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Abstract: (1) Background: The application of concepts linked to the circular economy (CE) has
led to a sudden development of studies in numerous fields. However, the level of environmental
sustainability of CE strategies could be improved and this topic deserves more attention by the
scientific community. This research addresses this gap and aims at presenting a new concept, named
circular ecology (CEL), and its application to the field of waste management. (2) Methods: The paper
presents a literature review on the criticalities of CE and on examples of studies that implement
the CEL principles. (3) Results: The review highlights that CEL principles are widely applied
to several fields of waste management, showing promising opportunities to export the results to
other geographical contexts. (4) Conclusions: If supported by governments, CEL approaches may
allow solving multiple environmental problems at once, with clear economic, time, resources, and
emission savings.

Keywords: environmental sustainability; recycling; recovery; reuse; anaerobic digestion; biochar;
biofuels; case studies; organic waste

1. Introduction

The concept of circular economy (CE) has attracted the interest of researchers in
several fields in the last decade (from economists to engineers, environmental scientists
and sociologists), as proved by the increased number of papers available in the Scopus
database containing the word “circular economy” in the title, abstract, or keywords. The
number of publications has grown from 121 in 2010 to 2460 in 2020 [1]. The increasing
number of works has produced a large variety of definitions and shades of the concept of
CE over the years [2,3].

The concept of CE dates back to 1966 [4] and circularity approaches in economy
were later analyzed in 1991 by Leontief [5]. However, the most recent version of CE was
formalized in 2013 [6] in four key aspects: CE (1) replaces the “end-of-life” concept with the
“restoration” concept; (2) it pursues the use of renewable sources of energy; (3) it refuses the
use of toxic compounds; and (4) it aims at reducing waste through rearranging production
and supply processes. The concept of CE was further deepened by the resolution adopted
by the United Nations on 25 September 2015, known as “Agenda 2030” [7], and by the
definition of the 17 Sustainable Development Goals [8,9].

As reported in Birat [10], CE must be seen as an integrated approach that goes be-
yond the logic of profit, requiring political motivations towards sustainable consumption
paradigms. The development of a CE is thus linked to local environmental legislation, the
availability of incentives and capital, and the awareness of the population, which may
determine significant differences among different countries [11].

As reported by Cheng et al. [12], one of the advantages of CE is its capability of
breaking the bond between environmental vulnerability and economic poverty. The bene-
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fits related to the implementation of CE strategies are usually more evident in countries
subjected to rapid industrialization and poor environmental regulations, causing environ-
mental damages and pollution [13].

In 2008, with the introduction of the Waste Framework Directive [14], the European
legislation made an explicit connection between CE and waste management (WM). The
evident and direct relationship between CE and WM was further highlighted by Merli
et al. [15] in 2018. Aguilar-Hernandez et al. [16] highlight the potentially beneficial role
of CE as an approach to reduce circularity gaps in waste recovery and recycling. As the
authors state, Europe and North America produce annually 1.6–2.2 t of waste per capita
that could be further recycled/recovered. In addition to CE, the concept of bio-economy
deserves to be mentioned. In this case, the concept of replacement prevails with respect to
that of circularity, i.e., bio-economies are based on the replacement of fossil resources with
biogenic ones [17]. If bio-based CE is not mentioned as such, most European countries
address it in their strategies. Bio-waste management appears to be the main driver in the
transition towards CE [18]. CE has many potential drivers favoring the application of
its base principles: (1) several technologies are available for an efficient use of resources,
both in the production and remanufacturing stages; (2) governments have improved
their environmental legislations in the last decades, including regulations on WM; and
(3) public awareness is increasing, and so is the power of people to orient the market
to more sustainable products. However, market issues, the lack of investments in more
advanced technologies, and the legislative process of governments are slowing down the
transition towards the solution of environmental issues through CE initiatives [19].

Although the indirect benefits deriving from resource efficiency strategies have a
positive influence on the environment, the publications on CE have largely focused on
supply-chain optimization [20–22], leaving the environment on a second level. In a recent
work, Millar et al. [23] stressed the importance of considering environmental protection
as a key aspect of CE principles. In a recent publication, Horvath et al. [24] highlight
the need for considering ecological benefits/limitations when assessing CE approaches.
The authors propose to integrate one of the major indicators used in the European Union
(“circular material use”, CMU) with the comparison between the “ecological footprint” and
the “bio-capacity” of a system. This would allow accounting for the ecological pressures
that the mere use of the CMU indicator would not be able to consider. Additional metrics
have been implemented in recent years [25] to assess the environmental sustainability of
CE strategies. However, if on one side several assessment tools are available, on the other
side the principles that move the thinking and implementation of CE strategies often put
environmental sustainability on a secondary level with respect to economic sustainability.
There are, of course, some exceptions, like WM, for instance. The issue is then a matter of
environmental principles rather than the availability of environmental assessment tools.

