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Interpolating Causal Mechanisms: The Paradox of Knowing More

Simon Stephan', Katya Tentori?, Stefania Pighin®, and Michael R. Waldmann'
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2 Center for Mind and Brain Sciences (CIMeC), University of Trento

Causal knowledge is not static; it is constantly modified based on new evidence. The present set of seven
experiments explores 1 important case of causal belief revision that has been neglected in research so far:
causal interpolations. A simple prototypic case of an interpolation is a situation in which we initially
have knowledge about a causal relation or a positive covariation between 2 variables but later become
interested in the mechanism linking these 2 variables. Our key finding is that the interpolation of
mechanism variables tends to be misrepresented, which leads to the paradox of knowing more: The more
people know about a mechanism, the weaker they tend to find the probabilistic relation between the 2
variables (i.e., weakening effect). Indeed, in all our experiments we found that, despite identical learning
data about 2 variables, the probability linking the 2 variables was judged higher when follow-up research
showed that the 2 variables were assumed to be directly causally linked (i.e., C—E) than when
participants were instructed that the causal relation is in fact mediated by a variable representing a
component of the mechanism (M; i.e., C—>M—E). Our explanation of the weakening effect is that people
often confuse discoveries of preexisting but unknown mechanisms with situations in which new variables
are being added to a previously simpler causal model, thus violating causal stability assumptions in

natural kind domains. The experiments test several implications of this hypothesis.

Keywords: belief revision, causal Bayes nets, causal reasoning, interpolation, probabilistic reasoning

Research focusing on causal reasoning generally explores how
people acquire and use knowledge about relations between causes
and effects. Many theories share the assumption that the world can
be categorized into a given set of variables that can be arranged in
causal networks. Experiments in this field often focus on the
question of how people learn and reason about this set of causal
variables (see Waldmann, 2017, for overviews). Less attention has
been paid to the dynamic process of extending and deepening our
knowledge (for notable exceptions, see Bramley et al., 2017;
Oaksford & Chater, 2013, 2017; Taylor & Ahn, 2012). People do
not only learn about causal relations between variables; they also
acquire knowledge about the mechanisms mediating previously
discovered covariations or causal relations. Dynamic causal belief
revision is a hallmark of scientific but also of everyday reasoning.
For example, we may first learn that smoking leads to heart disease
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or that a new drug relieves headache but later we may become
more curious and try to figure out how these causal contingencies
are actually generated by underlying mechanisms. This process
may involve the discovery of additional variables and the interpo-
lation of causal networks.

The process of rerepresenting our causal knowledge into more
elaborate causal models can be expressed in various ways. A
popular theoretical framework of how to represent causal knowl-
edge are causal Bayes nets, which represent this knowledge as a
set of variables linked by directed causal arrows (see Figure 1 for
an example; see Rottman, 2017; Rottman & Hastie, 2014; Wald-
mann, 2017; Waldmann & Hagmayer, 2013, for reviews). The
building blocks of causal Bayes nets are direct causal relations
between causes and effects, but these direct relations can be
combined into indirect ones forming causal chains or more com-
plex kinds of networks (see Figure 1).

In a given stage of our knowledge acquisition process, we may
have constructed the representation of a specific causal network.
However, even when we are confident that our model is adequate,
we may still want to elaborate the model by adding new variables.
It is important to note that the direct causal relations within a
causal model are only direct relative to a specific set of variables.
Indeed, causal models are frame-relative in the sense that it is
always possible to turn a direct causal relation into an indirect one
by interpolating new variables that mediate the previously directly
linked ones (see Spohn, 2012). What is represented as a direct
causal relation by some people may be represented as an indirect
one by other people. For example, most people will represent the
relation between the intake of aspirin and the relief of headache as
a direct causal relation. However, some of us who are interested in
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2 STEPHAN, TENTORI, PIGHIN, AND WALDMANN

Figure 1
Example of a Causal Bayes Net Depicting the Causal Relations
Between the Five Variables A, B, C, D, and E

biology and medicine may want to know how aspirin achieves this
effect. The mechanism involves the inhibition of COX enzymes
preventing the conversion of arachidonic acid to prostaglandin.
Within a Bayes net framework, mechanisms are finer-grained,
more elaborate representations of a sequence of causal dependen-
cies (Woodward, 2011). There is no natural end point here (Cart-
wright, 1999). A biochemist may even go further and explore
further submechanisms linking arachidonic acid with prostaglan-
din. Thus, the same covariational relation between aspirin and
headache can be represented with different sets of variables and
degrees of resolution. What is direct within one framework may be
indirect within others.

One major goal of our project is to investigate how people
reason with these different levels of description and how people
revise their causal beliefs after being confronted with new infor-
mation about mechanisms that was unknown to them before. Thus,
we will study how people reason in situations of causal belief
revision. In most experiments we will focus on causal chains, but
later we will demonstrate that our findings can be generalized to
more complex structures. Our experiments will demonstrate that
people’s causal inferences are biased in a way that contradicts a
normative causal analysis.

Revising Beliefs About Causal Chains

There are various ways in which knowledge about a causal
chain can be revised. First, it could turn out that the causal
directions within a chain do not adequately represent the real
causal dependencies. Some of the covariations may, for example,
be attributable to a common cause rather than a direct causal link
(see Taylor & Ahn, 2012). Thus, one possibility for revision
concerns the structure of the causal model. Second, given that
causal strength is estimated based on a limited set of data, it may
later be discovered that the initial strength estimates were distorted
and are in fact stronger or weaker. Third, new relevant variables
connected to the known network could be discovered, which leads
to an augmented network. In the case of causal chains, adding
variables may lead to a lengthening of the chain. Alternatively,
mechanisms mediating between variables could later be discov-
ered, which leads to the interpolation of variables. Of course, these
possibilities of belief revision can be combined.

Interpolations, in particular, have rarely been studied. As an
example for an interpolation, our knowledge acquisition process
may start with observations that bolster our belief in a stable causal
contingency between intake of aspirin and relief of headache. In

this initial causal model representation, aspirin would play the role
of a direct preventive cause of headache with the causal strength
parameter reflecting the observed probabilities. Later we may
discover how this relation is mediated. This would lead to a more
elaborate representation turning the direct causal relation (aspirin
—> relief of headache) into an indirect one (e.g., aspirin — pros-
taglandin — relief of headache). In this example, other compo-
nents of the mechanism (see above) are yet unknown to the
reasoner so that only one mechanism variable is interpolated. The
key question of the present study concerns how extensions of
causal knowledge about chains affect our beliefs in the probabi-
listic relations between causal variables. In the following section,
we will consider in depth the two cases of extending causal chains,
lengthening and interpolating. Our experiments will then focus on
interpolations, which have not yet been investigated in detail.

Lengthening of Causal Chains

Lengthening a given chain by adding new variables at the
beginning or at the end of the chain typically leads to a weakening
of probabilistic relations between the variables at the extremes
proportional to their distance. A key assumption here is that the
initial chain along with its causal strength parameters stays invari-
ant; additional variables are just added at one of the outer sides.
Imagine, for example, that a direct causal relation had been dis-
covered between the variable JPH3 (a fictitious mutation of a
gene) and Hepatocitosis (a fictitious disease; see Figure 2A).
Because other known and unknown outside variables typically
additionally affect causal relations, the causal relation between
JPH3 and Hepatocitosis will most likely be probabilistic on the
observational level. Then assume that it has been discovered that
Hepatocitosis directly causes another disease, Lipogastrosis. This
would imply a lengthening of the chain from two to three variables
(see Figure 2A and 2B, respectively).

There are many ways to measure the strength of a covariation
between variables, but a standard method is to use the contingency
measure AP (see, e.g., Perales et al., 2017, for a review), which
equals the difference between the conditional probabilities
P(EIC) — P(EI-C), with E representing the effect, C the target
cause, and —C the absence of the cause. AP can range from —1
(for a deterministic preventive relation) to +1 (for a deterministic
generative relation).

With reference to Figure 2B, if we assume that the Markov
condition holds (see Mayrhofer & Waldmann, 2015; Rehder &
Waldmann, 2017), which in this case means that the new proba-
bilistic relation between Hepatocitosis and Lipogastrosis is inde-
pendent of whether JPH3 is present or absent, the following
relation also holds:

Figure 2
Hllustration of the Lengthening of an Initial Causal Chain (A)
into a Causal Chain With an Additional Effect (B)

A) [ JPH3 ]—)[Hepatocitosis]
B) [ JPH3 ]—)[Hepatocitosis]—)[ Lipogastrosis]
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AP JPH3—Lipo — AP JPH3—Hepa X AP, Hepa—Lipo (D)

Equation 1 states that the contingency between JPH3 and Lipo-
gastrosis is equal to the product of the contingencies of the two
directly linked variables (i.e., JPH3-Hepatocitosis, Hepatocitosis-
Lipogastrosis), which leads to a weakening effect when the causal
links are probabilistic. The further the distance between variables
(i.e., the longer the chain), the weaker the contingency between
JPH3 and the final effect is expected to be. It is important to note
that this effect is based on the assumption that variables are added
to otherwise invariant chains. The exact functional form of the
probabilistic relations between the three variables will of course be
different when the Markov condition does not hold. But because
our focus will not be on lengthening but rather on interpolations,
we will not pursue the role of this constraint further.

Psychological research has shown that reasoning about causal
chains is consistent with this multiplicative lengthening constraint
(Equation 1). Presented with individual pairwise causal links that
are later combined into a three-variable chain, participants tend to
believe that the initial cause indirectly causes the final effect, thus
demonstrating a belief in causal transitivity. Moreover, their judg-
ments are generally consistent with the multiplication constraint
expressed in Equation 1 (Ahn & Dennis, 2000; Baetu & Baker,
2009; Jara et al., 2006). Interestingly, reasoning about chains even
tends to express a transitivity bias when the presented data actually
contradict the Markov condition and therefore are inconsistent
with transitive chains (von Sydow et al., 2016, 2010). There seems
to be a tendency to assume the validity of the Markov constraint
even when it is violated, at least in these tasks.

A study testing whether causal reasoning is consistent with the
normative predictions of Bayes nets was conducted by Bes et al.
(2012). The study investigated a number of causal models and
showed judgment biases that violated normative assumptions un-
derlying Bayes nets. However, some of the results that are relevant
for our study seemed consistent with the multiplication rule. For
example, in their Experiment 2, Bes et al. (2012) presented three
causal variables that were sufficiently neutral so that they could be
arranged in different causal models through verbal instructions.
Some vague information was given about the strength of the
covariation between the three variables, suggesting that for all
variable pairs 40% have both high values, another 40% have both
low values, and 20% have mixed values. After this information,
causal model instructions were provided. For our project the chain
conditions are the most relevant ones. In the direct predictive chain
condition A was the direct cause of B and B the direct cause of C
(i.e., A—>B—C), whereas in the indirect predictive chain condition
B was indirectly caused by A via C (i.e., A—>C—B). In a within-
subject design, each participant was presented with the contrasted
conditions, but the variables in the different conditions referred to
different scenarios. In the test question measuring probabilistic
intuitions, participants were requested to rate the probability of
effect B given the presence of cause A (i.e., P(BIA)) on a scale
ranging from 0% to 100%. The key finding was that, despite
identical information about the contingencies between A and B,
the probability of B given A was rated significantly higher when
the instructed causal chain model linked them directly (direct
predictive causal chain) than when they were indirectly linked
(indirect predictive causal chain). This finding was replicated in a
follow-up study (Bes et al., 2012, Experiment 3) in which, prior to

causal model instructions, trial-by-trial data were presented show-
ing individual cases and in which the number of learning trials was
manipulated. This effect was not sensitive to the length of the
training phase. This study provides further evidence for partici-
pants’ belief that causal chains are transitive although the data
actually violated the Markov condition in the experiments.

An interesting question is whether the observed effect is nor-
mative. In general, there is no reason why in two different scenar-
ios with different variables (as in the within-subject design of Bes
et al.,, 2012) the direct relation between A and B (A—B), for
example, should place quantitative constraints on the strength of a
relation between the different variables C and E in a different
indirect causal relation (C—D—E). The covariation between A
and B can be larger or smaller than the covariation between C and
E, or their sizes can be equal (as in Bes et al., 2012). If, for
example, A and B correspond to the intake of aspirin and relieve
from headache, and C and E to flipping a switch and the switching
on of a lightbulb via an electric current (D), the probabilistic
dependency between the indirectly linked variables, C and E, is
surely higher than between the directly linked variables, A and B,
in our world. One reason why Bes et al. (2012) may have observed
a stable weakening effect consistent with the multiplication rule
may have been that, in all their conditions, three-variable chains
were presented with the direct causal relation always being a
component of an indirect one. If, for example, participants learned
in different within-subjects conditions about the chains A—B—C
and D—E—F, the request to estimate conditional probabilities for
the direct relations asked about the A—B or D—E relation,
whereas the request to estimate indirect relations asked about the
probabilities linking A and C or D and F. Thus, the direct relations
were subcomponents of the indirect ones, thus suggesting that
generally indirect relations were obtained through lengthening of
the direct ones. Given that within each chain it is typically the case
that the direct relation is stronger than the indirect one (due to the
multiplication rule), reasoners may have used this constraint as a
structural heuristic for their estimates about direct and indirect
causal relations (see also Experiment 2, for further tests).

