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Abstract Spreadsheets are arguably the most accessible data-analysis tool and
are used by millions of people. Despite the fact that they lie at the core of most
business practices, working with spreadsheets can be error prone, usage of formulas
requires training and, crucially, spreadsheet users do not have access to state-of-
the-art analysis techniques offered by machine learning. To tackle these issues, we
introduce the novel task of predictive spreadsheet autocompletion, where the goal
is to automatically predict the missing entries in the spreadsheets. This task is
highly non-trivial: cells can hold heterogeneous data types and there might be
unobserved relationships between their values, such as constraints or probabilistic
dependencies. Critically, the exact prediction task itself is not given. We consider
a simplified, yet non-trivial, setting and propose a principled probabilistic model
to solve it. Our approach combines black-box predictive models specialized for
different predictive tasks (e.g., classification, regression) and constraints and for-
mulas detected by a constraint learner, and produces a maximally likely prediction
for all target cells that is consistent with the constraints. Overall, our approach
brings us one step closer to allowing end users to leverage machine learning in
their workflows without writing a single line of code.1

Keywords Spreadsheets Autocompletion · Bayesian Networks · Constraint
Learning · Machine Learning

This work has received funding from the European Research Council (ERC) under the Euro-
pean Unions Horizon 2020 research and innovation programme (grant agreement No. [694980]
SYNTH: Synthesising Inductive Data Models) and Samuel Kolb is supported by the Research
Foundation-Flanders (FWO).

Samuel Kolb, Stefano Teso, Anton Dries, Luc De Raedt
KU Leuven, Belgium
E-mail: {samuel.kolb, stefano.teso, anton.dries, luc.deraedt}@cs.kuleuven.be

1 Published in Machine Learning volume 109, pages 307325 (2020). Published
version available at: https://link.springer.com/article/10.1007/s10994-019-05841-y, DOI:
https://doi.org/10.1007/s10994-019-05841-y.



2 Samuel Kolb et al.

1 Introduction

Spreadsheets are the workhorse of business and industry. They support a huge
user base, composed of end users with widely different goals and degrees of com-
petence [26]. Managing to automate the workflow of these users, even partially, will
have a significant impact on all sectors of business. This explains the recent out-
burst of research and applications of artificial intelligence, machine learning and
inductive programming on spreadsheets [19,21,24,13]. For instance, the BigML [1]
extension for Google Sheets integrates standard learning algorithms and workflows
into spreadsheet interfaces with the goal of lowering the threshold to predictive
analysis for laymen. These approaches, however, assume that the user has some
degree of technical competence (either for choosing a predictive model or for writ-
ing spreadsheet formulas) which is often not the case in practice; indeed the vast
majority of spreadsheet users are neither professional programmers nor data sci-
entists [32] and cannot write even trivial formulas [20].

To tackle this issue, we formulate the problem of predictive spreadsheet auto-
completion, namely the problem of predicting or suggesting the next values that
the user wants to enter given a set of tables in a spreadsheet. The basic assumption
is that the user may not be entirely competent with spreadsheets or data analysis,
although user guidance can in principle be leveraged, if available.

Glancing at any spreadsheet dataset immediately reveals that this is a very
hard problem. Cell values can have arbitrary data types, can be very sparse, and
can be mutually constrained by unobserved formulas. Most importantly, spread-
sheets are used to perform all kinds of tasks, from bookkeeping to data analysis,
and so the underlying data generating process (and the corresponding prediction
task) can be almost arbitrary. Notice that this problem is beyond the reach of
standard spreadsheet applications, which often implement a limited form of “au-
tocompletion” using, e.g., propagation rules. This problem is also significantly
more general than missing-data imputation [36], which targets individual data
matrices, whereas spreadsheets can hold multiple related tables and formulas, and
thus have a much less restricted data generating process.

We present a novel approach, PSyChe (Predictive Spreadsheets with Con-
straints), which casts predictive autocompletion as a constrained probabilistic in-
ference problem. In order to keep the task manageable, it is assumed that the data
exhibits regularities and that it is entered in a systematic manner, as is often the
case in decision making applications. At a high level, PSyChe is given black-box
access to a set of heterogeneous base predictors trained for different tasks, e.g.,
multi-class prediction or regression2. By construction, these base predictors may
output mutually inconsistent values for the same cell. Crucially, PSyChe lever-
ages the TaCLe constraint learner to extract spreadsheet formulas and constraints
that hold among the observed cells [24]. The proposed approach combines the base
predictions into a coherent, consistent joint completion of the target cells by rea-
soning about the confidences in the predictions and the potential dependencies
among the cells. This is accomplished by solving a probabilistic inference problem
subject to the learned constraints.

2 A variety of specialized predictors—potentially pre-trained on task-specific datasets—can
be included for handling specific cases, e.g., dates, email addresses, or simple data analysis
pipelines.
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Thus PSyChe can assist the user in 1) entering values, by suggesting com-
pletions; 2) making use of formulas without typing them, by learning formulas
from the data and applying them during inference; 3) automatically obtaining
predictions for particular cells.

Summarizing, our main contributions are:

1. Introducing the novel problem of predictive spreadsheet autocompletion;
2. A formalization of the problem in terms of joint probabilistic inference under

constraints;
3. An implementation based on the TaCLe constraint learner, which can deal

with formulas and constraints occurring in our setting;
4. An empirical evaluation over 1) real-world spreadsheets taken from the EUSES

corpus [18] and the formula-rich benchmark spreadsheets of [24]; real-world
machine learning datasets from OpenML [38]; and 3) synthetically generated
data.

The paper is structured as follows. In the next Section we formalize the problem of
predictive spreadsheet autocompletion. Next, we introduce the TaCLe constraint
learner and discuss our extensions. We present PSyChe in Section 2 and evaluate
our implementation in Section 5. Finally, we overview the related work in Section 6
and then conclude with some final remarks.

