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Abstract: In the context of smart grids, Distribution Systems State Estimation (DSSE) is notoriously
problematic because of the scarcity of available measurement points and the lack of real-time information
on loads. The scarcity of measurement data influences on the effectiveness and applicability of dynamic
estimators like the Kalman filters. However, if an Extended Kalman Filter (EKF) resulting from the
linearization of the power flow equations is complemented by an ancillary prior least-squares estimation
of the weekly active and reactive power injection variations at all buses, significant performance
improvements can be achieved. Extensive simulation results obtained assuming to deploy an increasing
number of next-generation smart meters and Phasor Measurement Units (PMUs) show that not only the
proposed approach is generally more accurate and precise than the classic Weighted Least Squares (WLS)
estimator (chosen as a benchmark algorithm), but it is also less sensitive to both the number and the
metrological features of the PMUs. Thus, low-uncertainty state estimates can be obtained even though
fewer and cheaper measurement devices are used.

Keywords: distribution system state estimation; power system measurement; estimation uncertainty;
smart grid measurements; Phasor Measurement Units (PMU)

1. Introduction

Smart grid evolution requires high-performance instruments and advanced measurement techniques
for a variety of purposes, for example, to support optimal control strategies, to improve efficiency, to detect
faults and, last but not least, to monitor power quality [1,2]. One of the key functions for smart grid
stability monitoring and control as well as for contingency analysis and dispatching is state estimation
(SE) considering either equivalent one-line diagrams or full three-phase systems [3]. The purpose of SE
techniques is to estimate the quantities that describe the behavior of a network for electricity transmission
or distribution (e.g., bus voltage or line current phasors) relying on a system model and on a limited
amount of data, partly available a priori (e.g., network topology, impedance line parameters, nominal
load conditions) and partly derived from measurements that are directly or indirectly related to the
chosen state variables [4]. In general, one of the main obstacles for SE is the limited network observability,
which, however, can be partially achieved at the expense of estimation accuracy and precision by using
pseudo-measurements (e.g., a priori information about the minimum, nominal and maximum active and
reactive power injections at non-observable buses) or virtual measurements in the case of zero-injection
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buses. A further problem that is particularly critical for SE estimation in smart grids is resilience to false
data injection as a result of possible cyber-attacks [5].

At the distribution level, the state estimation problem (often explicitly referred to as Distribution
System State Estimation or DSSE) is particularly hard due to:(i) the number of nodes of distribution
networks and (ii) the scarcity of points in the grid that can be actually instrumented at reasonable
infrastructural costs [2,6]. The problem of network size can be addressed through the so-called multi-area
DSSE, which consists in a hierarchical partition of the grid into smaller subsystems to estimate the state of
each of them separately, prior to combining the results at a higher level [7]. The issue of the limited number
of measurement points can instead be mitigated by optimal instrument placement [8–10], particularly
last-generation smart meters (SMs) [11], Phasor Measurement Units (PMUs) [12,13] or a combination
thereof [14]. The diffusion of meters able to stream data to Distribution System Operators (DSOs) in
real-time changes considerably from country to country, as it strongly depends on national regulations
and policies. For instance, in the EU countries where the roll-out of the Advanced Metering Infrastructure
(AMI) is ongoing, the Directive 2009/72/CE requires that at least 80% of customers are to be equipped with
smart metering systems by 2020 [15]. Italy, Sweden, and Finland are at the forefront in this field, followed
by the Netherlands, Spain, and Poland. In Italy, the so-called second-generation SMs are supposed to
stream active and reactive energy data as well as peak power values every 15 min [15].

The PMUs are designed to measure voltage and current phasors directly (namely the state variables of
the system) at times synchronized to the Coordinated Universal Time (UTC), with superior accuracy and
at much higher rates (i.e., up to tens of Hz) than other instruments [16,17]. For this reason, the PMUs are
currently regarded as the most promising measurement instruments for distribution systems monitoring
and control [18]. In fact, faults, anomalous conditions and topology changes can be detected much more
quickly than using other equipment [19–21]. A massive PMU deployment could not only solve the
observability problem, but it would make the estimation problem linear, thus drastically reducing both
the computational burden and the risk for numerical instability [22]. Moreover, the effect of residual
synchronization errors could be mitigated by including them in the state estimation problem itself [23].
However, a state estimation based only on PMUs is quite infeasible for both cost and infrastructural
constraints. Thus, fusion algorithms relying not only on PMU data but also on other a priori information
and measurement quantities are advisable. Among such techniques, the so-called Bayesian estimators
(most notably the Kalman filters) are a viable alternative to the well-known Weighted Least Squares (WLS)
approach [24]. However, the limited amount of real-time data and information about grid operations not
only makes observability critical, but also makes the prediction step of the dynamic estimator hard to
implement with low uncertainty. Indeed, in some designs of Extended Kalman Filters (EKF) for DSSE,
the inputs to the system model (for instance, the hourly changes of active and reactive power injection)
are just assumed to be null and their fluctuations are used to inflate the covariance matrix of the process
noise [25,26]. Instead, in this paper, an optimization algorithm is used to reconstruct the sequence of
weekly input power injection variations at all buses. More in details, the key elements of novelty of this
paper are:

1. The algorithm conceived to estimate the inputs to the prediction step of the filter. Such a sequence of
data is obtained by disaggregating the active and reactive power injection variations measured at the
substation;

2. A deeper analysis of the relative impact of an increasing number of PMUs and SMs on state estimation
performance when such measurements are used in the update step of the EKF.

The analysis is performed by using the classic IEEE 33-bus radial system as a case study under realistic
time-varying load conditions.
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The rest of this paper is structured as follows. First, in Section 2, the main contribution of this
paper in the context of related work is highlighted. Section 3 describes the system and measurement
models. Section 4 first deals with the optimization algorithm used to compute the weekly sequence of
power injection variations used as inputs to the EKF and then presents the EKF implementation details.
In Section 5, the features of a test distribution system (namely the IEEE 33-bus test feeder) and the load
profiles used to synthesize a realistic one-year-long time series of state variables are described. In Section 6,
after an overview of the settings needed to run and to compare the proposed DSSE algorithm with the
WLS approach, the results of multiple simulations using different kinds of measurements are reported.
Section 7 presents an overview of the applicability, advantages and limitations of the proposed approach.
Finally, Section 8 concludes the paper and outlines future work.

2. Related Work

The SE techniques for both transmission and distribution systems can be roughly classified as static
or dynamic [27]. The most common kind of static estimators in power systems relies on the so-called
WLS approach. Such estimators can be implemented in a variety of ways depending on the chosen state
variables and on the wanted trade-offs between computational burden and numerical robustness [4].
WLS state estimation relies on the iterative linearization of a measurement model and it converges to
the actual state by applying the Gauss–Newton method. A crucial issue in WLS estimation is the way
in which weights are assigned to both real and pseudo-measurements [28]. Indeed, the weights have
to be inversely proportional to the variances of measurement uncertainties. However, even a well-done
weight assignment may cause ill-conditioning problems when such uncertainties differ by several orders
of magnitude. Moreover, the algorithm sensitivity to different types of measurement uncertainties may
change considerably [29]. Last but not least, if the algorithm is not initialized properly, the Gauss–Newton
iterative approach can wrongly lead to local minima instead of the global one. Such convergence problems
can be effectively addressed by using alternative algorithms for the WLS problem solution, such as Particle
Swarm Optimization (PSO) [30], or Quasi-Imitative Evolution System Procedures [31].