The relationship between economic growth and environmental sustainability was dis-
cussed by several authors in the last decade. Kallis [26] promoted the concept of sustainable
degrowth, i.e., a sustainable reduction of the throughput of the society. According to the
author, the implementation of this vision would unavoidably bring environmental benefits.
A debate has started in the last decade on the dualism between economic degrowth and
steady-state economy. According to some authors, this dualism is only apparent, since
economic degrowth should be intended as a set of measures leading to a globally fair
steady-state economy [27]. According to Kiser [28], however, the economic growth clearly
contradicts the concept of resource efficiency in the supply chain, because the aim of selling
more materials and the use of less resources form a paradox. According to Skene [29],
finally, circles can never deliver growth, unless circles are intended as spirals. The author
affirms that economic growth necessarily creates environmental deterioration.

As highlighted in a recent work [30], pollution prevention and control measures can
lead to unavoidable negative impacts on the economy in the short term. One of the main
challenges of CE is to overcome this conflict. The present paper has two aims: (1) the intro-
duction a new concept, concerning CE approaches that stress the need for environmental
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protection and restoration, where circularity is intended in terms of material reuse (waste
in particular) and the mutual solving of more environmental problems; and (2) providing
an overview on case studies that already implement this concept. Regarding the first aim,
a new concept, which can be named “circular ecology” (CEL), may be developed to fill
this gap and allow circular strategies to combine economic progress with environmental
advances, thus leading to win-win opportunities. In other words, CEL may be intended as
a reinforcing concept of CE that pursues a more evident balance between economic and
environmental performance. In addition, CEL may refer to cases where the solution to one
environmental problem can be the occasion to solve another environmental problem. When
shifting to CEL, the cultural barriers undermining the full application of CE strategies may
play a less important role in the implementation of actions that involve circularity in solving
environmental issues. This may be due to the fact that the contribution of consumers’ habits
would be less crucial in CEL than in CE. Consumers would only be involved in the market
of recycled waste deriving from environmental restoration approaches. Regarding the
second aim, case studies selected from the recent literature will be presented and discussed
to highlight the opportunities deriving from the implementation of the above presented
principle of CEL (i.e., circular strategies that overcome the main barriers of CE, including
the lack of attention to environmental issues).

2. Materials and Methods
2.1. Generalities on the Review Method

To carry out the here presented review, the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) was adopted (Figure 1) [31]. The analysis started
from a total number of 219 publications, selected on the basis of their affinity with the
theme of CE, environmental remediation and WM.
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2.2. Data Sources and Search Strategies

The 219 publications were selected by consulting the Scopus database [1]. After a
first selection, 68 papers were excluded from the review as not relevant to the topic of the
present paper. The reading and screening allowed us to discard 19 further irrelevant papers
from the collection of 151 papers selected for eligibility. The remaining 132 papers are cited
in this review because of their relevance to the general topic of CE, because they perform
critical analyses of CE and because they present novel methodologies or case studies on the
topic of CEL. The research considered only peer-reviewed papers written in English and
only studies with full text available. Figure 1 reports the results of the PRISMA analysis.

2.3. Selection Strategy

The paper eligibility for inclusion in this study was assessed first of all on the basis
of the relevance of the title to the criteria reported in Section 2.2 and, as a second check,
on the basis of the relevance of the abstract. Both the authors performed the evaluation
of the papers. The papers that passed the checks were organized in categories according
to the topic discussed: generalities on CE, industrial ecology, generalities on CEL and
examples/case studies on CEL.

2.4. Characteristics of the Selected Publications

The selected publications were organized alphabetically, divided into the above men-
tioned categories and a score between 1 and 5 was attributed to each paper according
to both the level of relevance to the topics of the categories and the level of novelty in
the field. Figures 2 and 3 present the distribution of the selected papers according to the
category they belong to and the journal title, respectively. The temporal distribution of the
publications cited is presented in Figure 4.
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3. Critical Review of CE Approaches
3.1. CE and WM

In addition to product manufacturing and supply chains, in the last decade CE
approaches have been implemented in a wide range of fields, including the construction
sector [32], plastic materials [33], tourism [34,35], urban management [36–38], agro-food
industry [39,40], and WM [41,42]. WM is a key aspect of the four main components of
CE [43]: (1) the recirculation of resources and energy, the minimization of resources demand,
and the recovery of value from waste; (2) a multi-level approach; (3) its importance as
a path to achieve sustainable development; and (4) its close relationship with the way
society innovates. Pires and Martinho [44] proposed a waste hierarchy index to measure
the waste hierarchy within a CE context. The authors applied the index to municipal solid
waste, considering recycling and reuse as positive contributors to CE, and incineration
and landfilling as negative contributors. However, waste-to-energy processes (including
incineration) still play a fundamental role in an integrated WM vision aimed at minimizing
the impacts on the environment [45]. The concept of Life Cycle Thinking (LCT) was
introduced to assess the impacts of WM by considering the whole supply chain, from raw
material extraction and conversion, manufacture and distribution, use and/or consumption,
to treatment and disposal [46]. A key factor is to avoid burden shifting, among geographical
regions, unit processes, or impact categories/sustainability pillars.

According to Tisserant [47], the tracing of domestically generated waste might be
relevant for policy makers, because it would allow them to estimate the losses of secondary
resources and related environmental impacts. The trade of waste also plays an important
role in redistributing secondary resources across the world.

