside it it is again possible
to move in the direction of increasing radii. On the right streamlines of the flow of the
vortex geometry (1.68). The outer circle indicates the ergosurface and the inner one
the horizon. Notice that, despite being much simpler, the vortex geometry displays an
ergosurface and an horizon similarly to the Kerr black hole.

1.3.3 Acoustic rotating black holes: the vortex geometry

Considering now the acoustic metric (1.60) one can think of tuning the fluid quantities
so to obtain a black hole metric, that is one that includes an horizon. If the condensate
flow is steady, the resulting spacetime will be invariant under time translations (i.e.
stationary) and the associated Killing vector is t* = dz# /0t = (1,0,0,0). As we said in
the case of the Kerr spacetime, an ergoregion is characterized by the Killing vector t*
becoming spacelike, that is

gut't” = goo = —(c2 —v?) >0, (1.67)

so that any region of supersonic flow |v| > ¢, is an ergoregion in the acoustic spacetime.

We said that in ergoregions particles (but also field modes) can have negative energies
with respect to an observer at infinity. In acoustic spacetimes hence we can hence have
negative-energy modes for our scalar field in regions where the background flow velocity
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is supersonic. As we already said and will see multiple times in the course of this thesis,
these modes are associated to Landau criterion for the breakdown of superfluidity above
some critical frequency, that focuses exactly on negative-energy excitations.

For what concerns horizons instead, we already said that the most convenient notion
is the one of a trapping horizon. The definition of a trapped surface becomes here simpler
than the generally-covariant one based on the behaviour of geodesic bundles. In fact if
a (closed) surface is such that the flow velocity has everywhere a normal component
greater than the speed of sound, then sound waves cannot propagate outward and will
be dragged by the fluid. We can here think in these terms because the laboratory
provides an absolute space with respect to which we can say if the sound is moving in
some direction.

Since we will be interested in steady flows, the resulting acoustic metric will be
stationary, so that the trapping horizon defined in this way is also the event horizon. We
can hence for our purposes forget the distinction and talk simply of acoustic horizons.

The simplest way in which one can obtain an acoustic horizon is by considering a
fluid in a narrow tube so that it is effectively one-dimensional. If this has a flow that
passes from a subsonic to a supersonic velocity, the corresponding acoustic spacetime
will have an horizon. This is a minimal example of acoustic black hole that can be seen
as a toy model of the radial reduction of the Schwarzschild spacetime; we will consider
again this kind of configuration in Section 1.5.

Let us now give an explicit example of a stationary and axially-symmetric acoustic
spacetime in which the above mentioned features appear. We are interested in a draining
bathtub type of flow, in which the fluid rotates and moves radially towards the center.
For simplicity we consider a two dimensional and constant-density perfect fluid (or BEC
in the hydrodynamic limit); the continuity equation and the fact that the velocity must
be irrotational require a velocity field of the shape (in polar coordinates)

A B -

v=—7+—0¢, (1.68)
r r

where A and B are two parameters. The acoustic metric for this configuration is char-
acterized by the line element

A? 4 B2 A
ds? = — (cg - +> dt? — 2=dt dr — 2Bdt d¢ + dr?* + r?d¢?, (1.69)

r2 T
that we can bring in a shape more similar to the Kerr line element with the change of
coordinates dt' = dt + Ar/(r?c? — A?) and d¢' = d¢ + AB/(r3c? — A%r):

2.2

AQ BQ
ds? = — <c§ - :;) dt? — 2Bdt d¢/ + - dr? + 1. (1.70)

The vanishing of the time-time component of the metric individuates the ergosurface

A% + B?

P (1.71)

" =
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that correctly corresponds to the locus of points where the modulus of the velocity (1.68)
becomes supersonic. The horizon is instead signalled by a coordinate singularity in

A2

- 1.72
i (1.72)

" =

that, as expected, is the radius at which the radial component of the velocity becomes
supersonic.

Although being much simpler, this analogue spacetime reproduces some of the most
interesting features of the equatorial slice (8 = 7/2) of the Kerr black hole. It does not
display an interior horizon and only has a point singularity, however it is an asymptoti-
cally flat spacetime with an horizon surrounded by an ergoregion. A sketchy comparison
of the vortex geometry with the Kerr one is given in 1.3. Although we cannot expect
to make quantitative predictions about real rotating black holes by studying this model,
the main conceptual ingredients are the same, so we can get a qualitative understanding
of some of the physics occurring outside of the horizon.

It is worth to stress again that, although we started from BECs, we have here con-
sidered the equations of a perfect fluid, so from the point of view of the condensate
physics we worked in the hydrodynamic limit, in which there is no quantum pressure and
elementary excitations all move at the speed of sound. We talk about what happens
beyond this limit (that will be a main topic of the rest of the thesis) in the following
Section.

1.4 The Bogoliubov and Klein—Gordon problems

In the previous Sections we derived the gravitational analogy starting from the Bo-
goliubov problem for a moving condensate and performing the long-wavelength limit,
from which we obtained a Klein—-Gordon equation for a massless scalar field in curved
spacetimes. In this Section we want to give a detailed comparison of the properties of
the Klein—Gordon equation with of the Bogoliubov problem, that we will see show the
same spectral structure.

The main physical difference between the two equations relies instead in the disper-
sion relation of the fluctuations, that has the peculiar Bogoliubov shape (1.29) for the
Bogoliubov problem in an uniform condensate and becomes instead simply linear with
the long-wavelength approximation, corresponding to the Klein—Gordon equation.

1.4.1 Formal comparison

Let us consider again the factorization of fluctuations (1.53) that we used in deriving
the gravitational analogy

n +z@1) . (1.73)

B(r,t) = e HM00(r) [1 4 o(r,1)] = e B/ /nei® (1 —
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With an approach similar to our first exposition of the Bogoliubov problem we consider

the linear problem for the two-component vector (¢, ¢*)7
ino, (“) _[Drgn gn ] (“) _r (“) , (174)
Uy —gn  —D*—gn| \v, Uy
where
pe-P 1y wv)-ive.v =D, +iD (1.75)
" 2Mn M - onmire ‘

Again, the non positive-definite inner product conserved on the evolution is

(@) g = (ploslw) = /dr [ (r)uy () = v (r)vy (r)| (1.76)

We want to compare this with the Klein—Gordon equation in the acoustic metric
(1.59), that in the simple case of constant background density and speed of sound takes
the simple shape

1
2 2
V(]ﬁ—c—g(@t—i-v-V) ¢ = 0. (1.77)
It is useful to rewrite this equation as a system of first-order in time ones [57] by defining
the conjugate momentum

1
= —6—2(8t—|—v-V)d>, (1.78)

S

so that the equation takes the form

vV =
o, (i) -l (f;) . (1.79)
-V —v-V

The associated conserved inner product is

(G112} =1 [ 0% [nid2 - dima). (1.80)

Let us compare this with the formulation of the Bogoliubov problem (1.54a) in terms
of the density and phase variations. This can obtained in matrix form with the change
of variables

. Mng M . o=
ny = 5 = 7 ((,0 + 2 ), @1 = % s (1.81)
that give
vV __h? lV(nV) _ 2
o) v IMZ7n s| (O
Ay (17&;) = (ﬁll> : (1.82)
~h?1v(nV) —v-V

Notice how, for a constant density and for the desired velocity field, if we neglect, with
respect to ¢2, the term involving spatial derivatives in the second element of the first row,
we exactly obtain the Klein—-Gordon problem (1.79). This is exactly the long-wavelength
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limit we used in the derivation of the acoustic metric and this additional term in the
Bogoliubov problem is responsible for the dispersive effects at higher frequencies as we
will see in a moment.

In terms of the fields (1.81) the Bogoliubov inner product (1.76) becomes

h
(Pl)p = in / dx [671,60,, — 80,071y] (1.83)

that has the same (symplectic) shape of the Klein—-Gordon inner product (1.80) so that
all the considerations about norm and energy we made also hold true for the Klein—
Gordon equation. The two degrees of freedom that emerge in BECs excitations from the
mixing of positive and negative frequencies are here a consequence of the second order
in time of the Klein-Gordon equation [57].

This comparison shows how the spectral properties we discussed for the Bogoliubov
problem can directly transfer to the Klein—Gordon one. This common mathematical
structure is also shared in general by Hamiltonian systems.

Finally, let us rewrite problem (1.82) in terms of the fields u, and v, after taking
the hydrodynamic approximation:

Dy : _Dn
i (Zg;) _ 7 + 1Dy + gn 5+ gn 1 <“w> .
©

%—gn —(%—iDQ)—gn
Notice that with respect to the full dispersive problem (1.74) here the derivatives are
distributed in all the matrix elements. This formulation of the Klein—-Gordon problem
in Bogoliubov language will be useful to understand the role of dispersive effects in the
configurations we will consider.

(1.84)

Ve

1.4.2 The dispersion relations

The dispersion relation gives the functional dependence of the energy of excitations
on their momentum. As such it only makes sense in uniform systems in which the
excitations have a plane-wave shape and the wavenumber k is conserved. However it
can also give useful insight in the physics of a system that varies spatially slow enough
to allow a local expansion in momentum (eikonal approximation).

The dispersion relations for the different problems can be obtained, as we did in
deriving equation (1.37), by considering uniform systems (with constant density and
uniform velocity) and considering fluctuations in the shape of plane waves. The dis-
persion relation can then be obtained solving for the eigenvalues of the matrices we
introduced in the previous Section.

For example for a constant-density condensate with uniform velocity v the diagonal-
ization of the matrix in (1.74) gives the modified Bogoliubov dispersion relation

h2k2 ]:L2k.2 kQ é’2k.2
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where £ = /h?/(Mgn) is, as above, the healing length of the condensate. Notice that
the choice of having the phase of the condensate as an overall factor in the expression
for the fluctuation field (1.53) corresponds, as we already commented about (1.37), to
measuring the momenta with respect to the condensate momentum. The extra term
involving the velocity in (1.85) is hence a Doppler shift.

Performing the same procedure on the matrices of equations (1.79) or (1.84) we
obtain the dispersion relation for the corresponding Klein—-Gordon problem

w=v-k+cslkl. (1.86)

This can be directly compared with the second expression in (1.85) to show that the
Bogoliubov dispersion relation differs substantially for momenta k > ¢!, for which the
dispersion relation deviates from a linear behaviour.

A graphical comparison of the two dispersion relations for a one-dimensional config-
uration is given in Figure 1.4 where the solid lines indicate the Bogoliubov dispersion
relation and the dashed lines the Klein—-Gordon one. Here black lines indicate positive-
norm modes and red lines negative-norm ones; it is easy to notice the redundancy of
one of the two norms to describe all the modes. In the case of a supersonic velocity
one can see that the negative-norm branches rise to positive frequencies (equivalently
the positive-norm ones lower to negative frequencies), so that negative energy modes are
present.

This is an example of Landau’s criterion of superfluidity [16,39] according to which
above some critical frequency energetic instabilities develop in superfluids; here the crit-
ical speed is the speed of sound. Remembering, as we said in Section 1.3.3, that in
analogue spacetimes ergoregions correspond to regions of supersonic flow, we have here
another interpretation of the negative-energy modes occurring in those portions of the
spacetime.

Since the slope of the dispersion curves indicates the group velocity of the modes
one from Figure 1.4 we can see that in the Klein—Gordon case all the excitations of a
branch move with the same velocity, that with respect to the lab frame is v+ c¢,. For the
Bogoliubov dispersion instead the group velocities are larger than the speed of sound for
k> ¢1; these are called superluminal corrections to the Klein-Gordon equation.

This poses a difficulty in the definition of an horizon (and of an ergosurface) in BEC
analogues. In a one-dimensional configuration such as the one sketched in the upper part
of Figure 1.4 the point in which the flow velocity matches the speed of sound is an horizon.
Beyond this point, as one can see in the right panel, for the Klein—-Gordon problem all
the excitations have a group velocity directed downstream, as one would expect for a
real horizon. For the Bogoliubov case however also excitations with upstream velocities
are present, so that the sonic point is not really an horizon. Moreover, for high enough
frequencies this is not even an ergoregion since no negative-energy modes are present.

One could define frequency-dependent horizons and ergoregions by comparing the flow
velocity with the speed of the modes at that frequency. In this way a rainbow metric
is obtained, in which the positions of the horizons and the ergosurfaces depend on the
frequency. We will use this kind of spacetime elements when discussing superradiance
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Figure 1.4: The top drawing is a schematic representation of a minimal black hole: a
condensate flows in a tube and the flow velocity and the speed of sound are such that two
regions of subsonic and supersonic motion are present. The point of transition between
the two is an horizon, from which one expects emission of Hawking pairs, indicated with
wiggly lines. The two panels on the bottom show the Bogoliubov dispersion relation
(solid lines) in the two regions. The black lines correspond to positive-norm modes, the
red lines to negative-norm ones. The dashed lines are the corresponding Klein—Gordon
dispersion. Scattering processes occur at fixed frequency, the horizontal blue line is an
example, individuating the relevant modes on the dispersion curves.

and horizons in our setups.

Notice that the dispersive nature of the Bogoliubov dispersion law is related to the
fact that is of higher order in k, so that at fixed w there will be in general four modes
(possibly of complex wavenumber) instead of the two of the Klein—-Gordon equation. As
an example look at the intersections of the blue line of Figure 1.4 with the dispersion
curves: inside the horizon there are four solutions for the Bogoliubov case, two of which
(dllin and d2|in), not present in the Klein-Gordon case, are at large momenta and move
upstream.

1.5 A prototypical example: Hawking radiation in BECs

Hawking radiation [2,58] is one of the most famous effects of quantum field theories
in curved spacetimes. The prediction is that black holes emit at the quantum level
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radiation with a thermal spectrum at future infinity with a temperature

hk
kT = o (1.87)
where k is the surface gravity of the black hole, that can be interpreted as the force
per unit mass necessary for an observer at infinity to hold a particle stationary at the
event horizon and that for the Schwarzschild black hole has the value k = 1/(4M). This
emission can be understood as quantum pair creation at the horizon and was historically
derived after the realization that ergosurfaces could lead to spontaneous emission of
particle pairs.
The original idea of fluid analogues by Unruh [3] was motivated by the possibility of
observing black hole evaporation in the laboratory. In this case the surface gravity of
the horizon is given in terms of the fluid quantities by

B 18(63 —v?)

’i2 on

(1.88)

horizon
We will not give a derivation of the Hawking effect in gravitational physics, for which
many good introductory expositions are available (for example [59-61]), but we will focus
on the realization in BEC analogues.

As we said in the previous Section, the presence of nonlinear dispersion relations poses
a difficulty in defining ergoregions and horizons. This issue is related to the so-called
trans-Planckian problem of Hawking radiation. In the original derivation of Hawking
it is possible to see that if one follows the emitted radiation from the future infinity
(where it is observed) back in time, this gets infinitely blueshifted. Hence it seems that
Hawking result relies on the validity of quantum field theory in curved spacetimes up
to arbitrarily high energies, for which there is no experimental evidence. In fact the
microscopic physics of the spacetime beyond the Planck scale may be very different and
contain deviations from the general-relativistic description.

One of the main interests of gravitational analogues has been to provide a frame-
work in which to study possible deviations from the Lorentz-invariant physics of curved
spacetimes. In particular, analogue models are systems in which a low-energy geometric
description emerges from a well-known microscopic background. A possible way in which
the microphysics comes into play is with modifications to the dispersion relations of the
fluctuations at high(er) frequencies, exactly as we saw for the Bogoliubov dispersion. In
that case the healing length £ plays the role of an analogue Planck length.

Hawking radiation with such modifications has been widely studied [62-65] and has
proven robust to dispersive effects, also maintaining its thermal nature in appropriate
regimes. For a comprehensive discussion and complete references see [1].

In analogue black holes it is instructive to study Hawking radiation in terms of
scattering of fluctuations at an acoustic horizon (for nice introductions see [66, 67]),
that is a mechanism very different from the one occurring in the gravitational case.
In the particular case of Bose—Einstein condensates it was shown that the microscopic
mechanism of pair creation is conceptually the same even in configurations well outside
the hydrodynamic limit [68-73].
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1.5.1 A minimal black hole

As an example that will be useful as a conceptual reference also when discussing
superradiant phenomena we consider now consider a minimal configuration displaying
the spontaneous pair production associated to the Hawking effect. Consider a condensate
flowing in a narrow tube, that is a condensate tightly confined in two directions so that
the first transverse excited states have a high energy and can be neglected from the
description. The dynamics of this cigar-shaped condensate can be described with a
one-dimensional GPE (see Chapter 24 of [16]), and hence the excitations with a one-
dimensional Bogoliubov problem.

Instead of considering a spatially-inhomogeneous flow velocity one can take a con-
stant one and construct an acoustic horizon can be constructed by locally varying the
speed of sound ¢; = \/gn/M. In BECs this can be obtained with a local variation of the
interaction constant, that can be achieved by changing the transverse size of the con-
densate or the atom-atom scattering length with an external magnetic field (exploiting
Feshbach resonance). In order to maintain the density homogeneous one should add an
external potential assuring Vex(x) + g(x)n = const = p, so that the one-dimensional
GPE has a plane wave stationary solution

Wo(x) = /nge!Mv/Me, (1.89)

Consider the case in which the speed of sound is constant, except for a region where
it passes from being larger than the flow velocity to being smaller. Labelling with v and
d the upstream and downstream regions sufficiently far from the transition region we
have ¢y < v < ¢,. This configuration is sketched in the upper part of Figure 1.4, where
we show a sharp transition between the two zones. Plots of the dispersion relations in
the two uniform regions are shown with the relevant modes indicated by dots, named
with in or out depending of if they mode towards or away from the horizon.

Consider a scattering process in which the mode ulin (of frequency below the critical
one for the existence of negative-norm modes) impinges on the transition region. The
modes involved in the scattering are the ones that have the same frequency in the two
regions, so that the wave will be reflected in the u|out mode and transmitted in the
positive-norm mode dl|out and in the negative-norm one d2|out. Notice that the modes
involved in this particular scattering are not qualitatively different from the correspond-
ing ones of the Klein-Gordon dispersion, since the modes d1|in and d2|in do not come
into play. As we already commented, instead of the negative norm mode we can equiv-
alently consider the corresponding positive-norm negative-frequency one. The partial
conversion of a positive-frequency mode to a negative-frequency one has been experi-
mentally observed with surface waves on moving water [74] and is a classical analogue
of the Hawking effect [75].

To understand why this is the case we can follow the scattering approach of [69],
that we will extend to the superradiant case in Section 3.3, in which two bases for the
fluctuations are introduced: the one of ingoing modes and the one of outgoing ones.
The quantum field describing the fluctuations at a fixed frequency (below the critical
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frequency for negative-norm modes) can be decomposed in terms of these modes as

(@, z) = > [unn(@)ar() + vjj (@)ah ()] + [tiyin (@)al(w) + Vigjpn(@)aar ()],
I=u,dl

(1.90)

or the equivalent expression in terms of outgoing modes, whose operators we indicate

with b. Here u; and vy are the components of the Bogoliubov modes of the basis. Notice

that, as in equation (1.43), for the negative-norm mode d2 creation and annihilation
operators are exchanged.

The two bases are related by an input-output relation given by the scattering matrix

?u(w) du(w)
bar(w) | = S(w) ag(w) | . (1.91)
bla(w) iy (w)

We have now the basic ingredients of Hawking emission, that should in this setup
emerge as emission of phonons in the u|out mode. The emitted quanta in this mode per
unit time can be computed using the input-output relation as

(B (w)bu(w)) = [Suul® (@](@)a (@) +]Suar|* (@l ()tar (@) H|Suaz” (@l (w)tan(w)) +1)

(1.92)
where the +1 in the last term comes from the commutation of the operators of the
negative-norm mode. If we start from the vacuum of the ingoing modes (at zero tem-
perature) all the expectation values of the right-hand side vanish and only the emission
due to the vacuum quantum fluctuations remains:

(bl (w)bu(w)) = [Suazl”. (1.93)

This is the Hawking radiation in our setup. Its spectrum will depend on the way the
horizon is shaped, the thermality of this spectrum is discussed in [72] with the conclusion
that the low-frequency spectrum is not altered by dispersive effects. In the case of a
sharp interface we are way outside of the hydrodynamic limit and the surface gravity is
formally infinite; nonetheless an analytical approximate spectrum going as 1/w is found.

Even if the Hawking temperature in this kind of setups is typically too low to be
observed, in a laboratory one can also access the interior of the horizon. A strategy to
obtain experimental evidence of Hawking emission is hence to measure density correla-
tions of fluctuations between the upstream and downstream regions, to find correlations
between the modes u|out and d2|out. This strategy was presented in [17] and numerically
implemented in [18] and is at the basis of the experimental observations of spontaneous
Hawking radiation in Bose-Einstein condensates [4,5,76].

1.5.2 Black-hole lasers

Although nonlinear dispersion at high frequencies seems not to alter substantially the
Hawking effect at low frequencies the situation changes dramatically if also an inner hori-
zon is present, such as the one of the Kerr spacetime (or of charged Reisser—Nordstrom
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black holes). This was first noticed in [77], where it is shown that superluminal disper-
sion determines the occurrence of dynamical instabilities in black holes displaying an
inner horizon, and was then extensively studied in BEC-based analogues [78-83].

This can be realized in our minimal black hole by adding another transition from
supersonic to subsonic flow in the downstream region, creating a white hole horizon.
What changes with respect to the Hawking emission case is that the fully dispersive
modes d1|in and d2|in enter in the game since they can be populated with the reflection
at the inner horizon, and not just by zero-point fluctuations. We can take the inner
downstream region to have the same sound speed as the upstream one, and imagine
again a scattering process starting with the mode w|in. After the modes dl|out and
d2|out are transmitted from the outer horizon they scatter on the inner one and are
transmitted to the u|in mode (that is an outgoing mode beyond the inner horizon) and
reflected on the d1|in and d2|in modes that go back at the outer horizon, where the exact
same scattering happens. Hence the excitations between the two horizons continue to
bounce back and forth.

Notice now that at each bounce the energy must be conserved and that negative-
norm modes carry here negative energy. Considering for example the scattering of the
d2|in mode that comes beck to the outer horizon: to conserve the energy the amplitudes
of the ingoing and outgoing modes must be such that

2

B ‘Ad?lm - ‘AUIout T ‘Adllout = "Ad2|out ; (1.94)

where the negative-norm modes’ amplitudes must enter with a minus sign. This implies

that
2

‘Ad2|out‘2 > ‘Adz\m (1.95)

This happens also at the inner horizon, so that at each bounce the amplitude of the
negative-norm mode increases. This behaviour is the signal of a dynamical instability
that can be detected as a complex-frequency eigenmode of the Bogoliubov problem and
takes the name of black-hole laser.

This instability was looked for experimentally in a cigar-shaped condensate as re-
ported in [84]. The condensate was accelerated by moving a step potential through it by
creating a pair of black hole and white hole horizons. An oscillating density modulation
was observed to emerge between the two horizons and was attributed to self amplification
of the quantum emission of Hawking radiation. Successive analyses of this experiment
concluded however that the observed effect is not seeded by quantum fluctuations but is
a predictable and deterministic effect triggered by the experimental setup [85] and that
the same kind of result can be obtained in a system without interactions [86], being due
to a linear interference, and is hence not related to black hole lasing. More recent ex-
periments of the same group however brought new evidence of experimental observation
of black hole lasing [87].

Taking a step back we can say that Hawking radiation is caused by the presence of
an energetic instability confined in a region of the system, i.e. the inside of the horizon.
By adding the inner horizon we are changing the boundary conditions of the problem so
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that the energetically unstable modes have closed orbits, i.e. they are bound in region
of the system and are coupled to the exterior only by positive-norm modes. This results
in a dynamical instability for the self-amplification of the bounded mode [79]. This is a
pattern that will accompany us throughout the rest of this thesis.

Besides this very general mechanism, another reasons in which this physics is inter-
esting for the following of this work is that this mechanism was shown to be at the basis
of the breakdown of a superfluid flow passing through a penetrable barrier [88]; this is
an example of how feed-back of information from the analogue gravity perspective to
fundamental questions of condensed matter physics, a perspective that we will adopt in
Chapter 5.

1.6 Summary: from BECs to curved spacetimes

In this Chapter we introduced the main theoretical tools we will need to study Bose—
Einstein condensates, with a particular attention to the elementary linear excitations
around a stationary state of the Gross—Pitaevskii equation. We showed how from the
Bogoliubov linear problem for these excitations a geometric description of sound prop-
agation through a relativistic acoustic metric emerges in the hydrodynamic limit. For
non-uniformly moving condensates having regions of supersonic flow, this acoustic met-
ric can have the shape of a black hole metric of general relativity. Even if the solutions
of the Einstein equations cannot in general be reproduced in these fluid analogues, in-
teresting toy model acoustic spacetimes can be obtained, sharing the main interesting
features of black holes such as horizons and ergoregions.

This gravitational analogy allows the study of field theories in curved spacetimes, also
in their quantum aspects thanks to the low temperatures of Bose—Einstein condensates.
We explained in detail how the Bogoliubov excitation field is related to the Klein—-Gordon
field and discussed that the differences between the two can be not a bug but a feature of
the gravitational analogue. As a guiding example we reviewed some studies of Hawking
radiation in a simple analogue black hole.

In the discussion we introduced two different concepts of instability that will be of
capital importance in the following of this Thesis: energetic and dynamical instability.
Energetic instability corresponds to the existence of negative energy modes, while dy-
namical instability is the presence of exponentially growing zero energy modes. With
black hole lasing we saw a first example of the interplay between these two concepts,
that we will see at play multiple times throughout this work.

We saw that energetic instabilities are at the basis of Hawking emission in Bose—
Einstein condensates, and in the next Chapter we will see how the simultaneous presence
of positive and negative energy modes is the fundamental ingredient of superradiant
scattering. In closing this Chapter, it is interesting to notice that the amplification (1.95)
of a negative-energy mode scattering on an acoustic horizon from the inside is based on
the interplay between modes of different norm and is a first example of superradiance.



Chapter 2

Superradiance

At the end of the previous Chapter we saw how one can investigate Hawking radiation
in analogue models, obtaining new perspectives on the phenomenon. This is related to
the fact that the Hawking effect is a kinematical effect, that is it only relies on the
propagation of fields in a curved geometry and not on the gravitational dynamics of the
spacetime.

Another interesting phenomenon of the same kind is black hole superradiance, that
is the amplified reflection of radiation scattering on a rotating or charged black hole.
Anticipated by a prediction by Zel’dovich regarding the scattering of electromagnetic
waves on a rotating conducting cylinder [8,9] and by an observation by Penrose in-
volving decaying particles around rotating black holes [7], the amplification relies on
the extraction of energy from the black hole and, differently from Hawking radiation,
is a classical effect. When the involved fields are quantum the phenomenon becomes
a spontaneous emission of pairs that has historically been a precursor of Hawking pair
production.

Despite being mainly investigated in black hole physics, superradiance is a very
general phenomenon relying on the existence of negative-energy states that can store
the extra energy associated to the amplification. As we saw in the previous chapter,
the concept of negative energy is not restricted to relativistic systems, but emerge fairly
commonly in quasiparticle descriptions of condensed matter systems.

In presentations of the phenomenon it is often highlighted how this amplification goes
hand in hand with dissipation [10,89], that is provided in black holes by the one-way
membrane of the horizon, and is also sometimes claimed that no dissipation results in
no amplification [90]. Addressing this point, the role of horizons and, more in general,
the essential ingredients for superradiant scattering is one of the main motivation of our
analogue gravity approach to this phenomenon.

In the present Chapter we wish to give an introduction to superradiant phenomena
in the spirit of the recent review [10], providing a set of examples ranging from black
holes to less extreme physical settings. During presentation we try to pinpoint the
common features giving rise to the phenomenon and to highlight the main points we will
address in the rest of this thesis. After focusing on some guiding example from physical
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systems outside of general relativity, we summarize the work by Penrose on energy
extraction from rotating black holes with particles. This serves as an introduction to
some examples of superradiance in gravitational and acoustic black holes. Finally we
address superradiant instabilities arising from self-amplification of radiation when the
boundary conditions of the problem are changed.

2.1 Intro: some general-physics examples

Despite being the most famous and studied example, superradiance in black holes
was actually preceded by many occurrences of amplified scattering in other areas of
physics. We present here some examples that will also be useful in our analogue gravity
approach to superradiance.

2.1.1 The bosonic Klein paradox

As a first and preciously simple example of superradiance we consider, as was first
done in [91], a charged relativistic scalar field ¢ in one spatial dimension coupled to a
spatially-dependent electrostatic potential Ag(z); it will obey the Klein-Gordon (KG)
equation
e pc?
hic h2
where e is the electric charge of the field, u its mass and we take the electrostatic potential
asymptotically constant with Ag(z — —o0) = 0 and Ag(z — +00) = Ag.

Consider first the massless case y = 0. We are interested in the stationary scattering
problem for a plane wave coming from y = —oo; the solution will be of the form ¢(¢,y) =

—iwt

e " (y), so that the KG equation becomes (now taking A =c=1)

1 2
(Cat+i Ao> b+ 0% — $=0, (2.1)

d2x

e G eAo)*x =0, (2.2)

with asymptotic solutions

x(y — —o00) = ™Y 4 Re ™Y

, 2.3
x(y = 400) = Tetkry, (2:3)

with R and 7T reflection and transmission coefficients and where the transmitted wavevec-
tor
ki, = w — eAp (2.4)

is determined from the dispersion relation (w — eAg)? = m? 4 k? by requiring for the
group velocity Jrxw to be positive. Notice that the transmitted wavevector is positive for
w > eAp but negative for w < eAy.

A relation between the reflection and transmission coefficients can be obtained using
the fact that the Wronskian W(x1,x2) := x1X5 — Xix2 of two linearly independent
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Ag4

eAo T T 2mc?

X

Figure 2.1: Dispersion relations of the massive Klein—Gordon equation minimally coupled
to an electrostatic potential. The blue profile is the space-dependent potential considered
in the Klein paradox case and the dispersion relations are the ones computed in the two
asymptotic regions. Black lines correspond to positive-norm (particle) modes and red
lines to negative-norm (antiparticle) modes. The gray region indicates the frequencies
for which superradiant scattering is possible.

solutions is a constant because of the absence of first order terms in equation (2.2); the
Wronskian can be interpreted as the electric current of the charged field. By taking
x1 = x and x2 = x* and computing W in the two asymptotic regions one obtains

w — eAg

1—|R|? = T (2.5)

w
For w > eAg one has |R|? < 1, as in standard scattering. A more interesting result is
found for

w < eAo, (2.6)

for which the right-hand side becomes negative, hence |R|?> > 1 and the reflected wave
has a larger amplitude than the ingoing one. This is clearly an example of superradiant
scattering.

This phenomenon can be seen as a paradox if one thinks at the Klein—Gordon equa-
tion as describing a single particle, similarly to the Schrédinger equation. With this
picture in mind where is the extra energy of the amplification coming from? The para-
dox is actually easily resolved from the relativistic point of view in which particles can
be created and annihilated; as we are going to see now the effect is in fact due to creation
of pairs of particles and antiparticles at the electrostatic potential step.

The massive case of equation (2.1) can be treated in a similar way, though the
analytical result is slightly less transparent. More understanding of this phenomenon
can be obtained from studying a graphical representation of the dispersion relation of the
massive scalar field, that we show in Figure 2.1. Notice the presence of a mass gap and
that the effect of the electrostatic potential is to shift the dispersion curves vertically.

In the massless case any amount of this vertical shift causes the negative-norm an-
tiparticle modes to raise to positive frequencies. It becomes hence apparent that the
superradiant condition (2.6) corresponds to the case in which particle modes are trans-
mitted to antiparticle modes, whose current is opposite-signed. Hence the amplification
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is not violating the conservation of energy because the transmitted particles have a
negative energy, that compensates exactly for amplification.

From the graphical representation it is easy to understand that superradiant scat-
tering in the massive case can occur only if the electrostatic field is strong enough to
overcome the mass gap

eAy > 2uc?, (2.7)

that is strong enough to create a particle-antiparticle pair. If this condition is met
superradiant scattering can occur for

p<w<edy— p. (2.8)

For eAg — it < w < eAg + p one instead has total reflection because of the absence
of modes for x — +o0, while for higher frequencies one has, as in the massless case,
standard scattering.

Notice that the amplification relies on the bosonic nature of the field. Treating the
analogous Dirac equation problem shows that |R| is always smaller than one. From the
quantum perspective the amplified reflection is essentially a stimulated pair production
in an external field, with the Pauli exclusion principle limiting fermionic amplification.

This example has been clarified and related to superradiance in [13]. Despite its
simplicity the bosonic Klein paradox already has the main ingredients of superradiance
and is hence a good guide in more complicated setups. The basic process can be seen
to be amplification of radiation by transmission of radiation with the opposite energy,
the different physical realization depend on how these negative energy modes become
available. In Section 3.2.2 we will see how this physics appears naturally also with
(synthetic) vector gauge potentials, that will provide an exact realization of this simple
model.

2.1.2 Hydrodynamic tangential discontinuities

Wave amplification has also been predicted in the traditional field of hydrodynamics
[92-94]. The phenomenon involves the scattering of acoustic or gravity waves at a
tangential discontinuity of a compressible fluid, that is a surface at which some fluid
quantities are discontinuous and through which there is no mass flux. As discussed in
Landau’s book [95] (chapter 84) this implies continuity of the pressure at the surface of
discontinuity.