The dynamic state estimation techniques rely on a state transition function modeling the time
evolution of state variables [32]. As a result, recursive Bayesian estimators can be built upon this model. It is
important to highlight that in the context of power systems, the dynamic and forecasting-aided concepts are
often regarded as synonyms because, due to the lack of univocally defined system models, the coefficients
of the state transition function typically result from some forecasting algorithm applied directly to the
chosen state variables (e.g., bus voltage or line current amplitudes and phases). The forecasting model can
be so simple as the two-parameters Holt-Winters method (as originally proposed in [33]) or a multivariate
autoregressive process driven by artificial neural networks [34]. In any case, a considerable amount of
historical information on all state variables is needed to build the state transition matrix. Unfortunately,
this can hardly be done at the distribution level due to the observability limitations explained in Section 1.
On the other hand, if the dynamic system underlying state estimation results from the linearization and
discretization of power injections equations [35], the forecasting algorithms can be applied to the power
injection profiles rather than to the state variables to be estimated. In particular, two alternative approaches
can be adopted depending on whether active and reactive power injections are regarded either as auxiliary
state variables or inputs to the system [36]. In the former case, recently adopted in [37] as well (where
it is further enhanced for robust estimation in the presence of outliers), the state transition matrix still
requires forecasting (in particular load forecasting) at every bus, which can be still hardly feasible at the
distribution level. Instead, in the latter case, which is also adopted in this paper, the state transition matrix
is just the identity matrix, as explained in detail in Section 4. Therefore, system observability depends
only on the system output function, namely on the type and the position of the measurements available
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at a given time like in the WLS case. However, if a Bayesian approach is adopted, the fusion between
system input data (e.g., resulting from a forecasting algorithm, from a previous estimation algorithm or
known a priori) and observed measurement data can be exploited to achieve better estimation results.
Unlike the solution originally proposed in [38], which also includes the second-order terms in the state
vector (thus reducing the linearization error at the expense of the computational burden), the proposed
EKF is a generalization of the filter introduced in [36]. However, it is characterized much more in depth,
with a special focus on current and future distribution level features. In fact, the forecasting model
in [36] is unclear, the measurement settings and the related uncertainty contributions are quite simplistic
(e.g., no PMUs or instrument transducers are considered) and the results are just a few. A more exhaustive
performance comparison between WLS and EKF estimators including the effect of PMUs is presented
in [25] and [26]. However, in those works, as briefly outlined in the Introduction, the load fluctuations
regarded as system inputs are naively assumed to be white and uncorrelated between buses, which is not
realistic. Moreover, in this paper the joint effect of PMUs and SMs (assuming that such measurement data
progressively replace traditional pseudo-measurements as expected in smart grids [14]) is analyzed.

3. Models Description

As known, the state of a distribution system can be expressed in terms of bus voltage phasors or line
current phasors. Given that such state variables are complex-valued, they can be expressed either in polar
or in rectangular coordinates. Therefore, a given estimation algorithm can be formulated in four alternative
ways, which differ in terms of computational burden, model approximation errors and robustness to
numerical noise [39]. In this paper, without loss of generality, the state of a distribution system with N
buses is represented by the bus voltage phasors in polar form, i.e., x = [θ1, . . . , θN , V1, . . . , VN ]T, where θi

and Vi are the angle and the Root Mean Square (RMS) voltage, respectively, at the i-th bus. Observe that,
if θ1 is not measured by a PMU, it can be excluded from the state vector because the phase at the slack bus
can be conventionally set to 0. Alternative state variables, although possible, do not change the general
formulation of the estimation problem substantially.

3.1. System Model

Let u = [P2, . . . , PN , Q2, . . . , QN ]T be the vector of the active and reactive power injections at all buses
other than the slack bus. In general, the power injection values result simply from the difference between
the power of generator and load at a given bus. The system model adopted in this paper can be expressed
in implicit form as [4]

f(x, u) =


θ1 − θ̄

V1 − V̄
fP(x, u)
fQ(x, u)

 = 0. (1)

where θ̄ can be conventionally set to 0 (and θ1 can be removed from x) if no PMU is used to monitor the
slack bus, V̄ is the nominal operating RMS voltage (namely a guess of the slack bus RMS voltage value
even if the actual value shall be estimated), while the i-th entries of fP(x, u) = 0 and fQ(x, u) = 0 describe
the relationships between state vector x and the active and reactive power injection, respectively, at bus
i = 2, . . . , N, i.e.,

f i
P(x, u)=Pi−Vi

N

∑
j=1

V j[Re(Yij) cos θij + Im(Yij) sin θij]=0,

f i
Q(x, u)=Qi−Vi

N

∑
j=1

V j[Re(Yij) sin θij − Im(Yij) cos θij]=0.

(2)



Energies 2020, 13, 6054 5 of 25

In (2), Re(Yij) and Im(Yij) are the real and imaginary parts of the element (i, j) of the grid admittance
matrix Y, while θij = θi − θ j. Observe that P1 and Q1 are purposely not included in (1), because these
values are likely to be linearly dependent on the power injections at the other buses. As a consequence,
the Jacobian matrix of (2) with respect to x could be singular (i.e., not invertible) if also the equations
related to the slack bus (i.e., for i = 1) are considered, thus preventing EKF implementation, as explained
below. By replacing instead the power injection equations at the slack bus with θ1 − θ̄ = 0 and V1 − V̄ = 0,
the system still comprises 2N nonlinear equations in 2N unknowns (or 2N− 1 if θ1 = 0 is not monitored by
a PMU), but the Jacobian matrix of (1) with respect to x is not only square, but also likely to be invertible.

Observe that even though in active distribution systems both input and state variables change with
time, in (1) the time variable is omitted for the sake of brevity. However, if tk−1 and tk denote two
consecutive discrete-time instants, from the Taylor’s series of (1) truncated to the first order at time tk−1 it
follows that [25,26]

∂f(x, u)
∂x

∣∣∣∣
x=xk−1

u=uk−1

∆xk +
∂f(x, u)

∂u

∣∣∣∣
x=xk−1

u=uk−1

∆uk + ek = 0. (3)

where ∆xk = xk − xk−1, ∆uk = uk − uk−1, xk and uk are the values of the state and the input at time tk,
respectively, and ek is the vector including:

1. The intrinsic voltage phase and RMS amplitude fluctuations at the slack bus in normal operating
conditions (first two entries);

2. The errors resulting from the linearization of the power injection equations (remaining 2N− 2 entries).

If the two Jacobian matrices in (3) are represented with symbols Jxk−1 and Juk−1 , respectively, and
assuming that Jxk−1 has full rank, the linearized discrete-time system can be more compactly rearranged as

xk = I2Nxk−1 + Gk−1∆uk + wk, (4)

where Gk−1 = −J−1
xk−1

[
0

I2N−2

]
is the input matrix at time tk−1 (with I2N and I2N−2 being the identity

matrices of size 2N and 2N − 2, respectively), while wk = −J−1
xk−1

ek can be regarded as the process noise
vector. Since the linearization errors are weakly correlated and the corresponding average values over
time are negligible, the elements of wk can be reasonably assumed to be normally distributed because of
the central limit theorem under the so-called Lindeberg’s condition. Indeed, each element of wk results from
the linear combination of zero-mean and weakly correlated random terms.

In Section 4.2, the relation (4) is used to define the prediction step of the EKF. The elements of ∆uk are
instead estimated through the optimization algorithm described in Section 4.1.