2 Predictive Spreadsheet Autocompletion

Let us introduce predictive spreadsheet autocompletion using the simplified spread-
sheet in Figure 1. It contains information about the sales of particular flavors of
ice-cream in different countries and months, as well as information about the pro-
duction time taken to produce one unit of ice-cream. Now, decisions need to be
made about which flavors of ice-cream to retain in which countries, based on the
total sales, costs and profitability. However, the top table is incomplete, as some of
the values for August are not yet available, which is problematic for the decision
making process.

Automatically completing the spreadsheet requires a number of steps: 1) dis-
cover the formula HT stating that Total is equal to the sum of June, July and
August; 2) find a predictive model fA for the column August using the available
data; 3) find a model fP for Profit using the available data; 4) impute the missing
values for August using fA; 5) impute Total using HT ; and 6) impute Profit using
fP .

Formally, the spreadsheet autocompletion problem can be stated as follows:

Given a set of tables in a spreadsheet, a set of heterogeneous predictors F ,
a set of formulas and constraints H learned from the tables, and a range of
n target empty cells, find an autocompletion for the target cells, that is, an
assignment of values v1, . . . , vn to the cells.

The example above indicates the challenges involved in predictive autocomple-
tion, which we briefly overview:

– First, spreadsheets are very heterogeneous. Imputing a single cell requires to
deal with arbitrary data types, be they discrete or numerical. Only a handful
of filled cells may be available, and may occur in irregular patterns.
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Fig. 1 Two tables in a spreadsheet.
Type Country Jun Jul Aug Total Profit
Vanilla UK 610 190 670 1470 YES
Banana UK 170 690 520 1380 YES

Chocolate UK 560 320 140 1020 YES
Banana DE 610 640 320 1570 NO

Stracciatella UK 300 270 290 860 NO
Chocolate FR 430 350 ? ? ?
Banana DE 250 650 ? ? ?

Chocolate BE 210 280 ? ? ?

Type ProdTime
Chocolate 60
Banana 40

Stracciatella 70
Vanilla 40

– The values of different cells are often interdependent, because of unobserved
formulas and constraints, or because of statistical dependencies. In particular,
constraints and formulas are pervasive in real-world spreadsheet usage, and
cannot be ignored.

– The dependencies are often scattered across different tables, which need to be
(implicitly) joined before prediction can be attempted.

– Finally, the data generation process underlying the observed tables is essen-
tially arbitrary. The actual predictive task may require us to solve classification,
regression, ranking, or other more specialized predictive tasks. This informa-
tion is not provided in advance.

To the best of our knowledge, no predictive model can deal with all of these issues,
as discussed in Section 6.

Of course, we do not aim at solving all of these problems in the present paper.
In order to keep the task manageable, we focus on cases where the data exhibits
regularities and is entered in a systematic manner. This is often the case in decision
making applications. Although our approach does support some forms of pre-
processing (e.g. automatically joining related tables, as explained in Section 3),
we also assume that basic data wrangling and cleaning has been been performed,
so that the tables can be read off from the spreadsheet. We mention some tools
that automate this step in Section 6. Finally, since the prediction task is not given,
we assume to have access to a set of heterogeneous “base predictors”, which rely
on different cues and biases and are suited for the different candidate tasks. These
can be either learned on the fly on the current spreadsheet, or be trained on larger
datasets in an offline fashion.

Under these assumptions, we frame predictive spreadsheet autocompletion as
the problem of combining the base predictions in a manner consistent with the
learned constraints. This requires one to take into consideration both the relative
performance of the base predictors, as well as the constraints observed to hold in
the target tables, in order to avoid completing cells with unfeasible values.

In the following, we introduce PSyChe, a novel probabilistic approach to
spreadsheet autocompletion that leverages these ideas to solve many of the above
problems. While doing so, we will assume a basic understanding of directed graph-
ical models [25] and machine learning for classification and regression. Before dis-
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cussing PSyChe, we overview the TaCLe constraint learner [24], which lies at the
core of our approach, and our extensions to it.

3 Learning Formulas and Constraints with TaCLe

In many applications, repetitive tasks can be automated by specifying a formal
model (e.g., computing summations or counts in spreadsheets), but the end users
often lack the background to build a model upfront. Constraint learning facilitates
this step by automatically extracting a model from data. Several constraint learn-
ing approaches have been designed for learning constraint programs and math-
ematical optimization models, see, e.g., [31,4,5,3]. TaCLe [24] is an approach
specifically tailored for the spreadsheet setting. In particular, it detects formulas
and constraints that hold in (complete or partial) spreadsheets, and leverages ideas
from the program synthesis literature to significantly speed up the learning step.

Our approach, PSyChe, uses TaCLe to acquire constraints and formulas from
the target spreadsheet. These are then used to both predict the value of missing
cells (as in our toy example) and to avoid suggesting unfeasible completions. We
proceed by discussing TaCLe.

The TaCLe constraint learner. At a high-level, TaCLe has access to a set of
constraint templates that specify which types of formulas it should look for. Every
template is made up of three parts: syntax, signature and definition. For instance,
the template for column-wise sum has syntax B2 = SUMcol(B1). Its signature
specifies that B2 is a column, B1 a set of consecutive columns, that their heights
match, and that all cells should contain numerical values. By assigning specific
(ranges of) columns to B1 and B2, TaCLe obtains an actual constraint, which
encodes the fact that the ith cell assigned to B2 is equal to the sum of the ith
row of the columns assigned to B1. The definition computes the actual output
from the inputs. TaCLe has support for a multitude of widely used spreadsheet
constraint templates applying to both rows and columns. Constraint learning then
amounts to instantiating the available templates on all applicable ranges of rows
and columns, and verifying whether the signature and definition hold.

In order to deal with the large number of possible instantiations, TaCLe
searches only over tables of equally-sized rows and/or columns, and blocks, which
are continuous ranges of rows or columns with the same type (e.g., numeric or tex-
tual) and individual vectors (a row or a column) of type-consistent cells. TaCLe
leverages constraint programming to implement the enumeration step, as well as
some clever strategies to prune assignments to the templates, significantly speeding
up the search.