In Problem 2 of the same chapter the scattering of sound waves at such a discontinuity
is studied. In particular an homogeneous compressible fluid is considered, with medium
1 (for z > 0) having a velocity v in the z direction and medium 2 (for z < 0) being
at rest. A sound wave of wavevector k, forming an incidence angle 6 with the z axis
and having an angle ¢ between its projection q on the xy plane and the z axis. The
wavevector components are hence

ky =qcos¢, ky,=gsing, k:zzi(JOSG7 (2.9)

Cs
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where 0 < 6 < 7/2.
In medium 2 the pressure variation wave will have the form

5p2 _ ei(kzachkyyfwt) (eikzz + Refikzz) ’ (210)

with R amplitude of the reflected wave. In medium 1 the refracted wave will have the
shape N
5]91 — Tei(kxif"rkyy‘f'kzz_‘*’t)’ (2.11)

where EZ is determined from the Doppler-shifted dispersion relation (analogous to the
Klein—-Gordon one (1.86))

(w —vkg)? = (k2 + k2 + &2). (2.12)

We can now impose the continuity for the pressure dp1(z = 0) = dpa(z = 0) and
for the vertical displacement of the discontinuity ¢; = (2. This gives a solution for the
waves amplitudes

. (w— vkz)z/EZ —w?/k, g 2w — v/imy/%z | (2.13)
(w—vky)?/k, +w?/k, (w—vky)?/k, +w?/k,

where the sign of k., must be chosen so that the group velocity of the refracted wave is
directed away from the discontinuity
ow S

—_— = 687 > O 214
ok, (w— vky) ( )

Since the transmitted wavenumber is given by

k2 = (w>2 l(l — Y sin 6 cos q§>2 — sin? 0)] , (2.15)

Cs Cs
one can distinguish three kinds of reflection:

1. For (v/cs)cos¢ < cosec § — 1 the transmitted momentum is real and w — k; > 0,

so that k, > 0 and from (2.13) we can see that |R| < 1 and one has ordinary
scattering in which the reflected wave is weaker than the incident one.

2. For cosec § — 1 < (v/cs)cos¢ < cosec 6 + 1 instead k, is imaginary and what
happens is total internal reflection with |R| = 1.

3. The most interesting case occurs however for (v/cs) cos ¢ > cosec § + 1, that can
occur only for
v > 2c¢s, (2.16)

for which k. is again real but negative. Then equation (2.13) predicts |R| > 1,
that is superradiant scattering.
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This phenomenon bears many resemblances to the bosonic Klein scattering and, as
we will see, to the scattering occurring at an ergosurface: an interpretation in terms
of transmission of negative-energy sound waves was for example given in [94]. Notice
however that, as underlined by Landau, this amplification mechanism comes together
with the surface instabilities of hydrodynamic tangential discontinuities, such as the
Kelvin—Helmholtz instability. Superradiant scattering in this context can hence be hid-
den exponentially increasing modes localized on the surface.

The configuration we propose in Chapter 3 for Bose-Einstein condensates subjected
to synthetic vector potentials, does not have such surface instabilities, so that amplified
scattering (and its quantum counterpart) is the only relevant mechanism. Surface insta-
bilities and their relation to superradiant phenomena are instead studied in a different
setup involving quantized vortices in Chapter 6.

2.1.3 Superradiance, dissipation and rotation

Besides the bosonic Klein paradox, the first example of superradiant scattering was
provided by Zel’dovich in 1971 [8,9]. He showed that a rotating cylinder made of ab-
sorbing material can amplify some modes of scalar or electromagnetic radiation. Leaving
the detailed electromagnetic calculation aside (that can be found for example in [89]),
Zel’dovich gives a simple general argument to show the emergence of superradiance.

Consider first a scalar field in an absorbing medium moving at velocity V along x.
In the reference frame where the medium is at rest the KG equation is

O'® — p2® + adj® = 0, (2.17)

where a is the absorptivity of the medium. By changing to the frame in which the
medium is moving the first two terms of the equation remain the same because of Lorentz
invariance, while the absorption term becomes

O0® — p?® 4 ay (8,® + V9, ®) = 0, (2.18)

where v = (1 — V2)_1/ 2. By taking the field of the plane wave shape along the velocity
direction ® = p(y, z)e” !z the equation becomes

Op — ki¢ — p*e —iay (w — Vkz) ¢ = 0, (2.19)

from which one can see that if
w < Vk,; (2.20)

the absorption term changes sign and works hence as an amplifier. The field however
has a linear dispersion relation w = k2, so that for the Klein-Gordon field, or for
electromagnetic waves in a vacuum, this condition requires for V' to be larger than the
speed of light and is hence impossible to satisfy.

More in general the condition to obtain amplification is that the velocity of the
medium from which the energy is drawn must exceed the phase velocity of the field.
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Even if in a plane geometry in a vacuum this is impossible, things change if rotating
configurations are considered.

By taking a cylinder of absorbing medium rotating with angular velocity €2 we can
decompose the field as ® = f(r)e~™!*m®  Analogously to equation (2.19), the Klein—
Gordon equation in the radial direction becomes

2
m ,
0,e — o p2® —iary (w—m) ® =0, (2.21)

where [, is the radial part of the d’Alembertian in polar coordinates. This time the
absorption term changes sign for

w < mil, (2.22)

that is in principle possible to satisfy without the need of superluminal velocities. This
reflects the fact that the angular phase velocity of the fluctuations is w/m, that can be
exceeded for large enough multipole momenta.

The observation of this phenomenon in a laboratory however requires high rotation
frequencies for the absorbing object; moreover the centrifugal terms of the radial equation
may make it difficult for the waves to arrive near the rotating object. A significant
step towards the experimental feasibility was made only very recently in [96], where
a scheme was proposed to observe Zel’dovich amplified scattering of electromagnetic
waves by bringing radiation directly near the rotating object. An analogue version of
this phenomenon has also been considered in fluids of light [97].

2.1.4 Other radiation-emission processes

Consider an object with internal structure, so that it can emit and absorb photons,
moving in some medium. In the case of an emission of a photon the object’s energy in
the medium frame will change from F to E' = E — hw and its momentum from P to
P’ = P — hk. In the reference frame of the object its rest energy will hence go from
M =~E —v-P)to M'=~'(E' —v' -P’), where v = (1 — v?/c?). For a very massive
object the recoil due to the emission will be very small and the change in rest energy
can be approximated to

M — M = —yh(w —v-k) + OV —v). (2.23)

In a vacuum the dispersion relation of the photon is w = c|k| and hence the rest energy
variation will always be negative when a photon is emitted. This is called ordinary
Doppler effect [98,99] because the relation between the frequency of the internal transi-
tion and the one of the emitted photon is the usual Doppler shift wg = y(w — v - k).

A more peculiar process takes place if the object is in a dielectric medium of refractive
index n and is moving with velocity v > ¢/n. In this case for a photon emitted with
respect to v at an angle such that cos > ¢/(nv) the right-hand side of (2.23) changes
sign and the emission can occur together with an excitation of the object; this is called
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the anomalous Doppler effect, happening when the following Ginzburg—Frank condition
is satisfied
w—v-k<0. (2.24)

Energetically this is possible because the emitted photon energy is negative in the ob-
ject’s frame, that is it slows down the medium motion. An analogue realization of the
anomalous Doppler effect was considered in [100].

This process was linked to superradiance in [89], where it was shown that the anoma-
lous Doppler effect implies the possibility of superradiance, that is radiation satisying
the Ginzburg—Frank condition is superradiantly amplified by the object with internal
structure, at the expense of its internal energy.

Another effect sometimes related to superradiance is the Cherenkov effect, in which
a point charge moving in a dielectric with a velocity greater than the speed of light in
that medium emits electromagnetic radiation. The occurrence of this emission can be
seen from equation (2.23) with M’ — M = 0, since a point charge does not have the
internal structure to change its rest energy. In a dielectric w = ck/n(w), where n(w) is
the refractive index, so that photons will be emitted only with an angle

cosf. = , (2.25)

forming the so-called Cherenkov cone. The acoustic equivalent of this phenomenon is
the emission of a Mach cone when a small defect moves supersonically inside a fluid.

This phenomenon is however not related to superradiance, at least not at the linear
level of equation (2.23), since in the charge’s rest frame the emitted radiation carries zero
energy and the charge has no internal structure in which to store (positive or negative)
energy. The emission on a cone can be in fact understood from an w = 0 cut of the
Doppler-shifted dispersion relation dispersion relation (1.86), as was done for example
for Bose-Einstein condensates in [101].

2.2 A general approach to superradiance

We said that superradiance is a very general phenomenon and as such it can be
treated with a very general approach, applicable for example to fields in black hole
spacetimes as well as to the electromagnetic waves of the Zel’dovich effect, as explained
in [90].

Different physical systems share the fact that the equations describing the propaga-
tion of the field of interest can be put, with opportune field decompositions and change
of coordinates, in a Schrodinger-like shape

2

jggw@) Vi (€) $(€) =0, (2.26)

where Veg is an effective potential that depends on the physical system and on the
characteristics of the field (e.g. frequency or multipole momenta). The coordinate
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¢ € (—00,4+00) can be chosen so that the effective potential has constant values in the
asymptotic regions, where we can expand v in plane waves

Tetk-t  Re~th-8 a5 ¢ — —o0

A , 2.27
Teth+ool 4 Qe+t a5 ¢ — +oo (2.27)

o

where k2 . = Veg(400). The letters indicating the waves amplitudes explain the physical
process we have in mind: an incident wave Z comes from —oo and scatters on the
potential by which it is partially reflected (R) and partially transmitted (7°), while
the wave of amplitude O is included to allow the possibility of some reflection of the
transmitted wave. The association between the sign of the momentum and the direction
of the wave has to be made according to the sign of the group velocity, as we did for the
bosonic Klein paradox in Section 2.1.1.

As we did in that case, we can obtain a relation between the amplitude of these four
waves from the conservation of the Wronskian between a solution and its complex conju-
gate W (¢, ¢*) = wd%w* — w*d%w. This constant value takes the asymptotic expressions

W(—00) = 2ik_o(JZ|> — |R[?) and W (+00) = 2ikioo(|T|?> — |O|?), giving the equality
ktoo
IRI? = |Z” ~ kif (7%~ |OP). (2.28)

Let us consider the situation in which no wave comes back from o0, that is O = 0,
as for the bosonic Klein scattering. The result depends on the signs of the momenta
of the asymptotic expansions: for kjeo/k_oo > 0 we have |R|? < |Z|2, as expected in
ordinary scattering, while for kioo/k_oo < 0 instead |R|*> > |Z|?, that is superradiant
scattering.

Consider now the case in which there is reflection for £ — 400, that is O # 0. If a
total reflection of the transmitted wave occurs than |T]? = |O|?, and equation (2.28) tells
us that |R|? = |Z|?, so that one is brought to conclude that nothing exciting happens
and the field is simply totally reflected, as concluded in [90]. Actually, the situation is
more subtle, as we discuss in the following, and raises the fundamental question on the
role of boundary conditions for superradiant scattering.

2.3 The Penrose process

Let us now move to black hole physics and consider the first discovered example of
energy extraction from black holes. Roger Penrose [7] showed that it is possible for a
particle to enter the ergoregion of a Kerr black hole and decay into two photons, of which
one is able to escape the ergoregion with an energy larger than the one of the incoming
one. This is possible while conserving energy because the other photon, that then falls
inside the horizon, turns out to have a negative energy (with respect to an observer at
infinity), thus lowering the energy and angular momentum of the black hole.

We start by considering the motion of particles in the Kerr black hole spacetime
(Section 1.3.2), that is on the behaviour of timelike and null geodesics. A comprehensive
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exposition can be found in [55], here we focus only on some basic properties of the
geodesics in the equatorial plane.

Given a spacetime described by the line element ds?> = gudxtdz”, the equations
describing geodesics can be obtained from the Lagrangian

dzt dx¥

22 = gliljﬁﬁv (2.29)

with 7 an affine parameter along the geodesics. For the equatorial plane in the Kerr
spacetime the Lagrangian is

(r? + a®) +

oM\, 4Ma, 1°
)H @ip T2 (2.30)

2.,5,”—(1— i — <%

r

2Ma2] 5.

(dots indicate differentiation with respect to 7) whose independence from ¢ and ¢ assures
the conservation of the canonical momenta

07 2MYN . 2M
Pp = —— = (1—)t+agb:const:E (2.31)
ot r r
2Ma 2Ma?
Py = L P ¢ $ = const = —L (2.32)
r

along the geodesics. These constant values are identified with the energy and the angular
momentum.

The Hamiltonian turns out to be equal to the Lagrangian (this is due to the fact
that . is only composed by kinetic energy) and, being independent on ¢, is a constant

7,2

2 = Ft — Ly — Zﬂ = const = 0. (2.33)

Considering equation (2.29) one can see that §; = 0 for null geodesics and can be instead

be chosen as §; = 1 for timelike ones by rescaling the affine parameter. This choice for
massive particles implies that E has to be interpreted as the energy per unit mass.

Using the canonical momenta conservation and the constancy of the Hamiltonian

one can obtain the equation governing the radial coordinate of the equatorial geodesics

2M
272 = r?B? + “—(aE — L)? + (a®*E? — L?) — 6,A. (2.34)
r
To understand how energy extraction can be possible let us discuss the energy of
particles at rest. From (2.34) with 7 = 0 one obtains a second order equation in E with
solutions

5o 2MaL + VA\/TELE + 517[r(r2 + a?) + 2Ma?]

2.
r(r? + a?) + 2Ma? ’ (2.35)

where, since a particle at rest at infinity must have £ = 1, we must choose the plus sign.



2.3. The Penrose process 51

If we look instead for particles with a negative energy we must hence have L < 0
and that the first term in the numerator of (2.35) is in modulus larger than the second.
This condition is equivalent to asking that

r—2M < —;—%51, (2.36)
that for massless particles requires r < 2M, so that we can conclude that negative-
energies are only possible for counter-rotating particles inside the ergoregion.

Let us now turn to the Penrose process: imagine a particle starting at rest at in-
finity (so that E© = 1) and arriving at a turning point (7 = 0) of its geodesic inside
the ergoregion, where it decays into two photons. From equation (2.34) one obtains
expressions for the angular momentum of the initial particle L and of the two photons

L.
—2Ma + V2MrA
LO — o0 (2.37)
L) _ “2MaE VA o) (2.38)

r—2M

Imposing now the conservation of energy E(1) + E(?) = 1 and angular momentum L™ +
L@ = L) one obtains the energies of the two photons

E<1>,<2>:% 11«/% , (2.39)

so that for r < 2M (inside the ergoregion) one photon has a negative energy, while the
other one has an energy greater than one, that is greater than the one of the incoming
particle.

It is possible to show that the negative-energy photon is doomed to fall inside the
horizon, causing a decrease of its mass and angular momentum, while the other one can
exit the ergoregion, thus extracting energy from the black hole. The extracted energy is
equal to minus the energy of the negative-energy photon and is hence larger when the
splitting process happens at smaller radii, with the maximum value obtained when it
occurs at the horizon 7.

Notice that, as discussed in [10], while in the full Kerr spacetime the geodesic of the
negative-energy photon must fall inside the horizon, energy extraction can be obtained
also if the spacetime does not have an horizon; for examples in ergostars, that show an
ergoregion without an horizon. The negative-energy particle is however necessarily con-
fined inside the ergoregion because we saw that there are only positive-energy particles
outside of it. The subsequent evolution of the process depends however on the details of
the spacetime. This fact is related, as we will see, to the role of horizons (and more in
general dissipation) for superradiance.
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2.4 Superradiant scattering in black holes

Black hole superradiance is sometimes called the Penrose process for waves since
it relies on the presence of negative energy modes of the field around the horizon to
which the waves coming from infinity can transmit while being amplified in the reflec-
tion. Differently from the decay of a particle into photons, here the mechanism can be
seen as a wave coming from infinity that, in the reflection, triggers the creation of a
negative-energy wave going towards the horizon and of another one with an opposite
(positive) energy being reflected together with the incoming wave that is responsible
for the amplification. Superradiance can hence be seen as a stimulated version of the
Penrose process.

Since our main focus is analogue gravity, we only focus on bosonic (zero spin) fields;
for a complete description of higher-spin cases see [10]. Notice however that the bosonic
nature of the field is essential to have amplified scattering. Intuitively speaking superra-
diance can be seen as the production of pairs of quanta of the field with opposite energies,
with the amplification being due to multiple quanta being emitted in the reflected mode;
for fermions Pauli exclusion principle forbids the production of many quanta in the same
mode.

Superradiant scattering is a classical effect since it emerges from the study of a
classical scalar field in a curved spacetime. There is however a quantum analog of the
effect that consists in particle creation. The possibility was put forward by Zel’dovich [9]
in his work on amplification of electromagnetic waves and was then predicted with the
quantization of a scalar field in the Kerr spacetime [102,103]; these worked as precursors
of the derivation of Hawking radiation. As for the Penrose process, superradiance can
be seen as a stimulated version of this effect occurring at the classical level. We will
investigate pair production associated to superradiance in an analogue configuration in
Section 3.3.

In this Section we are going to show two examples of superradiant scattering in
black holes. We first focus on rotating black holes and, instead of focusing on the
rather complex mathematics of the Kerr spacetime, we present a calculation predicting
superradiance in the vortex acoustic geometry. This provides an explicit example of
the general procedure of Section 2.2, that we complement with an interpretation of the
phenomenon in terms of dispersion relations, a tool that we are going to widely use in
the rest of this Thesis. We then present superradiant scattering of charged radiation in
a Reisser-Nordstrom (static and charged) black hole, that is essentially the occurrence
of the bosonic Klein paradox in a black hole context.

2.4.1 Superradiance in rotating black holes: the vortex geometry

Superradiance in the Kerr black hole was anticipated by Zel’dovich [8,9] and worked
out by Starobinskii [102,104] for a scalar field. This work is based on the (surprising)
separability of the equation for a scalar field in the Kerr geometry and was later expanded
higher-spin fields by Teukolsky [105,106]. For full references and discussion see [10].
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Given our focus on analogue models of black holes, instead of reviewing the calcu-
lation for a scalar field in the Kerr spacetime we directly present the analogous one for
sound in the vortex geometry of Section 1.3.3, that shares with the (equatorial slice of)
Kerr black hole the main features important for superradiance.

Amplified scattering in gravitational analogues with the vortex geometry has been
extensively studied theoretically [107-113], and was recently experimentally observed
using gravity waves on water [12]. The calculation we now present was originally worked
out in [107].

Consider the Klein-Gordon equation (1.59) in the (2 4 1)-dimensional vortex metric
(1.69). Because of the rotational symmetry we can take a stationary and axisymmetric
solution

o(t,r,0) = e @™ R(r), (2.40)

where w, m € R. The Klein—-Gordon equation for the radial function R(r) turns out to

be
1 A%\ d A%\ d

2Bmw  m? A% + B? (2.41)
2
—————|1—-———|| R(r)=0.
| csT? r2 ( c2r? )] (r)
Introducing the tortoise coordinate r*
-1
A? |A| r—|Al/cs
dri =1- = dr = = —log |———1, 2.42
" ( c§r2> " Te=T 2¢, R P |Al/cs (242)

whose domain is the whole real axis, the horizon is pushed to r, — —oco. It is also
convenient to rewrite the radial problem in terms of G(r.) := r'/2R(r), so that equation
(2.41) becomes

P2G(r*) 1 A2\* A A2 .
LED 4 o+ L ( e Y = | T Y MY
where we defined
1
Qr) === {(A2 + B% — &Zr*)m? — 2Bmwr? + w2r4} . (2.44)
r

This equation has a Schrédinger-like shape (2.26), so that we can use the approach
of Section 2.2. In the asymptotic region r* — 400 the effective potential of equation
(2.43) simply becomes

Veg (15 — 00) = w?. (2.45)

At the horizon instead we can substitute 1 — A2/(c2r?) = 0 and obtain

Ve (s = —00) = (w — mQpy)?, (2.46)
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where we defined the angular velocity of the horizon

csB
Qp = %. (2.47)
Imposing ingoing boundary conditions at the horizon as discussed in the previous
section, relation (2.28) becomes

1 csB
RE =27 - . (w-mg ) 1T (2.48)
so that for
w < mQy (2.49)

superradiance occurs.

It is interesting to notice that this condition for superradiant scattering is analogous
to the Zel’dovich condition (2.22) and is of the same shape of condition (2.8) for the
bosonic Klein paradox. In particular the radial field G(r*) expressed in function of the
tortoise coordinate can be thought as a massless charged scalar field in a space-varying
and asymptotically constant electrostatic potential, with asymptotic values §A(r. —
+00) = 0 and $A(r. — —o0) = mQy given by the asymptotic expressions of the
effective potential (2.45) and (2.46).

We can hence interpret the phenomenon, as we did for the bosonic Klein paradox,
in terms of positive and negative energy modes and to do this it is instructive to look
at this problem from the point of view of the dispersion relation of the field, as we will
often do in the rest of this thesis. To this end suppose that the space variation of the
vortex velocity is slow enough that it makes sense to consider, at each 7, the dispersion
relation of a uniform system having a constant flow v(7).

An example is shown in Figure 2.2, where the first graph shows the radial dispersion
relation at fixed azimuthal number m = 3 at r — oo and the second graph the ones
at radii closer to 0. The black curves are the positive-norm branches, the red ones
the negative-norm ones, the black arrows show the direction of increasing r and the
horizontal dotted line is the upper limit (2.49) on frequency to have amplification. The
solid lines in the right panel correspond to the dispersion relations at the ergosurface
and horizon radii.

One can see that the ergoregion corresponds to the radius at which the negative-norm
branch raises to positive frequencies while the horizon to the limit at which there stops
to be modes with positive group velocities. Also, beyond the horizon, instead of having
just one ingoing mode per frequency, negative and positive norm modes coexist at the
same frequency. Notice how the frequency limit for superradiance (dashed blue line)
corresponds to the value above which negative-norm modes are only available inside the
horizon, so that amplified reflection happens when it is possible to transmit, as in the
Klein paradox case, only to negative-norm modes, that is for w < Qp, and not if also
positive-norm modes are available for partial transmission.

It is hence evident that the role of the horizon is to impose a boundary condition
and this is why in conditions (2.49) and (2.54) the values of the angular velocity and of
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Figure 2.2: Left and central plots: dispersion relations of the Klein—Gordon equation for
A = 3¢5, B = 4cs; and m = 3 and different values of the radius, as if we were considering
a uniform region with the velocity at that point. The left graph shows the asymptotic
dispersion relation and the central graph the ones at radii around the horizon and the
ergosurface with the black arrows indicating the direction of increasing r. Black (red)
curves indicate positive (negative) norm modes. The solid lines in the central plot are the
dispersion relations at the ergosurface and at the horizon. The horizontal blue dashed
line indicates the upper bound (2.49) for superradiant scattering. Right plot: same kind
of plot for the case with no radial flow A = 0. In this case there is no horizon but only
an ergosurface at rp = 4. For smaller values of the radius one can see that negative-
energy are available, allowing amplified reflection also for frequencies higher than the
blue dashed line.

the electrostatic potential at the horizon appear. If no horizon was present, for example
in a vortex without a radial flow, according to this reasoning with dispersion relations,
superradiance could be also possible for higher frequencies. This can be understood from
the third plot of Figure 2.2, where the Klein—Gordon dispersion relation is plotted for
the case with no radial flow. The horizon is now not present and one can see that for
radii inside the ergoregion amplified reflection by transmission only to negative-energy
modes is also possible for higher frequencies.

This last suggestion is again related to the fundamental question on the role of
boundary conditions in superradiance and to the dynamical instabilities related to su-
perradiance that we discuss in the next section.

As a last comment, notice that the transmission to multiple modes of different norms
associated to no amplification resembles the scattering we described when discussing
Hawking radiation in Section 1.5. This gives the hint that amplified scattering from
the exterior of an horizon is not possible because of this mode structure. Remember
however that superradiant scattering from the interior of the horizon is possible with
the Bogoliubov superluminal dispersion for negative-energy modes. This is because in
that case the ingoing negative-norm mode can only transmit to positive-energy modes,
giving rise to a kind of reverse superradiance in which the negative energy is amplified.
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2.4.2 Superradiance in static charged black holes

Superradiance can occur in black holes without rotation when the black hole is
charged. Asymptotically flat and static black holes with a charge are described by
the Reisser—Nordstréom solution of Einstein equations, whose line element has a simple
form analogous to the Schwarzschild one

ds® = —fdt? + f~'dr? +12d6? + r? sin® 0dp?, (2.50)
but with 2
oM Q

L 2.51

£(r) —+5 (2:51)

and a background vector potential A, = (Q/r,0,0,0), with M the mass of the black hole
and Q its electric charge. This spacetime shows an event horizon at ry. = M++/M?% — Q?
(and also an inner horizon at r_ = M — \/M? — @2, analogous to the one of the Kerr
spacetime we saw in Section 1.3.2).

Consider now a massless charged scalar field of charge ¢ propagating in this metric.
Its evolution is described by a Klein—Gordon equation in a curved spacetime with the
addition of the minimal coupling to the electrostatic potential. Separating the differ-
ent frequency w and angular momentum [ components of the charged field, the radial
equation has the general Schrodinger-like shape (2.26) with the effective potential

V) = (0= 29) gy (D S0, (25

T r r

The second term of this potential is due do the gravitational background, while in the first
we can recognize the one due to the electrostatic coupling, as in the case of the bosonic
Klein scattering (2.2). With the change of coordinates defined by dé = —f~1(r) dr
the interval r € [r4, 00) is mapped to £ € (—o0, 00), thus obtaining the general case of
Section 2.2.

As discussed in [114,115], the horizon (now at £ — 400) can be taken as a one-way
membrane! so that no wave is coming back from the horizon and we can set @ = 0 in
relation (2.28), that here becomes

RP? = jz2 - 99 e (2.53)
from which one can see that for
w < i—Q (2.54)
+

superradiance occurs.
It is interesting to notice the similarity with the result (2.5) we obtained for the
Klein scattering, with the electrostatic field Ag here substituted by the value of the

"'We will show in Section 4.3 that this does not seem to be a general property of horizons and depends
instead on the details of the spacetime.
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electrostatic field at the horizon. It seems hence that the nature of the phenomenon
is the same in the two cases, and what gravity adds in the Reisser—Nordstrém case is
just an open boundary condition provided by the horizon so that the effect can occur
in a circular geometry. This is different from the rotating black hole case in which
no charge degree of freedom is necessary and gravity also provides the negative-energy
modes inside the ergoregion. In fact the Reisser-Nordstréom black hole has no ergoregion,
but is surrounded by a region where the electrostatic potential is strong enough to make
antiparticle modes available.

2.5 Superradiant instabilities

Superradiant amplification of radiation may be the source of dynamical instabilities if
the geometry of the system is such that the amplification process happens in a reiterated
way, for example if the amplified radiation is in some way amplified again.

A possibility is a fission-like process in which the radiation amplified by a rotating
black hole is then further amplified by other rotating black holes in a cascading insta-
bility; this kind of process was however quantitatively excluded because the black hole
cluster should occupy a volume smaller than its Schwarzschild radius [10,116].

We are more interested in dynamical instabilities involving a single black hole (more
correctly a single ergoregion). We know that rotating black holes display superradiant
scattering that can be seen as due to an energetic instability. We also saw when discussing
black hole lasers that changing the boundary conditions in an energetically unstable
system can lead to dynamical instabilities given by the trapping and self amplification of
negative-energy modes. Actually, the same can also happen with trapping of the positive-
energy amplified modes. We can say that dynamically stable superradiant scattering
occurs because the negative energy modes are absorbed by the horizon and the amplified
positive-energy ones radiate away asymptotically. Here we discuss two cases in which
one of these two conditions is not satisfied.

As we said in Section 2.2, the approach exploiting the conservation of the Wronskian
seems to suggest that nothing particular happens with such a change of boundary condi-
tions. This conclusion is however limited by the fact that we are restricting to stationary
processes and real frequencies. These changes of boundary conditions lead instead to
complex-frequency modes, such as those we discussed in the black hole case.

We will give here a qualitative exposition of superradiant instabilities in black holes,
addressing the concepts we will need for the following of the work and referring to Section
5 of the review [10] for a full presentation.

2.5.1 Black hole bombs

A first possibility is that the radiation that is superradiantly amplified is fed back
to the black hole by some reflecting boundary condition outside of the ergoregion, let
us say by a mirror. In this case the positive-energy radiation trapped outside of the
ergoregion grows exponentially, and with it its pressure on the mirror, that will at some
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Figure 2.3: Schematic representation of superradiant instabilities in rotating spacetimes.
On the left the black hole bomb mechanism, in which radiation on the outside of the
ergoregion is unstable because of repeated amplification. On the left the ergoregion in-
stability in which the negative-energy radiation is trapped inside the ergoregion because
of the absence of the horizon providing a dissipation mechanism.

point ezplode. For this reason this kind of instability is called a black hole bomb [117].
This instability process is sketched on the left of Figure 2.3.

As explained in [10], the instability of rotating black holes in confining geometries
can be understood in very general terms by considering a small absorber or amplifier in
a confining box. The box supports stationary normal modes, that with some absorption
become quasinormal, that is acquire a small imaginary part of the frequency and decay
in time.

Considering the scattering of a wave with an initial amplitude Ag, after IV interactions
with the absorber its amplitude will be A = Ag(1 — |a[*)N ~ Ag(1 — N |a|?), with a the
small absorption probability. In a time ¢ the wave will interact N = t/r( times, where
ro is the size of the confining box, so that the time-dependence of the wave amplitude
will be
jaf?

t) ~ Ay (1 _ e—(\a|2/m>t) ’ (2.55)

To

A(t) ~ Ag (1 -

corresponding to a small imaginary part of the frequency.

In the case of rotating or charged black holes, for waves satisfying the superradiance
conditions (2.49) or (2.54), the black hole works as an amplifier and |a|> < 0, as concluded
from the Zel’dovich argument of Section 2.1.3. Thus the imaginary part of the frequency
becomes positive, corresponding to a dynamical instability.

This kind of behaviour can be expected for both rotating and charged black holes,
with the quantitative details of the instability process depend on the actual equations
governing the radiation and on the mechanism providing the reflection. Putting a mirror
around a black hole may seem a difficult thing to do, however sometimes nature provides
its own mirrors [117].

One of such natural mirrors occurs in anti-de Sitter spacetimes, in which an observer
at the origin measures a finite time for a light ray to reach the AdS boundary. Rotating
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black holes in such backgrounds are hence unstable, at least if they are small enough
with respect to the AdS boz size [118,119]. Larger black holes were instead found to
be stable. The reason can be understood by thinking that the size of the confining
geometry determines the lowest possible frequency of the radiation contained; if the box
is too small the lowest excitation frequency will be higher than the upper bound for
superradiant amplification.

An even more realistic and important mirror is the one provided for massive fields in
asymptotically flat spacetimes by their own mass. In fact for a scalar field of mass u the
small frequencies w < p are reflected by the lack of asymptotic propagating modes [120].
The resulting black hole bomb instability was found to be relevant on astrophysical scales
for uM < 1, that for very massive black holes corresponds to an ultralight boson field.
The importance of this kind of black hole bomb comes from the fact that such massive
fields have been predicted in many extensions of the Standard Model of particle physics,
so that the fact that such instabilities are unobserved imposes bounds of the masses of
these beyond-the-standard-model particles.

2.5.2 Ergoregion instabilities

Let us consider instead the situation in which no confining geometry is present but
the spacetimes displays an ergoregion but not an horizon. This can occur for the so-
called ergostars, that is compact objects that rotate fast enough to drag the space as a
Kerr black hole would.

In this case the negative-energy scalar field modes living inside the ergoregion cannot
be absorbed by the horizon and will be trapped there. Since outside of the ergoregion
only positive-energy modes are available, the coupling to these modes will determine an
exponential increase of the negative-energy modes inside the ergoregion. This is called
an ergoregion instability; a pictorial representation is given in the right panel of Figure
2.3.

This process was discovered in the Seventies [121,122], but a complete description
of the phenomenon has been given only recently (see Section 5.14 of [10] for a full
treatment and complete references). The instability is related to the existence of long-
lived modes inside the ergoregion that are responsible for the trapping of the negative-
energy fluctuations. Notice that an horizon is not the only thing that can prevent the
ergoregion instability, in fact if the star surface absorbs the scalar field radiation, the
trapping of the negative-energy field modes is avoided [123].

Notice that the same kind of instability phenomenon can be expected for charged
objects with no horizon but with an electrostatic field strong enough to create an effective
ergoregion. A study of this kind of instability was only recently reported in [124],
where a Reisser—Nordstrom spacetime with a mirror inside the effective ergoregion was
considered, thus preventing the possibility of absorption from the black hole.

An acoustic configuration displaying this kind of instability is the vortex without a
drain, that is the vortex geometry of Section 1.3.3 with no radial flow (A = 0). The
resulting acoustic metric has an ergoregion and no horizon, so that with respect to the
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Figure 2.4: The bosonic Klein paradox setup, analogous to the one of Figure 2.1 with
a reflecting boundary added on the left. This gives rise to the dynamical instabilities
predicted in the SSW effect and analogous to a black-hole bomb instabilities.

superradiant scattering of Section 2.4.1 we cannot impose outgoing boundary conditions
towards the center of the vortex. The ergoregion instability of this configuration was
numerically studied in [125], where different kinds of reflecting boundary conditions were
imposed at a finite radius. A situation in which this kind of acoustic geometry emerges
spontaneously are quantized vortices in Bose—Einstein condensates [16], that display a
purely rotating flow. Despite the deviation from the hydrodynamic regime, we show
in Chapter 5, also by comparison with the results of [125], that these vortices display
instabilities that are a modified version of ergoregion instabilities.

It is interesting to notice that, as for amplified reflection, also this kind of instabilities
have been discovered in classical hydrodynamics [126]. This is an example of how Ana-
logue Gravity brings together and gives new perspectives on classical results of different
fields.

2.5.3 The bosonic Klein paradox turns unstable: the SSW effect

Remember that we introduced this chapter with a presentation of a charged scalar
field in an electrostatic potential as a useful toy model for superradiant scattering. We
also close the chapter with this simple model since it turns out to be a good reference also
for what concerns superradiant instabilities. In particular, by changing the boundary
conditions to the bosonic Klein paradox of Section 2.1.1 we can reproduce the instability
mechanisms that we just discussed for black-holes.

Referring to the Klein paradox configuration, reproduced in Figure 2.4, we can think
of the right region as the ergoregion, where negative-energy antiparticles are possible.
By imposing a reflecting boundary condition on the left (as is the case in the Figure) we
are in the situation of the black hole bomb instability, in which the positive-energy field
modes are trapped and grow between the ergoregion and the asymptotic confinement.
If instead the reflection is imposed on the right we are in the ergoregion instability case,
that is we are removing the dissipation of negative-energy modes given by the open
boundary condition on the right as it is removed in a black hole spacetime by having no
horizon.