3.2. Measurement Model

Assuming that the measurement data available at time tk are gathered into vector zk, the relationship
between such measured quantities and the state of the system can be expressed as [4]

zk = h(xk) + νk, (5)

where h(·) is a vectorial and generally nonlinear function of the state variables and νk is the vector including
the corresponding zero-mean measurement uncertainty contributions. In principle, any combination
of current, voltage or power measurements can be used in (5), provided that system observability is
preserved. Since the state transition matrix of (4) is just the identity matrix, the linearized system is



Energies 2020, 13, 6054 6 of 25

observable (and therefore the system observability matrix has a full rank) if and only if the rank of the
Jacobian of (5) is 2N − 1 (if θ1 is conventionally set equal to 0) or 2N (if θ1 is measured by a PMU installed
at the slack bus) at any time, i.e., ∀k [29]. This condition can be achieved by using any combination of true,
pseudo- or virtual measurements (e.g., in the case of zero-injection buses). In principle, the solution of
the DSSE problem is straightforward if an adequate number of PMUs is placed properly [9]. However,
as briefly explained in Section 1, a large-scale PMU deployment at the distribution level could be infeasible
or too expensive. Hence, without loss of generality in terms of the EKF applicability, a hybrid approach
will be adopted and analyzed in Section 6. In particular, the slack bus voltage (which is continuously
monitored) and the active and reactive power injection measurements at each bus in the following are
used to ensure basic state observability. In addition, an increasing, yet limited, number of PMUs is used to
refine state estimation accuracy. Since PMUs typically have separate input channels for voltage and current
measurements, each deployed PMU is supposed to collect both voltage and current phasor measurements
at a given time. Based on the assumptions above, the output function in (5) can be made explicit as [40]

h(xk) =



P(xk)

Q(xk)

VPMU
k (xk)

θPMU
k (xk)

IPMU
k (xk)

ϕPMU
k (xk)


(6)

where

• P(xk) and Q(xk) are the N−long vectors including the active and reactive power injections as
functions of the state. In practice, the i-th elements of such functions are given by (2).

• VPMU
k = [V1, Vm1

k , . . . , VmM
k ]T comprises both the slack bus RMS voltage and the RMS voltage values

measured by M PMUs deployed at buses m1, . . . , mM. Similarly, θPMU
k = [θm1

k , . . . , θ
mM
k ]T is the vector

of voltage angles measured directly by the same PMUs.
• Finally, vectors IPMU

k = [Im1
k , . . . , ImM

k ]T and ϕPMU
k = [ϕm1

k , . . . , ϕ
mM
k ]T comprise the RMS values and

the angles, respectively, of the phasors of the current flowing through one of the lines connected to
the M buses where the PMUs are installed.

4. State Estimation Algorithm

In this section, the details of the proposed DSSE algorithm are described. In particular, first,
the technique used to estimate the power injection variations at the input of the EKF is explained.
Then, the structure of the EKF is presented. A block diagram of the whole estimator is shown in Figure 1.

4.1. Prior Estimation of Power Injection Variations

In (4), the inputs to the linearized system model are the differences of the active and reactive
power injections between sampling times tk−1 and tk at all buses that are different from the slack bus.
Usually, at the distribution level, just a few power injections can be observed directly due to the lack of a
measurement infrastructure capable of collecting data from all buses at the same time. Often, the only
power injections that can be actually measured are those at the slack bus or at buses located at the beginning
of crucial feeder lines. As a consequence, the linear system of equations relating the unknown power
injections of the unmonitored buses (as well as their variations in one sampling period) to the aggregate
quantities measured at the few available buses is underdetermined. This means that the power injections
at the unmonitored buses cannot be estimated univocally. Nevertheless, a single solution can be found if
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the equations of the underdetermined system are regarded as the constraints of an optimization problem
minimizing a suitable objective function. In the case of compressive sensing problems, for instance,
the system solution of interest is the one with the minimum number of non-zero elements. Instead, in the
case at hand, the power injection variations under dynamic load conditions are generally not null, unless
zero-injection buses are considered.

EKF 
prediction

step
(13)‐(14)

EKF 
update 
step

(15)‐(17)

1kk|x̂

kz

kD

kk|x̂

1kkC |

P/Q load and 
generation cov. 

matrices
Process 
noise cov. 
matrix

P/Q power
measurements 
at the slack bus

Std. uncertainties of P/Q 
power measurement 

at the slack bus

QP solver
of problem
(8)‐(11)

s
ku

Euler
difference
and loss

compensation

Shift register
of length K
(e.g. 1 week)

a
kΔu

aΔ ku~

QP δδ σσ  ,

Std. Dev. of P/Q power 
injection variations at 

buses i=2,…,N

ii QP
σσ  Δ Δ
 ,

kûΔ

kW

Input 
cov. 

matrix

Power inj. 
variations

kR
Meas. noise 
cov. matrix

kkC |

Meas. data 
vector

Figure 1. Block diagram of the proposed DSSE algorithm based on an EKF with prior estimation of power
injection variations.

Thus, the function to minimize in this case is the mean square value of the overall uncertainty
contributions associated with the active and reactive power measurements collected at the slack bus over
subsequent time intervals of a given duration (e.g., one week), as explained below in greater detail.

If ∆us
k is the 2× 1 vector including the active and reactive power injections differences at the slack

bus between tk−1 and tk, and if ρP and ρQ are the relative active and reactive power losses over the whole
grid in nominal conditions (e.g., computed a priori from power flow analysis), the aggregate active and
reactive power injection variations at all the other buses can be estimated as

∆ua
k = −

[
1− ρP 0

0 1− ρQ

]
∆us

k, (7)

where the negative sign on the right side of the equation is due to the fact that the power injected into the
slack bus must meet the power demand at all buses regardless of the distribution losses. It is important
to highlight that in practice the aggregate active and reactive power variations estimated with (7) are
affected by the uncertainty contributions comprising the active and reactive power measurement errors,
the unknown power losses variations between tk−1 and tk, and possible not modeled phenomena. As a
result, the actual aggregate active and reactive power injection variations differ from the values returned
by (7) by an uncertainty term δk. Let

• K be the number of ∆ua
k samples collected in the observation interval [tk−K+1, tk] and arranged into

vector ∆ũa
k = [∆uaT

k , . . . , ∆uaT
k−K+1]

T;
• δ̃k = [δT

k , . . . , δT
k−K+1]

T be the column vector of the corresponding uncertainty contributions;
• ∆ũk = [∆uT

k , . . . , ∆uT
k−K+1]

T be the 2(N − 1)K-long column vector obtained by stacking elements
∆un(i−1) and ∆un(i+N−2) for i = 2, . . . , N and n = k − K + 1, . . . , k (namely the active and reactive
power injection variations at all the buses different from the slack bus in the observation interval
[tk−K+1, tk]).
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Assuming, without loss of generality, that no zero-injection buses are present in the distribution
system (possible zero-injection buses can indeed be excluded from the vector of unknown variables a
priori), the following quadratic programming (QP) problem can be formalized, i.e.,

min
[
δ̃

T
k ∆ũT

k

] [IK 0
0 0

] [
δ̃k

∆ũk

]
(8)

subject to constraints

(a)
[

A1 A2

] [ δ̃k
∆ũk

]
= ∆ũa

k (9)

(b)
1
K

k

∑
n=k−K+1

δ2
1n
≥σ2

δP
and

1
K

k

∑
n=k−K+1

δ2
2n
≥σ2

δQ
(10)

(c)
1
K

k

∑
n=k−K+1

∆u2
n(i−1)

=σ2
∆Pi and

1
K

k

∑
n=k−K+1

∆u2
n(i+N−2)

=σ2
∆Qi i = 2, . . . , N (11)

where:

• Linear constraint (9) with

A1 =



−1 0 . . . 0
0 −1 . . . 0
... . . .

