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Change Detection in Unlabeled Optical Remote
Sensing Data Using Siamese CNN

Rachid Hedjam , Member, IEEE, Abdelhamid Abdesselam, and Farid Melgani

Abstract—In this article, we propose a new semisupervised
method to detect the changes occurring in a geographical area
after a major damage. We detect the changes by processing a pair
of optical remote sensing images. The proposed method adopts a
patch-based approach, whereby we use a Siamese convolutional
neural network (S-CNN), trained with augmented data, to compare
successive pairs of patches obtained from the input images. The
main contribution of this work lies in developing an S-CNN training
phase without resorting to class labels that are actually not available
from the input images. We train the S-CNN using genuine and
impostor patch-pairs defined in a semisupervised way from the
input images. We tested the proposed change detection model on
four real datasets and compared its performance to those of two
existing models. The obtained results were very promising.

Index Terms—Remote sensing change detection (CD),
semisupervised CD, Siamese convolutional neural network
(CNN).

I. INTRODUCTION

IN REMOTE sensing, the main objective of change detection
(CD) is to compare two or more images of the same geo-

graphical region acquired at different times to detect significant
spectral differences between the pixels across the images [1].
Usually this can be solved either by a supervised or an unsuper-
vised approach. A supervised CD requires a reference data to
train and optimize the parameters of the model [2]. In contrast, an
unsupervised CD is based on the difference image (DI) between
the input images to generate the change map [3]. CD techniques
can be also grouped into pixel-based, object-based, and data
mining-based. A good review of these traditional techniques
can be found in [1], [4], and [5]. Although these methods use
the contextual spatial and spectral information of remote sensing
images, the traditional manual design of image features is a
tedious and complex task and it is mostly performed on the basis
of domain-specific knowledge [6]–[9]. The explosive growth
of available remote sensing data and the increased processing
power afforded by graphical processing units has led to the
rise of advanced techniques based on deep learning (DL) [10],
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[11]. These techniques are becoming increasingly important due
to their effectiveness in automatic learning of discriminative
features. Recently, a number of DL-based CD techniques have
been proposed to solve CD problems, including fusion feature
extraction and deep convolutional neural network (CNN) [12],
deep belief network with fuzzy ontologies and multiscale anal-
ysis [13], recurrent neural networks and long short-term mem-
ory [14], dual-dense convolutional network [15], deep CNN
for multimodal remote sensing images [16], semisupervised
Siamese ANN [17], to name a few of them.

The proposed CD method aims to detect spatial changes that
have occurred in a geographic region using two temporal images.
The first image is acquired before the date of the event causing
the change and the second is acquired after. This method adopts
a patchwise matching between two images to find out whether
the textural structure of the images at the region defined by the
patches has undergone a change or not. It adopts the Siamese
neural network to calculate the difference between the two
images. Changed image regions are represented by larger values
in the difference map compared to unchanged regions. The main
difference with existing Siamese CNNs (S-CNNs) resides in the
way we designed training data, i.e., genuine patch-pairs that
represent the unchanged regions and impostor patch-pairs that
represent the changed regions. During the training phase, only
the first image is used. It undergoes several mathematical trans-
formations then it is divided into patches to generate the training
genuine patch-pairs. However, when the changed regions are
relatively smaller than the unchanged regions, or are difficult
to determine, it becomes hard to collect a sufficient number of
training impostor patch-pairs, and therefore the most important
requirement for CNN training (the need for large data) is not
met. To deal with this problem, we propose substituting the
second image with external images having a texture similar
to the type of change to be treated. Basically, pairing patches
from external images with patches from the first image makes
it possible to define an alternative source for generating large
training impostor patch-pairs. Overall, the aim is to build and
train an S-CNN to learn, using instances of genuine and impostor
patch-pairs, a similarity function, which takes two patches as
input and expresses how similar they are [18]. In this work,
the word “semisupervised” refers to the use of external images
(from other image domains) to generate impostor patch-pairs.
The proposed training scenario is inspired by some similar
works on cross-domain adaptation and transfer learning that
have been applied in many research works [19]–[21]. Therefore,
our method requires nothing more than knowing the type of
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Fig. 1. Two satellite images. (a) Image before change. (b) Image after change. (c) Image (b) with changed areas masked in pink color. The mask is created
manually based on the difference in perception between image (a) and image (b). Credit: DigitalGlobe.