Notice that these configurations are essentially square potential boxes for a massive
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Figure 2.5: Representation of the Schiff-Snyder—Weinberg effect through the spectra of
the configuration of Figure 2.4 for different depths of the potential. The black and red
regions are respectively the particle and antiparticle continuous spectra of a massive
charged Klein—Gordon field and are separated by the mass gap. When increasing the
depth of an electrostatic potential box initially bound particle states enter the mass gap.
When the potential is deep enough this bound state reaches the antiparticles continuum,
where it can undergo the pseudo-hermitian band sticking generating dynamically unsta-

ble field modes.

charged Klein—Gordon field. Interestingly, the bound states in this kind of potentials
were studied in 1940 by Schiff, Snyder and Weinberg [14], that took it as a simple model
of a realistic potential of subatomic size. By taking a square box potential, analogous
imposing a reflecting boundary condition at the left of the Klein paradox setup, they
found that, for a not too deep potential, bound states for particles were formed, that
is they found eigenenergies inside the mass gap of the field. By making the well deeper
the energy of the bound state decreases until it approaches the antiparticle continuum,
where a further eigenenergy appears inside the mass gap, emerging from the antiparticles
continuum. By continuing the deepening of the potential these two states end up merging
in a single band and developing an imaginary part of the eigenenergy. This behaviour
of band-sticking is exactly what we described in the previous chapter as a consequence
of the non-Hermiticity of the Klein—Gordon equation. In the right part of Figure 2.5 we
give a pictorial representation of this physics, called the Schiff-Snyder—Weinberg (SSW)
effect.

This effect has been thoroughly studied by Fulling [15,127], that also connected it to
rotating spacetimes by introducing a toy model metric (an acoustic metric ante litteram)
mapping directly to the square potential for the charged scalar field via what he calls
the reduction of a gravitational problem to an electromagnetic one.

In Chapters 3 and 4 we will see an explicit case of this mapping and also a physical
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occurrence of the SSW effect in Bose—Einstein condensates, that can hence be used
to simulate the physics of a quantum charged scalar field. The occurrence of these
phenomena in a system whose physics is well known will allow us to better understand
superradiance, for example by constructing specific setups that allow to disentangle the
different ingredients of the phenomenon.

2.6 Which are the essential ingredients of superradiance?

After this introduction to superradiant effects, the remaining chapters deal with the
actual original work of this thesis, that will on the one hand use analogue models to
better understand superradiance and on the other hand use superradiance to better
understand the systems providing the gravitational analogy. For the first of these aims
we now summarize what is the current picture of superradiance that emerges from what
we discussed in this introduction.

In the course of this chapter we tried to emphasize the most fundamental features of
superradiance and we found that an essential ingredient is the presence of modes of the
field in some part of the system in which the negative energy needed to compensate for
the amplification can be dumped; for example in the Klein paradox the positive-energy
particle waves are amplified by transmission to negative-energy antiparticle ones.

Another fundamental aspect of superradiance is the role of boundary conditions and
of dissipation. We saw that general arguments can be made connecting superradiance
to dissipation. This dissipation can be provided by an actual dissipative system, as
in the Zel’dovich effect, but also by an unbound system assuring outgoing boundary
conditions, as for example in the bosonic Klein paradox, for which left-going waves in
the asymptotic right region were excluded. Open (or radiative) boundary condition can
in fact be viewed as a dissipative element since the energy can escape outside [114,128].
Formally this can be understood from the fact that a boundary condition requiring, for
example, for a field to behave as a purely left-going plane wave ¢ o e?** is not invariant
under Hermitian conjugation; the overall problem is hence non-Hermitian and does not
conserve energy. In the case of black holes we saw that this kind of boundary condition
are usually at play at the horizon, that works as a one-way membrane and is treated as
a perfect absorber.

The question is now if dissipation is an essential ingredient of superradiance. We
surely know that if open boundary conditions are removed from the system superradiant
instabilities can develop, but does this prevent amplification as the general argument of
Section 2.2 seems to suggest? In the language of black holes the question translates to:
are horizons necessary for superradiance?

As presented up to now, with spatially unbounded plane wave solutions, superradi-
ance is a stationary process. We will instead show with our toy-model approach of the
next Chapter, that the absence of dissipation excludes superradiance as an equilibrium
(stationary) process but not as a time-dependent one involving finite-width wavepackets.
Dissipation is hence not necessary for superradiance and is only related to the long-time
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dynamical stability of the system. Moreover, we are also going to see that horizons do
not in general provide the necessary absorption to avoid instabilities.

The picture we will build of superradiance will then serve us for our second aim of
applying the concepts learned from superradiance to understand some physics of Bose—
Einstein condensates. From the point of view of superfluid physics it is natural, by
looking at the vortex geometry here presented, to think about quantized vortices and
ask if they display superradiance or superradiant instabilities and if these are related to
the instabilities known in the literature. Another question coming from this exposition
of superradiance is if the physics of hydrodynamic tangential discontinuities that we
considered in Section 2.1.2 can be obtained in BECs and what is the interplay between
the surface instabilities and superradiace in this setting.






Chapter 3

Superradiant scattering on a planar
ergosurface

Superradiance in analogue gravity emerges naturally in vortex-like flows that, we
saw, have the essential features of a rotating Kerr black hole: an ergoregion and an
horizon. In such rotating configurations amplified scattering has been widely considered
in different media, from water to quantum fluids to optical systems. This led to the first
experimental evidence of superradiant scattering of gravity surface waves propagating
in a tank of water having a draining vortex in the center [12].

In spite of these impressive advances, there are still a number of intriguing open
points in our understanding of basic superradiance phenomena. The circular geometry
of rotating systems and their limited tunability makes it difficult to disentangle the
different microscopic mechanisms at play and build an intuitive picture of the overall
process. The goal of this Chapter is to propose a new concept of analog model that
allows a local tuning of the velocity profile and, thus, a wider flexibility in the design of
the analog spacetime to be studied.

The idea is to exploit some of the remarkable technological tools available for the
manipulation of cold atoms to induce a rotational velocity field V x v # 0 in a Bose—
Einstein condensate. This allows the construction of setups in which superradiance
occurs in a simple and tunable geometry in which the ergoregion is simply a plane, as
sketched in Figure 3.1.

This kind of configuration reminds tangential discontinuities in hydrodynamics, that
we discussed in connection with superradiance in Section 2.1.2, but is here obtained
without the surface instabilities typical of the hydrodynamic case and amplified scatter-
ing is hence the only physically relevant phenomenon. Moreover the quantum nature of
the fluctuation field allows the investigation of the pair production associated to super-
radiant amplification.

We start the discussion with the most promising realization of our tunable geometry:
the local change of the flow velocity with the inclusion of a synthetic vector potential
coupled to the atoms of the condensate. After showing how this new degree of freedom
changes the acoustic metric we analyze superradiant scattering on the minimal ergo-

65
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Figure 3.1: Schematic representation of the setup for the realization of an analogue ergo-
surface in a Cartesian geometry using a local tuning of the velocity. While in the vortex
case the velocity field is fixed by the irrotationality constraint, in the right configuration
the velocity is locally tuned with specific local designs of the system. The depicted case
refers to the coupling of the condensate atoms to a synthetic vector potential, but a
similar velocity field can be obtained with the inclusion of a lattice region changing the
effective mass of the atoms.

surface of Figure 3.1 by studying the Klein—-Gordon equation describing fluctuations in
the long-wavelength limit. This problem can be exactly mapped to the bosonic Klein
paradox of Section 2.1.1. We then consider the exact Bogoliubov dispersion relation
and show that its superluminal behaviour at high momenta can determine the suppres-
sion of superradiant scattering when we move away from the long-wavelength regime.
Our analytical predictions based on the study of dispersion relations are then confirmed
with numerical simulations of the Gross—Pitaevskii equation. Subsequently we apply
a scattering matrix approach to obtain a prediction for the superradiant amplification
factors. This allows to address the phenomenon of quantum spontaneous pair creation
at the ergosurface that is characterized via the density-density correlations in position
space and the two-body correlation function in momentum space. Finally, we describe
an alternative realization of a planar ergosurface that, instead of exploiting synthetic
vector potentials, involves periodic trapping potentials for the atoms of the condensate.

The results of Sections 3.1 and 3.2 were addressed in [21] while the rest of this
Chapter will be object of future publications.

3.1 Acoustic metric in the presence of a synthetic vector po-
tential

The atoms usually considered to obtain Bose—Einstein condensates do not have an
electric charge, so that the effective Hamiltonian describing them (1.1) is the one of
neutral particles, that is there is no minimal coupling to a gauge field. It is however
possible to generate synthetic (or artificial) gauge fields for neutral atoms, that is to tune
the external potentials or to couple the internal states of the atoms so that the effective
Hamiltonian of the atomic field has the shape of the one of a charged field minimally
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coupled to a gauge field. This allows to mimick the physics of charged particles with
neutral atoms and is interesting to reach regimes that are difficultly achievable with real
charged particles [20,129].

A simple realization of this concept can be obtained by rotating the system with an
angular frequency 2 along some axis z [130]. The Hamiltonian in the rotating frame H
is related to the one in the laboratory frame by H' = H — QL.. The additional term
can can be rewritten as a combination of a centrifugal potential V, = —MQr?/2 and
a minimally-coupled vector potential A = MQ(ye, — we,); this second artificial gauge
field provides a uniform artificial magnetic field B, = 2MSQ.

In the last decades, several other strategies to induce space dependent gauge poten-
tials have been experimentally demonstrated using combinations of static electromag-
netic fields and microwave and/or optical Raman beams [20]. As a result, neutral atoms
end up experiencing a minimal coupling to a vector potential that is formally analogous
to the one of electrically charged objects and is responsible for all sorts of magnetic
effects [131]. Even though we will restrict here to the case of atomic systems, similar
constructions are also possible for optical systems, where synthetic magnetic fields for
neutral photons are presently the subject of intense investigations [132].

A possible realization is based on coupling of internal states of an atom in such a
way that the dressed states have a modified dispersion relation, in particular with a
shifted position of the minimum in some direction [133,134]. This is mathematically
equivalent to having a vector potential in the direction of the shift, that can be varied
in the other directions, making the vector potential space-dependent. We are interested
here in the applications of these techniques to the atoms of a Bose-Einstein condensate,
where synthetic vector potentials were demonstrated, for example, to create a vortex
lattice [135] in a uniform artificial magnetic field.

In the mean field description of a BEC these situations can be accounted for by
including additional terms to the GPE in the form of a vector potential A(r,t) minimally
coupled to the atomic momentum . Putting all terms together, the GPE then reads [136]

(—ihV — A(r,1))?
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+V(r)+g|¥?| W, (3.1)

where V(r) is the external trapping potential, ¢ is the interaction constant and M is
the bare atomic mass. In analogy to usual magnetism, the curl of the vector potential
provides the synthetic magnetic field B experienced by the neutral atoms. Its time
dependence contributes to the synthetic electric field. In what follows, we will focus our
attention on static vector potentials with complex spatial profiles A(r) giving spatially
inhomogeneous synthetic magnetic fields but no synthetic electric field.

To see how this modification of the GPE affects the resulting acoustic metric we follow
the strategy of Section 1.2 and rewrite the GPE (3.1) in the superfluid hydrodynamic

Note that depending on the microscopic scheme used to generate the synthetic vector potential,
additional correction terms may arise [20]. For the sake of simplicity and generality, in the following we
will work under the assumption that they are negligible.



68 Chapter 3. Superradiant scattering on a planar ergosurface

form in terms of the modulus and the phase of the order parameter ¥ = /n ¢'©:
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Again, except for the last quantum pressure term in the second equation, these equations
recover the continuity and Euler equations of a perfect fluid, with the difference that the
synthetic vector field affects the expression of the velocity field in terms of the condensate
phase

VO — A A
= = Vean — Ia

The distinction between the canonical velocity vean = VO/M and the physical velocity
V = Vean — A/M in the presence of a vector potential has the crucial consequence [136]
that the physical velocity field v(r) appearing in the hydrodynamic equations is no longer
constrained to be irrotational as it occurs in textbook superfluid hydrodynamics.

\%

(3.3)

The rest of the derivation of the acoustic metric we reviewed in Section 1.2 remains
unvaried, so that in the hydrodynamic limit we find again that the phase fluctuations
can be described by a Klein—Gordon equation in a curved spacetime specified by the
acoustic metric (1.60)

I = — . (3.4)
Cs -V I

This time however the velocity entering the metric is (3.3), breaking thus the irrotation-
ality constraint on the physical velocity field v that is typically taken as an hypothesis
in the derivation of the acoustic metric [1].

As a key result of this section, the possibility of breaking the irrotationality constraint
on the physical velocity field v by means of the synthetic vector potential dramatically
expands the range of space-times that can be implemented in analog models and gives a
novel degree of freedom in engineering configurations for the study of analogue gravity
effects?. This new freedom will be at the heart of our approach to superradiance.

3.2 Superradiance from an isolated planar ergosurface

Let us start from the simplest case of a single planar ergosurface separating regions
of sub- and super-sonic flow with a velocity directed along the x axis parallel to the inter-
face. As it is sketched in Figure 3.1, the synthetic vector potential gives the possibility
to break the irrotationality constraint and generate a rotational superfluid flow using

2A different expansion of the degrees of freedom in the acoustic metric unsing density-dependent
gauge potential was recently developed in [137].
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a two-dimensional BEC? in the form of a plane wave of wavevector K with a spatially
uniform density. The rotational flow is induced by a jump in the x component of the
synthetic vector potential, for instance from a vanishing value for y < 0 to a finite value
A, for y > 0 (right panel).

The translational invariance of this geometry along x offers crucial advantages from
both the technical and the conceptual points of view. In particular, it guarantees that
the k; component of the momentum is conserved during the scattering process. This is in
analogy to the angular momentum conservation in cylindrical geometries (left panel). In
contrast to the cylindrical case where the flow displays a non-trivial radial dependence,
the asymptotic regions of our geometry are however flat and homogeneous, which allows
to expand the incident and scattered waves in a plane wave basis. Finally, in contrast to
the cylindrical geometry, the ergosurface is in our case an infinite line and the ergoregion
an unbounded half plane. Thanks to this simpler geometry, the superradiance process
at the ergosurface can be isolated from additional geometrical features and the products
of the superradiant amplification are automatically evacuated without the need of a
horizon.

As we said in Section 2.1.2 geometrically similar flows can be studied in classical fluid
mechanics, in which context tangential discontinuities are known to show amplification
for sound and gravity waves. Differently from that case, as we are going to see in what
follows, our system is instead immune to surface instabilities instabilities, which leaves
us with a stationary configuration in which superradiant scattering is the main physical
process.

3.2.1 Superradiant scattering in the hydrodynamic Klein-Gordon ap-
proximation

As a first step, we consider the problem in the hydrodynamic limit and we derive
a prediction for the amplification by means of a scattering approach as the general one
presented in Section 2.2 [90]. The impact of the superluminal features of the Bogoliubov
dispersion will be discussed in Sec.3.2.3. In the configuration under examination, the
acoustic metric has the form

G = — — 1 0, (3.5)

where the total physical velocity v, = v,(y) includes the synthetic vector potential and
is oriented along .

Because of the translation invariance along x we can look for solutions of the form
O1(t, z,y) = e*=T¢(t,y) with a well-defined & component of the wavevector k. Note that

3For the sake of simplicity, similarly to the one-dimensional black hole of Section 1.5, here we consider a
two-dimensional condensate, where the third dimension is frozen by a tight confinement and the dynamics
can be described by a two-dimensional GPE of the shape (3.1) (see Chapter 23 of [16]). Generalization
to the full three-dimensional case would make the discussion more cumbersome but would not involve
any additional conceptual difficulty.



70 Chapter 3. Superradiant scattering on a planar ergosurface

k is here the wavevector of the perturbation, to be distinguished from the one K of the
underlying condensate. Under this Ansatz, the Klein-Gordon equation (1.60) reduces
to a single differential equation for ¢(t,y),

2
_ (1@ + z”k> b+ 26— Ko =0, (3.6)
Cs Cs
The analysis is further simplified if we restrict to cases where the flow velocity v, (y) has
a y-dependence concentrated around y = 0, while sufficiently far from this interface it
acquires constant asymptotic values v,(y) = v37/ in the slower (s) region y < 0 and in
the faster (f) one y > 0. These velocities are related to the atomic canonical momentum
K, and the synthetic vector potential by v = hK,/M and v} = (hK, — A,)/M. For
the sake of concreteness, we assume the velocities fulfill 0 < v$ < vf, but our results are
straightforwardly extended to other configurations.

In particular, we look at the stationary scattering problem for an incident plane wave
of frequency w coming from y = —oo. In this case, we can expand the solution in plane
waves as ¢(t,y) = e “to(y) with p(y < 0) = e*¥ + Re ™Y and p(y > 0) = Tekby,
Within each region, the wavevector k‘z‘j’f along y is determined by the dispersion relations
for the Klein-Gordon equation (1.86) in the two regions

2
w=v3Thy = e\ [k2+ (k) (3.7)

where the plus and minus signs refer to positive- and negative-norm modes. It is imme-
diate to analytically see that, for subsonic flows ¢s > v,, for a given positive frequency
w > 0, only positive-norm modes are available and their k-space locus has a closed,
elliptic shape as shown by the solid lines in Fig. 3.2. For supersonic flows ¢s < v, the
locus consists instead of two hyperbolic branches of opposite norms (dashed lines in the
same figure).

For given values of w and k,, the k, values involved in the scattering process have to
be chosen with the requirement that the group velocity v, = Vyw of the incident and
transmitted waves has a positive y component, so that the incident wave in the lower,
slow region moves towards the interface and the transmitted wave in the upper, fast one
moves away from it. For the same reason, the reflected wave in the lower region must be
chosen in order for the group velocity to have a negative y component. The fact that the
flow velocity is parallel to the interface guarantees that the wavevectors of the incident
and reflected waves have opposite y components +k;.

A concrete example of superradiant scattering process is given in Figure 3.2 for a
case where the lower y < 0 region (solid lines) is subsonic and the upper y > 0 one
(dashed lines) is supersonic, so the y = 0 interface is an ergosurface. The incident and
reflected modes (filled and empty black dots) lie on a positive-norm (thin line) branch,
while the transmitted mode (red dot) lies on a negative-norm (thick line) branch.

As explained in Section 2.2, in order to establish the superradiant amplification, we
can consider the relation between the reflection and transmission coefficients stemming



3.2. Superradiance from an isolated planar ergosurface 71

ky(cs/w)

kx(cs/w)

Figure 3.2: k-space locus of modes at a given w for the Klein—-Gordon equation in the
slow lower y < 0 region (solid line) and the fast upper y > 0 region (dashed lines).
The slow region is taken at rest vy(y < 0) = v; = 0 and the fast one is moving with
supersonic speed v, (y > 0) = v£ = 3cs. The speed of sound ¢4 is the same on both
sides. Positive norm branches are shown as thin black lines, negative norm branches are
shown as thick red lines. For each mode the arrows indicate the direction of the group
velocity vy = Viw. The different levels of gray (I-IV) indicate the k, intervals for which
the different scattering processes occur (see text). The vertical white line in the darkest
region (I) indicates an amplified superradiant scattering process, with the filled black
dot indicating the incident mode, the empty black dot the reflected one and the red dot
the transmitted one.

from the conservation of the Wronskian W = ¢(¢*)" — ¢/¢* between the solution and
its complex conjugate. This provides a relation

2 kzjj 2
L= [RI* = L [T (3.8)
Y

between the reflection R and the transmission 7 amplitudes. From this relation it is
immediate to see that the reflection coefficient exceeds one (i.e. the reflected wave is
amplified) if the wavevectors k; and k:{; of the incident and transmitted waves have oppo-
site signs. Given the form of our dispersion shown in Fig.3.2, this condition is naturally
satisfied if the scattering process involves modes of opposite norms on the two sides.
This is a sufficient condition for superradiant scattering to occur at an isolated ergosur-
face. A similar explanation for the amplification of waves at tangential discontinuities



72 Chapter 3. Superradiant scattering on a planar ergosurface

in classical fluid mechanics was given in [94].

In addition to the superradiant amplified reflection discussed so far, other kinds of
scattering processes can occur depending on the wavevector k., that is on the incidence
angle from the lower region. The characterization of the different cases can be carried
out by comparing the dispersion in the two regions as shown in Fig. 3.2 and keeping
in mind the conservation of k; at the interface [138]. The incident wavevector is to be
chosen on the dispersion in the lower region (solid line).

For instance, superradiant scattering is restricted to the darkest region (I) where
a single, opposite norm mode is available for transmission in the upper region (thick
red dashed line). In the neighboring, slightly lighter region (II), the incident wave is
completely reflected since there is no available mode to transmit into the upper region.
In the next two, even lighter regions (III-IV), ordinary scattering occurs and the incident
wave is partially reflected and partially transmitted into a same-norm mode (thin black
dashed line), the incident energy being distributed among the two in an incident-angle-
dependent way as it happens for refraction of electromagnetic waves at the surface of a
dielectric. While in all other regions (I-III) the z component of the group velocity has
the same positive sign in both the lower and upper regions, in region (IV) the incident
and transmitted waves have opposite signs of the x component of the group velocity,
leading to a negative refraction phenomenon [139]. In this case, the incident wave has a
negative x component of the group velocity, but due to the drag by the moving fluid, the
transmitted wave in the y > 0 region deviates its path towards the positive-x direction.

Whereas all other scattering process (II-IV) only involve positive norm modes and can
also occur with non-uniform, yet everywhere subsonic velocity profiles, the superradiant
process (I) crucially relies on the presence of a negative norm transmitted mode, which
is only possible for a supersonic flow. To this purpose, it is worth noting that one cannot
replace the change in the transverse velocity with a change in the local speed of sound,
e.g. via a spatial modulation of the interaction constant as proposed in [17,18] for the
analogue Hawking radiation. Even though negative norm modes emerge in the upper,
fast region, superradiant scattering can not occur since there are no k; values for which
states are simultaneously available on the positive-norm curve of the lower, slow region
and on the negative-norm curve of the upper, fast region. This can be easily checked
analytically. On a dispersion diagram such as Fig.3.2, it corresponds to the red thick
dashed curve being always located to the right of the thin solid line.

As a final point, note how, in contrast to the cylindrical geometry, our translationally
invariant (and thus Galilean invariant) geometry along z gives symmetric roles to the
upper and lower regions. As a result, amplification does not depend on the way in which
the interface is crossed. In particular, the same superradiant scattering process occurs
for wavepackets hitting the interface from the upper, fast region.

3.2.2 Mapping to a 1D electrostatic problem

The acoustic spacetime emerging from our translationally-invariant, two dimensional
setup offers a realization of the rectilinear model of the Kerr metric introduced in [15] as
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Figure 3.3: Schematic representation of the physical mechanism underlying the massive
bosonic Klein paradox in our reduced problem along y. In the upper plot a step increase
of the transverse velocity is shown, in the lower plots the Klein—Gordon dispersion rela-
tions at fixed k, in the two regions. The condition for the amplification to occur is to
have both particle and antiparticle modes available at the same frequency, as indicated
by the light gray shading in the plot.

a toy model for the study of bosonic fields in rotating spacetimes. As it was explained
there, in this case the problem of a massless neutral scalar field in the curved space-time
can be reduced to a electrostatic problem in reduced dimensions. In this section, we
take inspiration from these results to build an explicit link between our synthetic field
configuration and the massive bosonic Klein paradox we introduced in Section 2.1.1.
This suggests a further direction in which our atomic system can be used as a quantum
simulator of a relativistic quantum field theory.

This link is easily understood by comparing the reduced one-dimensional Klein-
Gordon equation for our analogue model (3.6) with the equation for a one-dimensional
massive charged scalar field in an electrostatic potential Ay,

(& m2 62

he h2

Here, e is the charge, m is the mass of the field and ¢ is the speed of light. The two
equations are mapped into each other with the identifications

1 2
- (cat +i Ao> ¢+ 0,0 — é = 0. (3.9)

2.2
mc eA

e k2 TO > kyvy  cé—rcs (3.10)
the role of the scalar potential Ay(y) is played by the transverse velocity v, (y) and both
the mass m and the charge e are controlled by the value of the transverse momentum

kg .
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This parallelism makes it evident that superradiance in our system is equivalent to the
bosonic Klein paradox of Section 2.1.1, that is the amplified reflection of a bosonic field
off an electrostatic potential step. In this analogy, the negative norm modes correspond
to antiparticles, amplified reflection is associated to the transmission of antiparticles, and
energy conservation corresponds to overall charge conservation. Because of the particle-
hole symmetry of the Bogoliubov problem, the positive frequency, negative-norm modes
are actually physically equivalent to positive-norm modes at negative frequencies for
—k;. This is consistent with our identification of the transverse momentum k, with the
charge of the particle in the reduced problem.

The condition for the superradiant process to happen can be derived by looking at
the dispersion relations in the two asymptotic regions far from the potential step as
shown in Figure 3.3 (analogous to Figure 2.1). These plots correspond to a different cut
of the same dispersion relation studied in Figure 3.2: there, the k-space locus of modes
at a given w was shown. Here, we plot instead the dependence of w on &, for a given k.
It is immediate to see that the effect of a constant transverse velocity is to rigidly shift
the dispersion relation along the w direction.

As a simplest example one can take the electrostatic potential Ay(y) to be zero far
in the y < 0 region and to tend to a positive constant Ay far in the y > 0 region (upper
plot). If this value is large enough to satisfy

edg > 2mc?, (3.11)

transmission to antiparticles, and hence amplification of the reflected wave, can occur
in the range of frequencies mc?> < w < eAg — mec?. The factor 2 in the condition (3.11)
physically corresponds to the fact that a particle-antiparticle pair is generated during
the scattering process and both the particle and the anti-particle have the same mass
m.
Through the identifications (3.10), we can easily obtain from (3.11) a necessary
condition for amplified scattering,
Avy, > 2¢q (3.12)

where Av, is the velocity jump across the interface, Av, = v} — v3. Quite remarkably,
this condition shows that the presence of an analogue ergosurface separating sub- and
super-sonic flows is not sufficient for superradiant scattering to occur, but a large enough
velocity jump must be present.

While the parallelism with the Klein paradox has been rigorously established for a
given k., it is important to keep in mind that the non-trivial form of the identifica-
tions in (3.10) make that our sound scattering process to have a completely different
angular k;-dependence from the one of a charged field hitting a scalar potential step
at different angles. For instance, for k, = 0 waves at normal incidence, the mass gap
in the corresponding electrostatic problem vanishes. Since for a massless field there is
no forbidden mass gap to overcome and every non-zero electrostatic field provides am-
plification within a suitable interval of incident frequencies, one could have expected
amplification to occur for every small value of v,. However, one must also remember
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that for k, = 0 also the charge vanishes in our identification, so the scalar potential has
no effect and superradiant scattering is forbidden.

Finally, it is worth noting that condition (3.12) is the same result (2.16) derived
in [95] for the hydrodynamic tangential discontinuity. Notice however that, because
of the rotational velocity field, the metric treatment of that system (such as the one
presented in [10]) is not a full description of the physics because of the presence of
surface unstable modes.

3.2.3 The role of the superluminal Bogoliubov dispersion

Up to now we have considered the problem within the hydrodynamic approximation,
where sound is described by a Klein—-Gordon equation and hence displays a linear dis-
persion relation. In reality, the collective excitations in a uniform flowing BEC follow
the Doppler-shifted Bogoliubov dispersion relation (1.85),

h2k? [ h2k?

That, as we said, is well linear and sonic at small momenta but then grows quadratically
at higher momenta, i.e. becomes superluminal. The first term accounts for the Doppler
shift of the frequency when moving from the fluid to the laboratory frame.

While the superluminal nature of the Bogoliubov dispersion is not expected to com-
pletely suppress the superradiance effects, important modifications may well appear.
The first study of superradiant scattering for dispersive fields [140] focused on to the
Klein paradox for a one-dimensional massless field. In what follows, we extend the study
to the general two-dimensional case of a Bogoliubov dispersion. In the previous subsec-
tion we have seen how the transverse momentum k, of the sound waves, besides giving
the coupling with the background flow, also provides a mass term for the dimensionally
reduced Klein paradox problem. We are now going to show how the main effect of the
superluminal dispersion will be encoded in a modification to this mass term.

Within the one-dimensional perspective at a given k,, having a finite frequency range
for superradiance requires that the maximum of the negative norm branch in one region
be higher than the minimum of the positive norm branch in the other region. Imposing
this requirement on the Doppler-shifted dispersion relations (3.13) for velocities parallel

to x implies that
m2k2 [ h2k2
hAvg ky — 2\/ i ( b + 2971) >0, (3.14)

2M \ 2M

where we have taken Av, = v] — v$ > 0. This condition is satisfied for

W2 k2
0< =5 < Av? — 42, (3.15)

which implies that, in contrast to the Klein—Gordon case, there is a maximum value of
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Figure 3.4: Constant-k, cuts of the hydrodynamic Klein-Gordon (upper panels) and the
Bogoliubov (lower panels) dispersion relations for increasing values of k, (left to right).
Solid lines refer to the slow region at rest with v; = 0 and dashed lines to the fast region
with v = 2.8¢cs. Black (thinner) lines are the positive-norm branches, red (thicker) lines
are the negative-norm ones. In the Klein—-Gordon case, if the condition (3.12) is satisfied,
superradiant scattering remains possible at all k, thanks to the enduring intersection
between the positive-norm branch in the slow region and the negative-norm one in the
fast region (upper panels). In the Bogoliubov case, this intersection is only present for
low or moderate values of k, (bottom-left and bottom-center panels) and disappears for
high enough values of k, for which superradiant scattering is no longer possible (bottom-
right panel).

the transverse momentum above which superradiance can no longer occur,

2 _ 42
pmax — VAU ZAG (3.16)

Cs

The dependence of this upper bound on £ highlights the dispersive origin of the effect.
As it is illustrated in Figure 3.4, this upper bound can be related to the nonlinear
k.-dependence of the effective mass gap in the reduced one-dimensional Bogoliubov
problem. For small k,, both the mass gap and the rigid upward shift of the dispersions
given by the effective electrostatic potential grow linearly in k,. For large k., the mass
gap grows faster than the rigid shift, so the negative- and positive-norm modes eventually
stop intersecting for large enough values of k..

Further light on this physics can be obtained by looking at the constant-w cuts of the
Bogoliubov dispersion relation (3.13) that are displayed in the different panels of Figure
3.5. Panel (a) shows how the main effect of the superluminal dispersion is to change
the shape of the curves in the supersonic region: instead of the hyperbolic open shape
of the Klein—Gordon case shown as dashed lines in Figure 3.2, they now have a closed,
oval-like shape. For increasing w, the oval corresponding to the positive norm modes
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Figure 3.5: Cuts of the Bogoliubov dispersion relation at constant w. Solid (dashed)
lines refer to the slow (fast) region at y < 0 (y > 0). The speed of sound c¢; is the
same on both sides. Black (thin) lines are positive-norm modes and red (thicker) ones
negative-norm ones. Arrows indicate the direction of the group velocity, that is outward
for the black curves and inward for the red ones. (a) Cuts at different values of iw/M c?
(indicated by the numbers on the curves) in a uniform region with a supersonic speed
v£ = 2c¢,: because of the superluminal dispersion these curves have an oval shape also
in the supersonic case, rather than the hyperbolic one of the Klein—Gordon case. (b)
Dispersions at fiw = Mc? in the two zones for a slow region at rest v = 0 and a
fast region with a subsonic speed vg = 0.83 ¢s. In the darker gray region one has total
reflection while in the lighter gray one negative refraction occurs; the dots and the arrows
indicate the modes involved in an example of such process and their group velocities.
This process will be addressed in the GPE simulation shown in the lower panels of
Fig.3.8. (c) Dispersions at Aiw = 1.5M¢c2 for a slow region at rest v5 = 0 and a fast one
with a supersonic speed v{ = 7c,: in the gray region superradiant scattering is possible.
(d) A closeup of the same plot; the dots and the arrows indicate the modes involved
in an example of such process and their group velocities. This specific process will be
addressed in the GPE simulations shown in Fig.3.6 and in the upper panels of Fig.3.8.
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expands, while the one corresponding to the negative norm ones shrinks and eventually
disappears above some critical frequency.

Analogously to the Klein—-Gordon case presented in Figure 3.2, the occurrence of
superradiant scattering can be visualized from the intersection of both positive- and
negative-norm curves with the vertical line at a fixed k,: this happens in the gray region
in panel (c) and an example of such process is displayed on a magnified scale in panel
(d). As before, also other kinds of scattering behaviours can be recognized depending
on parameters: in the darker gray region of panel (b) the incident wave gets totally
reflected, while in the lighter gray region negative refraction occurs.

While these cases exhaust the possibilities for a velocity parallel to =, in Section 4.3
we shall see how even more complex scattering processes can occur once the flow can
also acquire a y component.

3.2.4 GPE numerical calculations

In order to shine further light on superradiant scattering and confirm the predictions
drawn from the graphical study of the analytical dispersion relations, we performed
numerical simulations of the time dependent dynamics of the two-dimensional GPE
(3.1). For the background condensate, we take a real and constant order parameter ¥
and a spatially uniform interaction strength, so that the canonical velocity is zero and
the speed of sound is spatially uniform and equal to ¢ = /gm/M. We take the vector
potential directed along x with A;(y < 0) = 0 and A,(y > 0) = A, constant, so to
give a sudden jump in the physical velocity along x. In order to maintain the plane
wave shape of the BEC at all times, we need to introduce an external potential jump
V(y >0)—V(y <0)=—A2/(2M). We impose periodic boundary conditions in both
directions and we ensure that the integration box is large enough for finite size effects
to be irrelevant for the computational times of interest.

Among many other possible schemes that may be implemented, our choice of using
a vector potential that is directed along x and only varies along y is beneficial from
both the experimental and numerical point of view. Such a configuration could be, for
instance, obtained by means of a pair of counterpropagating Raman laser beams directed
along the 4+x directions and a y-dependent magnetic field that varies the detuning of
the atomic states [133].