Interpolation in Causal Chains

In the previous section, we have seen that in scenarios suggest-
ing lengthening participants tend to expect a weakening of prob-
abilistic dependencies with increased distance within the causal
chain. Our main focus in the present study is another type of
extension of chains that is generated by interpolations of mediat-
ing variables. Interpolations are frequent in contexts of causal
discoveries of mediating mechanisms. Reversing the revision pro-
cess in the example from the last section, we may first have
obtained reliable covariation knowledge indicating that JPH3 co-
varies with Lipogastrosis. In a causal model, we might represent
this as a direct causal relation between the two variables (see
Figure 3A), which can be used for predictions, diagnoses, or causal
interventions. However, later we may want to know how JPH3
exerts its influence on Lipogastrosis. We may then learn that the
causal relation is mediated by another condition, that is called
Hepatocitosis. On the surface, we see again a three-step chain, like
the one in Figure 2B, that appears longer after the interpolation,
but this effect is attributable to a very different process than the
lengthening that we obtain when adding variables at the beginning
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Figure 3
Example for the Extension of a Causal Chain Resulting From
the Interpolation of a Variable

A) [ JPH3 ]—)[Lipogastrosis]
B) [ JPH3 ]—)[Hepatocitosis]—)[ Lipogastrosis]

or end of a chain. Here, a previously direct causal relation is turned
into an indirect one by zooming in on the causal relation and
discovering an intermediate step. Our key question is whether
interpolations lead to a similar weakening effect as cases where a
given chain is lengthened at the outer sides of the chains. This is
a novel question that has not explicitly been addressed in the
literature so far.

Weakening in Causal Interpolations

The interpolation paradigm is very different from previously
investigated ones in which direct and indirect causal relations were
compared. In the study by Bes et al. (2012), for example, two static
three-variable chains were compared referring to different scenar-
ios. In their paradigm it is left open how knowledge about these
chains was formed. The three variables may have all been ob-
served at once, or knowledge about the chain components may
have been obtained consecutively through lengthening or interpo-
lation.

The novel component of our new interpolation paradigm is that
we highlight the temporal sequence in which knowledge has been
acquired. Our paradigm consists of two consecutive temporal
phases in which a belief revision process is described. In Phase 1,
learners are presented with a set of trials showing the covariation
between two variables, for example JPH3 and Lipogastrosis. No
probability assessment is requested after this phase. In the follow-
ing Phase 2, which mentions subsequent research, causal models
are introduced. For example, in a direct causal condition partici-
pants are informed that, in the meantime, scientists have discov-
ered that the two variables are linked in a direct causal relation (as
in Figure 3A), whereas in the indirect or interpolated condition
they are informed that, in the meantime, knowledge about a
mediating mechanism has been obtained and that scientists have
discovered that the disease Hepatocitosis is part of a mechanism
that links JPH3 and Lipogastrosis (see Figure 3B).

Note that, unlike in previous research comparing direct and
indirect causal relations, this paradigm clearly states a sequence in
which knowledge has been acquired. It is explicitly stated that
Hepatocitosis is a variable that has been later discovered as being
part of the mechanism linking JPH3 and Lipogastrosis. Thus, the
task describes a clear case of interpolation. It is also notable that no
new data are shown in Phase 2. All participants only observe the
initially presented covariation between two variables (JPH3, Li-
pogastrosis) and are then provided with verbal descriptions of the
causal models scientists have discovered in further research.

Our key question is whether participants who are asked at the
end of the experiment to assess the probability linking JPH3 and
Lipogastrosis would offer systematically different estimates in the

two contrasted conditions despite identical learning. To preview
our results, we observed a stable weakening effect in causal inter-
polations. More specifically, although all participants received
identical learning data, those who were informed that the causal
relation between JPH3 and Lipogastrosis is in fact mediated by the
variable Hepatocitosis tended to offer weaker probabilistic esti-
mates than those who were informed that the causal relation is in
fact direct.

Interestingly, we have discussed our task with numerous col-
leagues from psychology, philosophy, and computer science, and
many had the initial reaction that such a weakening is perfectly
rational. Later, on reflection, many colleagues changed their
minds, though. We found these initial intuitions by experts and
laypeople puzzling and wanted to explore how they can be ex-
plained. Although our main goal in the present research was to test
a descriptive theory of the weakening effect, we were also inter-
ested in the question whether this effect represents a novel, pre-
viously unknown bias or whether it can in fact be defended as
rational.

Before we present our normative and descriptive accounts of
interpolations, a possible concern with the two-phase belief revi-
sion design of our paradigm needs to be addressed. An initial
reaction to the weakening effect may be that possibly demand
characteristics may have been involved. Participants may initially
estimate the contingency in Phase 1 but then, confronted with
Phase 2, conclude that an alteration of their estimate is requested.
We implemented several safeguards against this possibility. First,
we only requested probability estimates once, at the end of the
experiment, not twice. Second, we kept constant that both in the
direct and the interpolated conditions participants were equally
informed that research had found out more about the causal rela-
tions. Thus, if the causal discoveries mentioned in Phase 2 were
viewed as a cue for altering internal estimates, this should have
equally affected both conditions, which it did not. Moreover, there
is no reason to assume that such a possible demand characteristic
should only lead to weakening. Strengthening would also be an
alteration of an initial estimate. We will below present a theory that
explains the asymmetric weakening effect as being caused by
differences in the causal representation of the direct and interpo-
lated conditions.

Is the Weakening Effect Rational in Causal
Interpolations?

It is an interesting question whether weakening is a bias or
fallacy, or whether it can be defended as a rational response. In the
past decades, a number of phenomena that initially were inter-
preted as irrational were reinterpreted as results of rational pro-
cesses (e.g., Crupi et al., 2009; Kareev, 2000; Oaksford & Chater,
1994). Can the weakening effect be similarly explained as a
rational response?

The Paradox of Knowing More

One argument showing that a weakening effect cannot be ratio-
nal in causal interpolation refers to a counterintuitive implication
of a generalization of this effect, which we express by using the
label “paradox of knowing more.” Under the assumption of a
rational weakening effect, the longer the chain becomes, that is, the
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more mediating steps we discover about the causal relation, the
weaker the dependencies would become. This does not sound
sensible for cases of causal discovery. An increase of knowledge
should not lead to increased unpredictability of the world. In the
following analyses we will take a closer look at properties of
causal discovery.

Causal Model Analysis

A helpful strategy to address causal inferences involves sepa-
rating between causal models that encode assumptions about func-
tional relations between causes and effects and statistical evidence.
This separation follows from the approach of Pearl (2000), who
has in the last decade criticized his initial view (Pearl, 1988) that
causal models can be reduced to probabilistic relations (see also
Pearl & Mackenzie, 2018). His more recent view claims that it is
necessary to separate assumptions about functional causal models
from statistical information that can be used as evidence. A similar
separation between causal model representations that incorporate
domain knowledge and learning data has also been proposed in
psychological research on causal model theory (e.g., Griffiths &
Tenenbaum, 2009; Lagnado et al., 2007; Waldmann & Holyoak,
1992; see Waldmann, 2017, for overviews).

From a causal model perspective, the discovery of mechanisms
mediating between a target cause and effect should not prima facie
alter the strength of their causal relation. Again, using the example
of aspirin and headache, a plausible assumption is that these two
events have already been linked by a mechanism before it has been
discovered. The discovery of the role of prostaglandins, for exam-
ple, did not insert a new variable into the mechanism, prostaglan-
dins were already part of the mechanism prior to scientists finding
out about their role. Because prostaglandins mediated the causal
relation between aspirin and headache all along, their discovery
should not alter the previously assumed causal strength between
aspirin and headache.

A graphical demonstration of why interpolations should not
change probabilistic relations can be seen in Figure 4, which
represents a mechanism as a Bayes net representation of a causal
chain. Figure 4A shows the representation of the direct causal
relation between JPH3 and Lipogastrosis at some time point, t1.
Now assume, we later discover at t2 that Hepatocitosis mediates
this relationship (see Figure 4B). Where was Hepatocitosis at t1?
Again, a natural assumption is that Hepatocitosis already mediated
the relation between JPH3 and Lipogastrosis at t1. This mediation
relation was just unknown at tl. In fact, if we assume that in the
unknown underlying Bayes net (let’s call it God’s Bayes Net),

Figure 4

there are an infinite number of mediating variables between JPH3
and Lipogastrosis that await discovery (Figure 4B shows a frag-
ment), then further discoveries (e.g., Figure 4C) should also not
change the strength of the relation between the initially discovered
two variables.

The claim that discoveries leave causal relations invariant is
based on the assumption of causal stability. With causal stability
we mean that in many domains, such as physics, chemistry, biol-
ogy, medicine (i.e., natural kinds), our default assumption is that
the underlying causal mechanisms tend to be invariant over time.
Owing to causal stability, discoveries about mechanisms tend to be
conceived of as referring to preexisting but unknown mechanisms;
they do not create new mechanisms. For example, if we have
observed a covariation between a virus or drug and a novel disease,
it is plausible to assume that these causal events have already been
linked by a hidden stable mechanism before the mechanism has
been discovered.

Causal stability is not a universal feature of all domains. We
have different assumptions about artifacts, for example. If a com-
pany works on artifacts, such as cell phones, TVs, or cars, it is
likely that the mechanisms are being altered between generations
of the products. Here we should not expect stability. Therefore, no
weakening effect would be predicted for artifacts. The typical goal
of developments of artifacts is to strengthen the causal reliability
of the device, not to weaken it (see also General Discussion). In
our research, we focus on natural kind domains in which causal
stability seems to be the default assumption.

Statistical Evidence

Another possible path to justify the weakening effect might
focus on the fact that statistical data are typically unreliable.
Probability estimates rely on samples so that a specific degree of
uncertainty is always attached to these estimates. Indeed, some of
the mentioned attempts to rationalize apparent biases and fallacies
in other tasks focus on how uncertainty may influence participants’
inferences.

In our experiments, in Phase 1, we presented participants with a
limited set of observations (typically N = 48) of a covariation
between two variables (e.g., JPH3, Lipogastrosis) and then, in
Phase 2, instructed them that later scientists had found out that the
two variables were either directly or indirectly causally linked.
Although participants only observed one learning sample and were
just once requested to provide a probability estimate, it seems
plausible to assume that the scientists based their conclusions on
further observations, thus increasing the sample on which the new

Hllustration of the Process of Causal Mechanism Discovery Within God’s Bayes

Net

. ! Vot vy .
A) JPH3 - —>: Spirillicitis - — => Hepatocitosis - — —>: Cholestocitis = = =>1 Lipogastrosis t1
1 1 1
it 3 N i o R i o
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theory is based. Although the presented learning sample is not
particularly small to assess a covariation between two variables, it
is not very large either. Thus, a possible hypothesis might be that
participants may have inferred that it is rational to assume that the
probabilistic relation is weakened in the interpolation relative to
the direct causal condition in the unobserved larger samples un-
derlying the causal discoveries (Phase 2). In the following, we will
discuss several possible cases that may lead to alterations of
estimates with a focus on the key question whether in these cases
a systematic weakening effect can be rationally defended.

Case 1: Statistical Uncertainty

Statistical uncertainty owing to the limited observed learning
sample may be one factor underlying alterations of an initial
internal estimate. However, there is no reason to expect that this
should asymmetrically lead to lower probability estimates in the
indirect interpolation conditions than the direct cause conditions
(i.e., weakening), which we observed in all our studies. For one, to
prevent ceiling or floor effects, we used covariations that were
sufficiently far away from the extremes 1 and 0. If uncertainty was
due to unreliability of the measurement, a symmetric confidence
interval would be expected. Also, given that both contrasted con-
ditions equally suggested that additional samples had been ob-
served in the course of the discovery of the direct or indirect causal
relations, a rational inference would be in both conditions to place
a confidence interval around the estimated mean, which covers
both weakening and strengthening.

Uncertainty could also be construed as a tendency to combine
the observed data with a prior about causal strength participants
may bring to bear on the task. However, in previous causal
research strength priors have been postulated that tend toward
sufficiency or necessity rather than lower values than the ones we
used, which would actually predict more extreme estimates (see Lu
et al., 2008; Mayrhofer & Waldmann, 2016; Yeung & Griffiths,
2015).

A third possibility would be that participants may tend to
provide conservative estimates when confronted with a sample
size increase with unknown properties (see Rottman & Hastie,
2014, for a review of this factor). However, again, there is no
reason why conservativism should affect the direct and interpo-
lated conditions differentially. Participants in both conditions were
instructed about discoveries in Phase 2.