According to Reh [48], energy and material efficiencies in both production and recy-
cling processes are the recipe for a sustainable future. Moreover, the ongoing development
will allow recycling a large number of valuable components with increasing quantity for
high quality re-use. However, Stahel [49] argues that recycling has a limited ability to keep
materials in circulation. According to Ranta et al. [50], it is important that policymakers
find ways to facilitate value creation through the principles of “reduce” and “reuse” for the
CE to reach its full potential.

Construction and demolition (C&D) WM comprises one of the largest waste stream
globally. Aslam et al. [51] proposed a review of C&D WM in China and USA. They show
that EU, USA and China produce nearly 38% (3.8 × 109 ton/year) of the total amount
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of C&D waste globally produced (1010 ton/year). They state that the lack of market
mechanisms to favor recovery, unclear financial conditions and the fragmented nature of
the construction industry represent the most significant challenges in the development of
the field. On the opposite, Gálvez-Martos et al. [52] presented a synthesis of core principles
and best practice related to C&D waste sector in Europe, highlighting that this sector is well
and broadly established, even if the nature and availability of the final secondary materials
and market penetration differ widely across countries. López Ruiz et al. [53] reviewed
the framework of C&D waste sector, describing five lifecycle stages for the adoption of
the CE concept in the C&D WM: (i) preconstruction; (ii) construction and renovation; (iii)
collection and distribution; (iv) end-of-life; and (v) material recovery and production.

The management of organic waste is another important topic of CE. According to
Ubando et al. [54], waste biomass has driven the boundaries of biorefineries in circular
bio-economy, adding value to secondary products. Wainaina et al. [55] describes the current
generation state of organic solid waste and different disposal technologies, particularly
for composting and AD. The authors elaborate on the details of their treatment process
and their environmental, social and economic applicability. Both technologies are not
completely economically feasible. For this reason, they have not been successfully applied
in many countries and the public economic support of the initiatives is still a common
practice. Xue et al. [56] present an inventory analysis and impact assessment of carbon
emission reductions following the implementation of a CE model with biogas production.
The authors focused on large-scale pig farming in the Liaoning Province (China) and
compared their findings with the traditional linear model. They show that significant
carbon emission reductions and economic benefits could be realized by the application of a
biogas-based CE model to animal husbandry.

3.2. CE Barriers

The transition towards a CE requires the overcoming of several barriers that the Euro-
pean Commission summarized as follows: the lack of skills and investments in designing
products and processes for future re-use, the lack and unbalanced distribution of incentives,
the low sensitivity of consumers, product obsolescence, the limited application of green
public procurement and outdated legislation schemes [57]. According to Pieroni et al. [58],
CE approaches are becoming more heterogeneous and rely on multiple theories that de-
viate from the traditional view disseminated by business model canvas. As an example,
Mahpour [59] identified potential barriers for the transition to CE in C&D WM starting
from three main causes: behavioral, technical, and legal.

3.2.1. Support from the Industrial Sector

One of the main barriers to the implementation of CE strategies is the lack of interest
and awareness of the consumers and the hesitation of the industrial sectors in taking
actions [60]. Sometimes, circular approaches must face the opposition of people when
novel options for environmental sustainability are proposed, especially if such options
encounter a consolidated scheme of values and traditions [61]. According to recent pub-
lications [62–64], the social pillar of sustainability is the least expanded in most of the
conceptualizations and applications of the CE, although the industrial sector does not
agree with this point of view [65]. Although CE is at a relatively advanced stage, not
every phase of the production sector, in industrial contexts implementing CE strategies, is
characterized by circular approaches: this is the case, for instance, of the manufacturing and
distribution phases in industry, which generally implements less circular strategies than
other phases, like recovery, recycling, and consumption [66]. One exception is represented
by companies organized in eco-industrial parks (EIPs). Indeed, at the industrial level,
industrial symbiosis and industrial ecology (IE) initiatives offer opportunities for lowering
the environmental impacts of industrial production [67–70], although such initiatives do
not always lead to environmental benefits [71]. According to Ehrenfeld and Gertler [72],
IE originated as an opportunity for different nearby firms to exchange energy, waste, and
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by-products, in order to optimize the use of resources and energy and obtain to clear
economic and environmental advantages. Among many countries where IE initiatives
have taken place, China developed a standard for eco-industrial parks and a dedicated set
of indicators for qualitative assessment [73]. Saavedra et al. [74] studied the contribution
of IE to CE through a bibliometric analysis covering 15 years (2003–2018), focusing on
industrial symbiosis concepts (including urban symbiosis) and on the implementation
of EIPs. According to Kapsalis et al. [75], industrial symbiosis could play a key role in
connecting CE to ecosystem services, thus improving the environmental quality and the
mutual interaction between biosphere and anthroposphere. IE, if combined with the con-
cepts of eco-design and industry 4.0 [76], could considerably influence the achievement
of higher sustainability goals in product manufacturing. According to Belaud et al. [77],
big data management could offer support to IE: in their work, the authors applied big
data management to evaluate the efficiency of enzymatic hydrolysis as a function of the
pre-treatments of agricultural biomass over a 30 year period. However, when shifting
from product manufacturing to WM and other environmental challenges, IE is not able
to improve the current situation. Thus, the industrial sector (1) should contribute more
to including CE principles in industrial processes, and (2) should study and implement
symbiotic relationships among different industrial sectors.