change to be addressed, so that the substituting images will be
selected accordingly. Moreover, we are addressing specific types
of changes, those consisting of distortion of the image contents
(geometrical deformation as shown in Fig. 1). In other terms, it
focuses on the spatial difference between the input images and
not on the spectral difference. It is therefore designed to process
color or grayscale images. More details are given in Section IV.

The rest of this article consists of the following sections.
Section II reviews related CD methods. Section III describes
and motivates the problem addressed in this article. Section IV
describes the proposed CD method. The experiments and results
are reported and discussed in Section V. Finally, the conclusion
is given in Section VI.

II. RELATED WORKS

Extracting relevant image features is necessary for obtaining
accurate CD results. As mentioned above, traditional methods
that are mainly based on hand-designed features have proven
to be very limited especially in complex contexts. In recent
years, a significant progress has been made in the field of
computer vision, pattern recognition, and machine learning,
eventually leading to the development of efficient automatic
feature extraction techniques. DL is the most outstanding result
of this progress and remote sensing is one of the areas that
has benefited from it. CNNs are very powerful DL techniques
capable of automatically extracting highly discriminating fea-
tures [7], [22]. Thanks to this, numerous research works have
given birth to powerful methods of CD in remote sensing. For
instance, in [12], CNN features are extracted through different
convolutional layers, normalized and concatenated in a single
feature vector. Then, a change map is computed using a pixelwise
Euclidean distance between the obtained feature vectors of the
two input images, after reshaping them. The main advantage
of [12] is that it extracts the features of each layer rather than
waiting for the last layer to extract the global feature vector,
in which the mid-level features are lost due to subsampling
(pooling). The limitation of this method comes from the fact that
a single pretrained CNN cannot extract features that are relevant
to all types of changes. In [23], a symmetrical CNN is proposed
to detect changes from two heterogeneous images (optical and
radar). Each image is fed to one side of the network, to be
transformed into a more coherent feature vector. The resulting

vectors are used to calculate the DI and generate the binary
change map. The parameters of the entire network are learned
by optimizing a coupling function. Gong et al. [24] proposed an
unsupervised CD in multispectral imagery based on generative
adversarial networks (GANs). The method first calculates the DI
using change vector analysis and an intermediate binary change
map and uses them to train and use two adversarial networks
(GAN) to generate a better DI. The latter is thresholded by an
unsupervised clustering algorithm to generate the final change
map. Zhang et al. [25] proposed an S-CNN to detect candidate
buildings and trees changes between different epochs using 3-D
laser and 2-D aerial images of the same area. The method con-
verts the two images into gray images, splits them into patches,
then feeds them into an S-CNN along with labels. The trained
S-CNN is finally used to detect candidate changes between the
two epochs. In [26], the optimal representations of changed areas
are learned using an unsupervised stacked autoencoder, followed
by a label aggregation performed in the feature space before
classification. Although the method has proven to be effective
with only a small number of labels, but it still needs to be
supervised. In [27], a fully atrous CNN is proposed and used
to learn the classification of land cover, in which robust features
of very high resolution images are extracted by an encoder. In a
second step, the change map is calculated by pixelwise distance
between the features extracted from the input images. In [28],
Chen et al. combined conditional GANs [29] with U-Net [30] to
solve the problem of dense CD in remote sensing without relying
on preprocessing or postprocessing steps. The authors argued
that by feeding a fully connected network with whole images,
instead of patch by patch, the method improves the detection
performance.