...
...

0 0 . . . −1
−1 0 . . . 0
0 −1 . . . 0
... . . .

...
...

0 0 . . . −1


and A2 =

1 . . . 1 0 . . . 0
0 1 . . . 1 . . . 0
...

... . . .
... . . .

...
0 0 . . . 1 . . . 1
1 . . . 1 0 . . . 0
0 1 . . . 1 . . . 0
...

... . . .
... . . .

...
0 0 . . . 1 . . . 1





N − 1

2K (12)

is the underdetermined linear system that has to be solved to find the inputs to the EKF. In each
equation, the sum at time tn ∈ [tk−K+1, tk] of the active or reactive power injection variations,
respectively, at all buses different from the slack bus is set equal to sum of the aggregate value
returned by (7) and the unknown uncertainty contribution δn. The uncertainty contributions should
be estimated as well. However, since they can be reasonably assumed to be small and their impact
on (9) should be kept as small as possible, the minimization of their mean square value is indeed the
objective function of the optimization problem (8).

• Constraint (10) relies on the assumption that the mean value of variables δk = [δ1k , δ2k ]
T is zero and

provides a lower bound to the variances of the uncertainty contributions affecting the aggregate active
and reactive power variations, respectively. Therefore, it provides a lower bound to the objective
function as well. Indeed, the variance values estimated over the observation interval [tk−K+1, tk]

cannot be smaller than the square of the combined standard uncertainties (denoted with σ2
δP

and σ2
δQ

)
of the power injection variations measured at the slack bus.

• Finally, the equality constraint (11) forces the sample variances of the unknown active and reactive
bus power injections variations to be equal to given values denoted as σ2

∆Pi and σ2
∆Qi , respectively,

for i = 2, . . . , N. Such values can be found a priori, for example, from past pseudo-measurements.
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Again, (11) relies on the realistic assumption that the mean values of the power injection variations
over time are null.

It is worth emphasizing that even if the number of variables is potentially large, the QP problem
is standard and the constraint equations are quite simple. Therefore, the solution can be computed in
real-time with standard tools, provided that K is not too large. This is very important because the solution
of the optimization problem based on (8)–(11) must be updated at every time step (possibly restarting
from the solution found at the previous time step) to provide timely inputs to the EKF. In practice,
a weekly observation interval proved to offer a reasonable trade-off between computational burden and
performance, as it will be shown in Section 6. Moreover, if the power injections at multiple buses are
measured (e.g., not only at the slack bus, but also at the initial bus of a feeder line), the original QP problem
can be partitioned hierarchically into smaller subproblems of the same kind, thus reducing computational
complexity and improving estimation accuracy.

4.2. EKF Implementation

Let ∆̂uk denote the estimate of ∆uk extracted from the solution vector of the QP problem (8)–(11) at
the present time instant tk. Since this vector is used as input to the EKF, the state of the linearized system (4)
in the prediction step results from

x̂k|k−1 = x̂k−1|k−1 + Gk−1∆̂uk, (13)

where the symbol ·̂ denotes the estimated quantities. The covariance matrix of the predicted state is instead
computed as follows:

Ck|k−1 = Ck−1|k−1 + Gk−1DkGT
k−1 + Wk, (14)

where Dk is the covariance matrix of ∆̂uk and Wk is the covariance matrix of the process noise wk. It is
worth noticing that in the initial observation interval (i.e., for k = 0, . . . K − 1), the QP problem based
on (8)–(11) cannot be solved, since not enough data are collected. In this transient phase, the input vector
∆̂uk can be set to 0 and Dk can be initialized as a diagonal matrix in which the non-zero elements are set
twice as large as the expected variance of power injection fluctuations. In such conditions, the EKF still
works (as already shown, for instance, in [26]), although results are certainly suboptimal.

The Kalman gain of the filter is given by

Kk = Ck|k−1HT
k (HkCk|k−1HT

k +Rk)
−1, (15)

where Hk =
∂h(x)

∂x

∣∣∣∣
x=x̂k|k−1

and Rk is the covariance matrix of the measurement uncertainty contributions

in νk. Hence, in the update step, the estimated state of the system results from

x̂k|k = x̂k|k−1 + Kk[zk − h(x̂k|k−1)], (16)

while its covariance matrix is given by

Ck|k = (I2N−1−Kk Hk)Ck|k−1(I2N−1−Kk Hk)
T+KkRkKT

k . (17)

Observe that (17) is the so-called Joseph form of the covariance matrix of the estimated state [41].
This formulation is indeed robust to possible numerical issues (especially in the case of large systems),
as it enforces Ck|k to be positive definite. In fact, if the covariance matrix were computed with the simpler
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expression Ck|k = (I2N−1 − Kk Hk)Ck|k−1, slight matrix asymmetries due to finite numerical precision might
affect the result, thus possibly leading to sudden EKF divergence.

5. Case Study Description

To characterize the proposed state estimator, a modified version of the well-known IEEE 33-bus radial
distribution system is used as a case study [42]. This choice stems from the fact that this grid example
exhibits a typical radial structure (shown in Figure 2), the number of buses is reasonable (i.e., small enough
to run one-year-long simulations within a reasonable time) and it does not include zero-injection buses. As a
result, the optimization algorithm solving the QP problem (8)–(11) is tested under worst-case conditions
since there are no inherently null power injection variations that can be excluded from the vector of
unknown variables ∆ũk. For the sake of completeness, the nominal active and reactive loads at all
buses, as well the resistance and reactance of all lines, are reported in Table 1. Without loss of generality,
the grid will be assumed to be fully passive (i.e., no distributed generators are present in the system).
Therefore, the active and reactive power injections at all buses different from the slack bus will be equal
to the respective active and reactive load power but with opposite sign, i.e., u(i−1)k

= Pi
k = −Pi

Lk
and

u(i+N−2)k
= Qi

k = −Qi
Lk

for i = 2, . . . , N. In order to obtain a realistic time series of the true state variables
(i.e., bus voltage RMS amplitudes and angles) to be compared with the results of the DSSE algorithms
(see Section 6), the nominal load values of the IEEE 33-bus system shown in Table 1 are replaced with
one-year-long synthetic load profiles resulting from the aggregation of the residential and office electricity
consumption generated with the software tool developed by Brodén et al. [43]. The time resolution of
such profiles is 15 min. In this way, by running a power flow analysis through MATPOWER at each
time step [44], the sequence of the actual values of state vector xk under time-varying quasi-static load
conditions can be computed.
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Figure 2. Structure of the IEEE 33-bus radial distribution system.
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Table 1. Nominal active and reactive loads as well as line parameters of the IEEE 33-bus radial
distribution system.