3.2.2. Support from Governments

Blum et al. [78] affirm that CE can be considered as sustainable only if material circu-
larity, economic sustainability, environmental sustainability and social sustainability are
positively developed. A comprehensive CE approach can contribute to the solution to
complex issues involving the Agenda 2030 topics through the creation of best practices,
intended as methodologies to be applied to specific cases. The transition towards the appli-
cation of comprehensive CE principles (including the social and environmental aspects)
could be implemented gradually, as a series of small wins accumulating under a gover-
nance framework [79]. However, developing the core areas of sustainability is not enough
if the transition is not supported by financial planning, reforms and a clear governance that
considers CE as a crucial theme. CE-related initiatives require integrated bottom-up and
top-down approaches to implementation and evaluation. Policy instruments (economic
and regulatory instruments), such as subsidies and tax incentives, work when governments
have clear objectives for policy processes that are evaluated and regulated, iteratively,
to achieve short- and long-term goals [80]. Without an evaluation framework or bottom-up
support from the industry or the community, CE initiatives are unlikely to be successfully
implemented. As an example, Swainson and Mahanty [81] report the case of Indonesia,
where institutional reforms were obstructed by vested interests committed to maintaining
the existing political and economic status quo, and global markets offered insufficient
premiums for a market-oriented green economy. Luttenberg [82] reviewed the WM transi-
tion to CE in Croatia. It showed limits in the implementation of public money to waste
management systems and a lack of implementation of waste hierarchy with over-emphasis
on residual waste treatment. Vermesan et al. [83] reviewed the implementation and the
perspectives of CE in Romania. They showed that the objectives of the CE are still far from
being fully implemented and that the legislation is still under improvement as well as the
concept of CE, underlining that a circular model is still seen as a plus and not a standard of
implementation. Ruiz-Real et al. [84] discussed the proactivity that China and the European
Union (EU) are having in the development of legislation that develops and consolidates
the implementation of the CE in their territories. However, the authors stress the need for
better defining the areas and sectors that fall within the scope of CE. Zhu et al. [85] highlight
that the actual Chinese policies still focus too much on the means, without paying enough
attention to the ends and prospects of the CE. Increasing resource flows and production
efficiency remain the core focus, while an optimal scale for sustainable consumption is
often ignored. Bao and Lu [86] proposed the case study of Shenzhen (China) to discuss the
urgency in fast-emerging economies to deal with an efficient circularity for C&D WM. This
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can represent a further challenge in order to deal with fast population growth in several
emerging countries. In conclusion, from the point of view of the institutional support, CE
applications are slowed down by the following shortcomings: (1) the lack of an integrated
vision of the problem considering all the pillars sustainability and (2) the lack of financial
planning, reforms, and a clear governance supporting CE initiatives.

4. CEL and Related Examples
4.1. The New Concept of CEL

One of the main differences between the concepts of CE and CEL is the declared
intention of CEL to produce direct environmental benefits rather than pursuing economic
sustainability. In fact, the symbiotic solution to environmental issues is expected to produce
economic and social benefits too. A second difference consists in the focus on WM and
on the conversion of waste into resources and energy, rather than optimizing resource
and energy efficiency during product manufacturing [87]. CEL could be intended as an
evolution of CE with a clear understanding of the direct and indirect environmental im-
plications of sustainable strategies to manage waste, reuse materials, recover energy, and
improve resource efficiency. CEL, however, should not simply implement the concepts
of remanufacturing, reuse, and recycling. It is an attempt to reinforce the need for CE
initiatives that consider economic profit and environmental preservation (or environmen-
tal improvements, preferably) at the same level. To do this, it is necessary to overcome
the barriers listed in Section 3.2. CEL could also be intended as “ecological symbiosis”
(as compared to industrial symbiosis), where environmental restoration processes work
together to achieve specific environmental targets by maximizing resource efficiency and
waste/material valorization. The concept of cleaner production could be considered as a
pioneering approach to CEL, because it involves the implementation of tools to decrease
both the environmental pressure of industrialization and the costs related to inefficient
use of resources [88]. This new approach could be seen as an integration of the paradigms
analyzed in recent works by Blomsma [89] and Bruel et al. [90]. A comprehensive circu-
lar approach was provided by Bergendahl et al. [91] including several potential uses of
waste from the food sector and the nexus with wastewater and the energy valorization of
waste. The authors conclude that the role of transdisciplinary approaches is fundamental
to implement sustainable supply chains. Though being analyzed at a regional/global
level, the circular approach studied by the authors could translate into local practices of
CEL, especially if considering the nexus between food, energy and water investigated by
the authors.