Time evolution is numerically performed with a split-step pseudo-spectral method, in
which we apply the propagator of the GPE as e~ 1t ~ ¢=iV1/2¢2iA2(y) p-re_ipzﬂMe_m/Q,
where V contains all the terms multiplicative in position space such as the external
potential. As usual, the kinetic energy is included in a multiplicative way in Fourier
space for both z,y. Thanks to the specific form A, (y) of the vector potential considered
here, also this latter can be included in the calculation as a multiplicative factor provided
the Fourier transforms along x and y are performed separately and the vector potential
is applied in between to the partially Fourier transformed wavefunction \Tl(kz, Y)-

In order to study superradiance phenomena, we impose on top of the uniform conden-
sate a small amplitude (|0¥/¥(| < 1) wavepacket with a plane wave shape of wavevector
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Figure 3.6: Snapshots of the time-evolution of a superradiant scattering process as pre-
dicted by a numerical simulation of the GPE. The color plot shows the spatial profile
of the density modulation with respect to the uniform unperturbed BEC. We impose a
perturbation wavepacket on top of a uniform BEC in the presence of a vector potential
A, = —mMec, in the y > 0 half-plane and a compensating external potential as specified
in the text. The interaction constant g is spatially uniform, so to give a constant speed
of sound ¢,;. The initial gaussian wavepacket has k, = 0.63/¢, a central k, = 0.63/¢
(indicated as dot in the dispersion plot of Fig.3.5(d)) and is spatially centered around
y = —30§ with a variance o, = 8. Times are expressed in units of ;z/h. The white
arrows indicate the group velocity of the wavepackets along y. The thick black (red) ar-
rows indicate the directions of the wavevector (i.e. of the phase velocity) of the positive
(negative) norm wavepackets. One can recognize the negative norm wavepacket from the
opposite directions of the group velocity and of the wavevector along y. The simulations
have been carried out in an integration box of size L, = 20§ along x and L, = 200§ along
y. Grid spacings Az = Ay = 0.2¢ are taken and a time step At = 1073u/h. Thanks
to the periodic boundary conditions along x, visibility of the figure was improved by
expanding the x domain by repeating the data multiple times.

k., along x and a Gaussian shape along y with a carrier wavevector k,. The variance
oy is taken sufficiently small for the wavepacket to be localized in the y < 0 region, but
large enough for the momentum distribution to be sharply peaked around the desired
ky. The central wavevector (k,ky) is chosen to be on the positive-norm mode of the
slower region with a group velocity directed towards the interface. In order to obtain a
clean wavepacket of Bogoliubov excitations, positive and negative frequency components
in the atomic basis must be suitably combined to only have positive frequencies in the
Bogoliubov quasiparticle basis.

The value of the vector potential is chosen so to satisfy the condition (3.12) for
amplification. In particular, the same parameters of Figure 3.5(d) are used; the chosen
wavevector (kg, k) is indicated there as a black dot. Since k, and w are conserved, we
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Figure 3.7: Time dependence of the Bogoliubov norm (3.17) of the wavepackets, normal-
ized to the one of the initial in-going wavepacket, for the parameters of the simulation
of Figure 3.6. One can see that the reflected wavepacket is amplified by roughly 70%.

expect that the wavepacket is transmitted in the faster region on the mode indicated by
a red dot and located on the negative-norm (red) oval. At the same time, the amplified
reflected wavepacket is expected to appear at the wavevector indicated by the black
empty dot.

Snapshots of the time evolution for parameters for which one expects amplification
are shown in Figure 3.6. For each wavepacket, the white arrows indicate the direction
of the group velocity along y while the red and black arrows indicate the directions of
the phase velocities. We can recognize the negative norm transmitted wavepacket in
the upper region of the last snapshot from the fact that the y components of the phase
and group velocities have opposite signs, as expected from the dispersion diagram of
Fig.3.5(d). For all numerical wavepackets, a Fourier analysis confirms that their central
wavevectors match the ones expected from the analytical dispersion relation shown in
Fig.3.5(d).

To numerically verify that the expected amplification of the reflected wavepacket is
indeed taking place one cannot simply look at the maximum of the wavepackets, since
the presence of superluminal dispersion leads to a spreading of the wavepacket. One can
instead compute the Bogoliubov norm of the wavepackets

150115(0) = [ dby (jute. k) = fo(t. 1)) (3.17)

where u and v are the positive and negative frequency components of the wavepacket
in the atomic basis and in the fluid reference frame. In practice, these two components
can be isolated by computing the spatial Fourier transform of the two regions separately
and identifying the components of wavevector +k,. For our choice of a plane-wave
along z, the positive and negative k, wavevector components are in fact directly asso-
ciated to the positive and negative frequency ones of (3.17). Within each region, the
in-going and out-going wavepackets can be isolated since the peak of their momentum
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Figure 3.8: Upper panels: snapshots of the scattering process for the same configuration
as in Figure 3.6 except for a finite width o, = oy = 10§ of the wavepacket along x. The
integration box has the same size L, = 200§ along y but a wider size L, = 200§ along
x. The color plot shows the spatial profile of the density modulation with respect to
the uniform unperturbed BEC. The thick black and red arrows indicate the direction
of the wavevector (i.e. of the phase velocity) of the positive-norm and negative-norm
wavepackets, respectively. The dashed lines in the rightmost panels are the trajectories
of the center of the wavepackets during the scattering and the thin arrows on them
indicate the direction of the group velocities. Lower panels: analogous plots in the case
of negative refraction. The vector potential in the upper region is A, = —1.26 Mc;
and the initial gaussian wavepacket is centered in k; = 0.3/¢ and k, = 0.58/¢ and has
variances o, = o, = 10 {. Notice the different scale used in the bottom-right panel,
showing the reduced amplitudes of the reflected and negative-refracted wavepackets as
compared to the superradiant case shown in the upper-right panel.

distributions is located at values of k, with opposite signs: for example the in-going
initial wavepacket will have its positive frequency peak at (k, k;) and its negative fre-
quency one at (—ky, —k;), while the out-going reflected one will have them respectively

at (kg, —ky) and (—kg, k).

The resulting time dependence of the norms of the different wavepackets is shown
in Figure 3.7, where one can see that the reflected wavepacket is strongly amplified
by approximately 70% as compared to the incident wavepacket. The negative value of
the norm of the transmitted wavepacket exactly corresponds to the amplification, so
that the total norm and energy are correctly conserved in the scattering process. This
confirms the physical interpretation that the amplification of the reflected wavepacket is
compensated by the storage of negative energy in the upper region.

While using a plane wave form along = was beneficial to draw the analogy with
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the electrostatic problem and perform a quantitative study of the time-evolution of the
norm, a clear intuitive picture of the scattering process can be obtained by performing
an analogous calculation for a wavepacket of finite width also along z. Even though the
mapping onto the electrostatic problem is no longer exact, the same energetic consid-
erations hold. The result is shown in the upper panels of Figure 3.8, where the thick
arrows again point in the direction of the phase velocity of the wavepacket while the thin
ones along the dashed lines of the last panel indicate the direction of the group velocity.
Even though the overall geometry of the scattering process closely resembles standard
refraction, a computation the norm of the different wavepackets shows that the reflected
wavepacket has indeed been amplified.

It is interesting to compare this scattering process with the negative refraction pro-
cess [139] that takes place for different values of the incident wavevector and of the vector
potential (lower panels). In this case, depicted in Fig.3.5(b), the incident wavepacket has
a negative z-component of the group velocity, but the transmitted wavepacket is dragged
back by the moving condensate towards the positive-z direction. Since no amplification
is taking place, the reflected and transmitted intensities sum up to the incident one and
the reflected and transmitted wavepackets are individually weaker than the incident one.

As a final remark, we need to emphasize that these simulations indicate that we are
dealing with superradiant scattering from a dynamically stable interface: it is clear from
the numerical GPE simulations that the interface quickly returns to its unperturbed
state once the wavepackets have moved away from it. This numerical result will be
confirmed by the Bogoliubov analysis presented in Sec.4.1.3, where we find no unstable
modes on the surface. This is a key difference from the case of tangential discontinuities
in hydrodynamics discussed in [95]. In this case, discontinuity surface is typically dy-
namically unstable and tends to quickly develop ripples that complicate the observation
of superradiant amplification.

3.3 Scattering approach and spontaneous superradiance

In the previous Section we studied superradiant scattering in a two-dimensional BEC
to which a synthetic vector potential A,(y) can be applied along . We now want to
give an explicit exact study of the Bogoliubov problem for the fluctuations’ scattering in
this configuration. We are going to construct the scattering modes and an input-output
relation between them, analogously to what was done in [69] (and we summarized in
Section 1.5). This will allow us to make predictions about the spontaneous quantum
pair creation in the superradiant modes.

Again we consider the system divided in two regions with the synthetic gauge field
taking a constant value in each: the faster one for y > 0 and the slower one for y < 0.
For simplicity we will consider the case in which A% = 0, also considering that the physics
only depends on the gauge field difference between the two regions.
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3.3.1 Kinematics

In each region the linear perturbations ¢ around the stationary state of the shape
(1.17) '
U = (Vn + dp) e t/h (3.18)

can be taken as momentum eigenstates, that is the usual Bogoliubov spinor |4%)) can be

taken of the form
o _ikpatikyy Uk )\
(51/)*) (.’L’,y) =€ Y Vk - ‘k> (319)

The Bogoliubov problem takes the form hw |k) = £ |k), with

2 (8 + 1) + gn =y Acke gn
L= . (3.20)
2
—gn - (;—M(kg + k) + gn) — LAk,

As usual the dispersion relation in each region is obtained from the characteristic poly-
nomial of this matrix and the result is (3.13)

h h2 h2 h
= Agky | (k2 + k2) [ —— (k2 + k2) + 2gn ) = —— Agky + B(ky, ky),
hw =~ Ask \/2M(kx+ky)<2M(kx+ky)+ gn) af Arka % Blka, ky)
(3.21)

where the positive (negative) sign refers to positive (negative) norm modes and we
defined the quantity B(k;, ky) for later convenience.

As above, we consider a translationally invariant system along z, so that k; is a
conserved quantity and we can treat the different k, channels as separate one-dimensional
problems along y. Through the identifications of Section 3.2.2 we know that in these
one-dimensional problems the transverse momentum k, plays the role of an effective
mass gap in the dispersion and also of the charge coupling to the gauge field, giving a
vertical shift of the dispersion curves. For present convenience we show in Figure 3.9 an
example of these reduced dispersion relations in the two regions, analogous to the ones
shown in Figure 3.4.

In each uniform region at fixed frequency the modes will be a combination of the
plane waves written above. Since the Bogoliubov dispersion relation (3.21) is of the
fourth-order in the momenta, at fixed w and k,, it will generally have 4 roots, that (for
real frequencies) can be divided in a pair of real ones and a pair of complex conjugates
ones or can all be complex (two pairs of complex conjugates). In the present case there
are not frequencies to which four real roots correspond; this can happen for example if
a supersonic velocity along y is present.

If we consider an unbound system in the y direction, we need to require for the modes
to be bounded at infinity, this means that the imaginary part of the wavevectors must
be non-negative in the upper region and non-positive in the lower region. Hence in the
case of no real roots there will be two relevant (evanescent) modes while in the case of
two real roots there will be one evanescent mode for a total of three physically relevant
modes.
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Figure 3.9: Dispersion relations in the two regions (the slower on the left and the faster
on the right) for k¢ = 0.5, A = —2.5 Mc, and A3 = 0. Black and red lines correspond
to positive and negative norm modes. The light gray regions indicate the ordinary
scattering ranges and the dark grey one the superradiant scattering range. The white
line is an example frequency in the superradiant range individuating the associated
scattering modes on the dispersions.

In general, as can be seen in Figure 3.9, there are no real roots in the mass gap

h h
L Agky — Blky) < hw < —— Ayky + B(ky), 3.22
i (ke) < o < =57 + B(k;) (3.22)

while above (below) it two real roots are present corresponding to positive (negative)
norm modes.

We are interested in scattering configurations, that is physical situations in which
a plane wave coming from infinity impinges on the interface between the two regions
and is reflected and transmitted in other modes. From Figure 3.9 the different kinds of
scattering that can occur can be identified, analogously to what we did for the constant-w
cuts of the dispersion relation of Figure 3.5. We focus on ingoing waves from the slower
region, the other situation being analogous.

For frequencies above —+-Alk, + B(k;) positive-norm modes are available in both
regions and the incoming wave will be partially transmitted and partially reflected. An
analogous behaviour occurs for iw < —B(k,) where negative-norm modes are available
in both regions. We called this kind of same-norm scattering ordinary scattering (light
gray regions in Figure 3.9).

For frequencies in the faster region mass gap (3.22) there is no available propagating
mode to transmit so the incoming wave from the slower region will be totally reflected.

The most interesting regime is the one for

h
B(ky) < hw < —MAg;kx — B(k,) (3.23)

in which the incoming positive-norm mode can be transmitted to a negative energy
one. We know that this is superradiant scattering (dark gray region in Figure 3.9) and
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that it becomes possible when h|Af|/M > 2¢s. Also, remember that the superluminal
behaviour of the Bogoliubov dispersion relation imposes the upper value (3.16) of the
transverse momentum above which superradiant scattering is not possible.

3.3.2 Scattering approach

It is convenient to separate the non-evanescent modes in ingoing if their group ve-
locity v = dyw is directed towards the interface and outgoing if it is directed away from
it. In each of the two regions the fluctuation spinor field for frequencies at which there
are real roots can hence be written as

u(y) _ Am uk’}" ezk}"y + Aout uk;’“t ezk?“ty + AW uk?v elk?vy
v(y) T I\ wpin W I\ wgout 9| vou | I Vger | /21
oW, I I I T
(3.24)
where I = s, f and the spinors on the right-hand side are normalized so that |ug|? —
|vk|? = £1. If instead no propagating modes are present the field will simply be the sum
of two evanescent waves.

If not all the modes are evanescent, a scattering solution is obtained by selecting
one ingoing mode (s|in or f|in) and setting the other ingoing amplitude to zero (if
present). For frequencies at which real momenta are present on both sides we can write
the input-output relation connecting the outgoing modes amplitudes to the ingoing ones

Agut B Aén
(A?ut) - S(kwi) (Azfn> . (325)

The scattering matrix S(k,,w) is interesting because the square moduli of the elements
|S7.|? give the reflection or transmission amplitudes in the mode I for an incoming mode
J. Moreover it has the following pseudo-unitarity property

Stns =, (3.26)

where 7 is a diagonal matrix having as elements +1 for each positive-norm mode and
—1 for each negative-energy one; this expresses norm (i.e. energy) conservation during
the scattering.

Focusing on an ingoing positive-norm mode from the slower region, n = o3 or n = 1
depending on the sign of the norm of the modes in the faster region region. From this
one readily sees the occurrence of superradiance for n = o3 for which one obtains

|Sss’2 - ‘st|2 =1 (327)

telling us that the reflection coefficient |Sys|? is greater than one, that is the reflected
mode exceeds the incoming one in amplitude.

Notice that the normalization factors of the modes involving the group velocity in
equation (3.24) is important to have the correct normalization of the scattering matrix
and is obtained by requiring the full mode at fixed frequency is normalized to d(w).
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Figure 3.10: Reflection and transmission coefficients for k, = 0.5¢, AL = —2.5 Mc, and
ingoing wave from the lower region.

3.3.3 Semi-analytical solution

The scattering formalism is quite general and not restricted to our flat-density and
sharp-interface case. In our setup, as was also done in [69], we can however address
this problem analytically by matching the analytical modes in the two uniform regions
through continuity requirements at the interface.

An ingoing mode chosen, we have four mode amplitudes to determine to solve the
scattering problem, divided between outgoing and evanescent modes. These latter do
not enter in the scattering matrix relation since they are not relevant in the asymptotic
regions, however they are important near the interface. The four conditions needed come
from requiring the continuity of the two components of the fluctuation field (3.24) and
its first derivative along y at the interface.

We can solve the modes matching linear problem by numerically finding the roots of
the dispersion relations (3.21) at fixed w, computing the group velocities and selecting
the desired ingoing channel. We then keep in each region the two physically relevant
(outgoing or evanescent) roots and numerically solve the corresponding linear problem
for the mode amplitudes A% and A$Y. The amplitudes of the propagating modes are
the coefficients of the scattering matrix.

The result of this procedure for an ingoing (positive-norm) wave from the lower
region can be seen in Figure 3.10. The results can be understood by comparison with
the dispersion relation plot of Figure 3.9. Below hw/u ~ 0.5 we are in the mass gap and
there is no ingoing mode, while for 0.7 < Aw/p < 1.75 there is no travelling mode in the
upper region so one has a total reflection (S(ky,w) = [Sss] with |Sgs|? = 1). For higher
frequencies positive-norm travelling modes are available in the upper region and one has
an ordinary scattering with reflection and transmission coefficients below one; for these
frequencies the scattering matrix is unitary, i.e. n = 1.
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Figure 3.11: Left panels: superradiant scattering for Al = —2.5 Mc, of a wavepacket
of transverse momentum k,¢ = 0.5 and with momenta centered around k;”ﬁ = 0.32
(hw =0.63 M cg) The initial wavepacket is centered in space around yg = —100 & with
o =20 £. One can clearly see that the positive-norm mode is transmitted to a negative-
norm one and reflected with a larger amplitude. The amplification can measured by
computing the total Bogoliubov norm (3.17) in the two regions, whose time dependence is
shown in the right panel. The amplification coefficient is compatible with the maximum
one predicted in Figure 3.10.

Between w ~ 0.5 and w ~ 0.7 instead negative-norm outgoing modes are available
in the upper region: the scattering matrix is hence pseudo-unitary with n = o3 and, as
expected, one has superradiant scattering with |[Sy,|? > 1.

This approach gives us predictions of the amplification coefficients; an example of
comparison of this prediction with the time-dependent scattering of wavepackets can be
obtained for example by performing a time evolution such as the one of Figure 3.6. To
offer a different picture of that process here we chose to evolve the Bogoliubov problem
(3.20) in time starting from a wavepacket in the slower region with group velocity directed
towards the interface. We performed such simulation with a third-order Runge—Kutta
algorithm for the parameters giving Figure 3.10 and for a packet peaked around the
frequency of maximum of the reflection coefficient and found a compatible amplification
coefficient above 4. This numerical study is summarized in Figure 3.11.

Notice that the solution of the scattering problem with the ingoing (negative-norm)
wave from the faster region gives the same reflection coefficient in the superradiant
interval, meaning that the magnitude of superradiant amplification does not depend on
the direction in which the interface is crossed. This is a consequence of the pseudo-
unitarity of the scattering matrix that implies

|Sual® = |Saul?. (3.28)

The k, dependence of superradiant scattering can be investigated by solving the
above problem at fixed A/ for different values of the transverse momentum. In Figure
3.12 one can see that the maximum of the reflection coefficient decreases when increasing
k., while the superradiant region widens. For even higher values of the transverse
momentum the maxima continue to decrease but the superradiant region shrinks again



88 Chapter 3. Superradiant scattering on a planar ergosurface

12 T T T T T T T T
. 100 g ————
10F b i
" < 10? E
sl 1! o :
o < 1§ E
i % ;
o . 1S
8 6F 1. 0.1 F 4
(28 [ E
- L !
4 0N 0.1 0.5 1 15 A
LN kx&s
1] 1 1 1
2+ : II l’ “‘ /\ n
. ey A PN
! ' l L N il R S| \|~-"'

Figure 3.12: Main plot: reflection coefficients for an ingoing wave from the lower region
for different values of k, with Af = —2.5 Mc,. The maxima from left to right correspond
to k&€ =0.3, 0.5,0.75, 1. Inset: log-log plot of the dependence on k; of the maxima of
the transmission coefficient. The solid red line are the numerical data, the superimposed
black dashed one is a fit of the shape % — B, precisely replicating the data.

and vanishes at the dispersive suppression threshold (3.16). Extracting the maxima of
the transmission coefficient for each value of k, gives the plot in the inset of Figure
3.12. The maximum transmission, and hence the maximum superradiant amplification,
goes as 1/k2 minus some constant that makes it vanish at the dispersive suppression
threshold, here approximately at k;£ = 1.5.

3.3.4 Quantum description and spontaneous pair production

In our study of superradiance up to now we treated fluctuations as a classical field,
relying on the fact that superradiance, differently from, for example, Hawking radia-
tion, is a classical field effect. As we said in Chapter 2, upon quantization of the field
undergoing amplified scattering one expects spontaneous quantum pair production in
the modes responsible for superradiance. This is essentially superradiant scattering of
vacuum fluctuations, that end up populating the opposite-normed outgoing modes. The
prediction of this spontaneous emission can be obtained from the quantum equivalent of
the scattering approach we just presented.

We know that fluctuations around a stationary state of a BEC can be described by
a bosonic quantum field U =0, + (5;11, where the order parameter Wy describing the
condensate continues to be treated as a classical field and the quantum behaviour is
encoded in the fluctuations.

After choosing a mode basis for the field, in the second quantization procedure an-
nihilation operators are associated to positive-norm modes and creation operators to
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negative-norm ones, as explained in Section 1.1.4. It is convenient for our purposes to
quantize the field in the asymptotic regions using, for each w, the basis of ingoing or
outgoing modes.

Given the different kinds of scattering, for different frequency ranges the modes need
to be quantized differently. For simplicity we express here only the field component for

~ SR
frequencies in the superradiant range, that we call ¥ (y), and comment on the other
regimes when needed.
The quantum field has two equivalent expressions, one in terms of ingoing modes

fmaz

. SR v —Agky—B(ks)
507 () = / dk, / A [t (s 0, )its (i 0) + 0] (s 0, ) (i )
0 B(kz)
+ (i (ks 0, )0 (g, ) + Ui (s w0, 2) 1 (i, )]
(3.29)

and the analogous one in terms of outgoing modes, whose annihilation operators we
instead indicate with by(w). A relation between the two sets of operators is given by the
input-output relation (3.25) that here becomes

by (K, w as(ky, w
(g} ((’ZMD — Sk, w) (d} Ekw;) for  Bka) < hw < —%Amkz ~ B(ky). (3.30)

The fact that the modes in the faster region appear with a creation operator is a conse-
quence of their negative norm.

Instead, the field component coming from the frequency range of ordinary scattering,
where the available modes in the faster region have a positive norm, does not show the
exchange of creation and annihilation operators of the second line of (3.29) and the
input-output relation given by the (unitary) scattering matrix is simply

bk, w)) _ i (ki ) h
(Bf(kz,w)> = S(kz,w) (a ) for hw>——"Alky +B(ks).  (331)

Notice that this last equation expresses the fact that the representations in terms of
input and output modes of the quantum field are unitarily equivalent, while in equation
(3.30) the mixing of creation and annihilation operators indicates the inequivalence of
the two representations. This is the mathematical fact at the basis of particle creation
effects in quantum field theories in curved spacetimes (see for example [61]).

As for the case of Hawking radiation presented in Section 1.5, the spontaneous emis-
sion is given by the appearance in equation (3.30) of the creation operators for the modes
in the faster region. Focusing in particular on the flux of outgoing phonons in the slower
region and using the input-output relation one obtains

<Bi(kx,w)35(kx,w)> = ‘588’2 <&l(kxaw)&8(kxaw)> + ’sz|2 <1 + <&J}(kwi)af(kxaw)>> )
(3.32)
where the one in the last term comes from the commutation of the negative-norm oper-
ators. Because of this constant term, even if the initial populations of the ingoing modes
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Figure 3.13: Spontaneous emission spectrum (left) and transverse momentum distribu-
tion (right) for different values of the gauge field. The superimposed black dashed lines
are fits of the numerically obtained data of the shape f(w) = aexp(—fw) — v (and
analogous expression with k, instead of w) with «, 3,7 positive parameters and describe
very well the numerical data. As expected the quantum emission is nonzero only below
the dispersive threshold.

is zero (for example at zero temperature), the population of the outgoing modes will
be finite. Analogously the outgoing mode in the faster region will have the same zero
temperature population because of the symmetry (3.28) of the scattering matrix.

Notice that in the case of ordinary scattering (3.31), since no creation operator enters
in the input-output relation, there will be no spontaneous emission. Similarly, in the
case of total reflection the input-output relation reduces to by (ky,w) = S (ke w)ar ke, w)
and no spontaneous emission can occur.

The emission spectrum for each k, is hence given by the superradiant bump of the
transmission coefficient in Figure 3.10. The overall emission spectrum can be obtained
by integrating in k, the transmission coefficient |Ssy(ky,w)|? considering only the su-
perradiant frequency ranges. We computed this with the elements of the scattering
matrix obtained from the scattering approach and the result is shown in Figure 3.13,
in which one can see that the spectrum of the spontaneous emission has a decreasing
exponential behaviour. Analogously, the transverse momentum distribution of the spon-
taneous emission is obtained by integrating |Ssf(ks,w)|* in w and shows the same kind
of behaviour.

3.3.5 Density-density correlations in position space

As in the case of Hawking radiation, an interesting observable quantity to detect
spontaneous pair creation are the correlations between the emitted particles in the two
regions. These are usually easier to detect than the emission spectrum, that is easily
hidden by noise in the system and were at the heart of the experimental observation of
Hawking emission in a BEC [5,17, 18]

These appear, as a simplest example, as features in density correlation function, that
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is expressed in terms of the quantum field U = U + 6¥ as the normal ordered product
G (y.y') = (T ()P () () — (T ) E () (P )P ()) - (3.33)

Keeping only the terms of the second order in the fluctuation field one obtains

o At o At At
G (y,y) = (00 (y)5W(y)) + (60" (y)8W (y)) + (5¥' ()oW () + (3V' (y)6¥' (y)) -
(3.34)
It is convenient for us to expand the correlation function in its w and k, components

G (y,y) /
0

so that we can use the scattering formalism to evaluate the single components.

We can notice that the emission predicted in equation (3.32) is composed, as ex-
pected, by pairs of modes, one in each region. In fact with an analogous argument we
find

/ dw GO (ky,w,y,9), (3.35)

(b (e, w) b (i ) = S2 Sy, (3.36)

so that we expect to find nontrivial correlations between the density fluctuations in the
two regions.

Consider then the correlations between points ¢’ > 0 in the faster region and y < 0 in
the slower region, that are the ones that should bring the signs of superradiant emission,
starting from frequencies laying in the superradiant range. We can insert the field
expansion (3.29) in (3.34). Since we are interested in the correlations in the outgoing
modes due to the quantum fluctuations in the vacuum of the ingoing ones, the idea is
to insert the field expansion in terms of outgoing modes and then use the input-output
relation (3.30).

Note that for y < 0 (y' > 0) only the mode of the slower (faster) region will be
present, so that

(ks w)
; (3.37)

SR (kg w,y < 0) = us‘out(k%w Y)bs(k, ) + Vg (Fizy w0, y) D]
) (kx,w>

6\IJSR(I€I7W y > 0) - uf|out( ) }(kamw) +Uf|out(kwaw Yy

Substituting the input output relation, keeping only the quantum fluctuations terms
coming from commutators and using the pseudo-unitarity of the scattering matrix and
the u and v components of the plane wave expansion (3.24) we obtain

Tkout(kz7UJ) kout(k ,w)
G(z) ke, w,y <0,y >0) =

21 |U§“t’U?Ut ]

X Ssf (kW) St f(ke, w) QIS ke =R el
(3.38)

where r; = uy + vy;. This expression is completely analogous to the one obtained for
Hawking radiation in [69].
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Figure 3.14: Zero temperature density-density correlation functions between the slower
y < 0 region and the faster 3’ > 0 region computed using the scattering approach. The
two panels correspond to A, = —2.5 Mc¢,; and A, = —3 Mc,. The oscillating feature is
an indication of quantum pair production in the superradiant modes.

The superradiant frequency range is the only source of correlations between the
slower and faster regions, since performing the same calculations for ordinary scattering
(3.31) shows that its contribution to the correlation function vanishes because of the
unitarity of the scattering matrix. This was expected since we saw that pair production
only occurs for superradiant frequencies.

Expression (3.38) can hence be used to compute numerically the faster-slower density
correlation function starting from the scattering matrix components we obtained in the
previous sections. Notice that the use of the scattering approach gives a reliable result
only far enough from the interface, since the evanescent modes are not taken into account.

In Figure 3.14 we show the resulting faster-slower correlation pattern, obtained by
integrating the result of (3.38) in k, and w. This shows an oscillating behaviour with a
wavelength decreasing when the gauge field A, increases. The correlations seem to be
nontrivial for all the y < 0 and 3’ > 0, decreasing in amplitude while approaching the
axes y = 0 and 3’ = 0, and maximal for y = 3/ = 0.

In [69] an explanation of the maxima and minima of the density correlations was given
in terms of the group velocities of the modes responsible for the correlation feature. In
particular extrema of correlation are expected for 3/ = (U;Ut Jv2¥)y. Focusing on a fixed
k., from the dispersion relations of Figure 3.9 one can see that in the superradiant
frequency range, with increasing frequency, v2% goes from zero to some maximum value,
while v?“t goes from the same maximum value to zero. Hence the slope v?“t /v of the
lines on which one expects correlation extrema varies from —oo to 0, thus spanning the
whole (y < 0,9y’ > 0) range, as we observe.

The oscillations in the correlation pattern are instead due to the difference between
the outgoing momenta on the two sides. This can be easily understood considering a
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simpler version of this problem: the massless Klein paradox of Section 2.1.1. We know
that the massive Klein paradox is exactly equivalent to superradiance in our setup in
the hydrodynamic limit with the identifications (3.10); by considering the massless case
we are removing, together with the dispersive nature of the field, also the mass gap, so
that the dispersion relations in the two regions are simply linear, with the one in the
faster region being vertically shifted by the electrostatic field.

An estimate of the spatial dependence of the correlation function in this simplified
case can be obtained by integrating in frequencies the plane wave factors of equation
(3.38). The outgoing wavevectors will be k2 = —w and k:;’c“t = w — eAp and the
superradiant frequency range goes from 0 to eAg, so that

G (e,y,y) ~ /GAO dw elwy=@=eA0y) 4 ¢ ¢ o cos (e;lo(y - y')) sinc (eﬁo(y + y')) :

’ (3.39)
The cardinal sine function gives the localization of the correlation features with the
maximum intensity around the line ¢y’ = —y, as expected from the fact that all excitations
have the same group velocity. The cosine instead causes oscillations along that line, and
are exactly the ones we observe in the more complex case with mass gaps and nonlinear
dispersion.

Also notice that Figure 3.14 is the result of an integration over k,, each k, component
of the correlation function having a different oscillation wavenumber. The predominant
observed oscillations are hence the ones to the transverse momenta dominating the su-
perradiant emission, that is the k, for which the factors multiplying the plane waves in
equation (3.38) are maximal.

We hence have a qualitative understanding of the meaning of this correlation func-
tion. However its features are not as easy to look for experimentally as are the ones
in the Hawking case in one dimension [69]. In that case in fact the non-gapped sonic
dispersion relations (Figure 1.4) result in characteristic straight-line features in the po-
sition space density correlations that readily displays the presence of spontaneous pair
production.

3.3.6 Two-body correlations in momentum space

As we just discussed, correlations in position space are not the ideal observable for
an experimental investigation of spontaneous superradiant emission. A perhaps more
promising quantity are the two-body correlations in momentum space. The relevant
quantity is

GO (hy, k) = (69" (k,)0T' (! )5W(K,) 5 (R, ), (3.40)

involving correlations only between non condensed atoms since the condensed ones only
live in the zero momentum state (see for example [141] for a complete explanation).
These are hence of higher order in the fluctuations but are expected to give a cleaner
signal.

We can obtain a semi-analytical formula for this quantity using again the scattering
approach. At fixed k, and w the dispersion relation fixes the values of the outgoing
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momenta k2% (k,,w) and k:;i“t(km,w) so that the correlations will be nonzero only for
these value of the momenta: if one measures the momentum k, in the slower region and
the momentum k;, in the faster one we will have

G (ky,w, ky, k) oc 8(ky — k2" (ka, w))3(K, — k3" (g, w)). (3.41)

Integrating over w the points in which these correlations are nonzero will hence
describe, at fixed k; a line in the (k,, kzl/) space and, letting k, vary, a surface in the
(ky, k;,kx) space that we expect to be the most recognizable feature of spontaneous
emission in the superradiant channels.

Through a Wick expansion one can express the quartic correlator (3.40) in terms of
products of second order ones (in the following formulas we omit, for simplicity, the fact

that we are considering the correlators at fixed k, and w)

2

2
GO (ky, k) = [ GOy k)| + GOy, k)G by k) + [AD Gy )| (3.42)
where
GO (ko k) = (60 (k)T ) AD (ke k) = (69 (k, )50 (K. 3.43
(ky, ky) = (00 (ky)oW (k)); (ky, ky) = (0W(ky)oW (k). (3.43)

Expressions of these correlators at fixed k, and w for the momenta showing nonzero
correlations can be obtained with a procedure analogous to the one we used for the cor-
relations in position space. As done above, we only keep the terms due to commutators,
that are due to vacuum quantum fluctuations at zero temperature. The results are

2
A ey, k)| = 2R (wivtusos(SipSy)?) + (Jusf gl + sl ugl®) 1871 1S
(3.44)
2
GOy, k)| = 2 (wivdugvp(S2pSy0)2) + (Jusl? gl + oo fog ) 1Sos 17 S
(3.45)

GO (g, by )G (K Ry = (fus|”

Yy

2
S3r

+ vsl? | S%¢|) (lugl® [S34] + [os?[S%]) - (3.46)

We can compute numerically the locus of points in momentum space for which the
two-body momentum correlations are nonzero and the value of the correlations there.
The result, for the normalized correlation function

2
S3r

G (ky, k)
@k, k) = Yy 3.47
g ( Y y) G(l)(ky,ky)G(l)(k'/ k,)? ( )

Yy

is the surface shown in the left plot of Figure 3.15. The fact that the surface folds
above itself for higher transverse momenta is due to the superluminal behaviour of the
Bogoliubov dispersion, that poses an upper bound on the transverse momenta for which
there can be superradiant scattering, and hence spontaneous emission.

One can see that the normalized correlation function is maximal for higher values
of k,. The unnormalized one is instead very much peaked for small k,. Meaning that,
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Figure 3.15: Two body correlations in momentum space. On the left the surface de-
scribed by the points in momentum space between which there is correlation. On the
right the same correlations integrated along k..

as expected from the behaviour of the scattering matrix elements for small k, shown
in Figure 3.12, the number of emitted couples is much higher for smaller transverse
momenta.

Integrating over k, one obtains the overall correlations for momenta along ¥, shown in
the right part of Figure 3.15. One can see that the normalized correlations are dominated
by the folding region of the surface of Figure 3.15.

3.4 Superradiant scattering from a lattice region

As a last topic in this Chapter, let us present an alternative setup in which a planar
ergosurface can be obtained.