TaCLe natively includes templates for many formulas that frequently ap-
pear in real-world spreadsheets, including: arithmetic operations on rows (e.g.
B2 = SUMrow(B1)), columns (SUMcol), and element-wise operations (+, −, ×,
/), as well as more complex operations such as group-and-sum and group-and-
count (SUMIF and COUNTIF, respectively), lookup, aggregates (MIN, MAX,
AVERAGE), as well as proper constraints (e.g. ORDERED), among others. See
Table 1 for a selection of constraints supported by TaCLe.

We remark that TaCLe can learn both formulas and constraints. The dis-
tinction is as follows. Formulas (e.g., SUM) are functional constraints, meaning
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Table 1 A selection of formulas and constraints learned by TaCLe and their intuitive mean-
ing and signature . (Adapted from [24].)

Syntax Meaning
B3 = B1 {+,−,×, /} B2 Element-wise arithmetic
B1, B2, B3 are all numeric and have the same length

B2 = {SUM,MIN,MAX,AVERAGE}col(B1) Column-wise aggregates
B1, B2 are numeric; B1 has at least 2 columns and as many rows as elements in B1.

B2 = {SUM,MIN,MAX,AVERAGE}IF(Bfk, Bpk, B1) Group-by-like aggregation
Bfk, Bpk are discrete; B1, B2 are numeric; ALLDIFFERENT(Bpk)
B1, Bfk and Bpk, B2 have the same length and orientation
B1, Bfk have the same table; Bpk, Bfk have have different tables

B2 = LOOKUP(Bfk, Bpk, B1) Lookup mapping
Bfk, Bpk are discrete; Bfk, Bpk have the same type; FK(Bfk, Bpk)
B1, Bfk and Bpk, B2 have the same length, table and orientation

SERIES(B) Values increase by 1
B is integer-typed and a permutation of values 1..length(B)

ORDERED(B) Values are monotonically increasing

that the output value is uniquely determined by the input arguments. Instead,
“proper” constraints (e.g. ORDERED) instead are not functional, as they admit
multiple feasible output values. Both formulas and constraints appear frequently
in real-world spreadsheets, and our approach is designed to leverage both.

4 Autocompletion with PSyChe

In this Section, we present PSyChe, our approach to predictive spreadsheet auto-
completion. We start off by discussing the simplest case of autocompletion, namely
imputing a single cell, and later on generalize this to the full setting with multiple
cells.

As for notation, we will represent all cells by random variables (RVs). These
will be written in upper case (e.g. X), and their values in lower case (x). Ordered
sets of RVs will be written in bold X, and the ith element of a set will be indicated
as Xi. P (x) will often be used as a shorthand for P (X = x).

4.1 Autocompleting a single cell

We start off with the simplest case of autocompletion, which consists of determin-
ing the most likely value v for a single cell Y ,

argmaxv P (Y = v |X = x,H) (1)

given:

1. a set of input cells X with values x, which will typically correspond to a
selection of cells from rows and columns connected to Y , e.g., all the observed
cells in the same row as Y ;
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2. k heterogeneous base predictors F = {f1, . . . , fk}, where each fj is a predictive
model that outputs a candidate value (or a distribution over candidate values)
for Y starting from a set of input cells Xj ⊆ X;

3. ` hard constraints H = {H1, . . . , H`} on the cells in X; the hard constraints
exclude certain value assignments to X ∪ Y , e.g., an ORDERED constraint
requires that the values in the associated column be ordered from largest to
smallest or vice-versa;

In the following, we discuss how the conditional distribution P (Y = v |X = x,H)
is modeled by PSyChe and how the above components contribute to it. Before
proceeding, however, we make two important remarks.

First, as mentioned above, some constraints such as SUM are functional in the
sense that if n−1 values and the total are given, then SUM uniquely determines the
missing value. Further, constraints such as MAX, although not strictly functional,
are still formulas, i.e., the result is uniquely determined by the inputs. We model
these constraints as base predictors rather than as constraints.

Second, all the observed cells in the spreadsheet that are not input cells X are
used by PSyChe for estimating different parameters. We indicate these cells as
D. For instance, if Y is a target cell and the corresponding input cells X are all
in the same row as Y , then D includes the observed cells in all the other rows.
More specifically, PSyChe uses the cells in D to learn the hard constraints with
TaCLe, as well as other parameters appearing in the conditional distribution. In
our experiments, we also use D to fit the base predictors.

The base predictors Let us have a closer look at the base predictors F . We con-
sider both deterministic predictors, such as decision trees [8], and discriminative
probabilistic predictors, such as logistic regression [6], although any other predic-
tor can be used. Multi-label predictors will be discussed in Section 4.2. Each base
predictor fj is represented as a conditional distribution P (Vj = v |Xj), where v
is the value assigned to the target cell by fj and Xj ⊆ X are the input cells that
fj actually used3. If fj is deterministic, it outputs a single value, and therefore:

P (Vj = v |Xj = xj) = δ
{
v = fj(xj)

}
Here δ {·} is the indicator function which returns 1 if v matches the output of
fj and 0 otherwise. On the other hand, if fj is probabilistic, then it outputs the
above conditional probability automatically.

PSyChe expects the base predictors to be given. In practice, they can be
obtained by fitting any classifier or regressor on the (non-input) observed cells
D in the target spreadsheet. Our experiments follow this setup and show that it
works well, provided that enough training cells are available, see Section 5. When
this is not the case, an alternative is to employ predictors pre-trained on large
external corpora by adapting them to the target spreadsheet on-the-fly. We leave
a proper analysis of this more elaborate pipeline to future research.