Case 2: Context Changes

Changes of observed probabilistic relations can, even when the
underlying causal model is assumed to be stable, also be expected
when new evidence is collected in a changed causal context (see
Cheng & Lu, 2017; Pearl & Bareinboim, 2014). For example, the
relation between a drug and hypertension could be either observed
in a hospital specialized on heart disease or in a group of healthy
young students. Although causal strength, which is an unobserved
parameter, should be unaffected by these context changes because
of the stability assumption (Cheng & Lu, 2017), the observed
probabilities will differ as a result of the different strengths of
alternative causes. Research has shown that learners can disentan-
gle causal strength or power from such context factors in experi-
mental paradigms that made specific context changes highly sa-
lient in the instructions (Liljeholm & Cheng, 2007). In our studies

the instructions did not mention any systematic context changes so
that there was no reason for participants to expect specific context
changes.

But even if context changes were expected, there is no reason to
asymmetrically favor weakening over strengthening. Possible fac-
tors leading to alterations of observed probabilistic relations in
new contexts include additional alternative causes, disablers, or
enablers. For example, an added disabler may lower a probabilistic
relation, but the addition of a previously absent enabler may
strengthen it. Alternative causes may also lead to changes in both
directions depending on whether they exert generative or inhibi-
tory influences on the target effect. Moreover, context changes
potentially can affect both conditions, the direct and the interpo-
lated condition, so that no difference between the conditions
should be expected.

A further possibility may be that occasionally causal mecha-
nisms may be different in different populations. Aspirin may have
different effects in subsets of the population depending on genetic
differences. But even if cases can be found in which a target cause
and effect are the same, there is no reason to believe that a new
mixture of populations in a different sample would systematically
lead to weakening but not strengthening or invariance. Again,
alterations in both directions seem conceivable in both contrasted
conditions. In sum, although context changes may lead to changes,
they do not systematically favor weakening. Moreover, none of
these possible context changes was highlighted in the instructions.

Case 3: Mechanism Changes

So far, we have discussed situations in which a rational response
to uncertainty should lead to a symmetric confidence interval in
both contrasted conditions, not just weakening. However, there is
one possible assumption that would make it indeed plausible to
systematically weaken the estimates. In the causal model section
we have argued that under the assumption that causal stability
holds in our learning domains, the discovered mechanism should
be understood as being part of the mechanism all along even
though its existence and role has been unknown prior to its
discovery. This situation is shown for the example of JPH3,
Hepacitosis, and Lipogastrosis again in Figure 5A. Given that

Figure 5

Two Alternative Cases of Belief Revision: Interpolation of a
Preexisting Mechanism Variable (A) Versus Addition of a New
Variable (B)
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nothing has changed in the underlying mechanism between t1 and
t2, no changes should be expected just based on the underlying
causal structure. Hepatocitosis was equally operative both prior
and after its discovery. However, in Figure 5B a different possi-
bility is depicted. Here, the discovered variable Hepatocitosis has
been added to the mechanism at t2 but is assumed to have been
absent prior to its discovery at t1. Under the assumption that a new
variable has been added to a previously simpler causal structure, it
is plausible to assume that the new variable comes with enablers,
disablers and alternative causes that may introduce various possi-
bilities of disruption of the causal process. These disruptions might
indeed entail a weakening of the JPH3 and Lipogastrosis relation
relative to the structure at t1 in which the new variable was absent.

An important difference between the two belief revision pro-
cesses depicted in Figure SA and 5B is that Figure SA shows a
process in which a preexisting mechanism is discovered, whereas
in Figure 5B the new mechanism variable is added to a simpler
direct causal relation mechanism. Superficially, both cases involve
a transition from a two-variable relation (t1) to a three-variable
relation (t2). By just looking at t2 in both cases, the two cases look
identical. To appreciate the difference it is again necessary to
separate the causal model level from the evidence level, following
Pearl’s (2000) strategy. On the causal model level, the difference
between discovery and insertion of a variable is whether Hepaci-
tosis, whose role was unknown at tl in both conditions, is retro-
actively inserted into the two-variable model at t1 (Figure 5A) or
whether it is treated as absent at t1 (Figure 5B).

Implications for the Causal Strength Parameters

Once the two cases are differentiated on the causal model level,
the question arises whether they have different implications for the
causal strength parameters linking the variables. On the surface,
both cases involve a transition from a two-variable model to a
three-variable model. The traditional assumption underlying Bayes
nets is that they are modular (i.e., they can be arbitrarily extended
by adding new variables and new links). A plausible assumption
within this approach is that people have priors about causal
strength which are updated by data. Thus, one possible way to
represent the transition between a two variable to a three variable
model may be that people may attach similar causal strength priors
to the two new links at t2 (JPH3—Hepacitosis—Lipogastrosis) as
at t1. If the priors are probabilistic, a weakening effect would be
entailed by the multiplication rule (Equation 1). Thus, participants
may generally use the heuristic that direct relations are stronger
than indirect ones. In Experiment 2 we will test this account of the
weakening effect in interpolation tasks.

Our question here is whether this modular account of weakening
is normative. One problem of this modular representation of the
transition from a two- to a three-variable model is that it does not
capture the crucial distinction between the case in which a preex-
isting variable has been discovered (Figure 5A) and the case in
which the discovered variable is new (Figure 5B). Thus, it mis-
represents interpolations. To capture the difference between these
two cases a holistic representation of causal strength estimations is
required that takes into account the task and the domain under
investigation."

The difference between discoveries of preexisting variables and
discoveries of new variables has in fact implications for both the

induction of the causal strengths of individual links and it places
mutual constraints on the sizes of the different links within the
interpolated model. For example, in Figure SA the mechanism is
preexisting, which implies that the observed probability linking
JPH3 and Lipogastrosis is at both t1 and t2 generated by the
preexisting mechanism including the yet unknown mediating vari-
ables. If, for example, the contingency linking JPH3 and Lipogas-
trosis is 0.42, then the links connecting the newly discovered
variable Hepatocitosis should on average have a contingency of
0.65. Assuming no substantial changes between the causal con-
texts at t1 and t2, this contingency should hold at both t1, in which
Hepatocitosis was unknown, and at t2, in which it has been
discovered. Moreover, because of the multiplication rule (Equation
1), the more variables mediating the JPH3-Lipogastrosis relation
have been discovered, the higher the average contingency of each
link should be. This increase guarantees that the contingency
between JPH3 and Lipogastrosis stays invariant despite the addi-
tional variables in the underlying causal model. Moreover, increas-
ing the average strengths of the newly discovered links counteracts
potential weakening effects of additional variables and their at-
tached disablers, enablers, or alternative causes. Thus, in interpo-
lations causal strength estimation normatively should be a holistic
process influenced by assumptions about the domain (e.g., causal
stability, discovery of preexisting variables) and the number of
interpolated variables.

By contrast, the process depicted in Figure 5B does not entail
such a systematic holistic constraint on causal strength. If, for
example, a new variable is added to a preexisting chain, there is no
reason to adapt the new causal links to the length of the chain as
in interpolations. It is true that the links connecting the added
variable (e.g., Hepacitosis) with the rest of the chain are in prin-
ciple unconstrained, but a plausible strategy would be to either use
a causal strength prior (as in the modular approach) or adapt the
link strength to the strengths of the other links or the strength of the
covariation learned in Phase 1. When causal strength parameters
are not adapted to the length of the chain, weakening should indeed
be expected when previously absent variables with probabilistic
links are added.

We believe that Figure 5B may indeed represent what partici-
pants showing a weakening effect assume in the context of inter-
polations. But is it rational? Under the causal stability assumption,
the answer is clearly no. Discoveries of preexisting mechanisms do
not create them, they just make them known. We will further
discuss the plausibility of this assumption for natural kind domains
in the General Discussion.

Psychological Accounts of the Weakening Effect

Regardless of whether a weakening effect is considered rational
or not in causal interpolations, the question still remains how a
psychological theory can explain it. Thus, the main focus of our
research will be on testing psychological factors that might under-
lie the weakening effect in causal interpolations.

Our psychological account is closely modeled after the norma-
tive analysis of the interpolation paradigm. We have outlined one
condition in which it seems reasonable to expect weakening. If, as

! We thank Bob Rehder for suggesting the distinction between a modular
and a holistic account of causal strength estimation.
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depicted in Figure 5B, participants in the interpolation condition
view the discovery of a mediating variable (Hepatocitosis) in
Phase 2 as an addition of a previously absent variable, it would
indeed be reasonable to expect a weakening relative to the direct
condition in which no further variable was added.

One interesting question is why participants’ inferences may
violate the causal stability assumption and rather be consistent
with a change of the underlying causal model (Figure 5B). One
possibility may be that participants actually believe that discover-
ies generally extend the underlying causal model instead of iden-
tifying preexisting variables. Under the causal stability assump-
tion, it seems very unlikely that participants generally believe in
instability and thus misrepresent interpolations as insertions of
variables instead of as discoveries of preexisting variables. In fact,
when presenting the figure showing God’s Bayes net that graph-
ically highlights the difference between known and unknown
mechanism variables (see Figure 4), most colleagues agreed that
the picture correctly represents what is going on in discoveries of
preexisting mechanisms. Also scientific inferences seem to be
consistent with stability assumptions. Current discoveries are typ-
ically inferred backward to past cases for which no explanation has
been available (see General Discussion, for a further discussion of
the stability assumption).

However, there is an alternative psychological hypothesis which
attributes the effect to superficial processing of the task. In the
interpolation paradigm there is a shift from a structure with two
variables in Phase 1 to one with three in the interpolation condition
in Phase 2. Understanding this as a case of a discovery of a
preexisting variable as in Figure SA would require participants to
retroactively infer a mediating variable in Phase 1 (Hepatocitosis)
in which it was unknown. Such retroactive inferences are compu-
tationally demanding compared with just going with the simpler
heuristic that variables that are not mentioned are probably absent.

Evidence for this hypothesis comes from studies about diagnos-
tic blocking (Waldmann, 2000, 2001). In a diagnostic blocking
task, learners observe in Phase 1, for example, that a new blood
substance, Substance 1, is deterministically caused by a new
disease, Midosis. Then in a subsequent Phase 2, participants are
instructed that a second substance, Substance 2, that had not been
measured in Phase 1, has been discovered as a potential second
causal indicator of Midosis. Thus, in Phase 2 participants observe
trials showing that Midosis deterministically causes both sub-
stances. Under the causal stability assumption participants should
retroactively infer that the second substance had already been
present in Phase 1, it just was not measured. Nevertheless, in some
experiments a small tendency was observed to give lower predic-
tiveness ratings to Substance 2 than Substance 1, which is consis-
tent with the belief that Substance 2 may have been absent in Phase
1. However, additional studies showed that this inference is not
based on a belief in causal instability but rather a manifestation of
attempts to simplify processing effort. In simplified salient tasks
this effect disappeared (see Lépez et al., 2005; Waldmann &
Walker, 2005). Thus, our hypothesis in the interpolation task is
that participants’ inferences are not triggered by beliefs in causal
instability, but rather are a consequence of attempts to reduce
processing effort.

One processing mechanism that might provide a psychological
explanation would be the assumption that participants may use
mental simulations as a technique to arrive at inductive inferences

when additional information is provided (see Griffiths et al.,
2012).% In the interpolation conditions they may first learn the
two-variable covariation. After being instructed about the discov-
ered mediating variable, without being shown new data, they may
simulate the augmented causal model in Phase 2 while failing to
adapt the causal strength parameters to the interpolation situation.
This process would lead to weakening. A proper understanding of
interpolations would on this account require to retroactively sim-
ulate the trials of Phase 1 with the proper causal strength param-
eters after the instructions for Phase 2 have been provided, which
is obviously hard.

To sum up, we have outlined three possible accounts of the
interpolation task. On a normative account, no weakening effect is
expected when a preexisting mechanism is later discovered. More-
over, causal strength parameters should be induced for the newly
discovered links that preserve the observed covariation between
the variables they are mediating. The second account, which is
consistent with a modular or heuristic account, predicts that learn-
ers generally assume as a heuristic that indirect relations are
weaker than direct ones. This account is insensitive to the order in
which direct and indirect relations are acquired and it does not
distinguish between a case in which a preexisting variable is
discovered versus a new variable is added to a previous simpler
causal model. Finally, the third account of weakening in interpo-
lations, our belief revision account, is that learners tend to have
difficulties with retroactively considering that the newly discov-
ered variables had already been part of the mechanism prior to
their discovery. These difficulties lead to effectively treating newly
discovered mechanism variables as previously absent although
domain knowledge suggests their presence in the past.