III. PROBLEM STATEMENT

Multitemporal optical remote sensing images show differ-
ent types of minor and major changes. Minor changes can
be caused by different factors such as imperfection in the ac-
quisition systems, difference in acquisition platforms, weather
disturbance, etc. This means that in general, there is always a
small difference between any two consecutive images (of the
same area), especially if the temporal resolution is small. Major
changes are mainly due to serious effects such as human-made
construction and destruction, natural disasters such as floods,
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Fig. 2. Historical aerial image. City of Montreal (Canada) in the 1950s.
(a) Before change made by construction. (b) After change. Photographs provided
by Archive of Montreal.

Fig. 3. Patchwise pairing. (a) First image. (b) Second image. Sharp patches
(genuine patch-pair) represent unchanged areas, whereas rounded patches (im-
postor patch-pair) represent changed areas.

earthquakes, fires, to name a few. In Fig. 1(c), a mask is created
manually based on a visual inspection of the major changes
between Fig. 1(a) and (b). The masked area represents the change
caused by a military aircraft bombing. The images show part
of Aleppo city in Syria taken, respectively, on November 21,
2010 and October 22, 2014. Minor changes can, in turn, be
noticed by visual inspection of the images 1(a) and (b). In this
research work, we specifically address this type of problems. The
images used to conduct our experiments consist of grayscale
and color images captured by recent satellites, and historical
aerial photographs taken by airborne cameras. An example is
shown in Fig. 2. For this kind of images, relying on pixelwise
DI to generate the change map is not a suitable approach,
because it is difficult to distinguish between the changed and
unchanged areas based solely on pixel intensity. As a remedy,
we propose analyzing the geometric deformation of the image
contents. Edge orientation and texture can be promising features.
While computer vision and image processing have provided
us with many texture analysis techniques in recent years, DL,
specifically CNN, has been proven to be a very powerful tool
for feature extraction from complex textured images [31].

IV. PROPOSED METHOD

Let I and J be the first and second images, respectively. Let
us define by “patch” a square region in an image, and by a
“patch-pair” a twin of patches representing the same area in
both images as illustrated in Fig. 3. Patch-pairs that represent
minor changes are called genuine pairs, whereas patch-pairs
that represent major changes are called impostor pairs. In this
work, the CD problem is solved as follows. 1) Calculate the local

Fig. 4. CNN-Siamese neural network model. (p1, p2) stand for a patch-pair.
y = 0means that the patch-pair is genuine, whereas y = 1means that the patch-
pair is impostor.

similarities (or differences) between the images I and J . This
is done by calculating the distance between each patch in I and
its twin in J . At the end of this process, the DI is produced. 2)
Segment DI into two classes. Optimistically, the class with the
lowest similarity values (or highest difference values) represents
the changed areas and the class with the highest similarity
values represent the unchanged areas. However, the quality of DI
depends mainly on two factors: 1) the relevance of the features
extracted from the patches and 2) the optimization of the distance
used to calculate the similarity between features. Therefore,
the goal is to design a whole system that automatically ex-
tracts robust features with higher discrimination power and also
optimizes the distance between these features. S-CNN [32] is
the outstanding approach used to meet these two requirements.
S-CNN consists of predicting whether the input patch-pairs are
genuine or impostor.

Our proposed method consists of a training followed by a
testing phase. In the training phase, we establish a trainable
nonlinear function that maps the patch-pairs to points in a low
dimensional feature space so that the distance (e.g., Euclidean
distance) between these points is small if the twin patches are
genuine and large if they are impostor. The automatic learning
process of the distance is achieved by training two identical
CNNs sharing the same set of weights. This is called Siamese
network [32]. In the test phase, only a CNN of one side is used
to detect the change between I and J .