3 That is, Vj is conditionally independent of X\Xj given Xj ; in other words, for all possible
values of X, we can always write P (Vj |X) = P (Vj |Xj) [25].
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Calibrating the base predictors The base predictors can, of course, make mistakes.
In many cases, the error pattern is predictable. For instance, in class-unbalanced
tasks (e.g. book databases, where the same publisher is repeated for every one of
its books), the base predictors may consistently over-predict the majority class.

In order to correct for this, we include a calibration step that aims at fixing sys-
tematic errors by redistributing probability mass among candidate values. It does
so through a conditional distribution P (V ′j |Vj ,Xj), where Vj is the output of the
predictor and V ′j is the calibrated prediction. For discrete predictions, calibration
is implemented as a categorical distribution, for maximum flexibility; continuous
values are addressed in Section 4.3. The dependency on the input cells is ignored,
i.e., P (V ′j |Vj ,Xj) = P (V ′j |Vj), as to reduce the number of parameters.

PSyChe estimates the categorical distribution from the observed cells D in a
robust manner via cross-validation. More specifically, the dataset D is first split
into folds. Next, since in D all of the variables are observed, it is easy to count how
many times nv|v′ the true label V ′j = v′ occurs given that the prediction is Vj = v.
The counts are then averaged over folds to obtain ñv′|v. Laplacian smoothing by
a small constant c is then applied to the average counts to obtain the conditional
probability table P (V ′j = v′ |Vj = v) := (ñv′|v + c)/

∑
v′′(ñv′′|v + c). Such cross-

validated averages are known to provide robust generalization guarantees [16].
Notice that this procedure remains the same regardless of how the base predictors
were obtained, e.g., fitted on the current spreadsheet or pre-trained on external
data.

Combining the calibrated predictors The next step is to use the distributions of
the calibrated predictions P (V ′j = v |Vj), j = 1, . . . , k, to model the cell value
distribution P (Y = v |X = x,H) appearing in Eq. 1. For now, let us assume that
no constraints are given, so that H can be ignored.

In order to mix together the various predictors, we opt for a mixture of ex-
perts [23,6], which has the form4:

P (Y = v |X) :=
∑k

j=1 P (V ′j = v |Xj , Z = j)P (Z = j |Xj)

Here Z is a categorical random variable taking values in {1, . . . , k}. This results
in a very flexible model. However, as the Z are latent variables, we will need to
resort to expectation-maximization (EM) during estimation. Since EM can have an
impact on efficiency and thus hinder reactivity in interactive scenarios, we further
simplify the model by assuming that Z is marginally independent from X. The
distribution becomes:

P (Y = v |X) :=
∑k

j=1 wjP (V ′j = v |Xj) (2)

The weights wj := P (Z = j), j = 1, . . . , k differentially allocate trust to pre-
dictors. The resulting model is equivalent to weighted voting (or average opinion
pooling) [10].

We model the distribution P (Z = j) by following two principles. First, if a
predictor performs badly, it should be effectively disabled by setting the corre-
sponding weight wj close to zero. In practice, we observe experimentally that this

4 To see the equivalence to mixture of experts, notice that, although notationally different,
Y and V ′j refer to the same information, namely the value of the target cell.



Spreadsheet Autocompletion 9

X

V1

V2

V ′1

V ′2

Yc

Fig. 2 Directed graphical model for one cell and two predictors. Circles represent RVs,
shaded circles represent evidence. Edges denote conditional dependencies. Here c indicates the
voting combiner. We represent the input cells as a single observed vector-valued node X, for
simplicity.

allows PSyChe to effectively ignore base predictors that attempt to predict a cell
using unrelated columns. Second, if there are multiple good predictors, they should
be allowed to collectively contribute to the overall prediction by voting.

Following these principles, a simple implementation would set the weights wj ∝
ηaccj to be proportional to the estimated accuracy of the jth predictor; η ∈
R is a hyper-parameter. The accuracy is easy to evaluate on the training set
D using cross-validation, as done for the calibrator. However, this strategy is
quite lenient and may associate relatively large weights to bad predictors. For
this reason, we prefer a multiplicative variant, where the weights are set to wj =
w′j/(

∑
` w
′
`) for w′j = (1 − η)d(1−accj), d is the number of rows in |D| (where the

target cell is observed) and η ∈ (0, 1). This is consistent with work on prediction
from expert advice and the hedge algorithm [2]. The net effect is that the weight of
bad predictors decreases exponentially fast and the vast majority of the probability
mass is allocated to the better predictors. Of course, if too little data are available,
the weights can be simply fixed to 1

k .

Notice that these combiners are all symmetric (in the sense that any predictor
can in principle be preferred) and satisfy the principle of “conditionally” inde-
pendent alternatives”, meaning that the predictions of alternative base predictors
(and their calibrated counterparts) are independent given X. This can be easily
verified in Figure 2.

Inference with no constraints We are finally ready to solve Eq. 1 when no con-
straints are present. Let Y be the value to be filled in. In order to select the
most likely prediction, we pick the value with the largest probability, namely
argmaxv P (Y = v |X = x). The value distribution for each predictor fj is ob-
tained by marginalizing the raw predictions Vj :

P (V ′j = v′ |X) =
∑

v P (V ′j = v′ |Vj = v,X)P (Vj = v |Xj)

=
∑

v P (V ′j = v′ |Vj = v)P (Vj = v |Xj)

where we replaced P (V ′j = v′ |Vj = v,X) with P (V ′j = v′ |Vj = v). The two
factors are exactly the calibrator and the base predictors discussed above. Applying
the mix combiner, we obtain the distribution of the selected value Y :

P (Y = v |X) =
∑k

j=1

∑
v wjP (V ′j = v |Vj = v)P (Vj = v |Xj) (3)
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Summarizing, the raw value distributions P (Vj |X) are obtained in a black-box
fashion from the base predictors fj , j = 1, . . . , k; the calibrators P (V ′j |Vj) cor-
rect the individual predictions of the corresponding predictor; finally, the top-level
combiner P (Y |X) allocates trust or responsibility to competing predictors and
produces a unique distribution over candidate values. Figure 2 illustrates the com-
plete one-cell model as a directed probabilistic graphical model.