Another way to circumvent the irrotationality condition for the velocity of the con-
densate is to realize that this condition is on the gradient of the phase ©(r) of the
condensate, while the velocity is v.= hVO/M. Hence one can think of modifying the
dispersion relation of the atoms so to change their effective mass differently in the two
regions, thus changing the velocity while maintaining VO constant along .

This can be obtained for example by putting an atomic Bose—Einstein condensate in-
side an optical lattice [19], that is a periodic potential obtained with counterpropagating
laser beams. The stationary Gross—Pitaevskii equation in this kind of potentials admits,
as in the well known case of the Schrédinger equation in solid state physics, solutions in
the form of Bloch waves and results in a band structure of the dispersion relation of the
atoms [142]. The stationary states can hence be labeled with the band index and the
quasi-momentum K of the condensate (indicated with a capital letter to distinguish it
from the one of the perturbations).

Considering the dispersion relation £(K’) for the atoms of a one-dimensional con-
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Figure 3.16: Density of a two-dimensional BEC with an optical lattice of depth s = 12
in the region y < 0 and no external potential for y > 0. A constant negative shift of the
potential in the lower is applied to keep a constant average density. A smooth transition
between the two regions with a hyperbolic tangent profile is used. Lengths are expressed
in units of the lattice spacing d.

densate in a given band, the periodic potential results in a K-dependent effective mass
M*(K) and a velocity of the condensate given by

1 0% Oe
) ok K= gk (3.48)
The chemical potential is instead
_ One(K)]
() = TR (3.49)

with n the average density of the condensate. From the chemical potential one can get
the compressibility and, hence, the speed of sound

1 Op 1

KT =n—

on’ ¢ /@M*'

(3.50)

As discussed in [142], a condensate of quasi-momentum K in an optical lattice has
a lower velocity than a free condensate of momentum K, and making the optical lat-
tice deeper makes the condensate velocity decrease, as anticipated from our intuitive
considerations regarding the effective mass.

A possible approximate realization of our planar ergosurface is hence a two-dimensional
condensate with no external potential for y > 0 and subject instead to an optical lattice
periodic along z (and uniform along y) for y < 0, as in Figure 3.16. By imposing an
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overall phase to the condensate order parameter one can obtain a stationary state of the
shape
U(z,y) = e U(z,y), (3.51)

with \If(x, -) a periodic Bloch function for y < 0 and uniform for y > 0. The velocity
in the uniform part of the system vf = AK/M may be taken to be supersonic and the
lattice in the other region deep enough to make this subsonic.

Notice however that, as shown in [142] for the K = 0 case, also the speed of sound is
affected by the periodic potential, decreasing for deeper lattices. To verify the feasibility
of our idea a study of the dispersion relation of fluctuations is hence in order, starting
from the one in a one-dimensional periodic BEC.

3.4.1 One-dimensional dispersion relation

Consider the one-dimensional GPE describing a condensate in an external periodic
potential of the shape

V(z) = sEgsin? (?) , (3.52)
where d is the lattice spacing, Er := ¢%/(2m) is the recoil energy (with the Bragg
momentum ¢p := hr/d) and s is an adimensional number characterizing the lattice
depth.

The dispersion relation of acoustic perturbations on a condensate in an optical lattice
is not simply the Bogoliubov one for a uniform medium (1.85) with different condensate
velocity and speed of sound, in fact the periodicity introduces a band structure also for
the fluctuations (and other features such as peculiar dynamical instabilities [19]). As for
the condensate wavefunction, the Bogoliubov vectors can be expressed as Bloch waves,
labeled by a band index and a quasi-momentum

|6¢bjn) = €™ (ﬁjk(m)> (3.53)

Uj(x)

where ;i (2) and w;j;(x) are periodic with the lattice period. The dispersion relation
we are interested in is the one connecting the frequency of the excitations to the quasi-
momentum k.

This dispersion relation can be computed numerically. We start with an imaginary-
time evolution of the GPE in the periodic potential (3.52) (over a multiple of the po-
tential period with periodic boundary conditions) to find the stationary state ¥(z) =
eile k(x) at fixed quasi-momentum K. We then evolve in time this wavefunction
adding a small (|0¥/¥| < 1) delta-function perturbation so to sample all the possible
momenta. The dispersion relation is then obtained by Fourier-transforming the whole
evolution both in space and in time.

Examples of the resulting plots for a condensate at rest, that is with K = 0, is
shown in Figure 3.17, where the effect on the lowest band of the dispersion relation
of deepening the lattice at fixed background quasi-momentum is shown. The top-left
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Figure 3.17: Dispersion relations of the elementary excitations for interaction gn =
0.05 Er and zero quasi-momentum K of the background condensate for different values
of the lattice depth s. The first graph refers to the case without a lattice, that gives
simply a Bogoliubov dispersion relation. The dashed red lines are analytical plots of
the Bogoliubov dispersion relation in which modified values of the effective atomic mass
and of the speed of sound with respect to the uniform case are used. In particular, if M
is the bare atomic mass and c¢g refers to a uniform condensate, for s = 4: M* = 1.8M
and ¢ = 0.97¢g, for s = 8 M* = 4.5M and ¢ = 0.82¢g, for s = 12: M* = 12M and
c = 0.68¢g.

plot (s = 0) corresponds to no lattice and is evidently a Bogoliubov dispersion in a
uniform BEC at rest. In the other panels one can see how the presence of a lattices
changes (lowest band of) the dispersion relations. The superimposed red dashed lines
are analytical plots of the Bogoliubov dispersion relations in which values of the effective
atomic mass and of the speed of sound different from the ones of the free condensate
are used; in particular when deepening the lattice the effective atomic mass increases
and the speed of sound decreases. One can see how these curves approximate well the
dispersion relation until the edge of the Brillouin zone is reached.

In Figure 3.18 instead, the same kind of plots are shown in the presence of a nonzero
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Figure 3.18: Plots analogous to the ones of Figure 3.17 but for nonzero quasi-momentum
of the background condensate K = 0.4 gp. One can see how it is possible to pass
from a supersonic to a subsonic regime at fixed quasi-momentum K by increasing the
lattice depth. The dashed red lines are again approximations with Bogoliubov dispersion
relations with modified mass and reduced speed of sound. For s = 4: M* = 1.8M and
c=0.85, for s =8: M* =4.5M and ¢ = 0.70cq, for s = 12: M* = 12M and ¢ = 0.55¢y.

background quasi-momentum K = 0.4 gg. The s = 0 untrapped case gives a Doppler-
shifted Bogoliubov dispersion relation in a supersonic flow. Introducing the lattice makes
the effective mass of the atoms increase, correspondingly the velocity of the condensate
decreases. While deepening the lattice also the speed of sound decreases, but less than
the velocity, so that it is possible to pass from a supersonic flow to a subsonic one. In
fact, for a deep enough lattice s = 12 the negative-norm branch of the dispersion lowers
to negative frequencies and the flow is hence subsonic.

3.4.2 2-dimensional dispersion relation

Now that we know that our idea of passing from a supersonic to a subsonic flow by
playing with the lattice depth is feasible, let us consider the two-dimensional dispersion
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Ky

Figure 3.19: Dispersion relation of the elementary excitations at fixed w for gn =
0.05 ER, (quasi-)momentum K = 0.4¢p and lattice depths s = 4 and s = 12. The
black and red lines are respectively the positive- and negative- norm branches of the
corresponding Bogoliubov dispersion relation in the uniform condensate; for these val-
ues of the parameters the uniform BEC is in a supersonic regime. In the first graph, for
s = 4, the flow is supersonic also in the lattice region and the ovals are squeezed along
y with respect to the free case. In the second graph, for s = 12, the regime becomes
instead subsonic and the positive-norm oval is further squeezed. For values of k, between
the two dashed white lines mode conversion between upper and lower branches of the
dispersion relation is possible.

relation in each of the two regions of Figure 3.16.

Take a two-dimensional region with the lattice along x and uniform along y. The
dispersion relation can be numerically measured analogously to the one-dimensional case,
by computing the ground state of the two-dimensional condensate (on a range along x
multiple of the periodicity of the potential and with periodic boundary conditions in
both directions) and by evolving a delta-shaped perturbation in time. The dispersion
relation resulting resulting from the Fourier transform both in time and in space can
be visualized with constant-w plots, analogous to the ones of Figure 3.5. A comparison
of the resulting plots with the corresponding dispersion curves in the uniform region is
shown in Figure 3.19.

The fact that the lattice is only in one direction gives an increased effective mass that
depends on the direction, so that the ovals are distorted with respect to the uniform case.
In the first plot the lattice is not deep enough to make the flow subsonic and positive-
norm and negative-norm ovals remain visible. When the lattice is deepened enough, the
second oval disappears and the remaining positive-norm oval is highly squeezed. This is
shown in second plot of Figure 3.19, that corresponds to the last one of Figure 3.18 for
the one-dimensional case.

The superimposed comparison with the dispersion relation of the uniform region
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shows intersection with the negative-norm oval. Similarly to what we discussed in Sec-
tion 3.2, because of the symmetries of the system, stationary scattering on the interface
between the two regions can only occur at fixed w and k;. We hence know that su-
perradiant scattering is possible at the frequency shown in Figure 3.19 for transverse
(quasi-)momenta in the interval delimited by the two white dashed lines.

3.4.3 GPE numerical calculations

We are now ready to test our prediction of superradiant scattering in this setup.
We numerically obtain via imaginary-time propagation of the GPE an order parameter
of the shape (3.51), with fixed quasi-momentum K. We then construct on top of the
condensate a Bogoliubov wavepacket that is a plane wave along x and has a finite width
along y, analogously to what we did in Section 3.2.4.

Although with black hole superradiance in mind one would study the scattering
from the lattice (subsonic) region to the free (supersonic) region, condition (3.8) tells
us that also negative-energy waves coming from the supersonic upper region can be
amplified, at the expense of a positive-energy wave transmitted in the lower subsonic
lattice region. This is convenient in this case because in the uniform region it is easier
to create wavepackets since the Bogoliubov problem can be solved analytically, and it
is also easier to measure the packets norms as we did in Section 3.2.4. We can hence
measure the norms of the incident packet and of the reflected one, while the one of the
transmitted one is difficult to obtain since the Fourier transform of the packet has the
periodic structure of the Brillouin zones.

In Figure 3.20 we show snapshots of an example evolution of the GPE displaying
the scattering of a wavepacket created in the supersonic uniform upper region of Figure
3.16. The wavepacket is chosen such that it falls between the two dashed lines in Figure
3.19, so that it has a negative norm and one expects an amplified reflection. In the first
frame the packet along y has a positive phase velocity and a negative group one. It
can be seen that the transmitted packet instead (above the periodicity of the lattice)
has an opposite-sign phase velocity while still moving towards negative y. This, as in
the uniform case of Section 3.2.4, is an indication of the fact that the two packets have
opposite norm.

A Fourier analysis shows that the incident and reflected wavepackets have the same
k, and that the transmitted packet in the lattice region has a peak (repeated in the
different Brillouin zones) on the upper half of the ellipse of Figure 3.19, with the k, of
the incident packet. The transmitted packet can also be seen to have a fast modulation
given by the periodicity of the lattice

In the last frame the reflected packet is seen to be much wider than the incident
one due to dispersion. To assess the amplification we hence compute the integrated
Bogoliubov norms (3.17) of the incident and reflected packets in the supersonic region.
The variation of the amplitudes in time is shown in the lower panel of Figure 3.20, where
one can see that the reflected packet is amplified of circa 20%.

The overall process is very similar to the one illustrated in Figure 3.6. The amplifi-
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Figure 3.20: Above: snapshots of the scattering of a negative-norm wavepacket in the
supersonic region on the interface with the lattice region. The background stationary
state has the shape depicted in Figure 3.16, with a constant average density nd? = 1,
interaction gn = 0.05 Eg, (quasi-)momentum K = 0.4 ¢p and lattice depth s = 12. The
incident wavepacket is chosen with the frequency of the dispersion cut of the right part
of Figure 3.19 and with k, = 0.25 ¢p so that the mode lays in the region in which one
expects amplification. The lower panel shows the time dependence of the norms of the
incident and reflected packets, showing superradiant scattering.

cation, while being significant, is however in this case smaller than the one we observed
with the synthetic vector potential setup. This can be ascribed to the density profile
shown in Figure 3.16, in which the density is lower than the average around y = 0. This
causes a reduced coupling between the two regions, that lowers the transmission and
hence the amplification.

We can conclude that this setup involving a lattice region is another viable one to
observe superradiant scattering, although the uniform density throughout the system
makes the configuration involving the synthetic vector potential cleaner.
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3.5 Summary: a toy model for superradiance

In this Chapter we introduced a simple acoustic metric displaying the essential fea-
ture to display superradiance: an ergoregion. A main advantage of the configurations
presented here is the geometrical simplicity, that provides an easy to understand and
conceptually clear picture of superradiance.

This is permitted by remarkable techniques available to modify the behaviour of a
Bose-Einstein condensate, such as a local tuning of the velocity. We showed in fact
that the inclusion of a synthetic vector potential breaks the irrotationality constraint on
the velocity and expands the class of metrics one can reproduce in a BEC gravitational
analogue. Another tool that we showed can be used to this end are periodic potentials
that can locally modify the effective mass of the atoms.

Superradiance in our planar ergosurface configurations can be explained as a mode-
mixing process at the interface between subsonic and supersonic parallel flows and cru-
cially relies on the existence of energetic instabilities. Amplified scattering can be un-
derstood simply from plots of the dispersion relations, that also provided a tool to
understand the important effects of the superluminal Bogoliubov dispersion on superra-
diance. The conclusions obtained via analytical and graphical means were also confirmed
numerically with integrations of the GPE.

The simplicity of the vector-potential-induced planar ergosurface allowed the appli-
cation of a mode-matching technique that gave a further characterization of superradiant
scattering in this setup. This also brought to the prediction of quantum spontaneous
pair emission at the ergosurface, that was characterized in terms of density-density and
momentum correlations between the excitations inside and outside the ergoregion; these
are promising quantities to look for in experimental investigations of this effect.

We saw how superradiant scattering on the planar ergosurface is exactly mappable
to the bosonic Klein paradox for a massive charged field in one dimension. As we
commented in Chapter 2, the dynamical stability of that configuration is assured by
the open boundary conditions in the two asymptotic regions, that we reproduced here
by assuming a virtually unbounded system. The next Chapter is devoted to removing
this assumption and study the effect of non-open boundary conditions on superradiance
and will bring us to the fundamental question of the role of boundary conditions in
superradiant scattering.






Chapter 4

Superradiant instabilities with a planar
ergosurface

In the previous Chapter we saw that superradiant scattering can be understood as
a mode-mixing process at the ergosurface and that it crucially relies on the presence
of negative energy modes in some part of the system, that is on the presence of an
energetic instability. Since the energy of an isolated system is conserved, decreasing the
energy from an energetically unstable configuration typically requires the presence of
some dissipation mechanism to evacuate the extra energy; superradiance is essentially
the simultaneous population of modes of opposite energy. Still, in the case of a single
interface considered so far, this process can not happen spontaneously (at the classical
level) and it must be stimulated by some incident wave.

We know from our discussion in Section 2.5 that changing the boundary conditions
in a system displaying superradiant scattering dramatically changes the physics since
dynamical instabilities emerge. In the planar ergosurfaces of the previous Chapter dy-
namical stability was assured by the absorption provided by the non-Hermitian open
boundary conditions of an unbound system on the two sides of the ergosurface. Chang-
ing the boundary conditions in our setups based on BECs has a simple operational
meaning: we can introduce a reflecting boundary condition for fluctuations by confining
the condensate with a trap.

Our setup provides a preciously simple picture of the onset of superradiant instabili-
ties. Take for example a configuration in which, instead of having an unbounded system
in both the +y directions, we introduce a reflecting boundary condition for fluctuations
at the upper system edge. In this case, the transmitted negative norm wavepacket will
get reflected and sent back to the interface. Since amplification does not depend on
the way the interface is crossed, amplified superradiant reflection will now take place in
the upper part, a stronger wavepacket will be generated that propagate upwards, and
the process will continue indefinitely. This bouncing back and forth of the wavepacket
between the interface and the reflecting boundary is associated to sizable amplification
at each bounce on the interface, so that the amplitude of the trapped negative-energy
mode will increase indefinitely until saturation effects beyond our Bogoliubov reasoning
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start taking place.

In the gravitational analogy, this configuration can be seen as an analog of the er-
goregion instability of a fast-spinning star with no horizon (Section 2.5.2): the region
within the ergosurface shows an exponentially growing perturbation, while correspond-
ingly growing waves get emitted into the outer space. This dynamical instability mecha-
nism can occur analogously if the reflecting boundary condition was imposed in the lower
part of the system, resulting in an exponential growth of a trapped positive-energy mode;
this is the analogous of a black hole bomb instability (Section 2.5.1).

These processes bring us to the fundamental question of superradiance we introduced
in Section 2.6: what is the role of absorption and boundary conditions? Here we will
answer this question showing that absorption (open boundary conditions) is essential for
superradiance only as a stationary equilibrium process, while amplification of finite-width
wavepacket can be observed in dynamically unstable systems as a transient phenomenon.

Another aspect of this important question is if horizons do in general assure the
necessary absorption to prevent dynamical instabilities. To address this second question
we include a flow along y in our setup and introduce an analogue horizon with a local
change of the speed of sound. This setup is a very flexible modular analogue black hole
that allows us to shows that the occurrence of ergoregion instabilities is not in general
avoided by the presence of an horizon and depends on the smoothness of this element.
In fact we find that a sharp horizon does not work as a perfect absorber and can give
sizable reflections of the fluctuations in the ergoregion, thus triggering instabilities as
discussed above.

The plan of this Chapter is to focus on the conceptually simpler planar ergosurface
obtained with a synthetic vector potential, keeping in mind that analogous physics can
be obtained with periodic potentials. First we show that superradiant instabilities occur
in our setup by introducing reflection for fluctuations in numerical calculations based
on the GPE. We then investigate this physics with the Bogoliubov approach and study
the spectra of elementary excitations; this shows that superradiant instabilities in our
system are an analogue realization of the Schiff-Snyder—Weinberg (SSW) effect (Section
2.5.3), through the mapping to an electrostatic problem presented in Section 3.2.2. A
second approach to the Bogoliubov problem is then presented, based on matching of the
modes similar to the one of Section 3.3.3 but for complex frequencies. This provides
another way to detect dynamical instabilities and gives the important proof of the fact
that our planar ergosurface configuration is dynamically stable. Superradiant scattering
from a dynamically unstable configuration is then demonstrated, before discussing the
role of horizons.

4.1 Analogue superradiant instabilities and the SSW effect

4.1.1 Evidence from GPE simulations

As a concrete example of the dynamical instability mechanisms sketched above, we
consider a finite condensate trapped along the y direction in a box potential; the vanish-
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Figure 4.1: Snapshots of the time evolution of a dynamically unstable condensate as
predicted by a numerical GPE calculation starting from different initial states. The
condensate is confined along y in a box of length 4,4 = 80£. The interaction constant
g is constant, giving a spatially uniform speed of sound c¢s;. In the 0 < y < L region,
a transverse vector potential A, = —3Mcs and a compensating external potential V =
—A2/(2M) are applied. Fluctuations are absorbed via an imaginary potential when
approaching the lower edge at Y4z, SO to mimic an open system geometry along that
direction. On the upper row, the initial state features an incident wavepacket traveling
in the upwards direction towards the cavity of length L = 30¢; the white arrows indicate
the directions along y of the group velocities of the wavepackets. On the lower row, the
initial state only features a weak white noise and the cavity length is L = 15¢.

ing density at the upper boundary at y = 0 introduces reflecting boundary conditions for
the Bogoliubov excitations. An absorbing region for fluctuations is introduced around
the lower boundary at ., S0 to simulate an open system geometry in this direction.
We then apply a transverse synthetic vector potential field in the upper region y € [0, L],
with L < Ymaz-

In the upper panels of Figure 4.1, we display the numerical solution of the Gross—
Pitaevskii equation for this configuration starting from an incident wavepacket traveling
in the upwards direction with a wavevector in the superradiant amplification range. At
the first bounce on the y = L interface, an amplified reflected wavepacket is obtained
via superradiant scattering. The negative-norm transmitted wavepacket keeps bouncing
back and forth between the interface at y = L and the reflecting boundary at y = 0
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while its intensity exponentially grows.

In the lower panels of Figure 4.1 we display an analogous numerical simulation start-
ing from a noisy initial state. In this case, the development of the dynamical instability
appears qualitatively different. In the y > L lower region, one can see the emergence of
a pattern that can be recognized as a down-going wave, while a stationary wave coming
from superposition of up-going and down-going waves appears in the upper region with
an exponentially growing amplitude. This latter standing wave is the trapped negative-
energy mode that gets self-amplified while a positive-energy wave is radiated in the
downwards direction.

Qualitatively similar instabilities take place if the reflection occurs in the lower part
of the system and also in more complex configurations in which a stripe-shaped regions
of fast motion is created within a medium at rest. In this last case instead of a reflecting
boundary condition one has two planar ergosurfaces, so that amplification of the trapped
negative-energy mode will occur at both the edges of the cavity resulting in a faster
increase of the mode amplitude. This resembles the black hole lasing instability discussed
in Section 1.5.2. The present case differs because it occurs in two spatial dimensions
and, most importantly, because it does not rely on the superluminal dispersion of the
fluctuation field and can also happen for a Klein—-Gordon field.

4.1.2 The Bogoliubov spectrum: the SSW effect

Further light on these phenomena is offered by a study of the Bogoliubov eigenmodes.
We do this, as explained in Section 1.1.2, by taking fluctuations around some stationary
state ¥( of the GPE in the shape (1.17):

U(r,t) = e M0 [Wy(r) 4 i (r, t)] . (4.1)

Thanks to the translational symmetry along z, we can adopt the one-dimensional per-
spective and study the spectrum of the excitations for fixed transverse momentum k,.
This corresponds to taking a plane wave form 6i(x,y,t) = e*+Tp(y, t) for the fluctua-
tions; the field ¢ then satisfies the one-dimensional Bogoliubov problem

N Dy glWf| (¢
thoy | 7, | = < s 4.2
' <<p ) —g[To|* —D_ | \y (4.2)
where 2 (h y )2
:|: _
_ g (ERe — Ag)” 2 _
Dy = 2M8y-|— Wi —|—2g]\I/0| +V W (4.3)

The spectrum of this problem can be studied by diagonalizing the equation (4.2) in
matrix form. In particular, on a spatial grid of N points, we represent the Bogoliubov
spinor as a vector of size 2N, having as elements the values of the two spinor components
at each spatial point. The 2N x 2N matrix is then filled by computing at each spatial
point the four elements appearing in (4.2) and by using discretized expressions for the
derivatives, that enter in the matrix as elements connecting different spatial points. This
matrix is then diagonalized using standard libraries.
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Figure 4.2: Spectra of the effective one-dimensional Bogoliubov problem (4.2) for a
condensate confined in a box 0 < y < #maee in the presence of a transverse vector
potential of variable intensity A, restricted to the region y € [0, L] with L = 2¢ and
Ymaz = 30§. The transverse momentum is fixed at k, = —0.5/€ and the speed of sound
¢s is spatially uniform. Black solid (red dotted) lines indicate the real-valued frequencies
of the positive (negative) norm modes; the green thick lines are the real part of the
frequencies of dynamically unstable zero-norm modes. The inset is a zoom of the region
where dynamical instability emerges. The lower panel show the complete calculation,
the upper part is the prediction of the hydrodynamic Klein-Gordon approximation as
discussed in the Appendix.

Here we consider a configuration similar to the one that was addressed in Figure
4.1, but imposing Dirichlet boundary conditions both in 0 and 9,4, to the field . The
right panel in Figure 4.2 shows how the spectrum of this Bogoliubov problem varies as
a function of the vector potential intensity A, for a fixed size L of the moving region
and a fixed transverse momentum k,. In the electrostatic mapping of Section 3.2.2, this
corresponds to taking a square box potential for a field of some charge and mass and
increasing the amplitude of the electrostatic potential Ag.

One can see that at some point a negative norm state enters the mass gap: in
the electrostatic case this corresponds to a bound antiparticle state localized in the
positive electrostatic potential box. When the frequency of this state approaches the
positive-norm band, opposite-norm states stick together and give rise to a zero-norm
dynamically unstable modes (as explained in Section 1.1.3 that can be thought as the
continuous production of pairs of particles with opposite energies, one falling into the
localized negative-norm mode, the other being radiated away on the positive-norm band.
This is exactly the mechanism of the SSW effect presented in Section 2.5.3.

Along with the exact solution of the Bogoliubov problem that we just discussed, it
is also interesting to consider this problem within the hydrodynamic approximation. As
explained in Section 1.4, this approximation corresponds in fact to the Klein—-Gordon
equation for which the SSW effect was originally derived. To this end we can perform an
analogous diagonalization of the matrix of equation (1.84); the result of such calculations
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Figure 4.3: k,-dependent spectra of the same effective one-dimensional Bogoliubov prob-
lem (4.2) as studied in Figure 4.2. System parameters: Ymq, = 30§, L = 4£ and
A, = —3Mcs. The upper panel shows the result of the hydrodynamical Klein-Gordon
approximation, the lower panel one illustrates the complete Bogoliubov problem. The
effects of superluminal dispersion are evident in the different spacing of the modes and
in their curvature as a function of k., which result in the suppression of the instability
at high transverse momenta.

is shown in the left panel of Figure 4.2: except for some quantitative differences, the
phenomenology is qualitatively identical.

The effects of superluminal nature of the Bogoliubov dispersion can be highlighted
by performing an analogous calculation of the spectra as a function of the transverse
momentum k; for fixed values of the size L and of the vector potential intensity A,. The
results for both the exact problem and the hydrodynamic approximation are reported in
the right and left panels of Figure 4.3, respectively. One can see that at small transverse
momenta k, the behaviour is, as expected, essentially the same. In contrast, at large
k. the presence of dispersion in the Bogoliubov problem has the consequence that both
the mass gap and the bound states energy no longer show a linear dependence on k.
In particular, for large enough k, the bound state reenters into the mass gap and the
instability is correspondingly suppressed.

This impact of the superluminal dispersion onto the instability is very similar to
the suppression of superradiant scattering for high transverse momenta we discussed in
Section 3.2.3. Also, condition (3.12) for superradiance is the same for the occurrence of
instabilities. In the upper plot of Figure 4.3, this condition can be graphically understood
in terms of the slope of the bound state. This slope is proportional to |A;| and for
|Az| < 2Mecs is smaller than the slope of the k,-dependent mass gap, that is of the
lowest positive-norm state. As a result, instabilities can not develop in this case.

Our reasoning so far assumed open boundary conditions for large-y, so radiative
waves can be emitted in this direction and nothing can come back. Actually, the spec-
tra shown in Figures 4.2 and 4.3 were calculated for finite size systems with Dirichlet
boundary conditions. While the considered system size is generally large enough that
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the geometry can be considered as effectively open in the large-y direction, still some
remnants of the finite size are visible in some specific parts of the spectra. For instance,
a suppression of the instability is possible for specific parameter values: the dynami-
cal instability is due to the coupling of two modes of opposite norm that are close to
resonance. For a finite system the spectrum is discrete so that such pairs of modes
may not be available. This is what happens in the right panel of Figure 4.3 around
kz& ~ 2, where the instability is absent for some intervals of the transverse momenta:
even though the energetically unstable negative-norm mode is above the mass gap, it is
far from resonance with positive-norm modes and the instability is effectively quenched.
As we will see in full detail in the next Chapter, increasing the system size reduces the
spacing between modes and removes the stability islands.

4.1.3 Detection of dynamical instabilities via mode-matching

The discussion on dynamical instabilities carried out in the previous Sections was
based on a combination of numerical GPE simulations and a semi-analytical study of a
standard Bogoliubov problem in a finite-size system with Dirichlet boundary conditions.
In this Section, we introduce a variant of the Bogoliubov approach that naturally includes
the open boundary conditions and is able to identify the intrinsic dynamical instabilities
of an unbounded system without the need of artificially restricting to a finite size and
then taking an infinite-size limit.

The idea is the following. For a fixed (real) k, and different (complex) frequencies
w, we look for the roots of the dispersion relations (3.13) in each of the two uniform
regions and we construct the associated plane-wave modes. Among all these modes,
we focus on the ones that display an exponential decay away from the interface. The
existence of global modes of the whole system at a given (complex) w satisfying the
desired boundary conditions is then checked by trying to match the plane waves at the
interface under the required continuity conditions. This imposes a linear set of equations
to the mode amplitudes and the existence of non-trivial solutions at specific w is signalled
by a vanishing determinant. This approach was used to prove the dynamical stability of
a white-hole configuration in [143].

One advantage of this method is that we can treat exactly open systems in the y
direction by selecting the appropriately decaying modes in each of the two regions. At
fixed k, and w the Bogoliubov dispersion relation will in general have four £, roots.
For non-real frequencies, all roots are complex, two with a positive imaginary part and
two with a negative one. If open boundary conditions are considered, and since we are
considering an isolated system with no driving, exponentially growing modes have to be
discarded. This leaves us with only two relevant asymptotically bounded modes in each
region, namely the ones with J(k,) > 0 in the faster upper region and the ones with
S(ky) < 0 in the slower lower region.

In the fast/slow region the plane wave expansion of the modes will hence be

s 1 ikl /s
|p7/) = Z A;/ <ﬁf/s> R (4.4)
j J
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Figure 4.4: Log-scale color plots of the absolute value of the determinant (arbitrary
units) of the linear matching problem with open boundary conditions on both sides of
the interface for k, = 0.5/£. The three plots correspond to A£ =0, Ag; = —1.5 Mcs and
Al = —3 Mec,. A vanishing value of the determinant at a positive imaginary part of the
frequency (w) is a necessary (but not sufficient) condition for instability. Here, zeros
of the determinant are present only in the first (trivial) case and only for real values of
the frequency; these correspond to the only real-frequency modes compatible with our
boundary conditions, that are plane waves along x and constant along y. These plots
show that the single interface configuration is dynamically stable.

where the sum runs over the physically relevant modes and ij /* is the proportionality
constant between the two components of the Bogoliubov spinor that can be obtained
from the linear problem (4.2) for a homogeneous system with the parameters of the
fast /slow region.

Consider first the configuration with open boundary conditions on both sides. In this
case, we have two relevant modes per side. The continuity conditions at the interface for
the two spinor components of the fluctuation field and of their first derivative give four
linear conditions that can be used to determine the four mode amplitudes. The existence
of non-trivial solutions requires that the determinant be zero at some frequency w.
Dynamical instabilities are associated to roots with a positive imaginary part I(w) > 0.
Notice that this is a necessary but not sufficient condition for instabilities: zeros of the
determinant may in fact also occur for frequencies for which the roots of the dispersion
relation become degenerate within one of the two homogeneous regions. These zeros
do not correspond to dynamical instabilities and can be easily identified by looking at
the corresponding values of the two relevant £, roots in each region, to see that they
coincide in at least one region. In our configuration, such zeros are found for w = +iu/h
and w = —Azk, /M tiu/h.
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Figure 4.5: Log-scale plots of the absolute value of the determinant (arbitrary units) in
the case of a reflecting boundary condition in the faster region at a distance L from the
interface. Here k, = 0.5/¢ and AJ; = —3 Mc;s and the tree plots correspond to L = 5 &,
L =10 ¢ and L = 20 £. Dynamical instabilities are signalled by the presence of roots in
the upper half complex plane $(w) > 0.

Beyond these spurious roots that must be discarded from the outset, in the case of
a single interface no other solutions are found except for purely real frequencies in the
case of a vanishing vector potential, as one can see in Figure 4.4. This proves that the
condensate is dynamically stable and, in particular, does not show localized instabilities
along the ergosurface, in stark contrast to classical hydrodynamic systems, such as the
one discussed in Section 2.1.2, where analogous velocity fields are generally unstable
against the generation of ripples at the interface.

Things of course change if we introduce reflecting boundary conditions on either
side. Let us focus on the simplest case with a reflecting boundary condition in the
fast region at a distance L from the interface as discussed in the previous Section. In
this case, we need to keep all the four roots of the dispersion relations in the upper
region, corresponding to waves that propagate back and forth between the interface
and the upper reflecting boundary. We then have six amplitudes to determine, the
two extra conditions being provided by the condition that the field vanishes on the
upper boundary. A plot of the resulting determinant in the complex-w plane is shown
in Figure 4.5: as expected, the dynamical instabilities associated to the SSW effect
discussed in the previous Section emerge as a series of zeros of the determinant in the
S(w) > 0 half-plane. Their frequency R(w) lies within the superradiant frequency range,
here located between 0.5 < fw/gn < 1.

As expected, the number of the unstable modes depends on the size of the faster
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region. The momenta of the trapped modes giving rise to instability must in fact satisfy
a quantization condition given by the finite size of the electrostatic potential box. This
is clearly visible in the growing number of zeros when increasing L from the top to the
bottom panel of Figure 4.5. On the other hand, the instability rate (w) decreases while
increasing the cavity size. Physically, this is also easily understood since amplification
occurs upon bouncing on the ergosurface and the round trip time of the excitations
increases with L.

4.1.4 Discussion

Based on our findings so far, let us summarize the connection between our predic-
tions for flowing condensates and the dynamics of rotating spacetimes in gravitational
physics. As we saw in the previous Chapter the fluctuations of the condensate around
the stationary state describing our setup can be described in the hydrodynamic limit
via the simple curved-spacetime metric (3.5) displaying an ergosurface that is a line at
constant y in an unbound system in that direction.

This can be compared to a massless scalar field in the spacetime of an asymptoti-
cally flat Kerr black hole. The radial reduction of the problem for fields with a fixed
azimuthal number is formally equivalent to our mapping to an electrostatic problem at
fixed transverse momentum, except for the cylindrical instead of planar geometry.

In the black hole case, the ergoregion is surrounded by the unbounded space on one
side and by the black hole horizon on the other side, both providing an open (or radiative)
boundary condition whose non-hermiticity provides an effective absorption. As a result,
the Kerr black hole is dynamically stable against scalar field perturbations [10] even
though it is energetically unstable since energy extraction is possible via superradiant
scattering processes. In our analogy, this corresponds to a single ergosurface in an
unbounded condensate on both sides along y, for which we have predicted superradiant
scattering in Section 3.2 and proved its dynamical stability in Section 4.1.3.