Preview of Experiments

The presentation of the experimental series starts with two
experiments in which we set the stage for later studies by demon-
strating the existence of the weakening effect presenting variables
on different levels of description (Experiments la, b). The next
two experiments, which together tested 1,980 participants, inves-
tigate boundary conditions of the weakening effect (Experiments
2a and 2b). Whereas two conditions correspond to the standard
interpolation paradigm with a covariation learning phase present-
ing two variables (Phase 1) preceding a causal model instruction
phase (Phase 2) in which either a direct or an indirect interpolation
condition were instructed, in the two further conditions the se-
quence was reversed. Here the causal models were instructed first,
followed by covariation learning. This reversal was motivated by
our experience that the presentation of God’s Bayes net (see Figure
4) convinced most of our audience that a weakening effect is
biased because the figure provides a salient presentation of the fact
that the mechanism was already in place prior to discovering its
components. We expected that the reversal should make the weak-
ening effect disappear because now learners can in both conditions
map the respective causal model on the learning trials. Both
models, the direct and the indirect causal model, can be parame-
terized in a way to be consistent with the learned contingencies.

The two experiments contain further tests of our theory. As
elaborated above, an alternative hypothesis that ignores the belief

2 We thank Mike Oaksford for this suggestion.
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revision component altogether might claim that participants may
merely use the heuristic that indirect causal relations are generally
weaker than direct ones. This hypothesis falls out of a modular
account of Bayes nets, which assumes that learners generally use
causal strength priors for individual links regardless of whether the
task involves causal interpolations of preexisting variables or
discoveries of new variables. On this account, these domain dis-
tinctions do not matter, the key feature triggering weakening is the
contrast between direct and indirect relations. Thus, the sequence
of presenting direct relations and chains should not matter on this
account. Bes et al.”s (2012) study provides evidence that seems to
support this hypothesis. However, as argued in the introduction,
their effect may have been due to the fact that in their studies direct
relations (e.g., A-B in A—>B—C) were always presented as com-
ponents of indirect ones (e.g., A-C in A—>B—C) so that this
heuristic seems reasonable there. By contrast, our Experiments 2a
and 2b employ a between-subjects design in which the direct
relation is learned separately from the indirect one. If participants
used the heuristic that indirect relations are weaker than direct ones
here as well, a weakening effect should be seen in both the
interpolation condition and the new conditions in which causal
models were instructed prior to learning. Thus, Experiment 2
additionally provides a test between a simple heuristic based on a
modular understanding of causal Bayes nets and our belief revision
account.

A third change involves the test question. In all our experiments
we asked participants to assess the conditional probability of the
effect (e.g., Lipogastrosis) given the cause (e.g., JPH3) without
further describing the sample the test subjects were drawn from.
By contrast, in Experiments 2a and 2b we explicitly informed
participants that the randomly selected test subject for which an
estimate should be made comes from the learning sample. This
way we rule out that participants consider possible context and
sample changes between Phase 1 and Phase 2. If these were the
crucial factors underlying the weakening effect, the effect should
disappear.

Experiments 3 and 4 investigate two interrelated predictions of
our theory. Experiment 3 tests the hypothesis entailed by our
theory that causal interpolations lead to longer chains with more
variables, which potentially highlights multiple possibilities of
how things can “go wrong.” Participants might be led to consider
enablers, disablers or alternative causes affecting the mediating
variables when the chain contains more variables. If, for example,
we just represent smoking and lung disease, we might consider
factors additionally influencing lung disease. If we represent the
relation mediated by genetic alterations, for example, then we
might consider additional factors influencing genetic alterations.
Under the assumption that participants represent the new variables
in the indirect condition in Phase 2 as having been absent in Phase
1 (see Figure 5B), the added variables along with their disablers,
enablers or alternative causes should lead participants to consider
disruptions of the causal process which would predict a weakening
effect. We focus in Experiment 3 on disablers as an example for
this hypothesis and test it by manipulating whether disablers are
explicitly mentioned or not (i.e., explicit vs. implicit representa-
tions).

Experiment 4 complements Experiment 3. Adding variables to a
given causal relation should only lead to a weakening effect if
these variables are newly inserted and have not already mediated

the observed covariation prior to the discovery of the mechanism.
If learners had a correct understanding of interpolation, they
should understand that the discovered variables along with their
disablers, enablers, and alternative causes already mediated the
covariation in Phase 1 prior to scientists having found out about
them (see Figure 5SA). On our normative holistic account of causal
strength estimation discoveries of preexisting variables have im-
plications for the causal strength parameters of individual links as
a function of the number of discovered variables. The more me-
diating variables are discovered, the stronger the causal strength
parameters should become in a causal chain. This relation is
entailed by the multiplication rule (Equation 1). A systematic
strengthening of the assumed link strengths, thus weakening the
influence of disablers, ensures the invariance of the covariation
learned in Phase 1. Experiment 4 tests whether learners have an
understanding of this relation between causal strength and the
length of a chain in interpolation tasks. More specifically, if they
had an adequate understanding of the implications of interpola-
tions, we should see a systematic increase of strength estimates
with increased length (Figure 4, Figure 5A). Otherwise, if, as we
hypothesize, participants misrepresent interpolations as situations
in which new variables are added to a simpler causal model, no
such trend should be observed. In sum, both Experiments 3 and 4
target different, but strongly interrelated implications of our weak-
ening account.

Most of our experiments study chains as an example for an
indirect causal relation. How about interpolating more complex
network structures between two variables (cf. Figure 1)? If the
network discovered in Phase 2 is assumed to be preexisting but
unknown in Phase 1, no weakening should normatively be ob-
served. Regardless of the complexity and the parameters connect-
ing the mediating variables, the causal contingency between the
two learning variables should not systematically change for the
same reasons why we do not normatively expect such a change in
simple chains. However, we expect that participants will again
misrepresent the discovery in Phase 2 as a situation in which new
interconnected variables are added that had not been present in
Phase 1. If that was the case, the structure and the parameters of
the inserted causal network should again influence the inferences
about the two target variables. For all our experiments, the exper-
imental materials (including example video clips) and data can be
accessed under https://ost.io/aqzps/ (Stephan et al., 2020).

Experiment 1a

The goal of Experiment 1 was to set the stage for our project by
testing whether we will find a weakening effect after causal
interpolations. The focus of our experiments is on natural kind
domains (such as physics, chemistry, biology, medicine) for which
it is plausible to assume causal stability. We will discuss other
possible domains in the General Discussion. To control for effects
of prior knowledge, we decided to employ fairly abstract materials.
Therefore, the causal variables referred to unknown variables of a
fictitious biological scenario.

Experiment la employed the basic two-phase belief revision
paradigm that we used in all studies. In the first phase (the
contingency-learning phase, Phase 1), all participants were pre-
sented with trial-by-trial learning information about the values of
two variables. This learning phase allowed participants to acquire
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knowledge about the degree of covariation between the two vari-
ables. Subsequently in Phase 2, participants were informed that
scientists had later discovered that these two variables were either
directly or indirectly causally related. The causal model informa-
tion was manipulated between subjects. In the direct causal con-
dition, participants were told that the two variables observed in
Phase 1 were in fact directly causally related. In the indirect
interpolation condition, participants were instructed that scientists
had found that a new mechanism variable mediates the previously
observed covariation. Thus, the indirect interpolation condition
implements a case of causal discovery of a previously unknown
mechanism in which a new variable is interpolated between the
two variables observed in Phase 1. No new data were shown in this
second phase. Then, the final test question requested participants
to estimate the conditional probability linking the two variables. A
weakening effect is observed when the probability estimates are
lower in the indirect (interpolated) causal than in the direct causal
condition, despite identical learning data.

Method
Participants

One hundred forty participants (100 female, 39 male, one par-
ticipant indicated to be neither male nor female, M, . = 36.69,
SD g = 12.50) recruited via Prolific (www.prolific.ac) partici-
pated in this online study and provided valid data. The rationale
behind this sample size was that it allowed us to detect a medium
effect size of d = 0.50 with more than 80% probability. The
inclusion criteria were a minimum age of 18 years, English as
native language, at least an A-level degree, and an approval rate
concerning participation in previous studies of 90%. Participants
were asked to participate only via laptop or desktop computer and
not via smartphone or tablet, because we wanted to minimize the
chances of distractions (e.g., public places, subway). Participants
received a monetary compensation of £0.70 for their participation.

Design, Materials, Procedure

The study employed a between-subjects design (causal model:
direct causal condition vs. indirect [interpolated] causal condition).
An example video illustrating the experimental procedure in one of
the conditions can be viewed at https://osf.io/evusj/. As a cover
story we employed a fictitious scenario according to which biol-
ogists were interested in studying the statistical relation between
the mutation of the gene JPH3 (J) and the gastro-intestinal disease
Lipogastrosis (L), which was defined as characterized by an ex-
cessive accumulation of fats in the digestive tract. Participants
were further instructed that the biologists had conducted a study in
which they examined two random samples of mice for the disease,
one in which individuals were carrying the mutation and a second
one in which they were not. Participants were informed that the
results of the biologists” study would be presented to them serially
via a graphical display (for more details see below and Figure 6)
and that their task was to examine the results thoroughly, without
taking any notes. To proceed to the learning task, participants had
to pass an instruction check involving two multiple-choice ques-
tions referring to the hypothesis of the biologists and the meaning
of the colors of the nodes which coded whether the JPH3 mutation
and/or Lipogastrosis were present or absent. The contingency that

Figure 6
Example of a Case From the Trial-by-Trial
Learning Task Used in Experiment 1

3/48

[ JPH3 } [Lipogastrosis]

Note. The illustration depicts a case in which the
cause was present (yellow JPH3 box) but the effect
was absent (gray Lipogastrosis box). See the online
article for the color version of this figure.

we presented to participants in the subsequent learning task is
shown in Table 1. The probability of Lipogastrosis given a JPH3
mutation, P(LIJ), was .75 and the probability of Lipogastrosis in
the absence of JPH3 mutation, P(LI-J), was .21. Hence, the
contingency APjpy5, Was .54,

In the learning phase, we used a trial-by-trial observational
learning task in which the 48 cases summarized in Table 1 were
presented to participants in random order on a computer screen. An
example of what the screen looked like during the learning phase
is shown in Figure 6. An example video of the learning task can be
accessed via https://osf.io/8cjft/. The presence of either variable (J
or L) was indicated by a yellow text box, while their absence (—J
or —L) was indicated by a gray text box. Each case was displayed
for four seconds followed by a white mask displayed for 500 ms.
The duration of the learning task was roughly three minutes.

After the learning task, participants were given information
about the causal model assumed to underlie the observed relation
between JPH3 and Lipogastrosis. Depending on condition, partic-
ipants were either instructed that JPH3 and Lipogastrosis were
directly or indirectly (by means of an interpolated variable) caus-
ally related. In the direct causal condition, participants were pre-
sented with the following text along with the illustration shown in
Figure 7A.

Please read the following new information:

The biologists later found out that JPH3 and Lipogastrosis are in fact
directly causally related as illustrated in the figure below. That is, the
JPH3 mutation can sometimes lead to Lipogastrosis. This is indicated
by the arrow (with a + sign) that goes from JPH3 to Lipogastrosis.
Other factors can also influence the disease.

Participants in the indirect (interpolated) causal condition were
presented with the following text together with the illustration
shown in Figure 7B.

Please read the following new information:

The biologists later found out that JPH3 and Lipogastrosis are in fact
indirectly causally related as illustrated in the figure below. Specifi-
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Table 1
Contingency Presented to Participants in Experiment la

Conditional

Observations probabilities

n(J,L) n(,=L) n(=J,L) n(=J,=L) PLI) P(LI-J) AP

Contingency

18 6 5 19 0.75 0.21 0.54

cally, the JPH3 mutation can sometimes lead to Hepatocitosis, an
abnormal occurrence of hepatic enzymes. This is indicated by the
arrow (with a + sign) that goes from JPH3 to Hepatocitosis. Finally,
Hepatocitosis can sometimes lead to Lipogastrosis. This is indicated
by the arrow (with a + sign) that goes from Hepatocitosis to Lipo-
gastrosis. Other factors can also influence the disease.

To control for possible associations with specific diseases (e.g.,
liver diseases), we used different labels for the interpolated vari-
ables. More specifically, participants either learned that the inter-
polated variable was Hepatocitosis (see Figure 7B), described as
an abnormal increase in hepatic enzymes, or Cholestocitis, de-
scribed as an abnormal occurrence of cholesterol, or Spirillicitis,
described as an infection colonizing the gut, or Paracelocitis,
described as a dysfunction of the process involved in fat metabo-
lism. After having read the causal model information, participants
proceeded to the test screen. They were informed that the biolo-
gists were now inspecting a new mouse that they had randomly
sampled and of which they had noticed that it carries the mutation.
Participants in the direct causal condition were shown the illustra-
tion depicted in Figure 7C. Participants in the indirect (interpo-
lated) causal condition were shown the illustration depicted in
Figure 7D, with the interpolated variable being the one presented
in Phase 2. Participants were asked to estimate the predictive
probability of Lipogastrosis given JPH3, P(LIJ). The phrasing of
the test question was: “What do you think is the probability that the
mouse also has Lipogastrosis?” Participants provided their ratings
on a slider ranging from 0 to 100 with the endpoints labeled “it is
certain that this mouse does not have Lipogastrosis” and “it is
certain that this mouse has Lipogastrosis.”