Inference under constraints We are left with explaining the role of the hard con-
straints. In practice, the constraints are obtained by running TaCLe on the tar-
get spreadsheet. If any are found, they are used during inference to eliminate all
candidate values inconsistent with them. The resulting distribution is normalized
accordingly. More formally, the probability of Y = v under constraints H is:

P (Y = v |X,H) = 1
ZX

P (Y = v |X)

if v and X are feasible with respect to H, and zero otherwise. Here ZX is a normal-
ization constant that amounts to ZX =

∑
v and X are feasible w.r.t. H P (Y = v |X).

In practice, implementations may track the unnormalized distribution instead, for
efficiency. Since normalization is a monotonic transformation, applying or ignoring
it leaves the optimal autocompletion unchanged.

4.2 Autocompleting a spreadsheet

We have everything together to discuss the more general setting of autocompleting
n cells. Let Yi be the variable representing the value of cell i. As above, we are
interested in finding the most likely autocompletion:

argmaxv1,...,vn
P (Y1 = v1, . . . , Yn = vn |X,H) (4)

In this setting, we allow multi-label predictors, that is, predictors that output
multiple cells at once. These can be easily modeled as P (Vi1 , . . . , Vim |Xj), where
i1, . . . , im are the predicted cells. More importantly, we allow the base predictors
to take predictions as inputs. This is essential for modeling inter-dependent cells.
If such predictors were forbidden, it may be impossible to predict some or most
cells in the spreadsheet.

Unfortunately, dependencies complicate the autocompletion step, because they
can lead to cycles. That is, there may be cases where a cell Y1 can be predicted from
another cell Y2, and then Y2 can be equally well predicted from Y1. To guarantee
that the value of every cell is uniquely defined and that the resulting graphical
model is acyclic, we forbid these cases. To do so, we fix the order in which the
cells are autocompleted, so that no cell occurs twice. This is common practice in
probabilistic graphical models [25]. Now, given an order π = (i1, . . . , in), the joint
probability decomposes as:

P (Y1, . . . , Yn |X,H) =

P (Yi1 |X,H)P (Yi2 |Yi1 ,X,H) . . . P (Yin |Yin−1 , . . . , Y1,X,H) (5)

The factors can be easily computed. Indeed, letting Vi,j be the prediction of the jth
predictor for the ith cell and is ∈ π, then we can always rewrite its raw distribution
as P (Vis,j |Xj , Yis−1 , . . . , Yi1) and compute the overall value distribution of cell i
as in Eq. 3. The complete directed graphical model is illustrated in Figure 3.



Spreadsheet Autocompletion 11

X

VA,1 V ′A,1

VA,2 V ′A,2

Y A

VB,1 V ′B,1

VB,2 V ′B,2

VB,3 V ′B,3

VB,4 V ′B,4

YB

c

c

Fig. 3 Directed graphical model for two cells A and B, according to the order π = {A,B}.
Top, from left to right: two models predict cell A from X, and then two models cell B from A,
producing VB,1 and VB,2. Bottom: two models predict cell B from X, giving VB,3 and VB,4.

Inference with multiple cells Given an order π, PSyChe computes the joint dis-
tribution of the n values by using the factorization in Eq. 5. More in detail,
for all is ∈ π, the distribution P (Vis , . . . , Vi1 |X,H) is computed by multiplying
P (Vis−1 , . . . , Vi1 |X,H) and P (Vis |Vis−1 , . . . , V i1,X,H). PSyChe takes the hard
constraints H into account by discarding all values that are incompatible with H
as soon as they are encountered. We note in passing that this form of probabilistic
inference under constraints can be modelled with probabilistic logic programming
frameworks such as ProbLog [12,15] and solved using efficient knowledge compi-
lation techniques [17]. This promising research direction will be pursued in future
work.

If no order π is given, then PSyChe performs inference for all possible orders,
and then chooses the overall most likely joint autocompletion v1, . . . , vn. This
automatically determines the best order, too. Notice that the number of possible
orders π is exponential in the number of target cells n, but the latter can be
always restricted to be small enough (e.g. 4 or 5), regardless of whether the target
cells are selected automatically by the spreadsheet application or by the user of
the system. This also limits the runtime of the procedure. If a large number of
cells are to be jointly predicted, we can also fall back to a fixed-ordering such as
left-to-right, which mimics the behavior of human input. In our experiments, for
instance, predicting three cells takes about a second on average.

Estimating all the components Estimating the parameters of the joint distribution
in Eq. 5 is accomplished as follows. Let’s start from the single-cell case. Fitting
P (Y |X) involves works as following:

– For each base predictor fj ∈ F :

– Fit the calibrator P (V ′j |Vj) by estimating the conditional probability table
of via maximum likelihood estimation.
As discussed above, this amounts to splitting the training set D into folds,
counting the co-occurrence of predictions v′ and actual values v in the fold,
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averaging the counts across folds, computing the conditional probability
table, and then applying Laplacian smoothing to it.

– Estimate the accuracy accj of fj on D using cross-validation as above.

– Compute the weights of the combiner (Eq. 2) by using the accuracies estimated
in the previous step.

The multiple cell case boils down to fitting all the factors Eq. 5 on the observed
cells D. For instance, consider two cells in the order π = (1, 2). Notice that we do
allow cell 2 to be predicted from cell 1, but not vice versa. In this simple case, the
calibrators of all base predictors for cell 1 are first estimated on D, and so is their
combiner; next, the same is done for the base predictors and combiner of cell 2.
This guarantees that all the required data are available at all times5.

4.3 Handling continuous values

So far we have considered completing cells with discrete values only. Continuous
values are considerably more difficult to handle, chiefly because all point values
v ∈ R of a continuous RV Y have zero probability [25], and—depending on the
choice of continuous distributions—finding the most likely value may require using
non-convex continuous or continuous-discrete optimization.