Bus Pi
Lnom

/kW Qi
Lnom

/kvar Line From To r/Ω x/Ω

1 – – 1 1 2 0.092 0.047
2 100 60 2 2 3 0.493 0.251
3 90 40 3 3 4 0.366 0.186
4 120 80 4 4 5 0.381 0.194
5 60 30 5 5 6 0.819 0.707
6 60 20 6 6 7 0.187 0.619
7 200 100 7 7 8 0.711 0.235
8 200 100 8 8 9 1.030 0.740
9 60 20 9 9 10 1.044 0.740
10 60 20 10 10 11 0.197 0.065
11 45 30 11 11 12 0.374 0.130
12 60 35 12 12 13 1.468 1.16
13 60 35 13 13 14 0.542 0.713
14 120 80 14 14 15 0.591 0.526
15 60 10 15 15 16 0.746 0.545
16 60 20 16 16 17 1.289 1.721
17 60 20 17 17 18 0.732 0.574
18 90 40 18 2 19 0.164 0.157
19 90 40 19 19 20 1.504 1.355
20 90 40 20 20 21 0.410 0.478
21 90 40 21 21 22 0.709 0.937
22 90 40 22 3 23 0.451 0.308
23 90 50 23 23 24 0.898 0.709
24 420 200 24 24 25 0.896 0.701
25 420 200 25 6 26 0.203 0.103
26 60 25 26 26 27 0.284 0.145
27 60 25 27 27 28 1.059 0.934
28 60 20 28 28 29 0.804 0.701
29 120 70 29 29 30 0.508 0.259
30 200 600 30 30 31 0.974 0.963
31 150 70 31 31 32 0.311 0.362
32 210 100 32 32 33 0.341 0.530
33 60 40 – – – – –

The individual synthetic profiles rely on a variety of models (e.g., based on Markov chains) that
keep into account building size, heating and cooling needs, home and office appliance usage and level
of occupancy at different times of the day [45,46]. As a result, they are much more realistic than those
used, for instance, in [26], as their temporal autocorrelation depends on daily, weekly and even seasonal
factors. As a consequence, even though the generated load profiles are random, they include common
pseudo-periodic patterns that tend to remain constant if simulations over multiple years are performed.
Quite importantly, the Brodén’s application can synthesize an arbitrary large number of profiles of a
different kind, but it does not allow setting wanted average and maximum load values. Therefore, to keep
the results of the power flow analysis within acceptable limits, the load profiles of distinct buildings
were selected, aggregated and assigned to different buses by solving the binary linear programming
optimization problem described in Appendix A. In particular, given a set of approximately 2000 distinct
building synthetic profiles, the optimization algorithm returns a minimum subset of them (usually a few
tens for each bus), in such a way that the aggregate average power over one year is approximately equal
to Pi

Lnom
and the corresponding overall sample variance is about γ2Pi2

Lnom
. The values of parameter γ are
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chosen by trial-and-error to ensure that the maximum load variations at all buses lie approximately within
±20%, ±40% or ±60% of the corresponding nominal values. It is worth emphasizing that even if distinct
profiles are assigned to different buses, the correlation coefficients between pairs of aggregated loads can
be significant (i.e., between 0.3 and 0.9). This is due to some features (e.g., daily and seasonal patterns)
common to different synthetic profiles, even if they were generated independently by the Brodén’s
application. An example of yearly active load power profile (i.e., at bus no. 2 with variations within ±60%
of the nominal value) is shown in Figure 3 (top picture) along with the corresponding histogram (bottom
picture). Even if at a glance the overall profile looks quite irregular, a repetitive daily pattern is clearly
visible in the inset. The histogram exhibits a strongly multimodal behavior that can be well described by a
Gaussian Mixture Model (GMM) in accordance with other load models [47]. In the case at hand, the GMM
probability density function resulting from histogram data fitting (dashed line in Figure 3) consists of three
components, of which the mean values, standard deviations and mixing factors are: 80.9, 93 and 130.5 kW;
8.0, 56.5 and 123.4 kW; 0.32, 0.40 and 0.28, respectively. The aggregated load profiles assigned to the other
buses exhibit a similar behavior and are not reported for the sake of brevity. In all cases, from 2 to 5 GMM
components can be identified, with mixing factors ranging from about 0.15 to 0.5. Of course, the features
of the aggregated reactive power profiles are very similar to the active ones, since the power factors at
each bus are almost equal to those calculated in nominal conditions.
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Figure 3. Example of yearly load profile (with 1-week zoom in the inset) and corresponding histogram at
bus no. 2, when the load variations are bounded within ±60%. The dashed line fitting the histogram is the
probability density function of a Gaussian Mixture Model (GMM) consisting of three components with
mean values: 80.9, 93, 130.5 kW; standard deviations: 8.0, 56.5 and 123.4 kW and mixing factors: 0.32, 0.40
and 0.28, respectively.
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6. State Estimation Results

This section includes the results of the comparison between the proposed enhanced EKF and the WLS
technique. In the following, first the DSSE-specific simulation settings are described and justified. They are
partitioned into different groups, i.e., those needed to run the QP optimization problem for EKF input
evaluation and those needed to simulate power injection measurements and PMU-based measurements.
Whenever possible, EKF and WLS DSSE settings are the same to ensure a fair comparison between both
estimators. Afterward, a subsection specifically focused on estimator performances is reported.

6.1. QP Settings for EKF Input Evaluation

The solution of the QP problem based on (8)–(11) relies on a variety of parameters that have to be set
properly. First of all, as introduced at the end of Section 4.1, one-week-long observation intervals shifting
by 15 min at a time for a full year are considered for simulations. Hence, K = 672. This time interval
provides a good trade-off between the total number of variables of the QP problem and the accuracy in
estimating the variance of power injection variations based on the record of collected data. The average
relative active and reactive power loss coefficients obtained from a preliminary power flow analysis of
the IEEE 33-bus grid in nominal conditions are ρP = 5.2% and ρQ = 5.5%. The values of σδP and σδQ

considering both the measurement settings at the slack bus (described more in detail in Section 6.3) and
the power losses fluctuations in time-varying load conditions (as they result from preliminary Monte Carlo
simulations) range between about 7% and 9% of the standard deviations of the actual active and reactive
power injection variations at the slack bus. Finally, the values of σ∆Pi and σ∆Qi for i = 2, . . . , N depend on
the actual load variability. Since the maximum weekly load changes in different tests depend on the season
and lie within ±20%, ±40% and ±60% of the nominal load values, the corresponding standard deviations
also change with time and do not exceed 7%, 13% and 20% of the nominal load values, respectively.
Thus, given that the correlation coefficients between pairs of consecutive load values generated by the
Brodén’s application range between 0.3 and 0.4, the values of σ∆Pi and σ∆Qi are in the order of about 10%,
21% and 32% of the bus nominal load values, respectively, for every load variability conditions considered.
Also, the covariance matrix Dk of the EKF input data sequence to be used in (13) results simply from
Dk =

1
K ∑k

n=k−K+1 ∆un · ∆uT
n .

6.2. Process Noise (EKF Only)

The elements of the covariance matrix Wk needed to compute (14) result from Wk = J−1
xk−1

Ek J−1T
xk−1

,
where J−1

xk−1
is defined in Section 3.1 and Ek is the presumably stationary matrix of linearization errors

vector ek. In practice, the eigenvalues of Ek (expressed in p.u.) are generally at most in the order of
1 ×10−9, i.e., a few orders of magnitude lower than those of Dk. The only exception is the variance
associated with V1, as it includes the physiological voltage fluctuations at the slack bus. In fact, this is set
to 2.8 ×10−4, which corresponds to normally-distributed voltage fluctuations within ±5% of the nominal
value. Consider that, without loss of generality, θ1 is assumed to be 0 (as customary in state estimation
problems) and therefore it is excluded from the state variables vector as well as from the computation of
the process noise covariance matrix.