Results and Discussion

The results are summarized in Figure 8. Participants in the direct
causal condition gave ratings (M = 68.47, 95% CI [64.49, 72.45])
that were close to the normative value of P(LIJ) = 0.75, whereas
the ratings in the indirect (interpolated) causal condition were
lower (M = 56.30, 95% CI [51.15, 61.45]). An independent ¢ test
confirmed that the observed difference was significant, #(138) =
3.73, p < .001, d = 0.63.°

The results of Experiment la indicate that interpolating causal
variables between two covarying causal variables changes reason-
ers’ representation of the observed probabilistic relation. More
specifically, although the interpolated variable was introduced as a
mediator between the two variables, a “weakening effect” was
found in the indirect (interpolated) condition compared with the
direct causal condition. This finding is consistent with the theory
that participants misrepresent interpolations and treat the newly
introduced variable in Phase 2 as a new variable that is added to
the causal model.

Experiment 1b

In Experiment 1a, the interpolated variable (e.g., Hepatocitosis)
and the effect variable (Lipogastrosis) belonged to the same cate-
gory, physiological conditions (two diseases involving dysfunc-
tional physiological processes). Although the diseases were novel,
it cannot be ruled out that participants may have the abstract
intuition that two separate diseases may not be strongly probabi-
listically connected. We wanted therefore to make sure that the
observed effect is not restricted to cases in which a separate
disease is interpolated as a mediator and to test whether the
weakening effect interacts with the type of variables that are being
employed.

We constructed three different versions of the cover story used
in Experiment la by varying the level of description of the three
variables following the root cause. We contrasted the physiological
level with a genetic and a molecular one (see Table 2). A further
change was that we increased the semantic coherence of the
description of the chain mechanism across the links. For example,
in the genetic condition several genes were connected that led to
abnormal mutations between the causally connected genes. Our
goal here was to test whether the weakening effect will also be
observed when both the type of linked events and the type of
mechanism are very similar. Furthermore, we introduced two
variables in the indirect (interpolated) causal condition instead of
one to test the generality of the weakening effect.

Method
Participants

Five hundred ten new participants (242 female, 265 male, three
participants indicated neither male nor female, M,,. = 33.29,
SD g = 14.73) were recruited via Prolific and provided valid
data. This sample size allows us to detect small main effects and
interactions of f = 0.15 (d = 0.3) with more than 80% probability.
We planned for a smaller effect this time because we were uncer-
tain whether our new level of description variable would diminish
the weakening effect. The inclusion and exclusion criteria were
identical to the ones of Experiment la. Participants were paid
£0.70 for their participation.

Design, Materials, and Procedure

The study employed a 2 (causal model: direct vs. indirect
[interpolated] causal relationship) X 3 (level of description: phys-
iological vs. genetic vs. molecular) between-subjects design. We
used the same contingency data set as in Experiment la. An
example video illustrating the experimental procedure in one of the
conditions can be accessed at https://osf.io/ufche/. The cover story
and the procedure were similar to those of Experiment 1a with the
exception that, depending on condition, the interpolated variables
and the effect variable were described either in terms of a genetic,
physiological or molecular-level process. The root cause was al-
ways the genetic mutation of JPH3 (as in Experiment 1a). Unlike
in Experiment 1a, we instructed indirect chains with two interpo-
lated variables.

* A meta-analytic summary of the sizes of the weakening effects is
provided in the General Discussion.
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Figure 7
Hllustration of the Causal Models Shown to Participants in Ex-
periment la
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Note. A and B show the causal models that participants were shown after
the learning data in the direct and the indirect (interpolated) causal
conditions, respectively. C and D show the causal model illustrations
participants were shown on the test query screen. In the indirect (inter-
polated) causal conditions, the interpolated variable was either Hepatoci-
tosis, Cholestocitis, Spirillicitis, or Paracelocitis. See the online article for
the color version of this figure.

As in Experiment la, participants first read that a group of
biologists was interested in the statistical relation between a mu-
tation of the JPH3 gene and a particular disease. To be able to
manipulate the type of description, we labeled the disease LipoX
instead of Lipogastrosis. Depending on condition, the disease was
either described as “an abnormal mutation of a gene in the diges-
tive tract” (genetic-level condition) or as “an abnormal modifica-
tion of fats in the digestive tract” (physiological-level condition) or
as “an abnormal change of the molecular structure of enzymes in
the digestive tract” (molecular-level condition). As in Experiment
la, participants were first presented with the contingency data in a
serial trial-by-trial learning task (Phase 1), and then were given the
causal model information using an illustration and a short text
(Phase 2). For example, in the direct causal condition, participants
were given the following description:

Later, the biologists found out that JPH3 and LipoX are directly
causally related, which is illustrated in the figure below. That is, the
JPH3 mutation can sometimes lead to LipoX (indicated by the arrow
with the plus sign that goes from JPH3 to LipoX), an abnormal
modification of fat in the digestive tract [vs. an abnormal mutation of
a gene in the digestive tract vs. an abnormal change of the molecular
structure of enzymes in the digestive tract].

The last part was varied according to condition. Note that the
different variables within each chain mentioned the same type of
abnormality (which depending on the condition might be an ab-
normal gene modification, an abnormal modification of fat, or a
change of the molecular structure of enzymes).

In the indirect (interpolated) causal conditions participants were
given the following causal model information:

Later, the biologists found out that JPH3 and LipoX are indirectly
causally related by a chain that is illustrated in the figure below.
Specifically, they found out that the JPH3 mutation can sometimes
lead to [the information in the square brackets varied according to
condition Table 2].

After participants had read the causal model instructions, they
proceeded to the test scenario, which was analogous to the one in
Experiment la. Participants were generally asked to estimate the
probability of LipoX given JPH3.

Results and Discussion

The results are summarized in Table 3. We found that participants
tended to give lower ratings in the indirect (interpolated) causal
conditions than in the direct causal condition, irrespective of the level
of description and type of variable. A 2 (causal model: direct vs.
indirect [interpolated] causal relationship) X 3 (level of description:
physiological vs. genetic vs. molecular) factorial ANOVA revealed a
significant main effect of “causal model,” F(1, 504) = 20.78, p <
001, f= 0.203 (d = .41), confirming again a weakening effect. There
was, by contrast, no effect of “level of description,” F(2, 504) = 1.10,
p = .33, and also no interaction between “causal model”” and “level of
description,” F(2, 504) = 0.37, p = .69.

The results of this experiment show that the weakening effect is
robust and does not depend on the level of description and the
degree of semantic coherence of the instructed causal mechanism.

Experiment 2a

After having established the weakening effect with different
types of variables, Experiment 2a* tests some of the assumptions
underlying our belief revision theory of the weakening effect. The
experiments also serve as a test against the alternative modular
heuristic account of the weakening effect.

As control conditions we ran again the two-phase interpolation
paradigm in which after a covariation learning phase (Phase 1)
either a direct or an indirect causal relation with an interpolated
variable was instructed. As in Experiment 1, no further data were
presented and the test question requesting a conditional probability
estimate was asked only once after Phase 2.

Our theory predicts a weakening effect because learners in the
interpolation condition may have difficulties with retroactively
considering that the newly discovered variable had already been
part of the mechanism prior to its discovery. According to the
simulation account proposed in the introduction participants
should have difficulties with retroactively simulating the learning
trials with the full causal model. It should be easier to represent
Phase 1 in terms of a two-variable model in both conditions and
add a mechanism variable in the indirect interpolation condition
(Phase 2).

As a test of this hypothesis we added two conditions in which the
sequence of phases was reversed (causal model-first conditions).
Here, participants were first instructed about either a direct two-

4 Experiments 2a and 2b were the last experiments that we ran in the
present set of studies.
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Figure 8
Results (Means and 95% Cls) of Experiment la
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Note. See the online article for the color version of this figure.

variable (JPH3—Lipogastrosis) or an indirect three-variable causal
chain (JPH3—Hepatocitis —Lipogastrostis) in Phase 1, followed by
a covariation learning phase in Phase 2 in which only the two
variables that were part of both models were presented. Our prediction
for the causal model-first conditions was that knowledge about the
underlying causal model acquired in Phase 1 should allow learners in
Phase 2 to acquire causal model parameters that are consistent with
the instructed causal model and reflect the presented covariation.
There is no need to retroactively simulate the trials with an
added variable, the mechanism variable is already known prior
to Phase 2 covariation learning. Moreover, the two phases in the
causal model-first conditions do not suggest any structural
changes across phases. The instructions simply stated that in
Phase 2 the biologists were only interested in exploring the
covariation between two variables. There is no reason to assume

that a previously instructed mediating variable (Hepatocitosis)
simply disappears because it was not measured in Phase 2.

The causal model-first conditions also allow us to test the
alternative modular heuristic account that learners may generally
ignore the two phases in belief revision and simply use the heu-
ristic that the two outer variables in a chain generally tend to be
correlated more weakly than two directly related variables. The
results of Bes et al. (2012) are consistent with this hypothesis but
their procedure may have prompted participants to use this heu-
ristic. Bes et al. (2012) generally presented direct relations as
components of indirect ones. By contrast, we compared in the
causal model-first conditions a direct with an indirect causal rela-
tion in a between-subjects design followed by identical learning
trials. Thus, our experiment does not present the direct relation as
a subcomponent of an indirect one. Nevertheless, if participants
used the heuristic that indirect relations tend to be generally
weaker than direct ones, a weakening effect should be found in
both the interpolation and the causal model-first conditions. By
contrast, if we observed weakening only in the interpolation con-
ditions but not in the causal model-first conditions, this would
provide evidence for the hypothesis that weakening is a conse-
quence of the temporally ordered belief revision process.

A further modification we implemented in the experiment in-
volves the test question. In Experiment 1a, we asked participants to
assess the conditional probability of the effect (e.g., Lipogastrosis)
given the cause (e.g., JPH3) in a randomly sampled test mouse. We
did not explicitly say how the test mouse was selected. Because
one concern may be that the interpolation paradigm suggests that
the sample was increased subsequent to the learning phase, we
wanted to be unambiguous in the present study and therefore
instructed participants that the test mouse comes from the original
learning sample. Thus, possible context or sample changes should
not affect the assessment here.

Method
Participants

Six hundred twenty participants (341 female, 278, one partici-
pant indicated to be neither male nor female, M, . = 36.43,
SD pg. = 12.59) recruited via Prolific participated in this online
study and provided valid data. The inclusion and exclusion criteria
were similar to Experiments la and 1b. Participants received a
monetary compensation of £0.75 for their participation. Our theory

Table 2
Descriptions of the Interpolated Variables in the Indirect (Interpolated) Causal Conditions of Experiment 1b
Condition Description

Genetic “[. . .] Hepa23 (indicated by the arrow that goes from JPH3 to Hepa23 and the plus sign above the arrow), which is an abnormal
gene mutation in the liver. Further, Hepa23 can sometimes lead to Cholo, an abnormal gene mutation in the spleen. Finally,
Cholo can sometimes lead to LipoX, an abnormal mutation of a gene in the digestive tract.”

Physiological “[. . .] Hepa23 (indicated by the arrow that goes from JPH3 to Hepa23 and the plus sign above the arrow), which is an abnormal
modification of fat in the liver. Further, Hepa23 can sometimes lead to Cholo, an abnormal modification of fat of the spleen.
Finally, Cholo can sometimes lead LipoX, an abnormal modification of fat in the digestive tract.”

Molecular “[. . .] Hepa23 (indicated by the arrow that goes from JPH3 to Hepa23 and the plus sign above the arrow), which is a change of

the molecular structure of enzymes in the liver. Further, Hepa23 can sometimes lead to Cholo, a change of the molecular
structure of enzymes in the spleen. Finally, Cholo can sometimes lead to LipoX, an abnormal change of the molecular

structure of enzymes in the digestive tract.”
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Table 3
Summary of the Results in Experiment 1b

Direct causal condition

Indirect (interpolated) causal condition

Descriptive statistics Genetic level Physiological level Molecular level Genetic level Physiological level Molecular level
M 68.25 68.66 66.28 62.34 59.18 58.06
SD 17.92 16.63 16.47 21.99 21.15 21.88
Mdn 71.00 71.00 68.00 67.00 61.00 63.00

95% CI [64.38, 72.12] [65.07, 72.25]

[62.73, 69.83]

[57.60, 67.08] [54.62, 63.74] [53.34, 62.78]

predicts a very specific interaction pattern with a weakening effect
in the interpolation conditions and the absence a weakening effect
in the causal model-first conditions, which is the reason why we
had to test a fairly large sample. The rationale behind the planned
sample size was that it allows us to detect a small interaction effect
of f = 0.135 (d = 0.27) with more than 90% probability. The
sample size calculation was based on a simulation in which we
assumed a medium weakening effect of about d = 0.5 in the
interpolation conditions (with the assumed means and standard
deviations being M = 68, SD = 17 vs. M = 59, SD = 17) and the
absence of a difference (d = 0) in the causal model-first conditions
(with the assumed means and standard deviations being M = 68
and SD = 17).