A. Siamese Network Model

In the proposed method, an S-CNN consists of two identical
copies of subnetworks sharing the same weights w, and a top
network that computes the patch-pair similarity. An illustration
of an S-CNN is shown in Fig. 4. Each subnetwork is repre-
sented by a CNN that generates a feature vector describing the
properties of the corresponding input patch. The obtained two
feature vectors are compared using the Euclidean distance (other
distances can be used as well) to produce the final output of the
network. Formally, let (p1, p2) be an image patch-pair used to
train the network, and y be a binary label of the pair, such that
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y = 0 if (p1, p2) is genuine (noted (p1, p2)
+), and y = 1 if it is

impostor (noted (p1, p2)
−). Let w be the shared weight vector

to be learned, and let Mw(p1) and Mw(p2) be the outputs of a
nonlinear mapping function for p1 and p2, respectively. The top
network aims to compute the distance (i.e., similarity) between
p1 and p2 through an energy function Ew as follows:

Ew(p1, p2) = ||Mw(p1)−Mw(p2)||2. (1)

B. Learning Approach

Given a training set of N genuine and impostor patch-
pairs {(p1, p2)i; 1 ≤ i ≤ N} along with their labels Y = {yi ∈
[0, 1]}. We propagate the patch-pairs with their labels through
the Siamese network to learn their feature vectors and then
compute the loss function (error or objective function)L defined
as follows:

Lw({(p1, p2)i}, Y ) =

N∑

i=1

[
(1− yi)Sw(p1, p2)+i

+ yiDw(p1, p2)
−
i

]
. (2)

The loss function in (2) consists of two terms, one that acts
on the genuine pairs, and another that acts on the impostor pairs.
The first term (noted Sw) penalizes large distances within the
impostor pairs and consequently promotes the genuine pairs
through the following formula:

Sw(p1, p2)+i = Ew(p1, p2)
+
i ; if yi = 0 (3)

where (i) indicates the ith sample. The second term (noted
Dw) penalizes small distances within the genuine pairs and
consequently promotes the impostor pairs through the following
formula:

Dw(p1, p2)
−
i = e−Ew(p1,p2)

−
i ; if yi = 1. (4)

The two terms Sw and Dw are competing in a manner that
the minimization of total energy L leads to decrease energy
of genuine pairs, and increase energy of impostor pairs. The
loss function is derived with respect to the shared weight vector
w, using standard back-propagation algorithm. The parameter
vector is updated with a stochastic gradient method using the
sum of the gradients contributed by the two subnetworks [33].

C. Approach for Generating the Training Dataset

As stated in Section III, due to the lack of changed and
unchanged class labels, generating training dataset is the most
critical task in our work. In the ideal case, we assume that a
set of multitemporal images is available and it is divided into
two subsets, I = {Ii}ti=1 (acquired before the change date)
and J = {Jj}t+n

j=t+1 (acquired after). The subscript stands for
the image acquisition time. In case where some changed areas
are well predefined (e.g., by a mask of labels), the training
patch-pairs can be sampled with their labels by simultaneously
patch-sliding two images (Ii, Jj) from left-top to bottom-right.
This process is repeated on other pairs of images to have a more
representative training data. Unfortunately, when the changed
regions are not defined, which is our case, the unsupervised

Fig. 5. Example of some external textured images that can be used to generate
the impostor patch-pairs. The image in the middle is the image after the change
shown in Fig. 3(b). The yellow dotted curve is included to delimit approximately
the area affected by the major change. The arrows are included to show the
similarity between the texture of the changed regions and that of the external
images.

process is not guided by a mask of labels, and therefore cannot
blindly guarantee that the impostor patch-pairs are sampled from
the changed regions, and the genuine patch-pairs are sampled
from the unchanged regions. To work around this problem, we
adopt two different strategies, one for each patch-pair type. The
first strategy that concerns the genuine patch-pairs, comes from
the fact that any Jj is somewhat a “temporal continuation”
of any Ii (i.e., time series). Therefore, they are similar inside
unchanged regions (as defined by genuine patches in Fig. 3). In
this case, I will suffice to sample genuine-pairs without hav-
ing to use J . Formally, (p1, p2)+ ∈ (Ii, Ik), ∀i, k ∈ [1, . . . , t].
Generating genuine patch-pairs is therefore a straightforward
unsupervised task. In contrast, generating impostor patch-pairs
requires that the two patches p1 and p2 should be generated from
a region affected by the change, which is unfortunately unknown
for us. To go around this problem, we propose not to use the
images J at all. Instead, we suggest to sample the patches p2
from other external images with textures that resemble to that
regions affected by the damage would have. It is worth to note
that before creating the patches, we first visually compare, using
the Gimp Graphical tool, the resolution of external images to
that of the input images, and downscale or upscale the external
images if the difference is large. It is therefore preferable to use
external images with a resolution approximately similar to that
of the input images.