6.3. Power Injection Measurements

The power injections at the slack bus are assumed to be measured by a power quality analyzer with
overall standard uncertainties equal to 0.4% of P1

k and 1.4% of Q1
k , respectively, as reported in [48]. All the

other active and reactive power injections are estimated in four alternative scenarios characterized by an
increasing “smartness” of the grid monitoring infrastructure.
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1. The first scenario refers to the classic case in which just historical a priori information on
power injections (i.e., pseudo-measurements only) is available. In this case, the unknown delays
and the time misalignment between the collected data strongly affect measurement uncertainty,
which consequently is as large as load inherent variability (scenario 1).

2. The second scenario relies on the assumption that power injection measurements rely not only on
pseudo-measurements, but also on the data collected by the SMs every 15 minutes. Such data are
assumed to be aligned in time with a delay of a few seconds before being aggregated (scenario 2).
In this case, we assume that the weight of SMs measurements on the total relative variance of power
injection measurement data is about 33% at all buses (scenario 2).

3. The third scenario is similar to the second one, but a deeper penetration of SMs is envisioned.
Therefore, the weight of SMs measurements on the total relative variance of power injection data
reaches about 67% (scenario 3).

4. Finally, the fourth scenario relies on the assumption that all power measurements are collected from
customers’ SMs and are properly aligned in time before being aggregated. Of course, in this case,
the traditional pseudo-measurements are no longer used (scenario 4).

The relative standard measurement uncertainties of pseudo-measurements are set equal to 1/3
of the expected maximum load variability, as customary in state estimation problems [49]. The SM
measurement uncertainty instead relies on the quite deep analysis reported in [50], which is indeed
specifically focused on the uncertainty of aggregated SM data for state estimation. According to various
international Standards (most notably the Standard ANSI CI12.20), the SM accuracy must lie within±0.2%,
±0.5%, ±1.0%, and ±2% of the reported value, depending on the instrument class considered. However,
the research in [50] reveals that other contributions may increase the uncertainty of aggregated SM data.
Such contributions include: power losses along the lines (in the order of about 1.5%), possible missing or
bad data replaced by sporadic pseudo-measurements (up to 4% of total traffic), phase identification errors
(if any) and meter clock deviations (up to a few seconds). Last but not least, the accuracy of instrument
transformers (especially the current transformers) is generally comparable with the accuracy of the SM
itself (i.e., ranging from the fraction of percent to a few percent [51]). Given that all the aforementioned
uncertainty sources are not correlated, assuming to use Class 1 SMs and randomizing the other terms
uniformly within the range reported in [50,51], the combined relative standard uncertainties associated
with the SM data aggregated at different buses span from 0.7% to 1.6% [52].

Of course, the relative variances used to compute the diagonal elements of matrix Rk used in (15)
depend on the actual fractions of SM-based and pseudo-measurements employed, namely on the specific
scenario considered, as well as on the actual power injection values at a given time.

6.4. PMU-Based Measurements

The RMS amplitude and angle of some bus voltage and line current phasors are measured assuming to
deploy an increasing amount of PMUs. To this purpose, a variant of the greedy PMU placement algorithm
proposed in [40] is used (further details are reported in Appendix B). A key advantage of this approach is
that, although suboptimal, it requires just a polynomial computation time. Moreover, system observability
is not a problem as it is provided by power measurements. In particular, assuming that each PMU has just
with two sets of channels (i.e., one for voltages and another for currents), the PMUs are placed one at a
time to measure one bus voltage phasor and one line current phasor, while minimizing the worst-case
state estimation uncertainty. As a consequence, the number of rows of matrices Hk and Rk in (15) as well
as the number of elements of zk and h(x̂k|k−1) in (16) depend on the amount of deployed PMUs.

Based on the IEC/IEEE Standard 60255-118-1:2018 [53], the PMU Total Vector Error (TVE) (an accuracy
parameter that keeps into account the joint effect of relative amplitude and angle phasor uncertainty
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contributions) in steady state conditions cannot exceed 1%. However, PMUs for active distribution systems
are expected to be much more accurate [54]. Therefore, PMUs with a maximum TVE of 0.1% or 1% are
considered in the present study. Moreover, the uncertainty contributions affecting the TVE value are
supposed to be evenly split between relative RMS amplitude and phase errors. This means that the
standard measurement uncertainties used in simulations are set to 0.033% or 0.33% of the RMS amplitude
and to 0.033 crad or 0.33 crad (for angle measurements, respectively, depending on whether the maximum
TVE is 0.1% or 1%).

6.5. Performance Analysis

In this section, not only the performance of the proposed enhanced EKF is analyzed, but a side-to-side
comparison with a classic WLS estimator chosen as a benchmark is also shown. In both algorithms,
the states are initialized to x̂0|0 = [0, . . . , 0, 1, . . . , 1]T. In the former one, the state covariance matrix is set to
C0|0 = diag{0.01, . . . , 0.01, 0.01V2

nom, . . . , 0.01V2
nom}, as these values are much larger than the expected

eigenvalues of the steady-state covariance matrix. The WLS algorithm instead does not need covariance
matrix initialization. Also, it is implemented through orthogonal QR factorization to improve numerical
robustness [4].

A qualitative overview of the behavior of the enhanced EKF is visible in Figure 4, which shows some
voltage magnitude profiles (top picture) and the corresponding voltage angle profiles (bottom picture)
estimated by the EKF in the first week of January, namely at the beginning of the simulation. In this
example, worst-case conditions are considered, i.e., load variability within ±60% of the nominal values
with no PMU or SM data used in the update step of the filter. Therefore, the EKF relies only on power
and voltage measurements at the slack bus and traditional power injection pseudo-measurements at all
the other buses. The diamond markers represent the actual values of the state variables as they result
from the preliminary power flow analysis. Even though the results shown in Figure 4 are limited, they are
interesting because they show that:

• The initial EKF transient is quite short (just a few samples). This is most probably due to the good
initialization of the EKF;

• The estimated state tracks the pseudo-periodic voltage pattern resulting from the time-varying load
conditions shown in Figure 3 very well;

• State estimation accuracy is clearly high, since the differences between estimated and actual values at
a given time are very small.

The estimation performance of the enhanced EKF and WLS estimator is analyzed and compared
more in depth by computing the 99-th percentiles of the RMS voltage relative estimation errors and the
phase estimation errors over all buses. Each estimation error results from the difference between the state
variables returned by either estimation algorithm and the corresponding values obtained with the power
flow analysis, when the same set of load profiles is used. The Monte Carlo simulations are performed in
two weeks of all the months of one year, for a total of 16,128 samples. Also, the simulations above were
repeated in different conditions of maximum load variability (i.e., ±20%, ±40%, ±60%), in the four SM
penetration scenarios described in Section 6.3, by increasing the number of deployed PMUs and, last but
not least, considering two different PMU accuracy levels, i.e., for maximum TVE values equal to 1% or
TVE = 0.1%, respectively, as explained in Section 6.4.
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Figure 4. RMS voltage (top picture) and angles (bottom picture) state estimates at different buses obtained
with the proposed enhanced EKF algorithm during the first week of January. In this example, load variability
is set to ±60% of the nominal values and no smart meter (SM) or Phasor Measurement Unit (PMU) data are
used. The diamond markers represent the true values of the corresponding state variables and are shown
for reference.