Design, Materials, and Procedure

The study design was a 2 (time of presentation of causal-model
information: interpolation vs. causal model-first) X 2 (instructed
causal model: direct vs. indirect causal relationship) between-
subjects design. An example video illustrating the experimental
procedure in one of the conditions can be viewed at https://osf.io/
kme3d/. We used the same cover story about the JPH3 mutation
and Lipogastrosis as in Experiment la. The instructions in the
interpolation conditions were similar to those used in Experiment
la. Participants in the condition in which the causal structure
information was presented prior to the learning data either learned
that a group of biologists had discovered that the JPH3 mutation
and Lipogastrosis were directly causally related or that the JPH3
mutation and Lipogastrosis were indirectly causally related via
Hepatocitosis. Participants were shown a graphical illustration of
the respective causal structure and a short description that was very
similar to how we presented the causal models in the interpolation
conditions. Participants in all conditions were informed that they
will see the results of a study conducted by biologists in which
they investigated the relation between JPH3 and Lipogastrosis. We
employed the same serial learning task as in Experiment la.
Participants in the condition in which the causal model information
was given prior to the learning data were informed furthermore

Figure 9
Example of a Learning Trial From the Causal Model-First
Conditions in the Indirect [interpolated] Condition

JPH3 Lipogastrosis

Note. See the online article for the color version of this figure.

that the status of Hepatocitosis will not be shown during the
learning trials and that the Hepatocitosis text box will therefore be
covered by a black mask. An illustration is shown in Figure 9.

We masked the intermediate node during the learning phase
because we wanted to remind participants of the mechanism vari-
able linking JPH3 and Lipogastrosis while at the same time en-
suring that learning only focused on two variables as in the
interpolation conditions. At the end, participants in both the inter-
polation and the causal model-first conditions proceeded to the test
question, which again requested an assessment of the predictive
probability of Lipogastrosis given JPH3, P(LIJ). Unlike in Exper-
iment la, however, the test question in this experiment referred to
a mouse that was drawn randomly from the original sample
learners had seen during the covariation learning phase. Also,
unlike in Experiment 1, the image that participants were shown on
the test query screen in both the direct and indirect conditions only
showed the JPH3 and the Lipogastrosis nodes, not the mediating
variable.

Results and Discussion

The results are summarized in Table 4. We replicated the weaken-
ing effect in the interpolation conditions again: Participants who were
instructed that the two variables shown in Phase 1 were indirectly
causally related provided lower estimates than participants in the
direct condition. Table 4 also shows that no weakening was observed
in the causal model-first conditions.

A 2 (time of presentation of causal-model information: interpola-
tion vs. causal model-first) X 2 (instructed causal model: direct vs.
indirect causal relation) factorial ANOVA yielded a significant inter-
action effect, F(1, 616) = 10.12, p = .016, f = 0.129. Planned
contrasts confirmed that this interaction was obtained because (a) we
replicated the weakening effect in the interpolation conditions,
#(616) = 3.43, p < .001, d = 0.40, while (b) the predictive probability
ratings for the “direct causal relation” and the “indirect interpolated
causal relation” did not reliably differ between the two groups that had
learned about the causal models prior to the presentation of the
contingency data, #(616) = —1.08, p = .23,d = —0.12.

In sum, the results provide support for our theory that presenting
causal model information after learning generates a weakening effect
because participants may have difficulties with retroactively inferring
the presence of the mechanism variable prior to its discovery. The
experiment also rules out the alternative heuristic account which
predicts a general weakening effect regardless of when information
about direct or indirect causal relations was acquired. In the conditions
in which causal models were introduced prior to covariation learning,
no weakening effect was observed. This finding shows that learners
do not generally view indirect relations as weaker than direct ones.
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Table 4
Results of Experiments 2a and 2b
Experiment 2a Experiment 2b
Measure Mdn M SD 95% CI Mdn M SD 95% CI

Interpolation

Direct causal relation 70.00 65.70 18.40 [62.78, 68.62] 70.00 65.78 19.97 [63.65, 67.91]

Indirect causal relation 57.00 58.50 17.36 [55.75, 61.25] 65.00 61.94 18.16 [60.00, 63.88]
Causal model-first

Direct causal relation 67.00 62.70 18.98 [59.69, 65.71] 68.50 64.37 19.52 [62.29, 66.45]

Indirect causal relation 69.00 64.97 19.09 [61.94, 68.00] 69 64.16 19.14 [62.12, 66.20]

Finally, the modified test question did not seem to alter the findings in
the interpolation conditions, which weakens the hypothesis that as-
sumptions about sample changes underlie the weakening effect.

Experiment 2b

Experiment 2a yielded a significant interaction between “in-
structed causal model” and “time of presentation of causal model
information” that was predicted by our theory and refutes the
alternative heuristic account. The experiment replicated the weak-
ening effect in interpolations. Moreover, it showed a novel finding
that had not been reported in the literature before: the absence of
a weakening effect in a between-subjects design when the direct
and indirect causal models were instructed prior to covariation
learning. Given the importance of this pattern of findings for our
theory, we wanted to make sure that the absence of a weakening
effect in the causal model-first conditions is stable. The main goal
of Experiment 2b was therefore to estimate the interaction effect
with even higher precision by replicating the design of Experiment
2a.

A further goal was to broaden the generality of the weakening
effect by testing a different cover story with other variables. The
new cover story was inspired by the aspirin example we used in
the introduction. Participants in this experiment learned about the
relation between a new drug and an unfamiliar disease.

Method
Participants

One thousand, three hundred sixty participants (803 female, 552
male, five participants indicated to be neither male nor female,
Mp,e = 34.59, SD A, = 12.08) recruited via Prolific participated
in this online study and provided valid data. The inclusion criteria
were the same as in Experiment 2a. The rationale behind this
sample size was that we wanted to increase our measurement
precision substantially. The chosen sample size allowed us to
detect a small interaction effect of f = 0.09 with at least 90%
probability. In contrast to Experiment 2a, the calculation assumed
a weakening effect of d = 0.3 in the interpolation condition, which
corresponds to the lower boundary of the 95% CI of the average
weakening effect we measured across the previous studies of this
project (see a meta-analytic overview of effect sizes in the General
Discussion).

Design, Materials, and Procedure

The study design and experimental procedure were identical to
those in Experiment 2a. The only difference was that we used a

cover story in which scientists investigated the relation between a
newly developed drug called “Diclofan” and a disease called
“Midosis” in a human sample. An example video illustrating the
experimental procedure in one of the conditions can be viewed at
https://osf.io/4vbgx/.

Results and Discussion

The results are summarized in the right part of Table 4. We
replicated the weakening effect in the interpolation condition.
Moreover, we found again that participants’ predictive probability
ratings were not significantly different in the causal model-first
conditions. The observed pattern of ratings is thus in line with the
predicted interaction effect. A planned contrast testing the pre-
dicted ordinal interaction pattern was significant, #(1356) = 1.74,
p = .04 (one-tailed), f = 0.05, although the measured effect size
was smaller than predicted. Given that we predicted the pattern of
the replication, a one-tailed interaction test seems warranted. Table
4 shows that we obtained only a small, yet significant, weakening
effect in the interpolation condition this time, #(1356) = 2.61, p <
.01, d = 0.20. The predictive probability judgments did not differ
in the causal model-first condition, #(1356) = 0.15, p = .89, d =
0.01. Thus, in both Experiments 2a and 2b we have clear evidence
for the absence of a weakening effect in the causal model-first
conditions and the presence of a weakening effect in the interpo-
lation conditions (see meta-analysis in General Discussion for the
CIs of the effect sizes). Both Experiments 2a and 2b therefore
provide strong evidence against the heuristic account of weaken-
ing, which predicts weakening regardless of the order of presenting
causal model information in our task.

Experiment 3

Overall, Experiments 1 and 2 showed that, given a specific
contingency between two variables, reasoners’ probability judg-
ments P(EIC) were lower when they believed that the two variables
are indirectly connected via an interpolated variable than when
they believed that they are directly causally connected. We showed
that this weakening effect in causal interpolations occurs robustly
when the causal model is instructed after observing the covariation
between the two variables but disappears when the causal model is
instructed prior to learning. This pattern confirms the hypothesis
that in the interpolation paradigm participants treat the newly
discovered mechanism variable as if it was added to the causal
model after the covariation data had been collected.

Experiment 3 tests one implication of this assumption. One
determinant of the weakening effect might be reasoners’ tendency
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to perceive indirect causal relationships as more prone to “failure”
than direct ones. This assumption entails a weakening effect if the
additional variable was not treated as a discovery of a preexisting
mechanism but as a new variable that introduces additional sources
of disturbance. Whereas a direct causal relationship may appear
very stable, an indirect one with an added variable may lead people
to think about possible ways the mediating variables can be af-
fected by outside factors, such as disablers, enablers, or alternative
causes. The more variables the chain contains, the more outside
variables attached to the different variables on the chain may be
considered.

One function of considering the effects of external factors in a
specific case with a probabilistic causal relation is to explain why the
observed contingency is not deterministic. To account for a probabil-
ity of an effect lower than 1 in the presence of the cause, one can
attribute the lowering to either an intrinsically low causal power, to
disablers, or the lack of enablers. Alternative generative causes can be
invoked to explain why effects can occur in the absence of the cause.
We predict that explicitly highlighting these external influences
should lead to an exaggeration of their impact. More specifically, the
consideration of additional disablers in the model with an added
variable should lead to a weakening effect. Moreover, exaggerating
the importance of enablers for a cause producing its effect might
sensitize participants to the possibility of their absence (especially in
a long chain in which many enablers need to be present to guarantee
the effect). As for independent alternative generative causes, they
might lead to more instances of the target effect being attributed to
them rather than to the observable target cause. Thus, if the goal of the
reasoner is to explain why a given causal relation is probabilistic,
considering external variables as an explanation and exaggerating
their strengths should typically lead to a weakening effect in a situa-
tion in which variables are represented as additions as opposed to
interpolations. In interpolations the possibly disrupting effects of
external variables should be counteracted by adapting causal strength
estimates, thus counteracting weakening. The more preexisting mech-
anism variable are discovered, the stronger their causal strength
should on average be on a normative account. Increasing causal
strength estimates lowers the potential impact of external variables
(see Experiment 4).

The prediction that explicitly mentioned external causal factors
might have a stronger impact than conditions in which they are not
mentioned is a psychological prediction; it is not normative. From
a normative point of view, it should make no difference whether
external factors are made explicit or left implicit in a causal Bayes
net. In the initially represented direct causal relationship, external
factors are reflected in the probabilistic relations of the observed
nondeterministic contingency. In direct causal relations, the causal
impact of alternative causes is implicitly represented in the prob-
ability of the effect in the absence of the cause, whereas causal
power, the impact of disablers, or the probability of the absence of
enablers manifest themselves in a lowered probability of the effect
given its cause (i.e., something else might have contributed to the
absence of the effect when the cause was present).” When a direct
causal relation is subdivided into a chain, potential external causal
influences are expected to spread along it, according to Equation 1.

However, psychologically it could make a difference whether
the variables that modulate the causal relationship are explicitly
mentioned or not because the explicit presence of external causal
variables in the chain representation can make participants more

inclined to consider their potential causal influence. Indeed, re-
search on support theory has shown that people weigh explicit
hypotheses more than implicit ones (Tversky & Koehler, 1994).
Another line of research demonstrating the stronger impact of
explicitly compared with implicitly presented disablers on infer-
ences comes from research on reasoning with conditionals (“If p,
then q”). This research has demonstrated that inferences from p to
q are influenced by both explicitly mentioned disablers (Byrne,
1989) and implicit ones (Cummins, 1995; Cummins et al., 1991).
Both modes of presenting disablers affect inferences with explic-
itly mentioned disablers leading to stronger effects. Experiment 3
extends this work by exploring the effect of explicit and implicit
disablers in the interpolation paradigm with direct and indirect
(interpolated) causal relations.

Although we expect that all kinds of external variables should
affect inferences, in Experiment 3 we focused on disablers, which in
line with previous research should show strong effects. Disablers
should be viewed as clear examples of potential disrupters. We
compared causal models in which disablers were explicitly mentioned
with causal models in which they remained implicit. We predicted the
impact of disablers to be higher when they were explicitly mentioned
than when they were only left implicit.

A second goal was to test whether the weakening effect interacts
with the explicit/implicit manipulation. We predicted an independent
effect under the assumption that the presence of variables along the
chain in the indirect conditions may generally invite participants to
consider potential influences on each of these variables. Given that an
indirect (interpolated) chain consists of more variables than a direct
causal relation, we would expect that participants consider more
external influences in the indirect, interpolated chain compared with
the direct causal relation.