Practically we crop as much as we can p2 patches from the
external images. Some examples of these images are shown in
Fig. 5.

Actually, we do not have two subsets of multitemporal images;
we only have two images noted I and J . And as explained at the
beginning of this section, the image J will not be considered
in the training phase. So how will it be possible to design
training genuine-pairs using I? In order to generate the training
genuine patch-pairs, we need other images to be coupled to the
image I . Images that deviates from it with minor changes. To do
this, we propose to artificially create I = {Ii}ti=1 and generate
the training genuine patch-pairs in the same way as described
above. The simplest idea to create I is to apply several small
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Fig. 6. Data augmentation. The images I are created from the image I .
(p1, p2) is a genuine patch-pair. They are similar to the image J within the
unchanged regions.

Fig. 7. Illustrative example of the training data generation process. (a) Genuine
patch-pairs. The images {I1, . . . , It} are the transformations of the image I . The
whole set is used to generate the genuine patch-pairs. (b) Impostor patch-pairs.
The patches p2 are extracted from the external images, whereas p1 is extracted
from the image Ii, then coupled to form the impostor patch-pairs.

mathematical transformations to the image I , such as rotation,
scaling, offset, stretching, blurring, noise, etc. In other terms,
we perform data augmentation on I . By artificially creating I,
we solve two problems at once. 1) Generated images will most
probably resemble to image J inside the unchanged regions.
This is illustrated in Fig. 6. It turns out that the patch p2, a
transformed version of the patch p1, somehow resembles its twin
patch belonging to the image J . The simulated images I and the
image I are therefore used to generate the genuine patch-pairs as
described in the first paragraph of this section. Fig. 7 illustrates
the entire training data generation process. 2) By creating I, we
increase the size of the data (i.e., data augmentation), which is
in fact a recommendation for the training of any DL method.
An illustration of the whole training data generation process is
given in Fig. 8(a).

D. Test Phase

Because the two sub-CNNs will be identical after being
trained [34], when we test our model, only one of the two
sub-CNNs is evaluated. The output of this is the feature vector for
the input patch. More specifically, the test process involves the
following tasks. 1) Take a patch from the first image and another
patch from the same position in the second image, feed them to
the sub-CNN to obtain their feature vectors, then normalize them
in the range [0, 1]. 2) Calculate the Euclidean distance between
them. We repeat the same process for all the image patch-pairs
results in the so-called DI. 3) Classify or segment the pixels of
DI into two classes (using, for example, Otsu’s algorithm). The
pixels having the highest values belong to changed areas and the

Algorithm 1: Proposed Change Detection Method.
Input 1: input images, I, J .
Input 2: {E}: predefined external patches.
Output: binary change map,M .

1: procedure
2: # generate genuine patch-pairs.
3: Generate I from I .
4: I ← I , #include I in I.
5: Extract {(p1, p2)+} from
{(Ii, Ik)}, ∀Ii, Ik ∈ I.

6: # generate impostor patch-pairs.
7: Extract {(p1, p2)−}. p1 ∈ I, p2 ∈ E.
8: # Train the Siamese CNN ( S-CNN ).
9: # Detect change using I and J.