In order to avoid these problems, we compute a confidence interval εj for every
base regressor fj , chosen so that the probability that the real value falls within
εj distance from the prediction is large6. Now, we model P (Y = v |Vj ,X) as
a discrete distribution P (Y ∈ [Vj − εj , Vj + εj ] |X). The intuition is that high-
quality regressors will have small confidence intervals, so that they only “support”
predictions close to their own; on the other hand, bad regressors will have large
intervals and therefore support even predictions far away from their own. In order
to avoid non-convex optimization, we also restrict the combiner used for choosing
among alternative regressors to picking the most accurate one. This is equivalent
to using a very steep value for η in the combiner equation, which leads to all
weights to be zero except the one of the best regressor. This model, despite being
somewhat restrictive, has the advantage of enabling reasoning on continuous values
in a crisp probabilistic manner; in the empirical analysis we will show that it also
works well in practice.

5 Empirical Evaluation

In this section we address the following research questions:

Q1 How does PSyChe compare against state-of-the-art ensemble predictors?
Q2 How do different combiners influence accuracy and calibration?
Q3 What is the benefit of allowing interdependent predictors (chaining)?
Q4 What is the effect of adding formulas?
Q5 Can our method provide suggestions in real time?

5 In principle, the training set of cell 2 should also include the predictions for cell 1, but we
ignore this step, for simplicity and efficiency. This did not seem to have a huge effect in our
experiments (data not reported).

6 In practice, this can be obtained by cross-validating the L1 loss on the dataset Dj .
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euses openml tacle ice-cream

Using only predictions with a estimated probability p ≥ 0.5

Using only predictions with a estimated probability p ≥ 0.75

Fig. 4 The pareto curves in the first row show how different mixing strategies perform in
terms of accuracy and calibration on our four data-sets. The calibration curves (second row)
group predictions in bins based on their estimated probability and plot the average accuracy
(with colored bands indicating the standard error on the mean) over the average estimated
probability per bin. The lower half of those plots show the number of predictions per bin.
Finally, rows 3 and 4 show pareto curves for predictions matching a threshold on the estimated
probability of 0.5 and 0.75, respectively. Every column corresponds to one data-set and the
legend at the top of the table is common for all plots.

The code for the complete experimental setup is available at: [will be made avail-
able upon acceptance].

Base predictors As base predictors we use decision trees for categorical data and
both regression trees as well as linear regression for numerical data (picking the
best scoring one). We train all models using scikit-learn [29] using a maximum
depth of 4 for tree based methods (including random forests) and default param-
eters otherwise. For every spreadsheet, the models are trained and cross-validated
on the first i rows, to obtain the predictors and confusion matrices to be used to
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euses openml
¬formulas formulas ¬formulas formulas

¬chaining 0.205± 0.012 0.212± 0.012 ¬chaining 0.741± 0.009 0.735± 0.009
chaining 0.210± 0.012 0.218± 0.013 chaining 0.754± 0.009 0.753± 0.009

tacle ice-cream
¬formulas formulas ¬formulas formulas

¬chaining 0.176± 0.029 0.196± 0.031 ¬chaining 0.609± 0.012 0.628± 0.013
chaining 0.196± 0.033 0.197± 0.031 chaining 0.656± 0.013 0.668± 0.013

Fig. 5 By examining the average score (± the standard error on the mean), we can see that
both predictor-chaining and using formulas generally have a positive effect – especially for the
formula-richer data-sets in the bottom row.

predict the (i + 1)th row (i is dependent on the data-set) and we report results
averaged over all predictions. For single-cell predictions or unchained predictions
we choose 5 random subsets of the non-target columns to act as features and train
an applicable base predictor for every subset. If prediction-chaining (i.e., inter-
dependent predictors) is enabled, predictors can additionally use a subset of the
columns we aim to predict. For the possible subsets we train two base classifiers
that each use a random subset of the input column as well as the subset of target
columns classifiers. The parameters of the calibrators and accuracy / score are
estimated using leave-one-out cross-validation and the smoothing constant is set
to c = 0.1.

Data preparation We performed our evaluation on four data-sets: 1) euses (i =
10), a subset of 86 spreadsheets from the EUSES corpus [18], a large collection
of real-world spreadsheets scraped from the Web; 2) tacle (i = 10), a private set
of 50 spreadsheets used to benchmark the TaCLe constraint learner; 3) openml
(i = 40), a set of 99 CSV files from OpenML with up to 20 features, no missing
data and 50 to 100 instances [38]; and 4) ice-cream (i ∈ [10, 15]), a set of 20
synthetically generated noisy spreadsheets based on the running example with a
formula (total sales, best quarter) and noisy relationships (for august and profit).
We pre-processed the euses spreadsheets by removing comments, blank columns,
etc., to allow PSyChe to detect the tables from the data and to allow TaCLe to
detect formulas and constraints.

The ice-cream data-set approaches best the setting in which we believe PSy-
Che will be used, while the euses data-set provides the most realistic set of spread-
sheets. However, euses contains only few (detectable) formulas and interesting re-
lationships. Therefore, we include tacle as data with a higher number of formulas
and openml as data suited for machine learning.

Combiners In our experiments we compare four different combiners: average, ex-
ponential, max and greedy max on the task of predicting categorical cells in our
data-sets. The average combiner uses equal weights for all predictors, the exponen-
tial combiner implements the multiplicative variant with exponential weights (we
consider η = 0.25 and η = 0.75 and cap d at 10 predictions), the max combiner
sets the weight of the most accurate predictor to 1 and all others to 0, and the
greedy combiner forgoes the calibration step, greedily picking the most accurate
predictor at every step and using the accuracy of that predictor as self-assessed
probability. Both max and greedy allocate responsibility to one predictor for every
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cell to predict while the other combiners (the sum combiners) actually combine
the predictions of several predictors.