As we discussed in Section 2.5, removing (part of) the absorption on one of the two
sides gives rise to dynamical instabilities, just as we have just seen for our analog model.
If a strong enough reflection occurs inside the ergoregion (corresponding to a reflection
at the upper edge of our setup), one has an ergoregion instability, that can happen for
ergostars that have an ergoregion but no horizon (Section 2.5.2). On the other hand, if
the reflection occurs on the outside (corresponding to the lower part of our setup), the
instability is known as a black-hole-bomb (Section 2.5.1).

Our analogue model summarizes this physics in a simple way, without the complica-
tions of the circular geometry and of the greater complexity of real black hole spacetimes.
It also shows the direct link between superradiant instabilities and the SSW effect [15],
besides the one between superradiant scattering and the bosonic Klein paradox. More-
over, our setup provides a system in which these toy models can be investigated also
experimentally, besides being a conceptual guide as we will also see in the following of
this chapter.
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4.2 Superradiant scattering without dissipation

The discussion of the previous Chapter made it clear that superradiant scattering can
be understood in the analogue model as mode conversion happening at the ergosurface,
similarly to the analogue interpretation of Hawking radiation as scattering on the horizon
(Section 1.5). The discussion of the previous Section showed instead how changing
the boundary conditions in a system displaying superradiant scattering can result in
dynamical instabilities. But does superradiant scattering remain possible in systems
displaying dynamical instabilities? It is sometimes stated (see for example [90]) that in
black holes superradiance cannot occur without an horizon, as the approach in terms of
the conservation of the Wronskian presented in Section 2.2 seems to suggest.

That approach refers to stationary processes (involving plane waves) and real fre-
quencies, so that it correctly predicts no superradiance when waves are not evacuated
from the system; we know in fact that the correct stationary description involves com-
plex frequencies. Still, we know that superradiant scattering can be seen as a process
occurring at the ergosurface, that may also be very far from the regions where boundary
conditions for the problem are imposed. This suggests that as a time-dependent transient
effect involving finite-width wavepackets, superradiance can occur without elimination of
the involved waves from the system, in other words without a dissipation assuring the ab-
sence of dynamical instabilities. In the case of black holes, this means that amplification
of radiation through superradiant mechanisms can also occur without an horizon.

In the case here under detailed study this can be easily understood from the GPE
calculation summarized in the upper row of Figure 4.1: the initial incident packet can
be measured to be amplified in the first scattering with the ergoregion, even if this
eventually ends up triggering an instability at later times. Amplification is in fact due
to the coupling between opposite-norm modes in a restricted region of space around
the interface; if this process is well separated in space from the reflecting element, the
positive feedback mechanism responsible for the instability only occurs after a sizable
time-interval set by the round-trip time of the transmitted wavepacket. In the mean-
while, only the amplified wavepacket is visible.

Such a superradiant scattering in a dynamically unstable system is shown in a more
intuitive way in Figure 4.6, where a time evolution of the Bogoliubov problem (4.2) at
fixed transverse momentum of a configuration similar to the one of the upper simulation
of Figure 4.1 is performed; the one-dimensional perspective and the use of the Bogoliubov
spinor components give here an immediate picture of the norm of the packets and of
their amplification. The initial wavepacket is chosen with a frequency in the superradiant
interval and can be seen to undergo superradiant scattering exactly as in Figure 3.11:
a negative-norm wavepacket is transmitted and the reflected packet is bigger. This is
quantitatively checked in bottom left panel.

The subsequent evolution reflects instead the dynamical instability of the system.
The transmitted packet is reflected by the boundary condition and is sent back to the
interface where it undergoes amplified scattering at the expense of a transmitted positive-
norm packet; this amplification is again visible in the time dependence of the packets
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Figure 4.6: Upper panels: time evolution of the Bogoliubov problem for a constant-
density condensate with a synthetic vector potential AL = 3 Mc, applied for y > 0. The
initial condition is taken with Gaussian wavepacket (of transverse momentum k, = 0.8/¢
and centered around k, = 0.7/¢ with a variance o, = 10¢) in the slower region and
group velocity towards the interface. Absorbing boundary conditions are imposed via
a smooth absorbing potential for large and negative y. Black thin lines indicate the
u component of the Bogoliubov spinor and the red thick lines the v part. The arrows
indicate the directions of the group velocities of the wavepackets. Lower panels: on
the left time-dependence of the overall Bogoliubov norm in the two regions for short
times. Superradiant scattering of the initial packet and of the transmitted packet are
clearly visible. On the right time-dependence of the norm in the faster region for longer
times. The behaviour is clearly dynamically unstable and the dashed line shows a similar
exponential growth for comparison.
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norm plotted in the bottom left panel of 4.6. This bouncing continues with an ever
increasing amplitude of the trapped mode, that is compared with an exponential growth
in the bottom right panel of Figure 4.6. The trapped packet is eventually very distorted
by the nonlinearity of its dispersion relation.

This time evolution is a clear example of what we said above: superradiant scattering
as a stationary time-independent process requires dissipation, whose absence results in
dynamical instabilities in the time-independent spectrum of the system. Nonetheless,
superradiance as a time-dependent transient phenomenon can still be observed.

The experimental observation of a mechanism of this kind for a one-dimensional
condensate displaying acoustic black-hole and white hole horizons was reported in [87].
In that case initially spontaneous Hawking emission from the black hole horizon was
observed at early times, and was then followed by the developing of a black hole lasing
instability.

4.3 The effect of horizons: a modular black hole

As we just discussed, stable amplified reflection requires some absorption inside the
ergoregion to avoid dynamical instabilities due to the repeated amplification of the
negative-energy waves. As we mentioned in Section 2.4, in the standard treatments
of superradiance it is pointed out how such an absorption mechanism is naturally pro-
vided in black hole spacetimes by the horizon, which acts as an open boundary condition,
prohibiting the reflection of radiation towards the ergosurface.

In this Section, we show how the behaviour at horizons can be much richer than
this: besides showing that the superluminal dispersion relation can make superradiance
to occur at a horizon, we will discuss instabilities that are triggered by the presence of
an horizon, that can provide a sizable reflection of perturbations determining the onset
of an ergoregion instability. This is done by introducing a third region in our setup,
working as the interior of a black hole horizon; we thus have a modular black hole whose
different features can be tuned to study their effect on the propagation of fields.

4.3.1 Scattering at a horizon

As a first step, consider an interface at y = 0 separating a slow region of subsonic flow
v® < ¢1 in the lower half-plane y < 0 from a fast region of supersonic flow v/ > ¢y. In
contrast to the previous sections, we do not assume that the speed of sound is spatially
uniform, in particular we focus on the ¢; > ¢o case. As compared to our discussion of
superradiance in Sec.3.2, the flow velocities v*/ are no longer assumed to be oriented
along the direction x parallel to the interface, but can be oriented in different directions.
For generic flow velocity directions, the dispersion of the modes in each region can be
obtained by rotating the plots in Fig.3.2 in the (k;, ky) plane.

Let us start from the hydrodynamic Klein-Gordon regime. In the upper region of
supersonic v/ > ¢, flow, the asymptotes of the hyperbolas are oriented in a different way
depending on whether the y component of the velocity U?Jj is smaller or larger than the
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Figure 4.7: (a) Comparison of the cuts at fiw/Mc? = 1 of the Bogoliubov dispersion
relations inside (solid lines) and outside (dash-dotted lines) the horizon for vi = 0,
v:{ = 2.12M¢cy, vf/ = v{; = 0.85¢1 and ¢ = 0.1¢y. Dashed lines are instead the cut of
dispersion relation of the corresponding Klein-Gordon problem inside the horizon. (b)-
(d) Referring to the configuration of Figure 4.8: comparison of the hw/Mc? = 0.2 cut of
the Bogoliubov dispersion relations in the exterior region (dash-dotted lines) with the
one in the ergoregion (b) and with the ones inside a region of supersonic longitudinal
flow vg > ¢y (c,d). Parameters: Ap = —2.12Mcy, vy = v?Jj = 0.85¢1, co = 0.1¢;. In
panel (c¢), Ay = 0. In panel (d), Ay = Ag. The blue lines in (b-d) indicate the value
k-£ = 0.1 considered in the following Figs.4.8 and 4.9.

speed of sound ¢y, which gives rise to different scattering processes. In the former case,
one has a slight rotation of Fig.3.2, namely there still exist two windows of k, values in
which one only has a positive or a negative norm mode and the two regions are separated
by an interval with no available mode. As a result, the same superradiance physics takes
place: depending on k,, an incident wavepacket coming from the subsonic region at
y < 0 can either be totally reflected (region II in Fig.3.2, or be partially transmitted and
reflected (regions III and IV), or undergo superradiant scattering (region I).

In the latter v{f > c9 case, the orientation of the asymptotes is the one displayed by
the dashed lines in Fig.4.7(a). As expected for a horizon, all the modes have a positive
y-component of the group velocity, so they can not travel back through the horizon. In
particular, both a positive and a negative norm mode are available for any value of k,: as
a result the incident wavepacket will split in a pair of transmitted and reflected positive-
norm components in addition to the negative-norm transmitted one. In spite of the
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amplification given by the negative-norm mode, because of this multi-partite splitting,
the intensities of the wavepackets are not necessarily larger than the incident one and
superradiance in the sense of amplified reflection does not generically occur.

The situation changes dramatically when the superluminal Bogoliubov dispersion is
considered. In this case, illustrated by the solid lines in Fig.4.7(a), there exist again
regions of k, values in which a single negative norm mode is available, which leads to
the unexpected behaviour of a superradiant scattering occurring directly at the horizon
in the absence of an isolated ergosurface. GPE simulations of the wavepacket dynamics
(not shown) give results qualitatively identical to the ones in Sec.3.2.

Solid lines in panel (c¢) of the same figure show an analogous dispersion for v:{ =0
case: in this case, there are no k, values for which negative-norm modes only exist, so
no purely superradiant scattering is possible. This shows how a lateral flow is anyway
an essential ingredient of superradiance.

4.3.2 Dynamical instabilities triggered by a horizon

Inspired from general-relativistic black holes, let us now focus on configurations dis-
playing an external ergosurface and an internal horizon like the one sketched in the
upper part of Figure 4.8. This configuration consists of three layers and displays a finite
longitudinal velocity along y in addition to the synthetic vector potential directed along
z. In the outermost layer (left), the speed of sound ¢; exceeds all components of the
velocity and the flow is subsonic. In the central layer, the vector potential Ag is large
enough to give a super-sonic flow along x, but the inward radial velocity v, is still sub-
sonic. Except for the small longitudinal speed, the first interface is expected to behave
very similarly to the ergosurface discussed in the previous Sections. In the third layer
(right), the longitudinal velocity v, exceeds the speed of sound ¢z, so the second interface
behaves as a horizon for long-wavelength waves. The synthetic vector potential Az in
the third region is drawn with a dashed line to indicate that we are going to consider
both the Ay = Ap case (which resembles a vortex with drain) and the Ay = 0 one.

In Figure 4.7 we show comparisons between the fixed-w cuts of the Bogoliubov dis-
persion relations in the left, subsonic region (dash-dotted lines) and in the supersonic
central and right regions (solid lines). Panel (b) shows the comparison between the left
and the central ergoregion: the flow along y is responsible for a tilt of the curves in the
ergoregion with respect to the v, = 0 case shown in Figure 3.5(d) but the structure of
the available modes remains essentially the same. Panels (c) and (d) show instead the
comparison with the third region inside the horizon, in respectively the Ay = 0 and
Apg = Ag cases.

The blue lines in the panels (b-d) indicate a value of the transverse wavevector
k& = 0.1 at which, for the chosen frequency value hw/Mc? = 0.2, the central region
behaves as an ergoregion and the right one as the interior of a black hole. Focusing
on this specific value of k;, in the lower part of Figure 4.8 we show constant-k, cuts
of the dispersion relations. The choice of parameters is such that, for all the values
between Ay = 0 and Ay = Ag of the vector potential in the third region, the interface
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Figure 4.8: Top row: scheme of a configuration including both an ergoregion and an
horizon. The ergoregion is included by means of a vector potential oriented along x.
The horizon is created by changing the speed of sound in the third region. Here, the
vector potential Ay may or may not be present. Bottom row: plots of the dispersion
relations at fixed transverse momentum k,& = 0.1 for the same parameters considered in
Fig.4.7(a-c), namely Ap = —2.12M¢;, vy = 0.85¢1, c2 = 0.1¢1, Ay = A (dashed) or 0
(solid). The gray region indicates the frequency interval in which superradiant scattering
can occur.

between the second and third regions behaves as an horizon (that is inside the horizon
both positive- and negative-norm modes are available at the same frequency) at all
frequencies for which amplified reflection at the ergosurface is possible (gray region).

Based on general arguments of black hole physics [114,115], we could expect that the
horizon behaves as an absorbing element so that all the negative-norm modes created by
superradiant processes at the ergosurface is dumped into the black hole. From a different
perspective and inspired from studies of analog black holes [69], one could also expect
that the horizon may provide some significant reflection. Depending on the relative
magnitude of the reflection coefficient at the horizon and of the amplification at the
ergosurface, this mechanism may give rise to a self-amplification process leading to a
dynamical instability.

This conjecture can be numerically tested by performing a numerical simulation of
the time-dependent one-dimensional Bogoliubov—de Gennes equation (4.2). In order to
create the horizon we also spatially vary the speed of sound in addition to the vector
potential. As done in [17,18,69], this is obtained by means of a suitable spatial profile
of the interaction constant and of the external potential, so to maintain a constant
density for the background condensate Wo(y) = Mei(M“y/ MY as summarized in the
following table. As usual, the interaction constant is related to the speed of sound via
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c12 = 1/91,2n0/M and, with the parameters specified in Figure 4.8, we have the following
configuration.

| Az(y) | 9(v) | V(y)
Yy <YE 0 g1 0
AQ
ye<y<ym || Ap g1 . —ﬁ
Y > YH Ap 92 —;47\[} + (91 — 92)no

While the ergosurface is created via a sharp jump of the vector potential, a smooth
spatial variation of the interaction constant around the horizon is considered, of the form

9(y) = g1 + 92;791 (1 + tanh <y _EOyH» . (4.5)

Here, yg is the position of the horizon and [y regulates the smoothness of the transition.
An analogous analytical form is taken for the vector potential A, (y) crossing from Ag
to Ag.

In order to offer a seed to the instabilities, we start from an initial noisy configuration.
A pair of absorbing regions are included well outside the ergoregion and well inside
the horizon so to mimic open boundary conditions. This guarantees that all spurious
instabilities that may come from the backfeeding of excitations from the outside (black
hole bomb) and from the inside (black hole lasing) of the black hole are fully suppressed.

Even though the structure of the modes is the same in all cases, the numerical results
turn out to be qualitatively different depending on the smoothness of the horizon, that
is on the thickness [y of the transition region and on the difference between Ag and Ap.

In the presence of a second jump of vector potential from A, = Ag to A, = Ag =0,
the behaviour depends strongly on the thickness [y of the transition (4.5). For very sharp
horizons (that is for small ) dynamically unstable modes localized on the horizon
and independent on the size of the ergoregion are observed; these do not seem to be
directly related to superradiant phenomena but depend on the microscopic physics of
the condensate. In the next Subsection we will give more details on these instabilities,
that we plan to investigate in future work.

For smoother horizons, such localized instabilities are no longer present, and a spa-
tially extended dynamical instability of completely different nature takes place, as sig-
nalled by the fast temporal growth of a spatially oscillating pattern that extends all
the way between the ergosurface and the horizon. An example of such an temporal
evolution is shown in Figure 4.9. The origin of this instability can be traced to the
self-amplification of the excitations trapped in the ergoregion according to a mechanism
similar to the one illustrated in Fig.3.6: excitations bounce between the ergosurface,
where they get amplified, and the horizon where they are partially reflected with a suf-
ficiently high amplitude to give an overall increase of the excitation intensity during
a round-trip. These are the typical features of an ergoregion instability: interestingly
enough, such instability occurs here in spite of the presence of a horizon. Note that here
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Figure 4.9: Snapshots of the time evolution of the moduli of the fluctuation spinor com-
ponents given by the reduced one-dimensional Bogoliubov problem at a fixed transverse
wavevector k,& = 0.1 for the configuration sketched in Figure 4.8 with Ay = 0 and
lop = 5¢. The evolution starts from a noisy configuration and absorbing regions are in-
cluded at the boundary of the integration box to avoid spurious reflections. The black
and red lines show the modulus of the u,v components of the Bogoliubov spinor. Time

is measured in units of the external p = mc?.

the radiative wave that enter the horizon is composed of two k, components of opposite
norms whose beating is responsible for the oscillating behaviour seen in the figure for
y > 0.

In order to verify our interpretation, we need to check that the ergoregion instability
disappears when smoother transitions are considered for which reflection is negligible.
While increasing [y is observed to determine a reduction of the instability rate given by
a smaller refection at the horizon, a further increase would require a substantial change
of the configuration to properly accommodate the transition region. We hence chose
to obtain a smoother transition by reducing the second jump of the vector potential
Apg — Ag. In particular, we performed simulations for Ay ranging from zero to a flat
vector potential profile across the horizon interface Ay = Ap, so to pass from a sharper
horizon to a smoother one. For Ay approaching Ag, reflections at the horizon interface
are indeed well suppressed, so that the initial noisy configuration smoothly decays in
time and only displays some long-lived quasinormal modes. This configuration is thus
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close to the standard astrophysical case where reflection of waves traveling towards the
black hole horizon are typically excluded.

Further confirmation of this physical picture is provided by a spectral analysis of the
growing perturbation. This shows that the frequencies of all unstable modes fall in the
superradiant interval (gray region of Figure 4.8). As a final evidence, we checked that
increasing the size of the ergoregion causes the number of unstable modes to increase
and their instability rates to decrease according to the increased round-trip time within
the ergoregion.

On the basis of this analysis, we can conclude that the presence of an horizon does
not in general guarantee the absence of ergoregion instabilities. Observable ergoregion
instabilities may in fact arise for strong enough reflection around the horizon. The fact
that no such instabilities have been ever found in real general-relativistic black holes [10]
or in vortices [109] suggests that in all these cases the horizon region is smooth enough
to suppress reflection. Still, as our calculations show, this feature does not appear to be
a general property of horizons and may not be satisfied in other configurations.

4.3.3 Surface instabilities at the horizon

In the previous Subsection we mentioned that, when changing sharply in space both
the vector potential and the speed of sound, dynamical instabilities localized on the
interface can develop. To give more details about these instabilities, we consider here,
instead of a configuration with three zones as we did in the rest of this Section, a single
interface dividing a region with no synthetic vector potential and subsonic longitudinal
flow from one with a (large enough) transverse vector potential and a lower speed of
sound, making the longitudinal flow supersonic.

In other words horizon and ergoregion occur at the same point, similarly to the
Schwarzschild black hole or to the one-dimensional setup of Subsection 1.5, but with
the added complexity of a nontrivial flow in the extra spatial dimension. This is very
different to what happens in real rotating black holes, where the ergosurface is always
outside of the horizon, but serves here merely an example to show how these surface
instabilities can occur; a more comprehensive study of this interesting physics is planned
in future work.

A time evolution of the Bogoliubov problem in such a configuration with absorbing
regions at the edges of the numerical box, starting from a noisy initial state, results in the
exponential increase of the mode shown in the upper plot of the left part of Figure 4.10;
the quick decrease of the mode above y ~ 150¢ is due to the presence of the absorbing
potential. This exponential growth is reflected in the spectrum of excitations: performing
a diagonalization of the Bogoliubov problem with Dirichlet boundary conditions at the
edges of a numerical box large enough to reduce finite-size effects, one finds a dynamically
unstable mode of essentially identical shape, shown in the lower plot; notice the smoother
decrease of the mode in the absence of an absorbing potential. In the slower y < 0 region
the mode has a smooth exponential decay, while in the faster y > 0 one the decay is slower
and there are spatial oscillations in the moduli of the Bogoliubov spinor components;
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Figure 4.10: Different investigations of the surface instabilities that can develop in the
presence of a simultaneous jump in the value of the synthetic vector potential and in
the one of the speed of sound (i.e. of the interaction constant). In the top left panel
a plot of the dynamically unstable modes as obtained from the time evolution of the
Bogoliubov problem with absorbing boundary conditions at the edges of the numerical
domain. In the bottom left panel a plot of the dynamically unstable mode found with
a diagonalization of the Bogoliubov problem for a finite-size system. On the right log-
scale plot of the determinant of the linear problem given by the matching of the modes
of the two uniform regions with the procedure presented in Subsection 4.1.3; the zero
of the determinant for positive imaginary parts of the frequencies corresponds to the
dynamically unstable mode detected with the other two methods. The parameters used
are longitudinal flow v, = 0.85 ¢1, vector potential in the upper region A;ﬁ =—-212 Mc,
and zero in the lower region, speed of sound in the upper region co = 0.1 ¢;. The problem
is solved at fixed transverse momentum k, = 0.14/&;.

this signals that the mode is composed by multiple (two) momentum components with
different real parts of the wavenumbers, that results in beating.

The spatially decreasing profile of the mode in both the regions suggests that it is a
localized surface dynamical instability. As we will discuss in the next Chapter, the fact
that the mode obtained with diagonalization appears localized is an indication of the fact
that this instability remains in an unbound system. Notice however that the effect of the
finite size of the system used for the diagonalization remains as very small oscillations on
the long right tail of the mode in the bottom left panel. The time dependent simulations
with absorbing boundary conditions mimics the behaviour of an unbound system and
confirms this picture. In the next Chapter we will give a complete discussion of the
effects on dynamical instabilities of the finite size of the system.

Here we can get further confirmation by applying the procedure presented in Sub-
section 4.1.3, that allows to treat exactly an unbound system. By matching the asymp-
totically bound modes in the two regions at the interface at different frequencies one
obtains the determinant shown in the right part of Figure 4.10. Zeros of the determi-
nant corresponding to a dynamically unstable mode and its decaying pseudo-degenerate
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Figure 4.11: Time evolution of the density variations around the constant-density sta-
tionary state for a condensate with a uniform vertical flow v, = 0.85 ¢1, vector potential
in the upper region Agﬁ = —2.12 Mc¢; and zero in the lower region and speed of sound
in the upper region c¢s = 0.1 ¢;. An initial weak noise is added to serve as a seed for dy-
namical instabilities. Periodic boundary conditions are used and two absorbing regions
are included at the y edges, so to mimic an open system in that direction. The exponen-
tially growing mode corresponds to the one observed in the one-dimensional approach
of Figure 4.10.

partner are clearly visible. The real and imaginary parts of the frequency corresponding
to the dynamically unstable mode are compatible with the values obtained from the
time evolution and the diagonalization of the Bogoliubov problem.

Another visualization of this instability can be obtained by performing a numerical
time evolution of the corresponding two-dimensional GPE with absorbing boundary
conditions at the edges of the y range of the numerical integration box. In Figure 4.11
snapshots of such a simulation starting from a noisy perturbation around the uniform
stationary state are shown. One can see that an exponentially growing mode dominates
the dynamics; this mode decreases in a fast way outside of the horizon (y < —50 &)
and has instead a longer tail inside the horizon, exactly as the one of Figure 4.10. The
exponential growth of this mode saturates at long times, when nonlinear effects come
into play; in the last snapshots one can in fact see a substantial modification of the
stationary states, with also the creation of vortices.

The numerical analyses presented here clearly show that a simultaneous jump in the
synthetic vector potential and in the speed of sound can lead to dynamical instabilities
localized on the surface, that is also present in an unbound system. As we underlined in
the previous Subsection, these disappear for smooth enough transitions, that seems to
be the case of general-relativistic black holes.
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4.4 Summary: superradiance and dynamical instabilities

Following the general theory of superradiance presented in the previous Chapter, in
the present one we analyzed the role of boundary conditions in superradiant effects. In
particular we focused on a planar ergosurface obtained with the application of a synthetic
vector potential and we changed the boundary conditions on its two sides by confining
the condensate or by changing the speed of sound.

The presence of reflection brought, as expected, the emergence of dynamical instabil-
ities. In our geometrically simple setup the analogue of black hole bomb and ergoregion
instabilities of rotating spacetimes are obtained with reflections outside or inside the er-
goregion. Through the exact mapping with a one-dimensional charged scalar field these
instabilities turn out to be a realization of the SSW effect for an electrostatic potential
box. Predicted in a toy model for nuclear physics, this effect finds here a first possi-
ble experimental implementation. Away from this ideal dispersionless analogy, when
the superluminal behaviour of excitations in BECs was taken into account, important
suppressions of the instability at high momenta were found, analogous to the ones we
demonstrated for amplified scattering. The behaviour at small momenta is however not
affected by these dispersive effects.

While studying these instabilities via the Bogoliubov problem, we also proved the
dynamical stability of the planar ergosurface in an unbound system. Our setup is hence
a system in which amplified scattering is the only relevant physical mechanism, differ-
ently from analogous flows in hydrodynamics, that display dynamical instabilities of the
interface. We will return to these surface instabilities in Chapter 6, where we will study
their interplay with superradiant effects in a BEC setup.

A conclusion of the previous Chapter was that superradiance can be understood as
a mode mixing at the ergosurface. Here we showed that this implies that, while with-
out dissipation superradiant instabilities emerge, in the presence of reflections amplified
scattering can still occur as a transient time-dependent effect concerning finite-width
wavepackets. This means that in black holes superradiant scattering can also occur in
the absence of an horizon, that only determines the unstable behaviour at late times.
This answers the important question we put forward at the end of Chapter 2 on the role
of boundary conditions for amplified scattering.

Regarding horizons, we also showed how they do not in general provide the necessary
absorption to avoid ergoregion instability, but it depends on the smoothness of the
spacetime around them. This does probably not apply to black hole solutions of the
Einstein equations, for which horizons were found to provide an open boundary condition
and hence dynamical stability, but may be important for analogue models and more
peculiar spacetimes.

This Chapter closes the lessons we derived from BEC analogues for the understand-
ing of superradiance. The following Chapters will deal with the opposite arrow of the
analogy, using the concepts emerging from superradiance to understand the physics of
BECs, starting with the important problem of the stability of quantized vortices in
BECs.



Chapter 5

Ergoregion instabilities in quantized
vortices

Our investigation of superradiance so far has focused on proposing and analyzing
analogue configurations in which the basic mechanisms of the phenomenon appear in a
simple way and with which superradiance and superradiant instabilities can hopefully
be investigated experimentally, also at the quantum level. The flow of information
has hence been, as usual in Analogue Gravity, mainly from the well-known and well-
controlled microphysics of Bose-Einstein condensates to the less approachable one of
curved spacetimes.

In this Chapter our path will instead be the opposite and we will try to get insight
into the fundamental physics of BECs from the gravitational analogy and what is known
about the physics of rotating spacetimes. This perspective was adopted for example
in [144], where schemes to exploit analog Hawking processes to entangle collective phonon
modes were proposed, and in [88], where a one-dimensional superfluid flow instability
was reinterpreted as a black hole lasing effect.

The concepts we are interested in applying are the ones we developed in the previous
Chapters, and in particular what we learned about superradiant instabilities in Chapter
5. We will consider with this perspective the stability properties of one of the most
important features of superfluids and BECs: quantized vortices. These share with our
planar ergosurfaces a purely tangential flow that passes from subsonic to supersonic
when moving towards the core of the vortex.

These objects have received a great deal of attention in the last decades, both theo-
retically and experimentally [16,130], beginning with the very introduction of the Gross—
Pitaevskii equation in early 1960’s in [145], where singly quantized vortices in an infinite
condensate were considered. Since the experimental realization of atomic BECs in op-
tical and/or magnetic traps, extensive studies on the properties of vortices in trapped
gases have been performed [40,146-152]. The idealized case of quantized vortices in
spatially infinite geometries was instead much less considered and only recently a con-
vincing evidence that doubly quantized vortex are dynamically unstable in a spatially
uniform BEC was in fact reported [152], while dynamical stability of such configurations
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had been previously claimed by several authors [149,153]. More in general, a full under-
standing of the microscopic mechanisms determining the stability of quantized vortices
in generic geometries is still missing.

From our analogue gravity point of view it is natural to start by asking what is
the acoustic geometry provided by a quantized vortex. Their irrotational flow is purely
azimuthal and has a radial dependence vy o 1/r, and hence becomes supersonic in the
vicinity of the vortex core. With respect to the vortex geometry presented in Section
1.3.3, the absence of a radial flow implies that there can be no horizon, so that the
acoustic spacetime has only an ergoregion. This naturally suggests the possibility of
ergoregion instabilities (Section 2.5.2). Also, when considering trapped geometries the
vanishing density of the condensate at the border of the system imposes a reflecting
boundary condition on the fluctuation field, so that for quantized vortices in a trapped
BEC also the black hole bomb mechanism of Section 2.5.1 can occur. Unraveling the
different instability mechanisms at play in different geometries is the main subject of
this Chapter.

Notice however that this picture of the possible instability mechanisms for a vortex
relies on the gravitational analogy, that only holds in the hydrodynamic limit, and
attention must be paid to the microscopic features of the BEC. In particular the sudden
density drop in the vortex core falls outside the validity of the hydrodynamic vortex
and the superluminal dispersion of excitations can, as we saw in the previous Chapters,
modify superradiant phenomena with respect to the predictions based on the Klein—
Gordon equation.

In this Chapter we carry out a microscopic study of the Bogoliubov collective ex-
citations around vortices of different charge in spatially homogeneous two-dimensional
BECs beyond the hydrodynamic approximation. With a careful consideration of the
boundary conditions, we confirm that singly quantized vortices are stable in an oth-
erwise uniform condensate, whereas doubly quantized ones are rendered dynamically
unstable by an intrinsic instability of the vortex core, analogous to an ergoregion insta-
bility. We then extend our analysis to vortices with higher charge to further characterize
the instabilities in the different angular momentum channels and additional similarities
with ergoregion instabilities in hydrodynamic vortices (studied in [125]) are found, from
which we conclude that the dynamical instabilities of multiply quantized vortices are
condensed matter analogues of the ergoregion instabilities of rotating spacetimes, with
some modifications due to dispersive effects.

Our results also shine new light on the known results for trapped BECs, showing that
the instability is not induced by the trap and, thus, is not related to black-hole-bomb
type mechanisms. The only effect of the trap is rather to modulate the instability rate
via interference mechanisms and even suppress it in specific regimes. Application of
our formalism to singly quantized vortices brings the unexpected consequence that their
celebrated dynamical stability is not a general fact, but a consequence of the spatially
homogeneous or harmonic trap geometries usually considered in the literature: more
complex configurations showing an inner density bump followed by a constant density
plateau turn out to be dynamically unstable against the vortex spiralling out even at
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zero temperature.

As a final point, we show that multiply quantized vortices provide another example
of how superradiant scattering can also occur in the presence of ergoregion instabilities.
This is further evidence on the fact that dissipation is not an essential ingredient for
superradiance.

The work presented in this Chapter was published in [22].

5.1 Vortices and the linear Bogoliubov problem

Let us start from the Gross-Pitaevskii equation (1.5) describing a dilute Bose-
Einstein condensate at zero temperature
EAVE
- 2M

ihO, W (r,t) = + g|®(r,))? + Vixe | ¥(r, 1), (5.1)

where g is the interparticle interaction constant, M is the atomic mass and Ve (r) is
an external trapping potential. As in the previous Chapters we consider the case of two
spatial dimensions, which simplifies the treatment and is a good approximation for a
pancake-shaped condensate tightly confined in the third direction.

Vortices located at the center of a cylindrically-symmetric system are stationary
solutions of the GPE of the form

Uy(r,t) = f(r)e@e it/ (5.2)

where 4 is the chemical potential of the condensate and ¢ is a number that, for the order
parameter to be single valued, must be an integer. This expresses the quantization of
the circulation of the vortex and we refer to £ as the charge of the vortex. Vortices of
charge ¢ have a purely azimuthal velocity profile of the form

h ¢
vg(r) = U (5.3)
which turns supersonic in the vicinity of the vortex core.

To avoid singularities at r = 0, the (real-valued) amplitude f(r) of the order param-
eter must go to zero for r — 0 so that in the center of vortex the density is depleted.
For a vortex in an otherwise infinite and spatially homogeneous condensate the order
parameter tends to a constant f(r) — f at large distances, while the chemical poten-
tial is 4 = gnoo = g|fso|?. For a vortex of charge £, the current becomes supersonic
at a radius rg ~ £, where the healing length & = i/(mgf2)"/? is calculated for the
asymptotic value of the density. The healing length can also be seen as the distance at
which the density reaches approximately half of the value at infinity [16]. Near the core
of the vortex we are hence away from the hydrodynamic regime.

The stability of vortices can be studied with the Bogoliubov approach of Section
1.1.2, where one linearizes the GPE around the stationary state ¥, and looks for the
eigenmodes of the linearized dynamics. In the cylindrically symmetric geometries under
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consideration, we can decompose the perturbation vector (1.19) in its angular momentum

m components
o  ime il g—int/ h’u¢(r, t)
<5\I’*> (Ta (9, t) =€ 6_i€96i“t/hv¢(7", t) : (54)

and focus our attention on the radial dynamics. For each m component, the time
evolution for the radial spinor |¢) (r,t) := (ug(r,t),v4(r, )T is given by the Bogoliubov—
de Gennes (BdG) equation

ih0; |¢) = Lo |9) (5.5)
with the radial Bogoliubov operator
Dy + Vet + 29% — gf?
Lym=1"" 5.6
& l —gf? —(D_ + Vext +29f% — 1) (5.6)
and ) )
_h o O  (LE£m)

As discussed in Section 1.1.2 for the general case, the evolution (5.5) is o3-pseudo-
unitary, i.e. Ug.,ggmdg = 2%y m, and the associated conserved non-positive definite inner
product (1.23) becomes here

(| g |9) = 27 / dr 7 [ (ryug (r) = v (r)vg(r)] (5.8)

Remember that the energy of an eigenmode |¢;) of the BAG matrix (5.6) with fre-
quency wj; is given by
E; = (il o3 |1hi) hwi, (5.9)

so that, for example, negative-norm (positive-norm) modes with a positive (negative)
real frequency have negative energy, and that complex-frequency modes come in pseudo-
degenerate (sharing the same real part) pairs of decaying and dynamically unstable zero-
norm modes. According to (5.9), zero norm implies zero energy: in physical terms the
exponential growth of unstable modes corresponds to the simultaneous creation of par-
ticles and antiparticles with opposite energies, which leaves the total energy unchanged.