10: for each (p1, p2)a in (I, J) do
11: f1 ← CNN(p1) #extract features of p1 by

CNN.
12: f2 ← CNN(p2) #extract features of p2 by

CNN.
13: D(a)← ‖f1− f2‖2 #Euclidean distance.
14: # Reshape D to have same size as I

and J.
15: # Segment D using Otsu’s algorithm.
16: M ← Otsu(D)

pixels having the lowest values belong to unchanged areas, as
illustrated in Fig. 8(b).

Below is the overall algorithm of the proposed CD model. An
illustration of the training and test phases of the proposed S-CNN
CD model is also given in Fig. 8. As shown, the proposed model
requires as input the image acquired before the change (i.e., I)
and the database of patches extracted from the external images
with a texture similar to the change in question. However, during
the test phase, both images I and J , acquired before and after
the change, respectively, are used.

V. EXPERIMENTAL RESULTS

A. Dataset Description

Four datasets are used to validate the proposed CD method.
The first dataset1 is a bitemporal image showing part of Aleppo
city in Syria before and after a military aircraft bombing (see
Fig. 9). The two images are taken, respectively, on November
21, 2010 and October 22, 2014. The second dataset1 is a cropped
bitemporal image showing a part of the entire district of Masaa
Al Arbaeen in the city of Hama (Syria), which was flattened
after a military strike between September 27, 2012 and October
23, 2012. A total of 3256 buildings were reduced to rubble (see
Fig. 10). The third dataset2 consists of before and after satellite
images of the Syrian nuclear reactor at Al-Kibar, which was
reportedly struck by Israel in 2007. The two images are taken

1Online. [Available]:https://www.bbc.com/news/world-middle-east-
31871568

2Online. [Available]: https://www.aljazeera.com/indepth/features/2013/05/
20135512739431489.html

https://www.bbc.com/news/world-middle-east-31871568
https://www.aljazeera.com/indepth/features/2013/05/20135512739431489.html
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Fig. 8. Illustration of the proposed S-CNN CD process. (a) Training phase. The black dotted arrows mean the generation of patch-pairs. (b) Test phase. Since
CNN1 and CNN2 are identical after the training phase, one of them is used in the test phase.

on October 18, 2007 and October 24, 2007 (see Fig. 11). The
fourth dataset3 consists of two cropped images of Montreal city
acquired in the 1950s (see Fig. 12).

For objective evaluation purposes, reference binary images
are created manually based on the visual comparison of the twin
images. Areas with major changes are labeled with white pixels,
whereas others are labeled with black pixels. The reference
images are also shown in Figs. 9–12. They are created manually
using Gimp Graphics editor.4 The datasets along with their
reference images can be found on GitHub.5

B. Model Parameters and Setting

We have designed, trained, and tested several S-CNN archi-
tectures. The one that led to the best performance is described as
follows: The CNN in each side of the S-CNN is composed of two
convolutional layers. Each layer performs ten 3× 3 convolutions
without padding. The activation function ReLU is used and
followed by a pooling layer that performs 2 × 2 max pooling.
The last layer is flattened into a layer of 1960 features (real
values) used as the feature vector of the input patch. Training the
proposed S-CNN involves the following steps. Step 1) Case 1) If
the two input images are in color, we use them as they are. Case
2) If they are both grayscale, we convert them to three-channel
images, where each channel holds the original grayscale image.
Case 3) If one image is color and the other is grayscale, we
convert the color image to a grayscale image and then convert
the two grayscale images to three-channel images as explained

3Provided by Open Data, Montreal.
4Online. [Available]: https://www.gimp.org/
5Online. [Available]: https://github.com/rh-gt/RS-data

in case 2). Step 2) We performed data augmentation for the first
image (I) by applying, 1o left/right rotation, 2 pixels scaling
(zoom-in and zoom-out), 3 pixels left/right/up/down shifting. In
total 16 (i.e., 2× 2× 4) images are created from I . Therefore,
the image I , the 16 created images, and the external images
shown in Fig. 5 are used to generate the training patch-pairs
as described in Section IV-C. Step 3) We set the size of the
patches to 64× 64 pixels. By consequence, the total number
of patch pairs used to train S-CNN depends on the size of the
input images. Step 4) We split the composed dataset into 70%
for training and 30% for validation.