WM is the main field of application of the CEL concept. Cobo et al. [92] analyzed the
challenges in implementing circular approaches in integrated municipal WM. According
to the authors, the challenges consist in the limited boundaries of the traditional linear
approach and on the very variable waste composition that requires the focus to shift from
waste to resources.

The choice of the most appropriate alternative for specific CEL approaches can be
supported by useful tools like Life Cycle Assessment (LCA) and Material Circularity
Indicators. However, the correct application of these tools requires particular attention by
the user, since one tool can give different results from the other. Lonca et al. [93] suggest
that these tools should be considered as complementary rather than alternative.

The application of anaerobic digestion (AD) is probably one of the most immediate
examples of CEL approach. AD allows converting biodegradable waste into energy and
new material that can be used for agricultural purposes, as it is (digestate) or after a
post-composting treatment. In addition, AD allows reducing the emissions of greenhouse
gases with respect to landfilling and even composting [94]. Another example of CEL is
the recovery of phosphorus (P) from wastewater. On one hand, P is an essential element
for fertilizers and other industrial uses; on the other hand, excess P causes eutrophication.
Another well-known application of the CEL approach is the production of soil improvers
from bio-waste, which is advantageous in terms of GHG emissions [95] and nitrogen
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contribution to soil with respect to commercial fertilizers [96]. Another interesting example
of CEL consists in the production of biochar from organic waste and its potential use in
several contexts [97].

4.2. Practical Applications of CEL Approaches

Tables 1–4 respectively report a set of case-study, laboratory-scale study, conceptual,
and review papers that can be identified as CEL approaches. In total, 45 papers were
selected as examples of works that propose approaches relevant to the concept of CEL.
Among the papers selected, 15 are case studies, nine are laboratory-scale studies, 19 are
conceptual studies including theoretical considerations on potential CEL approaches, and
the two remaining works are review papers. The majority of studies (37) focus on WM, in-
cluding recycling and recovery processes. A minority of papers deal with other fields, such
as wastewater management (4), water management (2), environmental remediation (1), and
soil management (1). These papers were included anyway in our analysis as representative
examples of the CEL concept. Most of the studies presented in Tables 1–4 were carried out
in Europe (31). The remaining works were carried out in Brazil (3), China (4), Canada (1),
Ecuador (1), Malaysia (1), Mexico (1), and multiple locations (3).
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Table 1. Summary of the case-study papers on the application of CEL principles.

Field Summary Ref.

WM—Municipal
solid waste

A conventional wet AD process and a modified up-flow anaerobic sludge blanket reactor are compared for application to a small municipality participating in
the Covenant of Mayors initiative [98]. The wet process allows for higher biogas production but implies higher soil occupation. [45]

WM—Agro-
forestry
waste

The olive oil industry is an additional example of an industrial sector dealing with the environmental impacts caused by process byproducts. Different solutions
(classified in a hierarchical way) are studied to reduce the problem of olive waste phytotoxicity, e.g., from energy valorization, to animal feed and higher-value
products such as cosmetics and pharmaceuticals.

[99]

The authors recovered energy from the pruning of vineyards. The authors studied the combustion of pruning in a biomass-fueled Rankine cycle to produce heat
and electric energy, which allows for revenues of about 80,000 €/year and CO2 emission savings of about 1200 t/year. [100]

The authors propose a method for powering the public lighting of a Spanish district by exploiting the energy potential of olive mill effluents. [101]
The authors describe an innovative process of pyrolysis of agricultural residues targeting biochar production, with the aim of closing the waste loop in
agriculture. In a closed-loop pyrolysis—biochar system, the obtained biochar is directly returned to the same land that provided the feedstock. [102]

WM—Zootechnical
waste

The authors studied an integrated approach to both valorize the waste coming from the broiler industry and reduce its impacts on the environment. An AD
process applied to the waste and the subsequent separation of the liquid and solid phase of the digestate produce respectively a water-based liquid usable for
irrigation and a soil improver of good quality.

[103]

WM—Agro-
forestry and

zootechnical waste

The co-composting of rose waste with sawdust and different types of manure (chicken, hen and quail) were studied in detail. The process led to a compost
particularly suitable for the cultivation of roses. [104]

The authors investigated the use of anaerobically-digested palm oil mill effluent in combination with chicken manure to produce an organic fertilizer. A 1:1 ratio
between the two components resulted as the best choice in terms of soil fertility. [105]

The conventional use of a solid-digestate from the AD of animal manures and vegetable biomass was compared with the biochar derived from the pyrolysis of
the same digestate. The authors observed the relatively high carbon sequestration capacity of biochar, its higher surface area and water absorption capacity
compared with solid-digestate, which make biochar preferable as a soil improver.

[106]

WM—Municipal
solid waste and

zootechnical waste

The paper compares the AD of food waste with the co-digestion of food waste, pig manure and other organic waste. The second approach allowed obtaining
lower GHG emissions than food waste mono-digestion (−6%). In addition, manure digestion allows reducing the costs for manure disposal, which in many
situations requires purchasing or rental.