Figure 5a,b shows the 99-th percentiles of the relative RMS voltage estimation errors and the
phase estimation errors as a function of the number of deployed PMUs, when just traditional
pseudo-measurements (scenario 1) are used to ensure system observability. The maximum TVE of
all PMUs is set to 1%. The solid and dashed lines are related to the proposed enhanced EKF and the
benchmark WLS estimator, respectively. The markers refer to different maximum load variations, i.e.,±20%
(dot markers), ±40% (square markers) and ±60% (star markers). Quite interestingly, all curves tend to
converge asymptotically to different lower bounds. Such results are consistent with those reported in [40].
In fact, if grid observability is guaranteed by conventional measurements, instrumenting about 1/3 of the
grid buses with PMUs is enough to abate state estimation uncertainty to minimal levels in steady-state
or quasi-steady-state conditions. The 99-th percentile values highlight that the estimation uncertainty
achievable with the enhanced EKF is significantly smaller than the WLS one, especially as far as RMS
amplitude is concerned. In particular, the average reduction (computed over the number of deployed
PMUs) of the 99-th percentiles of the relative RMS voltage estimation errors with respect to those obtained
with the WLS algorithm ranges from about 86% in the case of load variations within ±20%, down to about
64% in the case of load variations within ±60%. The relative improvement in estimating the angle state
variables is clearly visible but it is quite smaller, although the curves exhibit a similar trend.
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Figure 5. 99-th percentiles of (a) the bus RMS voltage relative estimation errors and (b) the phase estimation
errors obtained with the enhanced EKF and the WLS algorithm, respectively, under different load conditions
and considering traditional pseudo-measurements only. The maximum TVE of all PMUs deployed is 1%.

The bar diagrams in Figure 6a,b provide complementary information, as they depict the 99-th
percentiles of the relative RMS voltage estimation errors and the phase estimation errors, respectively,
for an increasing number of PMUs of different accuracy (i.e., with TVE = 0.1% or 1%). Again, the 99-th
percentiles are computed from the errors of the enhanced EKF estimator and the benchmark WLS
algorithm over all buses and over a whole year of simulations when just active/reactive power injection
pseudo-measurements are used (scenario 1). Note that the WLS estimation uncertainties of both amplitude
and phase state variables are generally larger than those obtained with the enhanced EKF in the same
conditions, i.e., using the same number of PMUs with the same accuracy. Moreover, the 99-th percentiles
of the RMS amplitude errors in the WLS case are more sensitive to PMU accuracy. Indeed, the performance
gap between the WLS and the enhanced EKF estimator tends to become quite small when the TVE of the
deployed PMUs decreases from 1% to 0.1%. Ultimately, the enhanced EKF estimator can perform as well
as the WLS technique (or even slightly better) by using either the same number of PMUs, but with lower
accuracy (i.e., potentially cheaper instruments) or less PMUs with the same accuracy.
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Figure 6. 99-th percentiles of (a) the bus RMS voltage relative estimation errors and (b) the phase estimation
errors obtained with the enhanced EKF and the WLS algorithm when only pseudo-measurements (scenario
1) and an increasing number of PMUs with a different maximum TVE is used. The percentiles are computed
over all buses and over the whole simulated year. In this case, the load profiles are included within ±60%
of the respective nominal values.

In order to investigate in a more compact way the joint impact of PMU and SM data on state estimation
uncertainty, in the following the 99-th percentiles of the relative state estimation vector errors are also
computed. The relative estimation vector error of the i-th bus voltage phasor at time tk is defined as

VEi
k =

|V̂i
kejθ̂i

k−Vi
kejθ̂i

k |
Vi

k
. Figure 7a,b shows the 99-th percentiles of the relative vector estimation errors in

scenarios 1, 2, 3 and 4 (namely for increasing fractions of accurate time-aligned SM data replacing traditional
pseudo-measurements) when from one to nine PMUs with a maximum TVE = 0.1% or 1%, respectively,
are deployed in the grid. The bar diagrams on the left side result from the WLS algorithm, whereas those
on the right side refer to the proposed enhanced EKF. Again, the load fluctuations lie within ±60% of the
respective nominal values. The positive impact of real-time SM measurements on the 99-th percentiles of the
state estimation errors is strong and well visible in all cases, but it is more evident if the number of deployed
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PMUs is small. In fact, a growing fraction of well-aggregated SM measurements tends to desensitize the
impact of PMUs on state estimation uncertainty. In other words, for a given fraction of aggregated SM data,
deploying more than three PMUs in the EKF case or more than five PMUs in the WLS case, respectively,
brings about just a minor reduction in state estimation uncertainty in stationary or quasi-stationary conditions.
Moreover, if SM-only aggregated data are used to measure power injections, the reduction of state estimation
uncertainty obtained with the EKF estimator by adding more than one PMU is negligible even when the TVE
is 1%. With the WLS estimator instead, a similar result can be achieved only if the TVE of the PMUs is one
order of magnitude smaller.
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Figure 7. 99-th percentiles of the relative vector estimation errors returned by the WLS algorithm (on the
left) and the EKF (on the right), when the weight of real-time SMs on the measurement variance of power
injections increases from 0% (scenario 1) to 100% (scenario 4). In (a,b), the maximum TVE of the deployed
PMUs is set to 0.1% and 1%, respectively. In both (a) and (b) from 1 to 9 PMUs are used and the load
fluctuations lie within ±60%, of the nominal values.

7. Discussion

Like any other DSSE algorithm, the proposed enhanced EKF is also supposed to support control and
protection functions in smart distribution systems. The presented performance analysis refers mainly to
time-varying, but quasi-stationary operating conditions. For instance, the estimated state variables could
be used as inputs to control algorithms for optimal power dispatching within demand response programs.
For this purpose, it is quite clear that a widespread deployment of high-accuracy SMs possibly (but not
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necessarily) complemented by a few PMUs installed in key points of the grid usually either provides more
accurate results or it ensures comparable results but at a lower cost than the WLS technique.

Of course, this analysis does not keep into account the very different reporting rates of SMs and PMUs.
While the former transmit the collected data every several minutes, the latter can perform measurements
at a much higher rate (i.e., about every power line cycle). Thus, whenever sudden changes of the system
operating conditions (e.g., due to a change of topology or a fault) have to be detected promptly, PMUs
play a more crucial role for DSSEs and cannot be replaced just by SMs, regardless of how accurate they are.
In such situations, the impact of an increasing number of PMUs on DSSE uncertainty is likely to be higher
than in quasi-steady state conditions. However, a trustworthy quantitative performance analysis during
transients cannot be reported in this paper because of the inherent limits of the adopted software tools
(particularly MATPOWER).

Nonetheless, from the methodological point of view, the use of measurement data collected at different
rates is not a problem for the proposed estimator. Indeed, PMU and SM data could be used to update the
state as soon as they are available by using an iterated EKF implementation [41].

It is worth emphasizing that the proposed methodology can be safely applied also in the presence
of widespread distributed energy resources basically with no change. Indeed, the bus power injection
variations resulting from the solution of the QP problem (8)–(11) include the joint effect of load changes
and generated power fluctuations. Therefore, the estimator structure does not need any change in the case
of active distribution systems. On the contrary, since many distributed generators (e.g., photovoltaics)
are equipped with their own meters, additional measurement data could be used in the update step of
the EKF.