A further goal of Experiment 3 was to test whether reasoners solely
consider the basis of causal model information or whether they are
actually sensitive to the learning data. Indeed, Bes et al. (2012)
claimed that participants largely disregard data. We therefore manip-
ulated the size of the contingency presented in Phase 1 between
subjects.

Method
Participants

Two hundred ninety participants (146 female, 142 male, two
participants indicated neither male nor female, M,,, = 34.41,
SD 4o = 11.85) recruited via Prolific participated in this study
and provided valid data. The chosen sample size allows us to
detect medium main effects and interactions (although we did
not predict any interaction effects) of d = 0.5 with more than
80% probability. We applied similar inclusion and exclusion

3 There is a debate in the causal Bayes net literature about whether all
causal relations are deterministic but only appear probabilistic because of
unobserved causal influences (i.e., quasi-determinism), or whether causal
power can be genuinely probabilistic (Cheng, 1997; Pearl, 2000; Spirtes et
al., 1993). In the former case external variables are fully responsible for
nondeterministic causal relations, whereas in the latter case they have the
potential to modify a stable preexisting probabilistic power. For our pre-
dictions it does not matter which view is endorsed.
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Table 5

Contingencies Presented to Participants in Experiment 3

Contingency nd,L) n(J,=L) n(=J, L) n (=J, =L) P(LIT) P(LI-J) AP
High 18 6 5 19 0.75 0.21 0.54
Low 11 13 5 19 0.46 0.21 0.25

criteria as before. Participants were paid £0.70 for their partic-
ipation.

Design, Materials, and Procedure

The study design was a 2 (causal model: direct vs. indirect [inter-
polated] causal relationship) X 2 (information about disablers: im-
plicit vs. explicit) X 2 (contingency: high vs. low; see Table 5)
between-subjects design. An example video illustrating the experi-
mental procedure in one of the conditions can be accessed at https://
osf.io/wqrkd/. The instructions were similar as in the previous studies.
Participants were first presented with trial-by-trial learning data show-
ing the contingency between JPH3 and Lipogastrosis. The contingen-
cies we tested are shown Table 5. The contingency in the “high
contingency”” condition was the same as in Experiments 1 and 2. The
“low contingency” condition had a lower predictive probability but
the same probability of the effect in the absence of the cause.

After the learning phase, participants were provided with
causal model information. The direct causal condition in which
no information about disablers was presented was comparable
to that of Experiment 1a. In the condition in which we explicitly
mentioned disablers, participants were shown the illustration
depicted in Figure 10A and read the following text:

Please read the following new information:

Figure 10

Later, the biologists found out that JPH3 and Lipogastrosis are directly
causally related, which is illustrated in the figure below by the arrow that
goes from JPH3 to Lipogastrosis. The plus sign above the arrow indicates
that the probability of contracting Lipogastrosis is higher for individuals
who suffer from a JPH3 mutation compared with individuals who do not
have the mutation. In addition, the biologists found out that there also
exists a particular gene, .32, that has a protective influence. Specifically,
having the gene L32 reduces the probability of Lipogastrosis.

Like in Experiment 1b, participants in the indirect (interpolated)
causal condition were told that the causal model was a four-
variable causal chain with the interpolated variables being Hepa-
tocitosis and Cholestocitis. In the condition in which we explicitly
mentioned disablers, participants were shown the illustration de-
picted in Figure 10B and read the following text:

Please read the following new information:

Later, the biologists found out that JPH3 and Lipogastrosis are indi-
rectly causally related by a chain that is illustrated in the figure below.
Specifically, they found out that individuals who suffer from a JPH3
mutation have a higher probability of contracting Hepatocitosis (in-
dicated by the arrow that goes from JPH3 to Hepatocitosis and the
plus sign above the arrow), which is an abnormal increase of hepatic
enzymes. Further, for individuals who suffer from Hepatocitosis there
is a higher probability of contracting Cholestocitis, an abnormal

Hllustration of the Causal Models Participants Were Shown in the Direct (A) and the
Indirect (Interpolated) Causal Condition (B) After the Learning Phase in Experiment 3

(explicit conditions)
A)
L32
+
[ JPH3 H Lipogastrosis]
B)
H24

(o) (=)

+ + +
[ JPH3 HHepatocitosisH Cholestocitis H Lipogastrosis]

Note. In the direct causal condition one disabler was explicitly presented. In the indirect
(interpolated) causal condition, three disablers were introduced.
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Figure 11

Results (Means and 95% Cls) of Experiment 3
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Direct Indirect (Interpolated)
Causal Condition Causal Condition

Direct Indirect (Interpolated)
Causal Condition Causal Condition

Causal Structure

Note. See the online article for the color version of this figure.

increase in cholesterol levels. Finally, Cholestocitis increases the
probability of contracting Lipogastrosis. In addition, the biologists
found out that there also exist different genes, H24, C78, and L32, that
have a protective influence. Specifically, having the gene H24 reduces
the probability of Lipogastrosis by reducing the probability of Hepa-
tocitosis (indicated by the arrow with the minus sign). Having the
gene C78 also reduces the probability of Lipogastrosis by reducing
the probability of Cholestocitis. Finally having the gene .32 reduces
the probability of Lipogastrosis.

After participants were presented with the causal model infor-
mation, they proceeded to the test question. We asked the same
predictive probability question as in Experiment 1a.

Results and Discussion

The results are summarized in Figure 11. A table with the exact
values is provided at https://osf.iog/xq5et/. As can be seen in
Figure 11, we replicated the weakening effect. The ratings for the
indirect (interpolated) causal conditions were lower than for the
direct causal conditions. A 2 (causal model: direct link vs. indirect
(interpolated) causal relationship) X 2 (information about dis-
ablers: implicit vs. explicit) X 2 (contingency: high vs. low)
between-subjects ANOVA confirmed that the effect of causal
model was significant, F(1, 282) = 15.80, p < .001, d = .46. We
also found that ratings differed depending on whether participants
were informed about the existence of potential disablers or not.
The predictive probability ratings were lower in the condition in
which we explicitly mentioned the existence of disablers, F(1,
282) = 18.69, p < .001, d = .51. This finding suggests that
participants in the explicit conditions exaggerated the possibility
that disablers may disrupt the causal process, and therefore tended
to lower their predictive probability ratings.

We also found an independent weakening effect for the indirect
(interpolated) chains in the implicit conditions. In these conditions,
direct causal relations also yielded higher predictive probability
ratings than indirect relations (planned contrast analyses: #(282) =
245, p = .007 [one-tailed], d = 0.62, for the contingency high
condition, and #(282) = 2.90, p = .002 [one-tailed], d = 0.68, for
the contingency low condition). The pattern of findings is consis-
tent with our hypothesis that presenting a chain of labeled vari-

ables in the indirect conditions also highlights the possibility of
external influences compared with the direct causal conditions,
although to a generally lesser degree than in the conditions in
which disablers are explicitly mentioned.

Finally, we found an effect of contingency. Ratings were overall
higher in the conditions with the higher contingency, F(1, 282) =
9.03, p < .01, d = .35, which shows that participants were
somewhat sensitive to the data. The ANOVA yielded no signifi-
cant interaction effects. The finding that learners paid attention to
the data contradicts Bes et al.’s (2012) claim that participants
generally ignore learning data. However, we also observed sub-
stantial deviations from the presented probabilities, some of which
might be explained by conservatism effects (see Rottman &
Hastie, 2014).

Experiment 4

The hypothesis that multiple variables on a chain should lead to
weakening because more disablers might be considered in the
indirect representation implies that participants misrepresent inter-
polations as additions of new variables. If participants represented
the task normatively as an interpolation of preexisting mecha-
nisms, they should adapt the causal strength estimates of the
interpolated links in a way that counteracts the impact of external
variables and preserves the covariation observed in Phase 1. If
participants correctly represented the discovery of mechanism
variables as a process in which a preexisting but previously un-
known mechanism is brought to light, no weakening should occur
regardless of how many links are being discovered.

Because in interpolation cases the product of the strengths of the
links of the interpolated chain should be identical to the strength of
the overall contingency between the two variables linked in both
the direct and indirect (interpolated) causal conditions, both rep-
resentations should normatively reflect the same impact of dis-
ablers. If participants represented interpolated chains normatively,
the impact of disablers on the direct causal relation should be
identical to the sum of impacts of the disablers in the interpolated
chain. However, to accomplish this, participants need to under-
stand that the causal strengths of individual links become stronger,
the more links are interpolated. If participants do not understand
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Table 6
Contingency Presented to Participants in Experiment 4
Observations Conditional probabilities Contingencies
nd, L) n{d,—L) n (=1, L) n (=1, —L) P(LIT) P(LI-J) AP MAP, _, MAP, _,
10 14 0 24 0.42 0.00 0.42 0.65 0.81

Note.
links.

this crucial property of interpolations, and do not modify link
strengths relative to the length of the interpolated chain accord-
ingly, then additional interpolated links indeed increase the repre-
sented impact of disablers and hence lead to a weakening effect.
Experiment 4 directly tests participants’ beliefs about the strengths
of links in interpolation scenarios and provides further evidence
for our theory of how interpolations are misrepresented.

The goal of Experiment 4 was to test participants’ belief of the
causal strengths of interpolated links more directly. The key hy-
pothesis was that people misrepresent interpolations as situations
in which newly discovered variables are added to the mechanism
instead of being discovered. One way to test this hypothesis is by
focusing on the probabilistic relations people assume for the indi-
vidual links within a causal chain. In an interpolation scenario, the
covariation between the initially presented cause C and effect £
should remain stable because the mechanism mediating the cova-
riation was already operative all along prior to its discovery. When
interpolating variables, the strengths of the newly introduced links
should therefore go up proportional to the number of interpolated
links. This is a basic consequence of the multiplication rule (Equa-
tion 1). For example, Table 6 shows that in a case in which the
contingency between the initially presented two variables is 0.42
the link contingencies should on average increase to 0.65 when one
variable is interpolated and to 0.81 when three variables are
interpolated.

However, if people misrepresent discoveries as additions of
variables to a fixed causal model, we expect to see relatively
invariant strength estimates for the individual links regardless of
the length of the inserted chain. The size of the link estimates may
be influenced by the initially observed covariation and/or some
strength prior but there is no formal requirement to adapt strength
estimates to the length of the chain if variables are just added.

To test our hypothesis that participants tend to misrepresent
interpolations of preexisting variables, we used our standard inter-
polation task while contrasting different conditions in which the
number of interpolated variables was manipulated. The contin-
gency for the initially presented cause and effect is shown in Table
6. In this experiment, we used a contingency which implies that
JPH3 is a necessary cause of Lipogastrosis (i.e., P(LI=J) = 0).
Normatively, P(LIJ) should then simply be the product of the
predictive probabilities of its components. However, because par-
ticipants may provide a more conservative estimate when asked
about the probability of an effect in the absence of the cause, we
asked them to directly estimate this quantity as well. Because we
did not expect this estimate to vary with conditions, our general
prediction was not affected.

We contrasted a direct causal condition with two indirect (in-
terpolated) causal conditions (a two-links and a four-links chain).

M AP, _ ,and M AP, _ , denote the average single-link contingencies for a causal chain with a distal contingency of AP and n = 2 vs. n = 4 known

As dependent variables we asked participants to provide an esti-
mate of the probabilistic relations of the individual links. Impor-
tantly, no data were presented about the interpolated links. As in
previous experiments, the causal chains were just verbally in-
structed. Normatively, the averaged estimates should go up with
increased length of the chains (see the dotted line with the norma-
tive predictions in Figure 12 and Table 6). If, by contrast, learners
view the new variables as additions, no such trend is expected.

Method
Participants

Two hundred ten participants (124 female, 84 male, two partici-
pants indicated neither male nor female, M, = 35.55, SDp,. =
11.29) recruited via Prolific participated in this study and provided
valid data. The inclusion and exclusion criteria were the same as in the
previous studies. The chosen sample size allows us to detect a small
interaction effect of d = 0.25 between test query and causal structure
with more than 80% probability. A strong interaction effect is pre-
dicted by the normative values but we hypothesized that we would see
no effect. To have a stricter test, we therefore tested against the
possibility of a small interaction effect. Participants were paid £0.70
for their participation.

Design, Materials, and Procedure

The study had a 3 (causal model: direct vs. two-links chain vs.
four-links chain; between-subjects) X 2 (type of probability query:
P(variablelparent) vs. P(variablel-parent); within-subject) mixed de-
sign. The overall procedure was comparable to those of the previous
experiments. An example video illustrating the experimental proce-
dure in one of the conditions can be viewed at https://osf.io/u9yzj/.
Because the task was slightly more complex, we tried to increase
attentional involvement during learning by changing the initial learn-
ing task into an active supervised learning paradigm. A separate
example video showing what this active learning task looked like can
be accessed at https://ost.io/qg9ka/. We first showed participants only
the cause status and then asked them to actively uncover the status of
the effect by clicking on a “check disease” button that was displayed
on the screen. Another difference from the previously used paradigm
was that participants had to navigate actively through the observa-
tions: By clicking on a “next” button they proceeded to subsequent
cases while clicking on a “previous” button led them back to earlier
cases. For each participant, the order in which the 48 cases were
shown was randomly determined.