[107]

WM

In the city of Dalian (China), the local government has set measures to reduce water losses and increase water saving, such as using rainwater in agriculture,
treated wastewater in industries using un-drinkable water in toilets. [108]

The authors show that reusing wastewater and sewage sludge in agriculture, combined with bioenergy production, represents an added value to the agricultural
sector, which can thus discard the use of fresh water and chemical fertilizers. [109]

WM—Recycling
and recovery

The paper proposes a tool for biogas plant investors/operators and local authorities to improve the sustainable use of organic fertilizers in agriculture and to
decrease the use of mineral fertilizers. The approach may help local/regional/national authorities to develop control and support instruments for nutrient
recycling to achieve CE goals.

[110]

The authors studied the application of a digestate-derived biochar to the cultivation of maize. The authors demonstrated that improving the efficiency of waste
recycling by combining AD with pyrolysis could be considered as a good practice of CEL, since biochar could perfectly replace chemical fertilizers, which
represent a loss of nutrients in contrast to digestate-derived biochar (which recycles nutrients). In addition, chemical fertilizers are known contributors of nitrates
to soils and potential cause of aquifer contamination [96].

[111]

WM—C&D The authors presented three European case study to illustrate the main types of construction interventions in a CE perspective. [112]
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Table 2. Summary of the laboratory-scale study papers on the application of CEL principles.

Field Summary Ref.

WM—Agro-forestry
waste

The environmental performances of laboratory-scale processes were studied for polyphenols extraction from spruce bark by means of an LCA. The authors
evaluated sustainable alternatives, showing that the greatest contributor in most impact categories was the electricity used to heat up the extraction systems,
followed by solvent production and emissions (e.g., for the Soxhlet process).

[113]

Direct combustion of olive pomace has been considered as the main process to exploit the energy content of such biomass in the past. However,
thermochemical processes (e.g., pyrolysis and torrefaction) are preferable options, due to the higher energy density of the output fuel, which facilitates
transportation and storage. The authors studied the application of such technologies and found ut that the heating value of the treated olive pomace was
60% higher than that of the untreated waste.

[114]

WM—Agro-forestry and
zootechnical waste

The authors studied the co-digestion of sweet potato and cow manure. The addition of sweet potato determined an increase in the methane productivity of
up to 65.5%. Meanwhile, the digestate showed higher contents of nitrogen, phosphorus, and potassium than cow-manure digestate. [115]

Environmental
remediation

The authors investigated the adsorption of Vanadium (V) from aqueous solution by KOH modified seaweed (Ascophyllum nodosum) hydrochar (HCKOH).
The results showed that HCKOH is an effective V adsorbent and that V recovery looks promising, as does the reusability of the HCKOH, even though its
mechanical stability may need to be improved.

[116]

WM—Recycling
and recovery

A solvent-free catalyst-mediated method for the epoxidation of waste cooking oils and the production of sustainable polymers was developed. The process
would allow recycling waste and, meanwhile, reducing the use of petroleum-based polymers. [117]

The paper evaluates the feasibility of employing the biochar derived from agricultural and food waste as a soil improver. The authors observed no
phytotoxic effects on the vegetable species considered (lettuce crops), but concluded that potentially harmful concentrations of heavy metals might limit the
use of biochar in agriculture.

[118]

Different types of waste residues as a filling material for constructed wetlands were evaluated. The authors found out that fragments from construction
activities, snail shells from the food industry, coal slags and residues from the cork industry show good adsorption potential for P and could be
conveniently reused in the sanitary-environmental engineering sector.

[119]

A method was developed to regenerate waste expanded polystyrene. The method consists in the dissolution of polystyrene in styrene and in the
subsequent suspension polymerization that allows incorporating styrene without the need to separate the polymer from its monomer. The process allows
for a 92% recycling rate.

[120]

The paper discusses a new product, in the form of an artificial stone with good mechanical properties, made of oyster shells waste, used as a source of
calcium carbonate and calcium oxide, mixed with an unsaturated polyester resin. [121]
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Table 3. Summary of the conceptual study papers on the application of CEL principles.

Field Summary Ref.

Soil management The authors studied the role of soil/land management as a supplier of resources for the CE. They concluded that CE has a strong influence and, meanwhile,
dependence on soils and land and that successful CE initiatives need an appropriate mutual management of soils, land, and resources. [122]

WM—Municipal solid
waste

The authors carried out an economic analysis on the production of biomethane from food waste and conclude that the economic sustainability of this sector
is strongly influenced by the role of subsidies, especially at a small scale (<200 Nm3/h). [123]

The study highlights the important role of an integrated system composed of the AD of the food waste and earthworms-enriched composting to obtain
energy and a hormone-rich compost. The latter allows reducing the use of fertilizers in agriculture and connecting urban and rural areas. [124]

The authors describe how the CE principles can affect the thermochemical waste sector. They argue on the need for more compact plants, able to treat waste
with higher heating value and to turn ash into a product that can avoid landfill disposal. [125]

The paper describes the role of sanitary textiles as a source-separated fraction under the viewpoint of urban waste production and proposes a recycling
program coordinated with local recycling companies, with the main purpose of minimizing the residual waste fraction. [126]