During the test phase and in order to speed up the CD process,
the sliding step is fixed at 5 pixels. Because of the patch-overlap
caused, the DI produced will have a smaller size than that of the
input images. Therefore, it will be resized (cubic interpolation is
used) to the original size, before performing segmentation (i.e.,
thresholding).

C. Objective and Subjective Performance Evaluation

For objective evaluation purpose the proposed method is
compared to two other models, the baseline image differencing
(IDif) [35], and CNN hyper features-based model [12]. The
outputs of each CD model are evaluated against the correspond-
ing reference images based on true positive (TP), true negative
(TN), false positive (FP), false negative (FN), Accuracy (Acc.)
Recall (Rec.), Precision (Prec.), and F-score (F1). All of them
are described in the Sikit-learn Python library.6 The objective
results of different methods are reported in Table I. we can see

6Online. [Available]: https://scikit-learn.org/stable/modules/model_
evaluation.html#classification-metrics

https://www.gimp.org/
https://github.com/rh-gt/RS-data
https://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
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Fig. 9. Subjective comparison-Aleppo dataset. First row: Two input images
and ground-truth. Second row: Proposed method’s output. Third row: IDif
model’s output. Fourth row: [12] model’s output. Left: DI (gray-scale). Middle:
Binary change map (black/white). Right: Confusion map between the binary
map and the ground-truth: (blue: TP; white: TN; magenta: FP; cyan: FN).

TABLE I
PERFORMANCE OF DIFFERENT CD METHODS, IDIF, [12], AND PROPOSED,

BASED ON TP, TN, FP, FN, ACC., REC., PREC., AND F-SCORE (F1)

that the proposed method outperforms others in all experiments
based on all the performance measures. Hama and Aleppo are
the easiest datasets to process, and Montreal and Al-Kibar are
the hardest. For example, one of the reasons why the Al-Kibar
dataset is a tough case is that the texture and structure of much
of the destroyed site are almost similar to that of the background
of the second image (see Fig. 11). The results show that TN is
higher than TP in almost all cases for all the methods. The reason
is that the unchanged areas are relatively larger than the changed
areas in almost all datasets. We can notice that the proposed
method is better than others in terms of TP in almost all the
cases, except in Al-Kibar dataset where IDif method is slightly
better. Besides, the proposed method has the lowest FP in almost

Fig. 10. Subjective comparison-Hama dataset. First row: Two input images
and ground-truth. Second row: Proposed method’s output. Third: IDif model’s
output. Fourth row: [12] model’s output. Left: DI (gray-scale). Middle: Binary
change map (black/white). Right: Confusion map between the binary map and
the ground-truth: (blue: TP; white: TN; magenta: FP; cyan: FN).

all the cases. This means that it causes fewer false alarms (parts
shown with magenta in Figs. 9–12, third columns). This is also
indicated by higher Prec. measures in all cases except Al-Kibar
dataset, which is a challenge for all the methods. IDif is the
method most causing false alarms, whereas [12] is the method
that least detects real (positive) change. For example, compared
to the other methods, the proposed method is able to detect the
most of the parts of the changed areas in Hama and Aleppo
datasets. This is well reflected by the values of Rec. measures.
IDif method is better than the proposed method in terms of Rec.
on Al-Kibar dataset but much worse in terms of Prec. due to the
higher number of false alarms it generates. Overall, the proposed
method is better than all in terms of F1 score, which is in fact
a compromise between the miss-detection of real changes and
false alarms.

For visual comparison purpose, the confusion maps of dif-
ferent methods are shown in Figs. 9–12, third columns. The
confusion maps indicate that the proposed method has fewer
magenta and cyan pixels compared to the others, which means
less FP (false alarms) and FN (unable to detect change) values.
The IDif method has more magenta pixels, i.e., it causes large
false alarms, whereas [12] has more cyan pixels, i.e., it is less
able to detect change.