The main current limitation of the proposed estimator is its processing time. This is not due to the
EKF per se, but rather to the time needed to solve the QP problem returning the EKF input data in the
prediction step. In fact, the time to return a single EKF estimate is just a fraction of the WLS technique
one (e.g., between 20 and 30 ms vs. up to 70 ms on a PC equipped with a 2.80-GHz Intel Xeon E3
microprocessor, 32 GB of RAM, 64-bit Windows 10 Pro and Matlab R2019b). On the contrary, the time
needed to solve the QP problem (8)–(11) over a week-long observation interval is in the order of a few
seconds due to the large number of variables involved. While this is not critical in quasi-steady state
conditions (the time between subsequent DSSE estimates is usually quite longer than a few seconds),
the state estimation performance under transient conditions might be affected by the computation time.
In addition, in the case of large systems, possible scalability problems may arise. However, as explained in
Section 4.1, estimator scalability can be improved by partitioning a monolithic QP problem into smaller
subproblems, i.e., one for each feeder line in which the initial bus is properly instrumented and monitored.

8. Conclusions

This paper presents an Extended Kalman Filter (EKF) for Distribution System State Estimation (DSSE)
enhanced with a prior evaluation of the bus power injection variations, as they are used as inputs to the
EKF prediction step. The performances of the proposed algorithm are analyzed and compared with those
of a classic Weighted Least Squares (WLS) estimator by changing maximum load variability, fraction of
deployed smart meters (SMs), number of Phasor Measurement Units (PMUs) and PMU accuracy. Multiple
simulation results show that, in the considered case study, the 99-th percentiles of the RMS voltage
estimation errors achieved with the proposed enhanced EKF are at least 60% lower than the corresponding
values obtained with the benchmark WLS technique. The estimation uncertainty reduction is instead
smaller, although still significant, for voltage angle state variables. Quite interestingly, the sensitivity to
PMU accuracy of the RMS voltage state variables estimated by the enhanced EKF is lower than in the
WLS case. Moreover, in quasi-stationary operating conditions, the impact of PMUs on the estimation



Energies 2020, 13, 6054 21 of 25

uncertainty of the proposed estimator becomes minor if a large fraction of synchronous aggregated SM
data replaces the traditional power pseudo-measurements. Possible future developments of this work are:
the implementation of an iterated EKF in which measurements at different rates can be used to update the
estimated state as soon as they are available (which would also improve numerical robustness) and the
inclusion of power injection forecasting models to further decrease estimation uncertainty.
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AMI Advanced Metering Infrastructure
DSO Distribution System Operator
DSSE Distribution System State Estimation
EKF Extended Kalman Filter
GMM Gaussian Mixture Model
QP Quadratic Programming
PMU Phasor Measurement Unit
PSO Particle Swarm Optimization
RMS Root Mean Square
SE State Estimation
SM Smart Meter
TVE Total Vector Error
UTC Coordinated Universal Time
WLS Weighted Least Squares

Appendix A. Load Aggregation Algorithm

Let L be a set consisting of L time-varying load profiles with L much greater than the number of
buses, i.e., L >> N. Let us denote with p̄l and s2

Pl
the average and the sample variance (computed over

time) of the l-th load profile for l = 1, . . . , L. Assuming that p̄l << Pi
Lnom

and sPl << Pi
Lnom

for i = 1, . . . , N
(with Pi

Lnom
being the nominal load at i-th bus), the purpose of the adopted aggregation methodology is to

find N disjoint subsets Li ⊂ L for i = 1, . . . , N such that:

1. The sum of all the average load profiles included in the i-th subset is approximately equal to the
nominal power injection at the corresponding bus, i.e., ∑l ∈ Ln p̄l ≈ Pi

Lnom
.

2. The relative sample variance of the power at the i-th bus is approximately equal to a given fraction
γ2 of Pi2

Lnom
, i.e., ∑l∈Li s2

Pl
≈ γ2Pi2

Lnom
.

Observe that conditions (1) and (2) are just approximate since L consists of a discrete number of
elements and the values of p̄l and s2

Pl
of the profiles are finite.

If yi is a binary column vector in which the l-th element yi
l is set to 1 if the l-th load profile belongs

to Li or 0; otherwise, the load profiles can be aggregated by solving an integer linear programming
optimization problem. In particular, for every bus i = 1, . . . , N, the minimum number of load profiles to
be aggregated can be obtained by finding the binary configuration
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yi∗ = arg min
yi

1Tyi s. t.

pTyi ≤ Pi
Lnom

(1 + T1)

pTyi ≥ Pi
Lnom

(1− T1)

ST
2 yi ≤ Pi2

Lnom
(γ + T2)

2

ST
2 yi ≥ Pi2

Lnom
(γ− T2)

2 (A1)

y1∗T
yi = 0

...
...

y(i−1)∗T
yi = 0

where the cost vector 1 is just an L−long, all-ones column array, p = [ p̄1, . . . , p̄L]
T, s2 = [s2

P1
, . . . , s2

PL
]T, and,

finally, T1 and T2 are positive tolerance thresholds needed to relax conditions 1) and 2) in order to make
the optimization problem feasible. Note that the zero-equality constraints in (A1) are incrementally added
to the problem to prevent that the same load profiles are aggregated multiple times, i.e., at different buses.
As known, the integer linear programming problems are NP-complete. However, feasible solutions of (A1)
can be found within a reasonable time (i.e., a few hours) by applying standard techniques (such as the
cutting plane or the branch and bound methods) provided that parameters T1 and T2 are set large enough
(e.g., 0.5% and 2% in the case at hand).

Appendix B. PMU Placement Algorithm

As briefly explained in Section 6.4, the PMUs are placed incrementally with a greedy approach in
order to minimize the maximum estimation uncertainty. Initially, all buses different from the slack bus
(the voltage of which is steadily monitored) are eligible for PMU placement. Thus, one PMU at a time is
used to measure both the voltage phasor of each bus and the current phasor of one of the lines connected
to the same bus. LetM and |M| be the set and the number, respectively, of all possible pairs of voltage
and current phasors that can be monitored by a single PMU. Recalling that full system observability
is ensured by the other available measurements, the steps of the greedy placement algorithm can be
summarized below.

• For each PMU configuration m ∈ M, the state of the system under given load conditions
(i.e., with known maximum variability) is estimated by the EKF or the WLS algorithm Nt times,
with Nt large enough to ensure a reasonably accurate estimate of the state covariance matrix, i.e., in the
order of a few hundred.

• If the sequences of estimation errors are realizations of ergodic processes (as it should be when either
the EKF or the WLS estimator is used), the state covariance matrix C̄m associated with the m-th PMU
configuration can be estimated directly from the steady-state estimation error sequences. In the EKF
case, C̄m tends also to coincide with the solution of the linearized matrix Riccati equation.

• Once all covariance matrices C̄m for m ∈ M are computed, the PMU configuration is selected as
follows, i.e.,

m∗ = arg min
m∈M

√
max Eig (C̄m), (A2)

where Eig(·) operators returns the eigenvalues of the argument.
• Afterward, configuration m∗ is removed from set M, i.e., M ← M\{m∗}, and the algorithm

starts over.
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Of course, the algorithm terminates as soon as N − 1 PMUs are placed. Consider that, the maximum
eigenvalue of C̄m in (A2) can be regarded as the radius of the hypersphere, centered in the estimated state,
circumscribing the (2N − 1)−dimensional ellipsoid representing the state estimation uncertainty region.
Therefore, function (A2) provides a conservative over-estimate of the state estimation standard uncertainty.
Of course, since the elements of C̄m depend on the specific DSSE algorithm adopted, the sequences of
PMU to be placed associated with the EKF and the WLS algorithm could be quite different.
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