Another property of the BAG matrix important for the present analysis is the particle-
hole symmetry (1.26), that in our cylindrically symmetric geometry, with the choice (5.4),
is expressed by the fact that the spectrum at —m is specular to the one at m. In detail,
there exist pairs i, j of eigenvectors and eigenvalues at +£m that are related to each other

by
(um,j> _ (vm> i =~ (5.10)
V—m,j Um, i

so that both the sign of the frequency and the norm of the mode are inverted. In what
follows, we can thus restrict our attention to positive values of m only with no loss of
information.
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In what follows, it will be useful to also consider the shape (1.82) of the radial BdG
equations in terms of density and phase perturbations én := dn/n and §©

; h fm D M
M2 2 h
o (°9) = g o6 (5.11)
on on
2D i o
M r2
with ) )
~ h 9 O Opf m
D = Wi ( 0 . 72 Oy + 2 > . (5.12)

As we discussed in Section 1.4, for slowly spatially varying (long-wavelength) pertur-
bations the derivative term in the upper right element is negligible and the resulting
equation has the shape of a Klein-Gordon (KG) equation in a curved spacetime with
the local speed of sound ¢; = /g f2/m playing the role of the speed of light.

The spectral properties of the BAG equations summarized above are shared by the
KG equation, but we know that the two equations differ for the associated dispersion
relations, with the BAG one deviating from the linear behaviour of the KG one. In spite
of this difference, it is useful to look at the problem of the vortex stability starting from
what is known for gravitational systems and look for possible modifications due to the
deviations from the linear dispersion of the hydrodynamic limit and to the microscopic
structure of the vortex core.

Notice that, while the hydrodynamic approximation on the background condensate
automatically implies taking the long-wavelength limit for the fluctuations, leading to
the non-dispersive KG problem, the long-wavelength approximation for the perturba-
tion field can formally be performed even for background density profiles outside of the
hydrodynamic regime. This will allow us in Section 5.4 to discriminate between the mod-
ifications to the gravitational effects due to dispersion and those due to the microscopic
behaviour of the density.

5.2 Stability of vortices in trapped BECs: what is known

In an infinite condensate, the energy of a charge ¢ vortex is higher than the one of
an array of ¢ singly charged vortices [36]: this means that multiply quantized vortices
are energetically unstable.

Concerning harmonically trapped condensates, extensive studies within the Bogoli-
ubov approach [146,147] have shown that vortices — even singly quantized ones — are
always energetically unstable since they possess a negative-energy m = 1 mode localized
around the vortex core, corresponding to precession around the trap center. Actual spi-
raling of the vortex out of the condensate requires some mechanism to dissipate the extra
energy, for example via interaction with thermal atoms at finite temperatures [154]. As
a result, the vortex position remains dynamically stable under the purely conservative
dynamics (5.5).
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Figure 5.1: Real (upper plot) and imaginary (lower plot) parts of the BdG eigenfrequen-
cies for modes of azimuthal number m = 2 on a charge ¢ = 2 vortex in an harmonic
trap for different values of the interparticle interaction energy. Here ng = N/I3 with N
number of atoms and lp = \/i/(2Mwy). Black (solid), red (dotted) and green (thicker)
lines correspond to positive-, negative- and zero-norm modes. In the inset a plot of the
energetically unstable mode for gng/hwo = 500: the black (thinner) and red (thicker)
lines show the modulus of the u and v components of the BdG spinor, the dashed line
is a rescaled plot of the condensate density.

While all other excitation modes of singly charged vortices are energetically (and thus
dynamically) stable, multiply quantized ones display alternate intervals of dynamical in-
stability and stability as the nonlinear interparticle interaction is varied with respect to
the trap frequency. An example of this behaviour for m = 2 perturbations on a charge
¢ = 2 vortex, reproducing the conclusions of [148], is shown in Figure 5.1. After numer-
ically finding the radial profile f(r) of the GPE ground state at fixed circulation ¢ with
an external trapping potential Vi (r) = Mwr?/2, we diagonalize the corresponding
BdG matrix (5.6) for a fixed azimuthal number m but different values of the nonlinear
parameter of the GPE, i.e. for different values of the interparticle interaction constant
or for different numbers of atoms in the trap.

One can see that the system has a negative energy mode (negative norm and positive
frequency) for all values of the parameters and is thus energetically unstable. This ener-
getically unstable mode is localized near the vortex core, as can be seen in the inset. As
discussed also in [40], dynamically unstable modes can emerge from the crossing of this
negative-norm band with a positive-norm one. This is a consequence of the symplec-
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tic [42] nature of the BAG problem and in the Hamiltonian systems language is known
as the mixing of modes of opposite Krein norm. This gives rise to the characteristic
mode sticking visible in the upper panel, associated to the instability bubbles that are
visible in the lower panel.

Even though the literature agrees on the occurrence of these instabilities and unam-
biguous experimental evidence is available [151], the situation is much less clear for what
concerns the physical origin of the instability. The fundamental question that we plan
to address in this article is to understand whether the dynamical instability is induced
by the trapping, as some authors suggest [153,155], or whether it is instead an intrinsic
instability of the vortex core, as recently argued in [152].

What is sure is that vortices of any charge in trapped condensates have some angular
momentum channels with energetically unstable modes localized in the core. In the
language of the gravitational analogy, these modes corresponds to negative-energy modes
localized in the ergoregion of a rotating spacetime. The energetic instability can then be
turned into a dynamical one if enough reflection happens on either side of the ergoregion:
if it happens on the outer side, one has the so-called black-hole-bomb effect; if it happens
on the inner side, an ergoregion instability occurs.

As it has been pointed out in [152] and we are going to show in the next sections, the
instability of multiply charged vortices in condensates persists in spatially unbounded
geometries where no reflection from the outer side can occur, so it can be classified of
the ergoregion instability type. The effect of the trapping is rather the opposite, since
it tends to suppress the instability within some specific regions of parameters as already
visible in Figure 5.1.

5.3 A charge 2 vortex in an infinite BEC

5.3.1 Large system limit R — oo

As a first step, we follow the path of [152] and investigate the stability of a doubly
quantized vortex in an infinite BEC by looking how the spectrum of a finite system of
size R evolves in the infinite size limit R — oo. To this purpose, we numerically find
the radial profile f(r) of the GPE ground state ¥, with a given circulation ¢ on a wide
but finite interval [0, R]. In order to mimic a spatially homogeneous BEC, Neumann
boundary conditions O, f|,—r = 0 are imposed on the BEC wavefunction. The BdG
spectrum is then obtained imposing Dirichlet boundary conditions at r = R onto the
perturbation, ug(r = R) = vg(r = R) = 0. The calculation is repeated for growing
values of the size R.

The resulting discrete spectra of modes are shown in the left panels of Figure 5.2 as
a function of R for an m = 2 perturbation on a charge ¢ = 2 vortex. An energetically
unstable mode (with negative norm and positive frequency) is clearly visible in panel
(a) at an (almost) R-independent frequency around 0.44 p/h. This R-independence is a
strong indication that the mode is localized in the core region, which is further verified
in the exponential decay of the envelope of ug and vy of the unstable mode (panel
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Figure 5.2: Real (a) and imaginary (b) parts of the Bogoliubov eigenfrequencies for
modes of azimuthal number m = 2 on a charge ¢ = 2 vortex in a BEC of size R.
Black (solid), red (dotted), green (thicker) lines corresponds to positive-, negative-, and
zero-norm modes. A wider view of the imaginary part is given in panel (d). Here, the
1/vR dashed line envelopes the instability maxima up to moderate R. The horizontal
line indicates the instability rate extracted from the time-dependent simulation with
absorbing boundary conditions shown in Figure 5.3. Panel (c): spatial shape of the
dynamically unstable core mode for the case with R = 60¢. The black (thin) and red
(thick) lines respectively show the moduli of the u4 and v4 components of the Bogoliubov
spinor. The dashed line shows the (rescaled) density profile of the vortex. In the inset
the mode on a shorter amplitude range is plotted to highlight the structure at large r.

(c)). As for the trapped BEC case, dynamical instabilities emerge from the crossing
of this negative norm core mode with the positive-norm collective modes; the resulting
instability bubbles are shown in Figure 5.2(b).

More insight in the instability mechanism is visible in the spatial profile of the dy-
namically unstable mode shown in panel (c): here, one recognizes a localized part at
the vortex core which contributes with a negative norm and an extended part that pen-
etrates deep in the bulk with a positive norm (better visible in the zoom in the inset).
The two add up to a total zero norm, as expected for a dynamically unstable mode.
This spatial structure indicates that the instability is due the coupling of a localized
negative-energy excitation to a propagating positive-norm one. The oscillations that are
visible at large r are due to the interference of the outgoing waves with their reflection
at the system edge r = R.

Looking at Figure 5.2(d), an important distinction between the moderate-R and
large-R regimes jumps to the eyes. In the former case, the positive-norm collective
modes of the condensate are well distinct in energy and the stability islands (instability
peaks) are well separated as a function of R: stability (instability) occurs whenever
the phase of the reflected waves at the r = R boundary destructively (constructively)
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interferes with the oscillation of the core mode. This same mechanism is the cause
of the finite stability windows that are also visible in the trapped condensate case of
Figure 5.1. A time-dependent insight on this destructive interference will be given in
Section 5.6, where we discuss the temporal evolution of the system in response to a initial
perturbation. In contrast, for large R the instability bubbles merge with each other and
the instability rate tends to a R-independent value.

Some qualitative understanding about this crossover can be obtained by analytical
means. As mentioned in [11], the instability stems from the mixing of a spatially ex-
tended positive-norm mode with a localized negative-norm one, so the matrix element
M of the mixing scales as the normalization of the spatially extended mode. In our
cylindrical geometry, this normalization scales as R~/2, which determines the scaling
M(R) ~ R™1/? of the matrix element. This scaling reflects in an analogous scaling for
the envelope of the instability rate maxima in the moderate-R regime where modes are
well discrete, see the dashed line in Figure 5.2(d).

The width of the instability bubbles is instead determined by the width of the re-
gions around the crossing point for which the detuning of the positive- and negative-
norm modes is not larger than the matrix element M. The width in R is hence pro-
portional to the ratio between the matrix element and the derivative dw/dR, namely
OR ~ M/|dw/dR)|.

Since the positive-norm modes have a phononic nature, the frequency of the j-th
mode (with j integer) scales approximately as w; ~ j ¢s/R, so that the derivative at the
crossing point with the frequency w_ of the trapped mode is given by |dw;/dR| ~ w_/R.
Hence the width 6 R of the instability bubbles increases as v/R for growing R, as visible
in Fig.5.2(b). Given the scaling of w; on R, the spacing AR between modes at the same
frequency is instead a constant, so that neighboring instability bubbles eventually merge
with each other into a broad continuum for large values of R.

More in detail, the spacing AR along R can be related to the frequency spacing
Aw between modes at a given R by AR = Aw/|dw/dR|. Since the mode spacing Aw
is related by Aw = 27 /Ty to the round-trip time T;¢ of phonons from the core to the
r = R boundary and back, the merging condition 6R 2 AR can be reformulated as
M(R) Ty 2 1 which has a transparent physical interpretation: the instability bubbles
due to the spatially finite geometry disappear into a structureless continuum when the
round-trip time exceeds the characteristic time of the instability, so that finite-size effects
can no longer affect the dynamics of the instability.

5.3.2 Outgoing boundary conditions

While this way of taking the infinite-size limit may seem a sound way of describing
a spatially infinite system, one must not forget that the eigenmodes of finite systems
have a standing-wave shape and necessarily involve a reflected in-going wave, while for
a truly infinite system no reflection is possible and the eigenmodes must have a purely
outgoing character. As a consequence, the spectrum of a finite system is generally
very different (even in the infinite-size limit) from the one in the asymptotic outgoing
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Figure 5.3: Snapshots of the time evolution of a m = 2 perturbation scattering on a ¢ = 2
vortex. Black (thin) and red (thick) lines respectively show the uy and vg components of
the Bogoliubov spinor. Outgoing boundary conditions are imposed by including a wide
and smooth imaginary potential of Gaussian spatial shape centered at the edge of the
integration box r = 700&, of variance 120§ and amplitude 0.15u, so to effectively absorb
the perturbation spinor |¢) and suppress the reflected waves.

boundary conditions case. Because of this crucial difference, well highlighted for the
Klein—Gordon case in [44], it is thus essential to put any conclusion on the infinite system
on solid grounds by implementing radiative boundary conditions where all reflected waves
are removed from the outset. The approach we used in Section 4.1.3 to treat directly
the open system is not practicable here because the system is not simply composed by
uniform regions and neither an eikonal approximation is possible due to the rapid density
variations near the vortex core. We hence resort to time-dependent simulations.

In Figure 5.3 we summarize a numerical study of the time-dependent BdG equations
(5.5) where such radiative boundary conditions are implemented by adding an effective
absorption at large distances. A series of snapshots of the evolution of a perturbation in
the m = 2 channel in the presence of a ¢ = 2 vortex are shown, starting from a (arbitrar-
ily chosen) real and Gaussian perturbation equally affecting the v and v components of
the BAG spinor (upper-left panel). At early times (not shown) the perturbation splits in
a pair of in- and out-going wavepackets the in-going one is then reflected by the vortex
core and ends up propagating in the outwards direction as well, albeit with a strongly
deformed shape because of the superluminal dispersion (upper-right panel). Eventually,
the spatial shape of the perturbation is characterized at long times by an exponentially
growing, negative-norm unstable core mode and a positive-norm excitation current prop-
agating to infinity (bottom panels). Compared to Figure 5.2(c), the outgoing boundary
conditions remove the interference-induced oscillations at large distance, leaving only
the exponential spatial decay typical of unstable modes. The complex profile visible in
the upper-right panel is a transient effect due to interference between the incident and
the reflected wavepackets at the vortex core and disappears at late times as shown in
the bottom row panels.
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Figure 5.4: R-dependence of the Bogoliubov spectrum of a ¢ = 4 vortex for different
azimuthal m. Black (solid), red (dotted) and green (thicker) lines correspond to positive-
, negative- and zero-norm modes.

The temporal growth of the core mode can be precisely fitted with an exponential
law (not shown) of instability rate (w) ~ 0.00242 u1 /A, indicated by the horizontal line
in Figure 5.2(d) and in perfect agreement with the rate found for the finite system in the
R — oo limit. As a conclusion of this Section, our rigorous way of directly dealing with
an infinite system perfectly confirms the results of [152] and offers further understanding
of the validity of their infinite-size-limit procedure.

5.4 Higher charge vortices

Based on this important general result on the instabilities of a spatially infinite
system, we are now entitled to apply the numerically simpler R — oo infinite-size-
limit procedure to more general cases, starting from ¢ > 2 charge vortices in uniform
condensates. As an example, we display in Figure 5.4 the R-dependence of the different-
m spectra for a given charge £ = 4. Independently from ¢, the m = 1 spectrum always
shows a negative-norm mode around zero energy. This core mode corresponds to the
zero energy mode found in [145] and associated to the translation of the vortex core.
For large but finite R, the frequency of this m = 1 negative-norm core mode is very
small and negative, meaning that the system is energetically stable. As expected, this
frequency tends to 0 in the R — oo limit where translational invariance is recovered.

While the m = 1 mode is the only core mode for ¢ = 1 vortices, for larger £ > 2
other negative norm core modes appear for increasing m at both negative and positive
BdG frequencies, corresponding thus to positive and negative energies. Interestingly, the
energy of the lowest energy (highest frequency) core mode decreases until m = ¢ and then
starts increasing again until it becomes positive and energetic stability is recovered for
all m > 2¢ — 2. Since dynamical instabilities result from negative norm modes crossing
the positive norm ones, this means that instabilities can only occur in the finite range



138 Chapter 5. Ergoregion instabilities in quantized vortices

T T T T T T T T T
25 o 405
IR hlm(w)/p —e—
- 2F . @ hRe(w)/p = 404
5 o .
x N N =
S 15t : Q\\ 403 3
= N § ko]
3 " e p
E 1} L% 9. 402 €
< “H. \§~_§ %
- _ - <
0.5 "‘ln._»'— 0.1
0 1 1 1 1 1 1 1 1 1 0

2 3 4 5 6 7 8 9 10

Figure 5.5: Imaginary (black circles) and real (red squares) parts of the m = 2 unstable
mode frequency for growing vortex charge £. The meaning of the error bars on the black
circles is explained in the text.

of m values
2<m<20—2. (5.13)

Notice that this result differs from what is reported in previous literature: Ref. [148]
reports dynamical instabilities only for m < ¢, while Ref. [40] claims that they exist for
all m > 2.

For what concerns the rate of the different instability channels, we find the quite
unexpected result that for all values of ¢ the rate is strongest for m = 2 and then
decreases with m. Since the instability of multiply charged vortices is associated to their
splitting into an assembly of ¢ singly charged vortices, one may have expected the most
unstable mode to be at m = ¢. However our analysis shows that the vortex decay begins
with lower-m deformations of the core and the splitting in ¢ parts only appears during
the later dynamics dominated by nonlinear effects.

To investigate instead the ¢ dependence of the instability, we focus on the (most
unstable) m = 2 channel and for each ¢ we perform the infinite-size-limit procedure
until the instability bubbles have fully merged into the large- R unstructured continuum
illustrated in Figure 5.2(d). To further remove numerical artifacts, we take the average
of the last few R-dependent oscillations as the instability rate and the corresponding
variance as an estimate of the error on this value. The result for vortices up to charge
¢ = 10 is shown in Figure 5.5, where also the real part of the frequency of the unstable
modes is shown. Surprisingly the instability rate is highest for the lowest ¢ = 2 charges
and decreases continuously while increasing £. This implies that the first stages of the
vortex splitting process are slower for higher charge vortices.

It is now interesting to compare our results to the recent work [125] carried out for
a purely hydrodynamic system for which the gravitational analogy holds exactly. With
the aim of studying ergoregion instabilities, this work considers the case of a vortex
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without a drain and, since the hydrodynamic description breaks down near r = 0, the
KG equation must be supplemented with a reflecting boundary condition at a finite
radius. For a given size of the ergoregion, the authors then find that all the high-enough
m modes are dynamically unstable, but the instability rate is stronger for the lower-
m unstable modes. The fact that this overall hierarchy of the instability rates of the
different m-channels is shared by the Bogoliubov and the hydrodynamic calculations
confirms that the nature of the instability is indeed the same in the two cases.

The main difference between the two calculations lies in the upper bound on the
m instability range. Also this feature is however compatible with the interpretation
of the instability in terms of an ergoregion instability: it can in fact be ascribed to the
superluminal dispersion that pushes the energy of the high-wavevector excitations modes
towards high energies. This physical interpretation was numerically confirmed by solving
the linearized problem for the excitation modes in the long-wavelength approximation.
To this purpose we applied the same diagonalization procedure used for the BAG problem
to the corresponding KG problem, that is equation (5.11) without the derivative term in
the upper-right element. This removes the dispersive effects. As expected, in this case
we find no upper bound on m for the occurrence of instabilities, so that unstable modes
are also present for m > 2¢ — 2.

The fact that the same conclusions were obtained in the hydrodynamic calculations
for a spatially homogeneous density profile of [125] suggests that the specific profile of the
density around the vortex core does not have any substantial effect on the m-dependence
of the instability rates. On the other hand, the density depletion around the vortex core
seems to play an important role in the ¢ dependence of the instability rate: an increase of
the instability rates with the vortex circulation was in fact observed in the hydrodynamic
case of [125], in stark contrast with the decrease found in our calculations shown in Figure
5.5. Since the same decrease of the instability rate was observed in the corresponding
KG calculations where the dispersive effects are not present but the density depletion in
the core remains, this difference can not be ascribed to the superluminal dispersion of
Bogoliubov excitations, but rather to the density depletion around the vortex core.

As a main conclusion of this and the previous Sections, our joint numerical and
analytical analysis fully confirms that the instability of multiply quantized vortices in
BEC:s is a dispersive version of the ergoregion instability of rotating acoustic spacetimes
and has no relation with the black hole bomb effect.

5.5 On the stability of singly charged vortices

In the previous Section we saw how, for all the vortex charges, the m = 1 channel
shows a core mode at zero frequency in the infinite system corresponding to a translation
of the core: thanks to translational invariance, this displacement does not alter the
energy of the system. Based on ergoregion instability arguments, the stability of charge
£ =1 vortices can be attributed to the dispersive effects that do not allow the presence
of localized negative-energy modes at higher m > 1.
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Figure 5.6: Left column: BdG spectra of a £ = 1 vortex in a harmonically trapped
condensate as a function of the interparticle interaction energy (top). Spatial profile
of the energetically unstable mode for gny = 1000hwy (thin black and thick red lines
correspond to the moduli of the ug and vgs components of the Bogoliubov spinor in
arbitrary units) along with (dashed line) a rescaled version of the condensate density
profile (bottom). Right column: BdG spectra of a £ = 1 vortex in the presence of an
attractive Gaussian potential of the form (5.14) of strength A = 2gn., and spatial size
o = 5¢ (with ne asymptotic density and £ the associated healing length) as a function
of the total radius R of the condensate (top). Spatial profile of the dynamically unstable
mode for R = 100¢ along with (dashed line) the condensate density profile (bottom).

In contrast to what is often claimed, the stability (both energetic and dynamical) of
¢ =1 vortices in trapped geometries is not a general fact. For example, as we already
said, vortex translation is energetically unstable in harmonically trapped BEC [146],
whose inverted-parabola-shaped density profile favours expulsion of the vortex. The
spectra for varying nonlinear interaction is visible in the top-left part of Figure 5.6, where
one can see that a negative-energy core mode (whose spinor components are plotted in
the lower panel) approaches zero frequency from above while increasing the number of
atoms. The fact that this energetically unstable negative-norm mode is always located in
frequency below the lowest positive-norm collective mode guarantees that the energetic
instability never becomes dynamical.

Quite unexpectedly, if the density profile shows instead a bump surrounded by a
wide region of lower density, this ordering of the modes is no longer guaranteed and
collective modes satisfying the resonance condition for dynamical instability may be
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available for m = 1, leading to a dynamical instability of singly-charged vortices. This
feature is illustrated in the right part of Figure 5.6, where the infinite-size-limit procedure
is applied to a condensate subjected to an inverted-Gaussian-shaped potential

Vext = —Aexp[—12/(20?)] (5.14)

with a positive chemical potential u > 0. The corresponding density profile is plotted
with a dashed line in the lower panel: it displays a bump at short distances r < o,
then it tends to a non-vanishing constant value for large » > o. In this configuration,
instability regions appear as shown by the green lines in the top-right panel. In this
parameter regions, the vortex starts precessing around the center with an ever-increasing
radius, while its periodic rotatory motion leads to the emission of outward propagating
sound waves in the external flat region. As usual, the positive energy of the emitted
sound compensates for the negative energy associated to the vortex motion. In the
harmonically trapped condensate, this sound emission process would not be possible as
the cut-off frequency for collective modes in the condensate lies above the precession
frequency of the vortex.

Further insight on this physics is obtained by comparing the spatial shape of the
m = 1 core modes plotted in the bottom panels for the two cases. This graphs show
how these modes share the same shape near the core but, while the one in the harmonic
trapped BEC quickly decays to zero as it has no collective mode to couple with (bottom-
left panel), the one in the Gaussian potential couples to a long-wavelength collective
mode that extends throughout the whole condensate, as it can be seen from the non-
vanishing weight at large r (bottom-right panel).

As a final point, it is interesting to note in the inset of this plot how the u4 part of
the spinor slightly exceeds the vy one at large r. This is in contrast to the harmonically
trapped case, in which ug and vy simultaneously vanish when the density approaches
zero, and shows that the long-distance part of the excitation indeed contributes with a
positive energy and norm and confirms that the instability results from the mixing of a
localized negative-norm mode with an outward-propagating positive-norm mode.

5.6 A time-dependent perspective: superradiant scattering
and destructive interference

As we mentioned in Section 1.1.3, dynamical instabilities are associated to the pres-
ence of energetic instabilities and, as we stressed throughout this thesis, the localization
of negative-energy modes in some part of the system is the basic ingredient of amplified
scattering. These localized modes, that are here the core modes, are the origin of the
dynamical ergoregion instabilities if they remain in the system and get further amplified
in a stimulated way while emitting positive-energy excitations outside.

We already discussed in the previous Chapter that the presence of an absorption
mechanism for these modes, although guaranteeing dynamical stability, is not an es-
sential ingredient of superradiant scattering, that just depends on the presence of an
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Figure 5.7: First and second row: Snapshots of the evolution of a Gaussian Bogoliubov
wavepacket of m = 2 incident waves hitting a charge ¢ = 4 vortex. The frequency of the
incident wavepacket is centered around w = 0.2h/pu, namely the frequency of the core
mode visible in the spectra shown on the top-left panel of Figure 5.4. Dirichlet boundary
conditions are imposed to the Bogoliubov modes at R = 380£. The arrows indicate the
direction of the radial group velocity. The bottom panel shows the time-dependence
of the core mode amplitude (red solid line), as measured by the r = 2¢ value of the
vy component of the BAG spinor. The black dashed line is the time-dependence of the
same core mode amplitude for a slightly different size R = 388.4¢, for which the system
is dynamically unstable. Around ¢ = 900u/h, the two curves show clear signature of the
destructive vs. constructive interference between the reflected wavepacket and the core
mode.

ergosurface and not on the boundary conditions of the problem, that may be specified
even very far from the ergosurface itself.

The present case of quantized vortices provides another example in which superra-
diance in the presence of dynamical instabilities can be demonstrated. Superradiant
amplified scattering is illustrated in Figure 5.7 where we show snapshots of the evolu-
tion of a Gaussian wavepacket of azimuthal number m = 2 incident onto a £ = 4 vortex
in a spatially homogeneous condensate. In practice, we have numerically obtained the
condensate profile as done in Section 5.3. We have then constructed a wavepacket of
Bogoliubov excitations centered at the frequency of the core mode found in Figure 5.4
and with a group velocity directed towards the vortex core.

The wavepacket reaches the vortex core between the first (¢t = 0) and the second
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(t = 3504/ h) snapshots. While being reflected from it, it populates the (negative energy)
core mode as visible in the narrow excitation peak on the left edge of the second to fourth
panels. Even though pulse distortion effects make it hardly visible by eye, a quantitative
comparison of the BAG norm (5.8) of the wavepacket before and after the scattering
process shows that the reflected packet is amplified by approximately 18%. This is a
clear evidence of the occurrence of superradiant scattering in the short-time dynamics.

At later times, after being triggered by the superradiant scattering process, the
amplitude of the core mode keeps exponentially increasing between ¢ = 200A/p and
t = 800h/u, as it is visible in the time-dependence shown in the bottom panel. Of
course, this increasing amplitude is associated to an analogous exponential growth of
the excitations in the bulk behind the amplified wavepacket.

While this first stage of the evolution does not depend on the actual size of the
system and is well captured by the theory for an infinite condensate, the long-time
dynamics crucially depends on the specific value of the system size R. In the simulation
of Figure 5.7, this was chosen to fall within one of the stability windows. In the third
snapshot at ¢ = 750h/p, the amplified packet has been already reflected by the Dirichlet
boundary condition at the end of the system at R = 380¢ (outside the plot) and is
approaching again the vortex core. The complex oscillatory profile visible in this third
snapshot is due to the interference of the reflected wavepacket with the exponentially
growing emission by the unstable core mode. A second scattering process occurs when
this reflected wavepacket hits the vortex: during this scattering process, the incident
wavepacket interferes with the excitation amplitude left in the core mode after the first
scattering and, since then, exponentially growing. For the chosen value of the condensate
radius R, destructive interference occurs and the amplitude of the reflected wavepacket
is suppressed, as shown in the last snapshot at ¢ = 1100h/ .

The complete time dependence of the negative norm core mode amplitude is shown
in the bottom panel. As a signature of the destructive interference effect (solid red line),
the exponential increase of the core mode amplitude suddenly stops around ¢ = 900%4/u
and is replaced by a strong decrease at later times. After this first back-and-forth motion,
the core mode evolution keeps displaying alternate intervals of increasing and decreasing
amplitude.

This complex time-dependent behaviour reflects the dynamical stability of the sys-
tem as predicted by the time-independent calculation of the spectrum and is a clear
illustration of how the finite size of the system is able to quench the ergoregion insta-
bility that would instead appear in an infinite geometry. In agreement with the results
presented in Sec.IV for the large R behaviour, the interference effect ceases being rele-
vant for v(R)Ty 2 1, that is when the round-trip time 7Ty is so large that the core mode
amplitude has time to grow to such large values that the reflected wavepacket no longer
has any significant effect on the exponential growth of the instability.

In the dynamically unstable regions, the interference at each scattering event would
instead be constructive, leading to a ever increasing core mode amplitude with an even
higher rate than in the infinite system. The effect of this constructive interference on
the core mode amplitude for a slightly different system size R = 388.4¢ is plotted in the
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lower panel of Figure 5.7. As expected, in this case (black dashed line) the constructive
interference leads to a sudden upwards jump of the core mode amplitude, which then
keeps exponentially increasing.

5.7 Summary: rotating spacetimes and quantized vortices

In this Chapter we applied the analogy with rotating spacetimes to investigate the
physical origin of the instabilities of multiply charged vortices in two-dimensional Bose—
Einstein condensates. The instabilities can be directly associated to the presence of
energetically unstable modes in the vortex core region where the flow is supersonic; as
we discussed in the introductory Chapter 2 and showed in detail in Chapter 4, this is
typical of ergoregion instabilities occurring in curved spacetimes. The differences with
gravitational systems and analogue models in the hydrodynamic regime — in particular
the suppression of instabilities at high values of the angular momentum — can be ascribed
to the superluminal dispersion of Bogoliubov waves in condensates.

In contrast to the black-hole bomb instabilities triggered by reflections outside the
ergoregion, here the finite size of the system rather leads to a quench of the instability
via a destructive interference effect. This explains the peculiar stability properties of
vortices in trapped condensates and also proves that the dynamical instabilities are not,
as it is sometimes claimed, induced by the trapping. Based on our novel understanding
of these instability phenomena, exotic geometries where singly quantized vortices are
also dynamically unstable were identified.

From the analogue gravity point of view, our calculations show the robustness of su-
perradiant phenomena against the superluminal corrections to the linear sonic dispersion
and give an example of how the gravitational analogy can provide qualitatively correct
results even outside its hydrodynamical regime of validity. Quantized vortices also pro-
vide another example of how superradiant scattering can also occur in the absence of
dissipation (e.g. of an horizon), as we concluded in the previous Chapter. We showed
this here with time-dependent simulations of the BAG equations for perturbations on
a dynamically unstable multiply quantized vortex, that also illustrated once more how
finite size effects can stabilize the system.

Here we dealt with the stability of single vortices in a cylindrically-symmetric system:;
a step forward to the consideration of the dynamics of multiple vortices is made in the
following Chapter, where the ideas coming from superradiance are applied in a different
configuration.



Chapter 6

Kelvin—Helmholtz and superradiant
instabilities of a quantized shear layer

In Chapters 3 and 4 we studied superradiant scattering and superradiant instabilities
from an analogue-gravity point of view by introducing a minimal and geometrically
simple configuration in which the essential elements involved in these phenomena can
be distinguished and tuned. We said that the flow of the condensate in our planar
ergosurface is analogous to the one of tangential discontinuities in hydrodynamics, for
which amplification of acoustic waves can be predicted as we reviewed in Subsection
2.1.2. However, while we showed that the interface is dynamically stable in our case,
hydrodynamic tangential discontinuities are well-known to be dynamically unstable to
the formation of ripples along the interface.

An example is the Kelvin—Helmholtz (KH) instability (see for example [95,156]), that
is known to happen not only for sharp tangential discontinuities, but also for smoother
shear layers between parallel flows. The effect of this instability is to amplify pertur-
bations of the transition layer between the two flows that end up to mix in a turbulent
way. An example can be seen in Figure 6.1, where the shear layer is seen to roll up cre-
ating the characteristic vortices that can also be observed in atmospheric clouds. This
is an inviscid instability, meaning that the phenomenon is mainly determined by inertial
effects and not by viscosity [156].

Superfluids are known to display inviscid flow and KH instability was experimentally
observed at an interface between the two superfluid phases of 3He [157,158]. Also Bose—
Einstein condensates (BECs) were considered for the study of this phenomenon; in par-
ticular in [159] KH instability was shown to develop in phase-separated two-component
BECs, while in [160] a quantized vortex sheet in a single component condensate was
considered. We are here more interested in this last work, in which a potential barrier
between two counterpropagating flows is progressively lowered to create a shear layer. In
contrast to our planar ergosurfaces, involving tricks such as a synthetic vector potential
or the inclusion of a periodic trapping potential, in this configuration the irrotationality
constraint on the velocity is not broken; hence the only way in which the vorticity that
is intrinsic to the transition between the two flows can enter the system is through the
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Light fluid
Heavy fluid

Figure 6.1: On the left representation of a possible realization of the Kelvin—Helmoltz
instability in an hydrodynamic context. Two liquids of different densities are posed on
top of each other and the container is then tipped so that the heavier fluid falls and
the lighter one rises, thus creating a shear layer. On the right a photograph of the
experimental realization of [161], in which the interface can be seen to roll up, creating
a characteristic pattern. The pictures are taken from [156].

creation of quantized vortices. In the KH instability, the vortices are then seen to roll up
and clusterize, with a behaviour that is the analogous of the one of the classical vortex
sheet shown in Figure 6.1 but with quantized vorticity.

While from this configuration one can expect superradiant scattering with the ar-
guments of Section 3.2 based on the asymptotic dispersion relations, the focus of this
Chapter will be on surface dynamical instabilities. We will see that the physics changes
qualitatively with the relative velocity of the two flows and ranges from the quantized
version of the Kelvin—Helmholtz instability we just described [160], to a new regime
of slower instability for superradiant relative velocities between the two parallel flows
Av > 2c¢s. We will call this radiative instability (RI) since the unstable modes are not
localized in the shear layer and display instead an emission of phonons in the two regions
of uniform flow.

The transition to this second regime is given by the emergence of energetic insta-
bilities in the two (supersonic) flows and bears resemblances both with superradiant
instabilities discussed in Chapter 4 and with vortex instabilities of Chapter 5 and may
be of relevance also for classical hydrodynamics. While the velocity field of this configu-
ration resembles the one giving rise to the SSW instabilities of Section 4.1, the radiative
instabilities in the present case do not disappear in an unbound system and are hence
similar to multiply quantized vortices that, as we saw in the previous Chapter, maintain
their instability in the unbound system.