In addition, we have studied experimentally the effect of
patch size on the performance of the proposed method. We have
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Fig. 11. Subjective comparison-Al-Kibar dataset. First row: Two input images
and ground-truth. Second row: Proposed method’s output. Third: IDif model’s
output. Fourth row: [12] model’s output. Left: DI (gray-scale). Middle: Binary
change map (black/white). Right: Confusion map between the binary map and
the ground-truth: (blue: TP; white: TN; magenta: FP; cyan: FN).

Fig. 12. Subjective comparison-Montreal dataset. First row: Two input images
and ground-truth. Second row: Proposed method’s output. Third: IDif model’s
output. Fourth row: [12] model’s output. Left: DI (gray-scale). Middle: Binary
change map (black/white). Right: Confusion map between the binary map and
the ground-truth: (blue: TP; white: TN; magenta: FP; cyan: FN).

TABLE II
EFFECT OF PATCH SIZE ON THE PERFORMANCE OF THE PROPOSED CD MODEL

Montreal dataset is used as an example.

Fig. 13. Effect of patch size on the proposed CD model’s output. Form let to
right: 32× 32, 64× 64, 128× 128 pixels (blue: TP; white: TN; magenta: FP;
cyan: FN).

TABLE III
EFFECT OF THE TRAINING DATASET SIZE (EXPRESSED AS A PERCENTAGE OF

THE TOTAL NUMBER OF GENERATED PATCH-PAIRS) ON THE PERFORMANCE OF

THE PROPOSED MODEL

Hama dataset as an example.

conducted experiments with 32× 32, 64× 64, and 128× 128
patches. We found that patches with a size of 64× 64 pixels
led to the best performance (see Table II). An example of
the Montreal dataset is shown in Fig. 13. Same results were
concluded for other datasets. We have found that the larger the
patch size, the more false alarms (FP) are reported. Also, smaller
FN is given by 64× 64 patch-size. One of the reasons that the
64× 64 patches work better, at least for the datasets used in this
work, is that smaller patches (32× 32) may not contain enough
information so that the S-CNN can extract relevant features,
whereas larger patches (128× 128) may encompass parts of
other objects leading to the introduction of false match between
patches of input images. Setting the patch size requires prior
information about the data to process.

We have also investigated the effect of the size of the train-
ing dataset on the performance of the proposed S-CNN. We
conducted an experiment in which we trained and tested the
model by varying the size of the training dataset. Table III lists
the performance of the proposed model on the Hama dataset.
Overall, larger training sets lead to better performance (at least
for F1-score). This is almost always valid given that CNN-based
models such as Siamese ANN require a large amount of data to
be well trained [36].

VI. CONCLUSION

In this article, we proposed a new CD model that works on
a pair of unlabeled optical remotely sensing images using an
S-CNN. The challenge resulting from the lack of class labels is
addressed by introducing a new method to generate appropriate
training data needed by S-CNN, i.e., genuine and impostor
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patch-pairs. In a semisupervised way, the genuine patch-pairs are
directly generated from the transformed maps of the first image
(taken before the change), whereas the impostor patch-pairs
are generated by pairing the first image with other external
images having textures that resemble the change to be addressed.
Therefore, our method requires nothing more than knowing the
type of change to be addressed, so that the external images will
be selected accordingly (found form the web, for example). We
have analyzed subjectively and objectively the performance of
the proposed method against two existing CD methods based
on four real datasets and eight well-known performance scores.
The results show that the proposed method is performing better.
The advantage of the proposed CD method is that it operates
automatically without resorting to class labels. However, this
requires a priori knowledge of the type of change to be analyzed.
It is actually a requirement to use the appropriate external images
to generate the impostor patch-pairs. Finally, we would like to
mention that the proposed method is designed to deal with only
one type of change at a time. However, in order to adapt it to
deal with several types of changes, we can train the S-CNN with
external images with different textures that resemble the types
of changes to be addressed. This will be the subject of future
work.
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