Evaluating success We evaluate PSyChe by measuring and reporting the accuracy
on categorical cells. For numeric cells we instead measure the L1-distance between
the actual solution and the predicted solution normalized by the distance between
the largest and smallest value observed for the column of the predicted cell. Finally,
we report the score as max(1−distance, 0). When predicting multiple cells an order
needs to be fixed to prevent cyclic dependencies. In our experiments on chaining
and formulas we predict sets of 3 consecutive cells, consider all possible orders for
the prediction task and pick the order that yields the most confident prediction.

Before proceeding, we remark that, due to the generality of the prediction
task, it may be difficult to estimate the performance of approaches for predictive
spreadsheet autocompletion using standard techniques, such as cross-validations.
Notice also that the semi-relational nature of spreadsheets implies that, due to
constraints / relations among different rows, it may be impossible to split them
into truly independent folds. In our evaluation, we circumvent these issues by re-
stricting the experiments to classification and regression tasks, and by disallowing
constraints across rows.

Measuring calibration For every prediction, PSyChe outputs the estimated prob-
ability value p that the prediction is correct and we measure the accuracy acc
(which will be 0 or 1 for a single categorical prediction). The combiners influence
both the prediction – and thus the accuracy – as well as the estimated probability
value. To measure which of the combiners predicts probabilities more in line with
the actual accuracy we use the Brier (quadratic) scoring rule [9]. Given n pre-
dictions each with an estimated probability and measured accuracy (pi, acci), the
Brier Score is computed as

∑n
i=1

1
n (pi − acci)

2. The Brier Score is minimal when
the estimated probability matches the true probability that a classifier predicts
the right answer. We consider this classifier well calibrated. In our plots we use
1− Brier Score such that, as with the accuracy, higher values are better.

Q1 How does PSyChe compare against state-of-the-art ensemble predictors? In
order to evaluate the accuracy of PSyChe, we consider first the task of predicting
a single cell and compare our method to a baseline version that uses random
forests [7], trained on all columns not containing the prediction target, as base
predictors. The random forest implementation uses 10 estimators. By comparing
random forests against PSyChe using decision trees and different combiners, we
observe that PSyChe usually achieves similar or superior accuracy than random
forests (Figure 4, row 1). The cross-validated accuracy of the random forest does
turn out to be a reasonably well-calibrated probability estimate for the accuracy
on unseen data.

When considering all predictions, the overall accuracy can be quite low – es-
pecially for the euses and tacle data-sets. This is the case because in these spread-
sheets most of the columns are not predictable (e.g., names, addresses, ...), might
contain a large number of values or some of the input columns contain previously
unseen values. This points at the importance of the ability to estimate the proba-
bility that a prediction is correct, i.e., knowing when a prediction should be made
and when not.
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Q2 How do different combiners influence accuracy and calibration? Our experi-
ments using various combiners on different data-sets show that the sum combiners
generally achieve higher accuracy, while the max combiners tend to yield better
calibrated predictions (Figure 4, row 1). On most data-sets the greedy combiner
is more calibrated than the max combiner, however, on the openml dataset more
training data is available and the max combiner performs better than the greedy
one both in terms of accuracy and calibration. This difference is due to the fact
that the combiners using the calibration step (all except greedy) need to fit more
parameters. A higher η-value for the exponential combiner yields larger differences
in weights while lower values yield results more similar to the unweighted average
combiner.

By grouping predictions in fixed-size bins we can visually compare the aver-
age accuracy with the average estimated probability per bin, which shows for what
estimated probabilities PSyChe is over- or under-confident. Generally, the combin-
ers tend more towards slightly over-confident predictions, however, the sum-based
combiners can be under-confident for lower estimated probability values (Figure 4,
row 2).

When considering only predictions with a high estimated probability, the expo-
nential combiners achieve good accuracy and calibration values for most data-sets
(Figure 4, rows 3 and 4). For the data-sets with few training instances (rows)
– euses and tacle – the greedy max combiner generally scores highest. It does,
however, not provide an actual probability distribution to, e.g., suggest likely al-
ternative values. These plots also illustrate that on the tacle data-set all combiners
are badly calibrated for higher estimated probabilities, as the average accuracy for
predictions estimated to be at least 75% correct lies below 0.5.

Q3 What is the benefit of allowing interdependent predictors? By running two
versions of our method, one of which disallows prediction-chaining, on the task
of predicting any 3 consecutive cells on the spreadsheets in our data-sets, we
can compare their performance. We expect that prediction chaining increases the
accuracy, whenever multiple consecutive columns can be successfully predicted, as,
for example, in the case of our ice-cream experiment. Our experiments show that,
indeed, prediction chaining increases the accuracy of the experiments (Figure 4,
row 3).

Q4 What is the effect of adding formulas? Formulas are a form of specialized
predictors, geared toward the spreadsheet setting. We evaluated the effect of for-
mulas by on the task of predicting any 3 consecutive cells on the spreadsheets in
our data-sets as for Q3. The potential for increased accuracy depends strongly on
the number of usable formulas discovered in a spreadsheet. Additionally, some of
the formulas such as sum can also be recovered using linear regression. Our exper-
iments show that for we can achieve moderate to major accuracy improvements
on our data-sets (Figure 4, row 3) and the best results are obtained when both
chaining and formulas are used. Due to its flexible design, PSyChe can readily
integrate additional constraint learners, equation discovery systems or program
synthesis algorithms to further improve the accuracy of its predictions.

Q5 Can our method provide suggestions in real time Excluding TaCLe, executing
the whole pipeline on our datasets – that is, training the base predictors and ob-



Spreadsheet Autocompletion 17

taining the joint prediction – takes on average less than a second for single cell pre-
dictions and about a second for 3 cells. Constraint learning with TaCLe can take
tens of seconds. However, this can be amortized as TaCLe discovers constraints
globally and does not need to be rerun for every prediction task. Additionally,
we extended TaCLe to include a timeout per constraint template, meaning that
it can be run quickly to obtain initial formulas and optionally can be rerun with
increased timeouts in the background.