WM

Drivers and barriers of P recovery were analyzed and the authors conclude that its implementation is currently hindered by the economic sustainability of
the process, the rigidity of the fertilizer market and the acceptance of struvite as a fertilizer by stakeholders and the public. [127]

The authors investigated alternative options for the recovery of P from waste and wastewater, including the ash from sewage sludge, meat and bone meal,
and the separation of urine at a household level. [128]

The authors present the potential opportunities related to the use of human excreta in Haiti and Kenya as a sanitation measure. However, this option has
been facing a lack of regulation on this theme. [129]

The urban region of Barcelona (Spain) has been used as case study to assess the technical and environmental feasibility of applying a struvite recovery and
reuse strategy to meet the P requirements to fertilize the agricultural fields. The authors showed great savings in eutrophication since a great amount of P
and part of the nitrogen was extracted from the effluent, thus preventing these nutrients from ending up in the aquatic environment.

[130]

WM—Zootechnical waste A proposal considering the local treatment of pig manure and slaughtering residues to produce soil improvers was formulated. The latter will be used to
grow crops for pig feeding. Crops would be irrigated with the treated wastewater coming from pig waste treatments. [131]

WM—Agro-forestry
waste

The paper discusses the availability of opportunities for improving the reduction of inorganic waste from intensive horticulture: a more efficient production
with lower environmental impacts is possible, as it can be deduced from the best available techniques (BATs) presented in the research. [132]
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Table 3. Cont.

Field Summary Ref.

WM—Recycling
and recovery

The study assesses seaweed production and biorefinery systems producing bioethanol, liquid fertilizer and protein-rich fish feed. LCA identifies the ability
of the system to provide climate change and marine eutrophication mitigation services, contributing to climate change mitigation by substitution of
gasoline and soybean proteins, while returning excess atmospheric and marine carbon (HCO3

−) into soil carbon stock.
[133]

The authors argue that most Danish river basin districts would benefit from seaweed cultivation, which would effectively contribute to the creation and
maintenance of a nutrient balance for both nitrogen and P, favoring the achievement of the EU nitrogen reduction goals. [134]

The authors discuss the use of available microalgae to produce valuable biochemical products. Their method represents an untapped potential that could
lead to the solution of several problems through green technologies. [135]

The authors present seaweed biorefinery systems as an opportunity to economically strengthen the agriculture, fishery, chemical and energy sectors, while
helping the recycling of nutrients and alleviating environmental issues. [136]

The paper proposes a roadmap that may help adjust the choice of nutrient recovery strategies to local fertilizer markets, thereby speeding up the transition
from a fossil-based to a bio-based nutrient CE. [137]

WM—C&D

The authors proposed six research topics for future directions: (i) C&D waste generation, (ii) C&D waste treatment methods, (iii) products containing
recycled contents, (iv) C&D WM practice, (v) human factors in C&D WM, and (vi) emerging technologies or concepts to be applied in C&D WM. [138]

The authors present a new methodology aiming to measure the long-term sustainability of construction companies, and the related degree of
implementation of CE. [139]

The authors reviewed alternative C&D WM in China in order to evaluate the transition towards a cleaner production and a CE. They identified four main
types of barriers in the implementation of C&D WM: (i) political and market, (ii) financial and economic, (iii) technical and information and (iv) managerial
and organizational barriers.

[140]

Table 4. Summary of the review papers on the application of CEL principles.

Field Summary Ref.

WM—Recycling and recovery

Biochars were studied as a promising alternative to commercial activated carbon, thanks to their good adsorption capabilities of heavy metals and
organic compounds, including pharmaceutical products, and their easy regeneration. However, the same authors state that the selection of the
input waste for the production of biochar should be made carefully in order to obtain a biochar with a low content of metals.

[97]

The authors reviewed several case studies involving the bioconversion of different types of waste streams to valuable products. The authors
mention the bioconversion of flour-rich streams from the bread and confectionery industry. The authors report that flour-rich streams have been
used in several applications such as bacterial cellulose production, microbial oil for biofuel production and new yeasts. The same authors report
that wine less has been used to produce substances like antioxidants, ethanol, and tartrate salts.

[141]
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5. Discussion and Future Challenges

The publications summarized in Tables 1–4 present different methods to solve envi-
ronmental problems through circular approaches and combining heterogeneous processes,
i.e., by applying CEL principles. Among the papers proposing new circular approaches for
WM, the majority of them propose solutions to generate valuable products (e.g., adsorption
materials, cellulose, chemicals, biofuels, fertilizers and soil improvers from agro-forestry,
and zootechnical and food waste) [97,99,102–106,110,111,113,117–121,124,131,133,135,141],
recover precious nutrients [128,134,136,137], exploiting sustainable sources of energy [45,
100,101,109,110,114,115,123,125], and eliminate residual waste [112,126,129,132,138–140].