In the following we attack the problem by numerically studying the time evolution
of the Gross—Pitaevskii equation and by solving the linearized Bogoliubov problem on
top of the quantized vorter sheet configuration with a Bloch-waves approach. Besides
confirming the occurrence of the quantized KH instability for relative flow speeds Av <
2¢g, for which the hydrodynamic low-wavelength physics seems to dominate, we display
and characterize the new radiative instability regime at large Av > 2¢; and another
regime at very small velocities in which instead the short-wavelength physics of the
quantized shear layer dominates. The work presented in this Chapter is under completion
and will be object of a future publication.
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6.1 GPE simulations

As in the rest of this Thesis, we describe a BEC at T' = 0 tightly confined in one
direction (in a pancake shape) with the GPE in two spatial dimensions [16]:

Ve

thoyv (t,x,y) = |— Wi

+ g|U(t, 2, 9) > + Ves (£, y) | U(L, 2, ). (6.1)

As indicated in this equation, we consider an external potential constant along x and
possibly dependent on time.

As was done in [160], we consider periodic boundary conditions along x and a po-
tential composed by two hard walls at y = £L, /2 and by a repulsive Gaussian potential
centered in y = 0. The Gaussian potential is initially strong enough so that the con-
densates in the two region are separated and independent, as shown in the leftmost
panels of Figure 6.2. The ground state of the GPE with this potential in computed
via imaginary-time propagation and at ¢ = 0 the two condensates are given equal and
opposite momentum kicks so that they develop equal and opposite velocities' +v along
T.

The intensity of the central Gaussian potential is then linearly decreased in time
so to vanish at ¢ = 100, after which the external potential is composed only by the
time-independent hard walls. After the central barrier is lowered the only way for the
condensate to satisfy the irrotationality of the velocity vector field is to create an array
of (singly) quantized vortices along y = 0, in numbers equal to the difference of the
winding numbers of the phase in the two channels. This can be understood from plots of
the phase of the order parameter as shown in Figure 6.3. In other words, given a relative
velocity Av between the two condensates, the number of vortices per unit length will be

M Av

Nyort — h o . (62)
For values of x that do not correspond to a vortex, the y dependence of the trans-
verse velocity v, can be in good approximation fitted with a functional form of the shape
vz (y) = vtanh(y/d,), with §, width of the transition region between the two counter-
propagating uniform flows. This is a well-known velocity profile in hydrodynamics, whose
inviscid (Kelvin-Helmholtz) instability was studied in [162]. Fits of the numerical data
obtained from the GPE show that while increasing the velocity the width of the shear

layer decreases approximately as
h 1
§o~ = 6.3
v Tro (6.3)
In Figure 6.2 we show, for two different relative velocities, snapshots of the time-
evolution of the GPE following this procedure and including a small noise on the order

parameter ¥ as a seed for instabilities. In the first example, for Av < 2¢5 (or v < ¢s),

"Remember that, differently from what we did in Chapters 3 and 4, here the physical velocity corre-
sponds with the canonical velocity AVO/M, since no synthetic vector potential is used.
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Figure 6.2: Time evolutions (obtained by solving the GPE) of the density of a con-
densate confined along y by hard walls and with a central Gaussian potential Vg =
Aexp(—y?/20?%) with A = 5u and o = €. As shown in Figure 6.3, opposite velocities are
imposed for the two parts of the system and when the Gaussian potential is progressively
lowered (between t = 0 and ¢ = 100 p/h) an array of quantized vortices develops. The
upper plots show the case v = 0.491 ¢4 (i.e. Av < 2¢4) and the lower ones v = 1.473 ¢4
(i.e. Av > 2¢g). The first case shows the KH behaviour presented in [160], in which
vortices clusterize and co-rotate. The second one is an example of the RI regime, in
which the instability is slower and the unstable mode is not localized on the vortex line,
but spreads all over the system.
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Figure 6.3: Time evolutions of the phase of the condensate associated to the density
evolutions shown in Figure 6.2. The x range in the second case is reduced to improve
visibility. In the leftmost panels one can see how opposite gradients of the phase result
in the creation vortices, corresponding to each open end of a branch cut. While in the
upper KH case the branch cuts are mostly displaced around y = 0, in the lower RI case
they are significantly distorted on their whole length.
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the vortex line is unstable with a surface instability similar to the KH instability of
hydrodynamic. After some time vortices start to move from the horizontal y = 0 line
and begin to co-rotate in clusters of growing size. In the second example instead, in
which Av > 2¢q, even if the vortices are much closer, they do not move initially from
the horizontal line and an unstable growing mode develops in the whole system, as can
be seen from the emerging pattern. Surprisingly, the vortices take a longer time to move
and do so together with significant density variations in the bulk of the system. This
behaviour also reflects in the behaviour of the phase of the condensate shown in Figure
6.3, whose branch cuts are in the first case significantly deformed only in the central part
of the system, while in the second case become wiggly on their whole length. The fact
that the emerging pattern in the second case resembles a superposition of up-going and
down-going waves suggests that phononic propagating modes are involved; we hence call
this radiative instability (RI).

Further evidence on the difference of localization of the unstable modes in the two
cases is obtained by varying the vertical size of the system L,, that is the separation
between the two hard walls. We observe that for Av < 2¢4 the time for the vortex line
to deform is essentially independent from L,, while for Av > 2¢, the instability rate
decreases while increasing L, .

All these features suggest that the instability resembles the analogue SSW effect as
depicted in the GPE simulations of Figure 4.1; in fact the d, > 2¢4 threshold for this
kind of instability is the same in the two cases, and also the SSW instabilities strongly
depends on the system size. However we will see in the following that, despite the
similarities, the radiative instability is also present in an unbound system along y, while
we know that the SSW one relies on the finite size.

While strikingly showing the different instability mechanisms, time evolutions of the
GPE are not the best tool to obtain a complete picture of the phenomenon. The relatively
long time the instability takes to significantly deform the line of vortices suggests that
the configuration obtained when the central Gaussian potential is lowered is a stationary
state W, (x, y) of the GPE. This is confirmed by the fact that imaginary time evolutions of
the GPE with fixed winding numbers in the two channels converge to states of the shape
we found with the above time-dependent procedure. In the following we hence resort to
a study of the linear stability of this stationary state with a Bogoliubov approach.

6.2 Bloch functions for the Bogoliubov problem

The natural approach to the study of the Bogoliubov problem in this configuration
is to take advantage of the periodic structure of the stationary states we are interested
in; the vortices along y = 0 are in fact equispaced along x (as can be seen in the
second (¢t = 100) panels of Figure 6.2). As usual we consider a small deviation from the
stationary state

U(t,a,y) = e HM (U, (x,y) + 00(t,2,y)), (6.4)
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Figure 6.4: Real (top panels) and imaginary (bottom panels) parts of the eigenfre-
quencies of the Bogoliubov problem for varying Bloch momentum K for vertical size
L, = 20§ and for four different values of the velocity v in each parallel flow. The K
range is truncated at the edge of each Brillouin zone. Black lines correspond to positive-
norm modes, red lines to negative-norm ones and green lines to zero-norm dynamically
unstable modes, giving rise to the bubbles of instability in the lower plots. At the cross-
ing of the v = ¢, threshold, energetic instabilities begin to be present. One can see the
transition between a regime in which the zero-frequency KH instability dominates to a
regime of RI, in which the instability maxima occur at finite K.

where the stationary state W, relative to a given velocity v in each channel has the
periodicity

v, (ac + ,y) =V, (z,y). (6.5)

Tvort

The Bogoliubov spinor describing perturbations can hence be decomposed in decoupled

Bloch waves of the shape
5"¢ _ iK=x ¢K

where ¢ has the same periodicity (6.5) of the stationary state, and K belongs to the
first Brillouin zone —%U <K< %v. The resulting Bogoliubov equations at fixed v and

K are
Lo (ox) D gV (b
e <¢}§<>_[—g(‘lfi§)2 —D} <¢K> 67

h2Vv2  hK h2K?
D—_ U R w2 1 Ve — .
onr ~ ar Ot o H20NWl A Ve — (6.8)

with
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To solve this problem we first compute the lattice cell of ¥,, that is the portion
of the stationary state containing one vortex, that for each v has a length along = of
1/nyort, where the linear density of vortices is given by (6.2). Notice that, since the
lowest possible winding number in each channel is one, one cannot obtain less than
two vortices; in other words, because of its phase, the periodicity of the complex order
parameter W, is 2/nyort. However, in the Bogoliubov problem (6.7) only the square of
the order parameter enters, so that the physical periodicity of the system is actually
1/nvort-

We hence compute, for a fixed v, the order parameter with an imaginary-time prop-
agation of the GPE on a numerical = range of 2/nyet, imposing unit winding number
in each channel, and then construct the Bogoliubov matrix with half of the x range of
the obtained V,,.

We then diagonalize this matrix, for a given Bloch momentum K, that we compute
using discretized expressions for the derivatives. We repeat this diagonalization sampling
all the transverse momenta K in the first Brillouin zone? for the given v. Examples of
the obtained spectra for different values of the velocity of the two opposite parallel flows
are shown in Figure 6.4.

One can see that for Av < 2¢, the spectra are composed of positive-energy modes
(positive-norm at positive frequencies and negative-norm at negative ones) and by a zero-
frequency dynamically unstable branch, whose instability rate increases while approach-
ing K = 0. For Av > 2¢, instead the positive- and negative-norm parts of the spectra
merge, reflecting the energetic instability associated to the supersonic flows in both the
upper and the lower part of the system. As we already saw in multiple occasions, when
energy bands of opposite norm sign approach, they become pseudo-degenerate, giving
rise to dynamically unstable branches.

One can see here that the emergence of these new dynamical instabilities perturbs
the zero-frequency KH unstable branch, suppressing it. For high enough velocities in
fact the KH behaviour dominated by small momenta is replaced by (lower) maxima at
finite K. The suppression of the KH instability in favor of a slower radiative instability
is hence to be attributed to the coupling of the degrees of freedom responsible for the
local deformation of the vortex array with the ones of the excitation modes in the two
uniform flows.

A quick picture of the different instability regimes can be obtained by looking at Fig-
ure 6.5 in which we show, for two different L,, the maximum instability rate for different
values of v and the corresponding Bloch momentum. Three distinct regimes are appar-
ent. For small velocities the maximum instability rate is approximately independent
from v, changes with the vertical size of the system and occurs at the edge of the Bril-
louin zone; this small velocities regime was not included in the GPE simulations of the
previous Section, since the large spacing between the vortices requires a large integration
box and the small instability rate requires long times of evolution. For higher velocities
(but below v = ¢;) the maximum instability occurs for K = 0, increases linearly with

2 Actually, because of the symmetries of the system, the positive-momenta half of the Brillouin zone
is enough.
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Figure 6.5: Maxima (left plot) and the corresponding transverse momentum values (right
plot) of the instability for different values of v and for two different vertical sizes of the
system L,. Dashed lines are simply a guide for the eye and the gray line in the right plot
indicates the edge of the Brillouin zone. Three regimes are distinguishable, differing for
the v dependence, the L, dependence and the transverse momentum corresponding to
the maximum (see main text).

the velocity and is independent on the system size; this is the KH regime. Finally, for
higher velocities the maximum instability rate occurs for finite values of K (increasing
with v), is approximately constant for increasing velocities and strongly depends on the
system size; this is the RI regime.

In the next Section we consider in detail these three regimes, starting from the most
known one displaying the quantized Kelvin—Helmholtz instability

6.3 Instability regimes

6.3.1 Small velocities: Kelvin—Helmholtz regime

In hydrodynamics the KH instability for a (continuous) vortex sheet, i.e. a tangential
discontinuity between two parallel flows v; and vs, is known to have the dispersion
relation (see [156] Section 4.3.1)

V1 + U2 U1 — V2

= kr +
w 9 T 1

kr, (6.9)

where k7 is the wavevector of the perturbation tangential to the discontinuity (parallel
to the flows). This result is modified if instead of a tangential discontinuity a finite-
width vorticity layer is present, for example for a piecewise-linear profile such as the one
depicted in Figure 6.6(a) the dispersion relation becomes (see [156] Section 4.3.2)

V1 + V2 .Ul — V2
kr +i———=
5 TETTYS

w =

Ve s — (2kps — 1)2: (6.10)
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Figure 6.6: Plots describing the hydrodynamic prediction for the Kelvin—Helmholtz
instability for a vorticity layer of finite width. Panel (a) displays a piecewise parallel
flow where two uniform flows are connected by a linear transition region of finite width
2). In panels (b) and (c) the real and imaginary parts of the frequency of the unstable
modes of this parallel flow, as expressed by the dispersion relation (6.10). The dashed
line in panel (c) shows the result for a zero-width tangential discontinuity (6.9). A
suppression of the instability for high transverse momenta due to the finite-width shear
layer is visible. Analogous plots are shown in Section 4.3.2 of [156]. Qualitatively similar
results are found for a parallel flow with an hyperbolic tangent profile, similar to the
velocity field of our condensate.

our case corresponds to v; = —vy = v. Panels (b) and (c) of Figure 6.6 show the real
and imaginary parts of the frequency of the KH modes. At low transverse momenta
the instability rate increases linearly, as in the zero-thickness case (6.9), while at higher
transverse momenta (above k7d ~ 0.6) the instability is quenched. An analogous sup-
pression of the instability was found in [162] for an hyperbolic tangent velocity profile,
that we said is similar to the one of our case.

Because of our choice of the shape of fluctuations (6.4), in which the phase of the
stationary state is not taken as an overall factor, our Bloch momentum K differs from
the hydrodynamic transverse momentum k7. In particular our choice implies that mo-
menta are measured with respect to the laboratory frame, while the above result for the
hydrodynamic Kelvin—Helmholtz instability is obtained by measuring the momenta with
respect to the fluid, as we did for example in Chapter 5 for the study of vortices with
the choice (5.4). For this reason the Bloch momentum is related to kr by

M
K =—v—kr. (6.11)
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Hence in the present case we expect an instability rate with a behaviour specular
to the one of Figure 6.6(c); that is, while going from the edge of the Brillouin zone
towards decreasing Bloch momenta, a linear increase of the instability rate that then
bends because of the finite width of the vorticity layer. This is exactly what we observe
in the lower plot of the first case in Figure 6.4. The suppression of the instability we see
in the hydrodynamic case is instead not observed here. Our result is however consistent
with the hydrodynamic prediction, in fact the threshold for the suppression k7 2 0.6/4 is
fixed by the width of the shear layer, that in our case is velocity-dependent and given by
(6.3). According to that scaling 0.6/, > (M /h)v, so that the hydrodynamic suppression
threshold lies outside of the Brillouin zone.

Also the zero real part of the frequency of the unstable KH modes is in accordance
with the hydrodynamic prediction (6.10) for v; = —wvy and, finally, from the left plot
of Figure 6.5 we see that between v ~ 0.4 ¢; and v ~ 0.8 ¢; the maximum instability
rate increases linearly with v, corresponding to the linear dependence on the velocity
difference of the imaginary part of the frequency of the hydrodynamic prediction (6.9).

Despite these striking similarities, notice that the imaginary part of the frequencies
of the first case in Figure 6.4 has an additional structure of modes at the edge of the
Brillouin zone, corresponding to real parts of the frequencies slightly displaced from
zero. Since momenta at the edge of the Brillouin zone correspond to periodicities equal
to the ones of the vortices lattice, these are modes in which the quantized nature of our
vorticity layer becomes very important and hence one does not expect similarities with
the hydrodynamic case. We will see that these modes play crucial roles in the other two
instability regimes.

6.3.2 High velocity: radiative instability regime

As we already discussed, the transition from the KH regime to the RI one by in-
creasing the flow velocity can be seen in the last three plots of Figure 6.4, in which the
emergence of energetic instabilities associated to the supersonic flows above Av = 2¢;
suppresses the Re(w) = 0 unstable KH branch. Correspondingly, the instability rate
maxima move to finite values of the Bloch momentum, reflecting the patterns of up-
going and down-going waves visible in the second GPE simulation of Figure 6.2.

We also already noticed how this behaviour and the 2¢, threshold are reminiscent of
the SSW effect we discussed in Section 4.1. In that case the relative velocity between
the two regions was obtained was obtained with a synthetic vector potential, so that
the lower part of the system was at rest and the upper one was moving. It is now
interesting to repeat the Bogoliubov calculations of Subsection 4.1.2 in a configuration
more similar to the present one, that is with equally-sized upper and lower regions and
with equal and opposite uniform synthetic vector fields in the two regions. The result
for |v| = |Ag|/M = 1.5¢5 in each region is shown in Figure 6.7.

One can see that, apart for the folding of the bands, this is similar to the rightmost
plot of Figure 6.4 (also see the following Figure 6.8) with inverted momenta K. As
we commented for the KH regime, this inversion is due to the choice of expression
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Figure 6.7: Spectra of the analogue SSW effect studied in Section 4.1 in a slightly
different configuration. Instead of applying a synthetic vector potential only in one
region, equal and opposite vector potentials A, = +1.5 ¢, are applied in the two regions.
Moreover, instead of considering a potential box in a wider system, we take the two
regions of the same size L, /2 = 10¢.

for the fluctuation field: in the case in which the velocity is induced with a synthetic
vector potential, the momenta of the modes of the resulting Bogoliubov problem (4.2)
are automatically measured with respect to the condensate and a relation analogous to
(6.11) holds. The finite- K instability maxima dominating the RI regime in a finite system
along y can hence be attributed to the analogue SSW effect, that is to the continuous
production of phonons with opposite energies in the two regions.

The present radiative instability however substantially differs in its behaviour when
the vertical size of the system is increased. Remember that in the SSW case the insta-
bility decreases when the two regions are made larger and eventually disappear in the
infinite-size system (corresponding to the bosonic Klein paradox). The dependence on
L, of the RI can instead be tested by performing diagonalizations analogous to the ones
of Figure 6.4 but for a fixed velocity and various values of the vertical size of the system.

In Figure 6.8 the result of such a procedure is shown in the upper panels. One can
see that while L, is increased the density of the modes grows and correspondingly the
instability bubbles increase in number. The maxima of instability rate move instead
always more towards the edge of the Brillouin zone and their value decreases. As can
be seen from the red dots in the lower plot, showing the maximum instability rate for
various values of L,, instead of decreasing to zero, the greatest imaginary part of the
frequencies tends towards a constant value for large enough systems, suggesting the
permanence of the instability in an infinite system.
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Figure 6.8: Upper plots: real and imaginary parts of the Bogoliubov spectra for
v = 1.5 ¢; and varying vertical size of the system. Omne can see the transition from
a SSW behaviour to an instability localized on the edge of the Brillouin zone that is
size-independent. In the lower plots the dependence of the instability maxima on the
system size are shown. Red dots indicate the maximum instability rate in the RI regime,
with the empty blue circles being the K corresponding to the instability maxima. Black
squares show instead the result for a velocity in the KH regime case, that results to
be essentially size-independent. The maximal instability in this case always occurs for
K =0.
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Figure 6.9: Snapshots of the time evolution of the density variations obtained by evolving
in time the Bogoliubov equations for v = 1.496 ¢, starting from a noisy configuration.
Two gaussian absorbing regions around +L, /2 are included to simulate an infinite sys-
tem. This confirms that in the RI regime also the unbound system is unstable.

From the point of view of the spectra of the upper part of Figure 6.8, for sizes larger
than the ones shown the amplitude of bubbles of instability continues to decrease, except
for the rightmost bubble visible in the plot for L, = 61.8 ¢, corresponding to R(w) = 0)
that remains essentially constant for growing system sizes and is responsible for the
leftover instability for large L. Its invariant position is shown by the empty blue circles
in the lower panel.

The permanence of the instability in the infinite system can be confirmed by a time-
dependent simulation of the Bogoliubov problem, as we did in Subsection 5.3.2 for a
doubly-quantized vortex. We performed a time evolution of the two-dimensional Bo-
goliubov equations (6.7) for K = 0 and on a background composed by many lattice
cells, so to sample many Bloch momentum values together, and starting from a noisy
configuration. Regions of absorbing potential are included near +L, /2 to simulate open
boundary conditions. The resulting time evolution of the density variations is shown in
Figure 6.9. One can see that the system continues to be dynamically unstable, with the
responsible mode being peaked around the positions of the vortices and radiating away
in both regions. With respect to the patterns emerging in the lower panels of Figure
6.2, the absorbing boundary conditions remove the down-going waves.

This shape of the mode suggests that the propagating modes on the two sides of
the interface are coupled to a mode localized around the vortices. This gives rise to a
dynamical instability that does not depend on extended modes trapped in one of the
two regions, but instead on modes localized around vortices coupling to outgoing modes
in the two regions. This instability is hence similar in nature to the ones of multiply
quantized vortices in unbound systems studied in the previous Chapter, in which modes
localized in the core couple to radiating phonons in the rest of the condensate.
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Figure 6.10: Plots analogous to the ones of Figure 6.4, for L, = 20§, but for small
velocities. One can see the transition from the KH instability of the last plot to a regime
in which the instability is dominated by the modes near the edge of the Brillouin zone,
that are essentially independent from the velocity.

We can summarize the conclusions of this subsection by saying that, for large enough
velocity differences above Av = 2¢,, the KH instability is suppressed by a different kind
of instability involving propagating phonons in the two regions of uniform flow. This
suppression can be ascribed to the mixing of the modes responsible for the KH instability
with phononic modes. For small enough systems in the vertical direction the instability
is dominated by a SSW-like effect, while for large enough and unbound systems this
instability is substituted by continuous (and growing) emission of outgoing phonons.

6.3.3 Very small velocities regime

From Figure 6.5 we identified a third regime occurring for small velocities v < 0.4 ¢s.
This regime is more difficult than the other to study since the low velocities are associated
to a large elementary cell of the discrete shear layer, making diagonalizations compu-
tationally slow. Moreover the small instability rates require long times for a real-time
detection of the instabilities.

In Figure 6.10 one can see the transition from a KH instability regime (rightmost
plot) to a regime in which the instabilities are dominated by momenta exactly at the
edge of the edge of the Brillouin zone K = %v. Unstable modes for this value of K are
present for all values of v, and for all the system sizes, as can be also seen in Figures
6.4 and 6.8, but are usually subleading with respect to the other instability mechanisms.
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However for small velocities the maximum of the KH unstable branch falls below this
velocity-independent instability.

These Bloch momenta correspond exactly to the length separating the vortices, i.e.
to the microscopic structure of the shear layer. Moreover the velocity-independence
implies that the instability does not depend on the spacing between the vortices. These
two facts indicate that the unstable mode is associated to the motion of single vortices,
instead of to a collective motion of the whole array as in the KH case.

The fact that the instability rate decreases for larger systems along y suggests an
interpretation: due to the finite size the background density of the condensate is non-
uniform and drops to zero towards the hard walls at +L,/2, so that the single vortices
will have energetic instabilities associated to their motion to a lower-density region. Due
to the specific density profile this energetic instability may become dynamical, with a
mechanism similar to the one presented in Section 5.5. One hence expects that this
instability will vanish for large L,, leaving only the KH one.

A full characterization of this regime, for example of its size dependence, to get
further proof of its physical origin is left for a completion of this work.

6.4 Summary: interface instabilities and superradiant effects

In this Chapter we saw how a configuration of parallel flows similar to our planar
ergosurfaces but with an irrotational velocity field is subject to the generation of an array
of quantized vortices. This is a quantized analogue of shear layers in hydrodynamics,
and also shows an instability analogous to the Kelvin—Helmholtz instability, in which
the vortices of the shear layer move from the interface and begin to co-rotate.

Quite surprisingly, when the relative velocity between the two parallel flows is larger
than twice the speed of sound, this instability is replaced by a slower instability involving
excitations that spread on the whole system, and are not localized around the interface
excitations. The threshold and the features of this new instability indicate that it is
of the kind occurring in the SSW effect, that we studied for a planar ergosurface with
no interface instabilities in Chapter 4. We called this new instability regime radiative
instability. However, differently from superradiant instabilities that disappear when
unbound regions on the two sides of the interface are considered, the radiative instability
was here shown to remain also in an infinite system. In this case a continuous emission
of phonons from the vortex array is observed, and the instability can be interpreted
as emerging from the interplay between modes living in the quantized shear layer and
propagating superradiant modes.

The physics presented in this Chapter displays a novel connection between concepts
coming from classical hydrodynamics and concepts coming from superradiant effects,
and is a new example of a surprising effect in the physics of BECs predicted through the
gravitational analogy.






Conclusions and future perspectives

In this Thesis we focused of the phenomenon of superradiance with two perspec-
tives. On the one hand we exploited the remarkable tools that have been developed to
manipulate Bose-Einstein condensates to consider (possibly realizable) toy model space-
times that helped us to get a simple picture of superradiance. On the other hand we
used the ideas emerged from the study of superradiance to reconsider from a different
point of view problems concerning fundamental aspects of the physics of Bose-Einstein
condensates. The generality of superradiant phenomena manifested in a rich network
of physical analogies, ranging from quantum fields on curved spacetimes, to classical
and quantum hydrodynamics, to charged relativistic fields, to electromagnetism. These
connections are based on the fact that the phenomena addressed here essentially rely on
the interplay between modes of positive and negative energies of classical and quantum
fields in open or closed geometries, with the various realizations differing in the physical
origin of these modes.

The first part of this work was aimed at obtaining lessons for superradiance from an
analogue gravity perspective. In Chapters 3 and 4 we proposed a new type of analogue
model, based on a BEC in which a local tuning of the velocity is obtained with a syn-
thetic vector potential field or with a periodic lattice potential. This makes it possible to
go beyond the irrotationality condition for the velocity field on which the gravitational
analogy is based and hence widens the spectrum of the spacetime geometries that can
be studied. This brought us to consider a planar ergosurface, a minimal setup displaying
superradiant scattering in a planar geometry, more intuitive and tunable than the tra-
ditional vortex geometry. This has allowed us to disentangle the different effects at play
in superradiant phenomena and provide new intuitive insight on some delicate issues.

In this setup boundary conditions for the fluctuation field can be easily changed
by putting the condensate in a trap. This allowed us to study dynamical instabilities
associated to self amplification of superradiant field modes. In particular the black hole
bomb and ergoregion instabilities occurring in black hole spacetimes simply occur by
imposing reflecting boundary conditions on either side of the planar ergosurface.

The picture of superradiant effects that emerges is based on a spatially localized
mode mixing process and implies that the presence of dissipation is not a necessary
ingredient for amplified scattering to occur: a wavepacket impinging on the ergosurface
will in fact undergo amplification regardless of the presence of additional reflecting or
absorbing elements in the neighborhood of the ergosurface and of the global dynamical
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stability of the configuration. Nevertheless, dissipation is a fundamental ingredient to
avoid all those dynamical instabilities that emerge at later times when the amplified
wave is fed back to the amplifying element.

In general-relativistic black hole spacetimes this stabilization is provided by an hori-
zon. The role of such an element was here studied by adding a flow perpendicular
to the ergosurface and a third region in which this flow is supersonic. This adds an
acoustic horizon to the setup, that hence provides a toy model black hole in which the
different elements can be tuned. By studying this configuration we have found that the
presence of an horizon is not in general able to remove instabilities. Depending on the
specific geometry, back-scattering of waves traveling towards a black hole horizon may in
fact provide a sufficient reflection to turn the superradiant scattering into a dynamical
instability and therefore destabilize the ergoregion.

Throughout the study of the planar ergosurface, the effects of the superluminal be-
haviour of the Bogoliubov dispersion relation on superradiant phenomena were studied
and we found that, with respect to the corresponding dispersionless Klein—Gordon field,
it provides suppression of both amplified scattering and superradiant instabilities at high
momenta. Phenomena at low momenta are however not affected by dispersive effects,
so that one can investigate superradiance in a Bose-Einstein condensate with success.

Besides being effective toy models, these configurations are interesting for possible
experimental investigations of superradiant effects. Differently from analogous hydro-
dynamic flows displaying amplification of fluctuations, the ergosurface is here free from
surface instabilities and hence leaves superradiant scattering as the only relevant phe-
nomenon. As further advantage, in this system experimental investigations could also be
performed at the quantum level, in fact the quantum features of sound in Bose—Einstein
condensates allows the study of spontaneous pair production effects happening at the
ergosurface, an effect predicted for rotating spacetimes that has however no experimen-
tal evidence. Here we studied this phenomenon and showed that it can conveniently be
detected by looking at the momentum correlations of fluctuations between the inside
and outside of the ergosurface, similarly to what was recently done for the first detection
of Hawking radiation [4, 5, 18].

Besides the connection with rotating spacetimes, we highlighted the exact mapping of
the physics of the planar ergosurface to the physics of a one-dimensional massive charged
bosonic field in an electrostatic potential. Superradiant scattering and instabilities in
these setups are hence also analogue realizations of the bosonic Klein paradox and of
the Schiff-Snyder—Weinberg effect. These effects were always considered as toy models
and find here a platform where they can be addressed experimentally.

The second part of this Thesis dealt with the application of the concepts of superra-
diance to obtain a new perspective on aspects of the physics of BECs, that is to obtain
lessons from superradiance. In Chapter 5 we considered the fundamental problem of the
instabilities of quantized vortices in a BEC. The interpretation of these as superradiant
instabilities allowed to get a novel perspective on the problem and to solve some mis-
conceptions that remained despite the extensive studies on the subject in the literature.
In particular we showed that the dynamical instabilities associated to the splitting of
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multiply quantized vortices originate in the vortex core and are not due to the presence
of a trapping potential; in other words they are ergoregion instabilities and not black
hole bombs. The identification with ergoregion instabilities came with a surprising quan-
titative correspondence with the results obtained in the hydrodynamic regime, that does
not describe well the core region of quantized vortices. The deviations from these hy-
drodynamic predictions were found to be analogous to dispersive effects encountered in
the study of planar ergosurfaces, with a suppression of the instabilities at high angular
momenta.

As a last topic we considered the instabilities of a quantized shear layer between two
parallel flows in a BEC, an example in which the rich physical connections displayed
in the rest of this work come into play. Differently from the planar ergosurface, here
the physics is dominated by surface instabilities. We in fact found, when the relative
velocity of the flows is increased, a transition from a hydrodynamic behaviour analogous
to the Kelvin—Helmholtz instability to a slower superradiant Schiff-Snyder—Weinberg-
like instability. However, differently from superradiant instabilities, in this second regime
the dynamical instability is also present when open boundary conditions are imposed
on the two sides of the interface; in this case the unstable mode is composed by a part
localized in the quantized shear layer and by a part propagating away from the interface
in the two uniform flows.

The different realizations of superradiant phenomena explored in this thesis lay the
basis for future works on superradiance and studies of related phenomena. First of all,
specific platforms and experimental setups to measure the phenomena we analyzed here
have to be considered in detail. Even though our discussion has been carried out with
a special eye to atomic condensates, the general ideas developed in this context are of
direct applicability also to analog models based on quantum fluids of light [23,31,35] for
which synthetic magnetic fields are under active study [132]. Configurations providing
a planar ergosurface in this different platform are currently being considered.

The superradiant physics of vortices may also be of direct experimental addressability,
given the large experience of the experimental community working on cold gases in
manipulating and probing these objects [130]. Again, another experimental platform in
which these effects can be tested is provided by quantum fluids of light, that have been
shown to display quantized vortices [163]. Quantized vortices may also be an interesting
building block for different configurations interesting for analogue gravity. For example,
instead of the scattering on a single vortex, one could consider superradiance involving a
lattice of singly quantized vortices. The lattice structure adds the degrees of freedom of
the relative positions of the vortices, from which the extra energy associated to amplified
scattering can be drawn and whose modification due to the scattering are an example
of back-reaction of the fluctuation field on the background acoustic spacetime.

Another extension of our present analysis we are actively considering is the case of
two-component condensates, that can be obtained by using two different species or by
selecting different internal states of the atoms (see for example Chapter 21 of [16]). In
these mixtures collective excitations separate in density and spin modes, describing the
in and out of phase oscillations of the two components [164]. The advantage offered by
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this physics for our purposes is given by the fact that spin excitations can have a speed of
sound much slower than the density one. In the particular case of vortices the size of the
non-hydrodynamic vortex core is fixed by the density healing length, while the size of the
analogue ergosurface for spin modes is given by the much larger spin healing length, that
hence extends in a region of the vortex where the hydrodynamic approximation (and so
the gravitational analogy) is accurate. One can hence think of obtaining a hydrodynamic
quantum rotating acoustic spacetime considering a highly quantized vortex in the both
the condensate components. This can be made dynamically stable in the density modes
by adding a repulsive pinning potential in the core of the vortex, or stable also in the
spin modes by adding a drain of the atoms in the core of the vortex, thus creating an
acoustic horizon and, hence, a quantum rotating acoustic black hole. Additional freedom
in the design of analogue setups is given by the possibility of coupling the two species of
the condensates in a coherent way; this tool was recently exploited to investigate black
hole lasing [83].

From a more theoretical point of view, the toy models involving planar ergosurfaces
provide an interesting tool to ask further questions about the physics of curved space-
times. While our present work has focused on the dynamics in a small excitations regime,
well describing superradiant scattering and the first stages of dynamical instabilities, a
natural next step is to extend the analysis to large-amplitude perturbations, for which
nonlinear effects become important. This has been explored for analogue modes in the
context of the late-time evolution of black hole lasers [165-168]. This physics is of high
interest for gravitational physics as it provides an analogue of the back-reaction effect of
the superradiant instability on the underlying metric, e.g. of rotating or charged black
holes in anti-de Sitter spacetimes [169-171], and is related to the existence of so-called
hairy black holes.

As a last intriguing point, the modular planar black hole we introduced to study the
effect of horizons on superradiant instabilities provides a powerful toy model to address
unexplored aspects of the physics of black holes. Extending the study on quantum
pair production at the ergosurface, we can ask what are the modifications to Hawking
emission from the horizon in the presence of an ergoregion. What we expect is that
the presence of the ergoregion cavity provides additional spectral features to Hawking
emission due to the quasinormal modes [109]. This would connect the Hawking effect,
usually investigated in a fized spacetime, and time-dependent dynamical behaviours of
black holes, such as the ones described by quasinormal modes, aspects that are usually
investigated in separate routes [172].
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