6 Related Work

There are several strands of related work. First, PSyChe has been strongly influ-
enced by work on combining machine learning and automatic programming with
spreadsheets. Most spreadsheet software includes a limited form of autocomple-
tion: if the values in a row or column follow some simple pattern (e.g., constant or
progressive), the next values in the pattern can be automatically filled in. But this
is clearly a very limited setting. The recent work of Gulwani on programming-by-
example and program synthesis [19,22] showed that strong prior knowledge is key
to autocompletion in non-toy applications. The seminal FlashFill automatically
completes columns from a few examples of the desired values. Several methods
follow this idea and adapt it to different tasks (e.g., data wrangling [30]). This in-
sight is leveraged by TaCLe [24] to induce constraints from spreadsheets. PSyChe
is extending this idea towards autocompletion of arbitrary cells in spreadsheets us-
ing predictive models, formulas, and constraints.

Very relevant are also the BigML [1] platform and related efforts, which inte-
grate standard learning algorithms, workflows, and visualisations with easy to use
spreadsheet interfaces. The goal of these approaches is to lower the entry point
to data analysis for non-experts, for instance by allowing to quickly analyze fea-
tures (columns) and predictive models (for a single column at a time). Predictive
spreadsheet autocompletion goes beyond this, by automating predictions without
any user intervention—although user guidance can be leveraged, if available, by
adapting the combiners, calibrators, and (if possible) predictors whenever the user
fills in or changes any cells. BigML is also restricted in predicting a single column
at a time, it does not consider the issue of chaining predictions, and it uses a very
simplistic missing value imputation strategy7. Although rather general and useful,
these approaches neither address nor solve predictive spreadsheet autocompletion.
Most importantly, PSyChe is meant to integrate black-box classifiers obtained
from potentially disparate sources into a single collective predictor. BigML, in con-
trast, offers only a handful of classifiers (e.g. decision trees or extensions thereof)
that are trained directly on the data itself.

PSyChe is related to techniques for imputing missing values in data tables [33,
36], which encompass both statistical [35] and machine learning approaches [34].
These methods can impute multiple data entries, and reorder the rows as to op-
timize the pattern of cells to be imputed with respect to the observed ones. Our
idea of chaining predictions for different cells is similar in spirit to the “fully
conditional specification” used in multiple imputation [35]. Missing value impu-
tation, however, differs from predictive spreadsheet autocompletion in several key

7 See the documentation at https://bit.ly/2Bvc8De, retrieved on November 2018

https://bit.ly/2Bvc8De
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aspects. First, spreadsheets often include multiple related tables, and individual
tables may have different directionalities (e.g. column-based, row-based, or het-
erogeneous). This can be readily handled by PSyChe. In contrast, imputation
approaches assume the data to be a single table in attribute-value format. Second,
formulas and constraints play a key role in spreadsheets, but are absent in stan-
dard imputation settings. As a consequence, imputation methods do not consider
the issue of consistency in practice. PSyChe, on the other hand, is specifically
designed to acquire formulas and constraints (via an extension of TaCLe) and
use them during inference to ensure consistency.

Another class of related work consists of ensemble methods in machine learn-
ing [14], which learn multiple predictive models and combine them to make predic-
tions. Most ensemble methods focus on a single target attribute, although there
also exist multiple classifier methods that combine predictions for multiple at-
tributes. One example is the recent MERCS system [37] which uses ensembles of
multi-target decision trees to predict any cell in an attribute-value table. There
are two differences with such techniques. First, PSyChe is able to learn and use
constraints (across multiple tables), and second, it is based on a probabilistic
framework that serves to integrate these predictions.

Finally, relational learning methods [27,39,28] share some similarities with our
approach, in that they can handle multiple tables and potentially constraints.
However, they do not integrate black-box base predictors into the inference, which
is instrumental to the performance of the overall pipeline.

The predictive spreadsheet completion problem tackled in the present paper is
more challenging than the present approaches, as it requires to combine predictive
models and learned constraints. The semi-relational nature of the data and the
fact that the underlying prediction task is unknown immediately rule out most
machine learning approaches. In PSyChe we assume that the target spreadsheet
has been pre-processed into a manageable format. This is not always realistic, and
one direction for further research is concerned with the automatic detection of
useful structure in the spreadsheet that can be used to obtain such manageable
formats automatically. The combination of predictive auto-completion with data
wrangling yields an automated data scientist, a direction of research that we are
actively pursuing, see [11].

7 Conclusion

We introduced the novel problem of predictive spreadsheets autocompletion with
the aim of partially automating the spreadsheet workflows of end-users. This task
is more challenging than standard prediction and imputation problems, for sev-
eral reasons: the data generation process can be almost arbitrary, formulas and
constraints play a central role, and the data is spread across multiple tables. We
address these challenges by proposing a probabilistic model that combines task-
specific base predictors and learned constraints (e.g. spreadsheet formulas) to pro-
duce a consistent joint prediction for all target empty cells. This setup handles
unobserved dependencies among heterogeneous cells and tables. Suitable modeling
assumptions are made to handle data scarcity. We show empirically that our pro-
posed approach, PSyChe, produces reasonable suggestions in an efficient manner
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when applied to real-world spreadsheets from the EUSES corpus. The integration
of PSyChe into existing spreadsheet applications is discussed.

Key future extensions to this work include: 1) leveraging historical data and
specialized pre-trained predictors, 2) exploiting the relational structure of spread-
sheet to transfer predictors across tables, and 3) most importantly, integrating the
proposed method into spreadsheet applications by devising a suitable protocol for
providing suggestions to the user and learning from the received feedback. All ex-
tension fit naturally in the presented framework and would improve the coverage
and quality of the completions in this data scarce setting.
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