Additional fields are expected to benefit from the application of CEL approaches.
For instance, hydrochars and biochars derived from waste biomass could be used as ad-
sorbents for organic and inorganic pollutants in soils and sediments, thus allowing for
environmental remediation procedures. Waste biomass has the advantage of being avail-
able in many geographical contexts and could be fed locally to hydrothermal carbonization
(HTC) or pyrolysis processes. As an example, eutrophic lakes characterized by the growth
of invasive vegetable species could represent a source of waste biomass, which could be
converted into hydrochars or biochars. The latter could be used in a wide range of applica-
tions. Additional potential sources of waste biomass are (but not limited to) agro-forestry
residues, food and food processing residues, zootechnical waste, and seaweeds. Excess
biomass (technically a waste) represents an issue for rivers and canals, too, and should be
harvested regularly to avoid hydraulic risks related to section narrowing and increased
bank roughness. Thus, eco-morphodynamics could be an additional interesting field of
application of the CEL concept.

In the perspective of reducing the carbon emissions, improving resource efficiency,
minimizing waste production and potential damages to soils, another interesting oppor-
tunity of CEL approaches consists in the optimization of the different circuits available to
valorize zootechnical waste, whose contribution to local air pollution, odors, greenhouse
gas emissions, and nitrate contamination of soils and aquifers are known. In this regard, an
innovative approach is suggested by a recent paper, consisting in the coupling of the HTC
of swine manure with the AD of OFMSW to produce energy, compost, and hydrochar [142].
Both compost and hydrochar could be used locally for agricultural applications, thus
closing the cycle of the organic waste in a rural context.

The possibilities for the application of CEL principles and their export to differ-
ent geographical contexts are wide and significant environmental benefits are expected.
Ghisellini et al. [143] reviewed if the application of CE to construction and demolition
sector is environmentally and economically sustainable. They show that the result of the
analyses is site-specific and depends on several factors such as the type of material, build-
ing elements, transport distances, economic and political context. Moreover, an integrated
framework aiming to stimulate effective collaborations between companies, policymakers,
governments, and scientists is needed [144].

The path towards successful CEL applications is characterized by the presence of
barriers. First of all, adequate reforms in the environmental legislations are needed to
support the commercialization of new products deriving from biowaste recycling opera-
tions (e.g., the use of bio-based hydrochars in agriculture). Planning CEL strategies also
requires a deep level of awareness of how the societal, economic, industrial, and environ-
mental frameworks may evolve in the long-term. This should be considered especially
in developing countries, where rapid industrialization might put CEL principles on a
secondary level. In addition, CEL approaches require the legislative and financial support
to scientific research and initiatives provided by a clear governance, possibly at a global
level and characterized by stronger motivations than those that allowed for the approval
of the Agenda 2030. In this sense, funding schemes like the EU LIFE and EU Horizon
2020 programs are great opportunities to experiment new approaches aimed at waste
reuse and recycling, resource efficiency and the consequent waste reduction, and solving
environmental problems with the least possible impacts on the environment itself, by
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the implementation of innovative processes or smart combinations of existing processes.
Furthermore, the implementation of CEL initiatives at a local level would allow reducing
the emissions of local and global air pollutants related to transport. As highlighted by the
quality of the papers on these topics, the level of innovation in processes dealing with WM,
resource and energy recovery is high and this represents a good starting point for further
research. Local governments should take in the results of such projects and support the
replication of successful ideas in other contexts and at a larger scale.

6. Conclusions

The paper critically discussed the concept of CE with a specific focus on WM. From a
literature review on CE principles, a large number of barriers emerge, which governments
should consider to complete a transition that seems still far to be achieved. In particular,
according to several authors, CE has shown a lack of focus on two of the three pillars which
the original formulation of CE is based on, i.e., social and environmental sustainability. CE
is meant to deal with combining economic and environmental benefits, but this does not
necessarily mean that every application of CE principles deals with it. This is mainly due
to the barriers described in Section 3.2. The present paper specifically addressed the lack of
attention of the industry and the lack of a governance framework and investment plans
willing to face today’s environmental challenges, and proposed the new concept of CEL as
an alternative pathway to compensate for this imbalance. Extending the principles behind
the virtuous WM choices presented in Section 4.2 to other sectors would increase the level
of environmental sustainability of CE and would help to define more environmentally
sustainable strategies. Proposing a new concept (CEL) could be a useful way to promote
the idea behind and reinforce the need for more attention to the environmental sphere.

Although CEL is defined for the first time in the present paper, several publications
have already discussed case studies, conceptual frameworks and laboratory-scale experi-
ences aimed at facing environmental challenges through circular approaches. The majority
of the papers reviewed on this topic focus on circular approaches applicable to WM, con-
sidering new recycling options, the production of new valuable material, combined waste
treatment processes (in some cases working in a symbiotic mode) and new energy recovery
options from waste biomass. New guidelines for future research were proposed, such as
the need for optimizing the valorization of agro-forestry and zootechnical waste, the oppor-
tunity to restore local contexts subjected to environmental pollution through the reuse of
waste biomass, and the importance of applying circular approaches locally, by exploiting
the resources provided by waste. This would allow reducing transport-related emissions
and finding a solution to the production of waste, which could be employed in environ-
mental remediation strategies, to produce new valuable resources or to generate energy.
If properly supported by governments, CEL approaches may represent an opportunity to
solve multiple environmental problems at once, with clear economic, time, resources, and
emission savings.
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