After the learning task, participants were given the causal model
information. The information shown to participants in the direct
causal and in the two-links chain conditions was like the ones we used
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Figure 12

Results (Means and 95% Cls) of Experiment 4 and Normative Values Shown in

the Dotted Lines
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Note. See the online article for the color version of this figure.

in previous experiments. In the four-links chain condition, participants
were presented with the following text and a corresponding illustra-
tion showing the described causal model:

Please read the following paragraph which provides a new piece of
information:

The biologists later found out that JPH3 and Lipogastrosis are in fact
indirectly causally related as illustrated in the figure below. Specifically,
the JPH3 mutation can sometimes lead to Hepatocitosis, an abnormal
occurrence of hepatic enzymes. This is indicated by the arrow (with a +
sign) that goes from JPH3 to Hepatocitosis. Furthermore, Hepatocitosis
can sometimes lead to Spirillicitis, an infection with bacterium colonizing
the gut. This is indicated by the arrow (with a + sign) that goes from
Hepatocitosis to Spirillicitis. Furthermore, Spirillicitis can sometimes
lead to Cholestocitis, an abnormal occurrence of cholesterol. This is
indicated by the arrow (with a + sign) that goes from Spirillicitis to
Cholestocitis. Finally, Cholestocitis can sometimes lead to Lipogastrosis.
This is indicated by the arrow (with a + sign) that goes from Cholesto-
citis to Lipogastrosis. Other factors can also influence the disease.

The order of the interpolated variables in the four-links chain
(Hepatocitosis, Spirillicitis, and Cholestocitis) condition was random-
ized between participants. The label of the interpolated variable in the
two-links chain condition was randomly varied between participants
and could be any of the interpolated variable labels we used in the
four-links chain condition.

After participants had been instructed about the underlying causal
model, they proceeded to the test screen where we asked them to make
two ratings assessing the assumed strength of a single link of the intro-
duced causal model. Because no new data were presented, it was not
possible to distinguish between links. We therefore instructed participants
to assume that all links were equally strong and that they will be asked
about one randomly selected link. For example, in the four-links chain
condition participants were presented with the following text, accompa-
nied again by the illustration of the causal model:

The following questions refer to the causal chain between JPH3 and
Lipogastrosis. Please assume that the four causal links (expressed by the
four arrows) in the graph represent equally strong causal relations.

Subsequently, we asked participants to estimate the probability that a
particular effect of the introduced causal model was present given that its
direct parent variable was present, P(variablelparent), as well as the
probability that this effect was present if the direct parent variable was
absent, P(variablel—parent). For example, some participants in the four-
links chain condition were asked the following two questions:

Assuming that all links are equally strong, how likely do you think is
it, for example, that a mouse having Hepatocitosis has Spirillicitis?

Assuming that all links are equally strong, how likely do you think is
it, for example, that a mouse not having Hepatocitosis has
Spirillicitis?

Ratings for both questions were provided on a slider ranging from
0 to 100 (with endpoints labeled “it is certain that this mouse does not
have Spirillicitis” and “it is certain that this mouse has Spirillicitis.”).
The specific link to which the test questions referred in the two-links
chain and the four-links chain condition was randomized between
participants.

Results and Discussion

The results are summarized in Figure 12. A table with the descriptive
statistics can be found at https://osf.io/dys4r/. The left panel in Figure 12
shows the results for the probability ratings in the absence of the cause,
that is, P(variablel—parent), whereas the right part shows the results for
the predictive probability estimations, P(variablelparent). Given that we
counterbalanced which link each participant was asked about, we here
report the average of participants’ estimates. The dotted line on the right
side depicts the normative (average) values for the averaged predictive
probabilities (P(variablelparent)). Participants gave overall higher ratings


https://osf.io/dys4r/

publishers.

gical Association or one of its allied

This document is copyrighted by the American Psycholo

1al user &

This article is i

INTERPOLATING CAUSAL MECHANISMS 21

when they were asked to estimate P(variablelparent) than when they were
asked to estimate P(variablel—parent), which corresponds to what they
have seen. However, it can also be seen that the P(variablel-parent)
ratings were notably higher than the normative value (which was 0) but
relatively invariant across the conditions, which entails that normatively
the estimates of P(variablelparent) should go up with increased length of
the interpolated chain. Therefore, in the following analyses we will focus
only on participants’ predictive probability estimates.

Figure 12 shows that there were no differences of the averaged ratings
for P(variablelparent) between the direct and interpolated two-links chain
conditions. Descriptively, there was a slight upward trend for the four-
links conditions, but the estimates are much closer to the other estimates
than to the normative value. A 3 (causal model: direct causal condition vs.
two-links chain vs. four-links chain; between-subjects) X 2 (type of
probability query: P(variablelparent) vs. P(variablel—parent); within-
subject) mixed ANOVA only yielded a significant main effect of “type
of probability query,” F(1, 207) = 224.73, p < .001, d = 147,
confirming that P(variablelparent) ratings were higher than
P(variablel—parent) ratings. There was no significant interaction be-
tween “causal model” and “type of probability query,” which would
have been normatively expected. Post hoc tests (Scheffé tests) re-
vealed that the P(variablel—parent) ratings as well as the
P(variablelparent) ratings did not differ from each other.

In sum, the results of Experiment 4 confirm our prediction that in
interpolation scenarios people tend to assume fairly invariant link
strengths, which entails a weakening effect proportional to the length of
the chain. These results are consistent with those of previous experiments

Figure 13

and support the hypothesis that people have a hard time understanding a
key normative implication of causal interpolation, the predicted rise of the
link strengths with an increased number of interpolated links.

Both Experiment 3 and 4 jointly highlight the hypothesized mecha-
nism underlying the weakening effect in interpolations. Given that par-
ticipants misrepresent discoveries of preexisting variables as the addition
of new variables, no adaptation of the estimated link strength (Experiment
4) is expected. Moreover, given that new variables are added to an
otherwise invariant causal model, further variables potentially disturbing
the causal process seem likely (Experiment 3). Both mechanisms jointly
lead to the weakening effect.

Experiment 5

In the previous experiments we focused on the contrast between
direct causal relations and indirect (interpolated) causal chains with
various lengths. Chains are only one example for a structure linking
two variables. The two variables may also be mediated by more
complex causal models, for example, by causal diamond structures,
which link the two variables through two parallel converging chains.
Experiment 5 focuses on such more complex causal models.

For the same reasons as with simple chains, interpolations of a com-
plex causal models should not alter the covariation between the two
variables. Again, the most plausible assumption is that the initially ob-
served covariation between the two variables had already been mediated
by the complex causal model all along, fragments of which were only
later discovered (i.e., causal stability). By contrast, if the complex causal

Causal Graphs Shown in the Different Conditions of Experiment 5

A) Direct causal

% [ JPH3
relation

]—+)[Lipogastrosis]

H24 H PABA ]—+)[Lipogastrosis]

c78 ]—+)[ TAMP ]—+)[Lipogastrosis]

C) Disjunctive [
diamond

TAMP

D) Conjunctive [
JPH3

diamond

Note. Whether participants were presented the upper or lower causal chain in the chain
condition was randomized. We did this because we wanted to present participants with the
same labels and variable descriptions that were used in the two causal-diamond conditions.
See the online article for the color version of this figure.
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model is generated as a result of inserting a causal network between the
two learning variables that was not operative prior to its discovery, then
the predictive probabilities and contingencies between the initially known
two variables will be dependent on the causal model mediating the two
variables.

For example, consider the causal models in Figure 13A-13D,
which we have used in Experiment 5. If the covariation between JPH3
and Lipogastrosis has been reliably established in the initial learning
phase, interpolating any of the four causal models should not system-
atically alter this covariation (beyond what is expected due to sam-
pling variation or context changes). By contrast, if the causal network
represented variables that did not mediate the observed covariation in
Phase 1 but were added in Phase 2, thus turning the direct causal
relation into a complex indirect one, then the structure of the inserted
causal model (Figures 13B, C, or D), the causal strengths of the added
links and their functional form is expected to alter the initially ob-
served probabilities.

As for functional form, given that the graphs in Figures 13C and
13D convey the information that there are two chains emanating
from JPH3, the open question here is how the common-effect
structure converging on the effect Lipogastrosis combines the two
causes, PABA and TAMP. We compared a standard disjunctive
structure (disjunctive noisy-OR; Figure 13C), in which the two
causes can individually as well as jointly cause the effect, with a
conjunctive structure (conjunctive noisy-AND; Figure 13C), in
which both causes have to be present to cause the effect. Causal
links were always instructed to be probabilistic rather than deter-
ministic.

Because Experiments 3 and 4 supported the theory that learners
tend to misrepresent discoveries as changes of the underlying
causal model, we expected that the ratings for the JPH3-
Lipogastrosis relation will be affected by the type of the mediating
causal model (i.e., a weakening effect). However, depending on
whether the two chains in Conditions C and D are viewed as
alternative routes to the effect, that can compensate each other
(disjunctive noisy-OR) or as a conjunctive noisy-AND structure
that requires both causes to be present, we predicted different sizes
of the weakening effect. The lowest ratings were expected in the
conjunctive noisy-AND model because here a relatively low prob-
ability of the effect should be expected.

Method
Participants

Three hundred twenty-nine participants (208 female, 121 male,
My, = 35.01, SD = 10.77) were recruited via Prolific and
provided valid data. This sample size allows us to detect a small
main effect of d = 0.40 for the causal model factor with more than

Age

Table 7
Summary of the Results of Experiment 5

80% probability. The inclusion and exclusion criteria were the
same as before. Participants were paid £0.70 for their participation.

Design, Materials, and Procedure

The type of causal model (four levels: direct causal condition vs.
chain vs. conjunctive diamond vs. disjunctive diamond) was ma-
nipulated between subjects. An example video illustrating the
experimental procedure in one of the conditions can be accessed at
https://ost.io/wdguf/. We used the same learning paradigm as in
Experiments 1 to 3. Thus again, in Phase 1 participants learned
about a covariation between JPH3 and Lipogastrosis.

The learning data were the same as in Experiment 1a (see Table
1). Next, the causal model instructions were introduced. The causal
model descriptions that participants were shown in the different
conditions can be accessed via https://osf.io/d548h/. The graphs
that were presented together with the instructions are shown in
Figure 13.

Figure 13B shows that we used two different sets of interpolated
variables in the causal chain condition. Whether the interpolated
variables were “H24” and “PABA” or “C78” and “TAMP” was
randomly manipulated between participants. We used these two
different sets of interpolated variables because they corresponded
to the variables that were described in the two causal diamond
conditions.

After participants had studied the causal model information,
they proceeded to the test question, which was similar to those
asked in previous experiments. Participants read that the biologists
had randomly sampled a new mouse that carries the JPH3 muta-
tion. We also showed the respective causal model again with the
JPH3 variable being marked in yellow. Participants then were
asked to estimate the probability that the test mouse would be
suffering from Lipogastrosis.

Results and Discussion

The results of Experiment 5 are summarized in Table 7. Ratings
in the causal chain condition were again lower than the ratings in
the direct causal condition, replicating the weakening effect. How-
ever, the difference was smaller than in most of the previous
experiments (see Figure 14 in the General Discussion). The ratings
in the conjunctive and disjunctive diamond conditions were also
lower than the ratings in the direct causal condition, implying that
the weakening effect also occurs in other interpolated causal model
conditions. Moreover, as predicted, ratings differed between the
conjunctive and the disjunctive diamond conditions. When partic-
ipants had learned that two factors needed to be present for the
effect (conjunctive case), their predictive probability estimations
tended to be lower than when they had learned that either of the

Descriptive Direct causal Disjunctive
statistics relation Causal chain diamond Conjunctive diamond
M 66.30 60.83 58.82 53.00
SD 18.31 19.95 18.58 19.54
Mdn 70.00 60.00 60.00 52.00
95% CI [62.25, 70.35] [56.5, 65.16] [54.79, 62.88] [48.68, 57.32]
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Figure 14

Meta-Analytic Summary of the Weakening Effects in the Different Experiments

Meta-Analysis of the direct link vs. causal chain comparisons

A) Interpolation conditions

Direct Indirect
Experiment N Mean SD N Mean SD Effect Hedge's g 95%-Cl Weight
Exp. 1a 70 68.47 16.700 70 56.30 21.579 S 0.63 [0.29;0.97] 7.2%
Exp. 1b 255 67.73 16.983 255 59.86 21.668 —— 0.40 [0.23;0.58] 27.1%
Exp. 2a 155 65.70 18.396 155 58.50 17.355 —— 0.40 [0.18;0.63] 16.5%
Exp. 2b 340 65.78 19.970 340 61.94 18.157 - 0.20 [0.05;0.35] 36.7%
Exp. 3 35 68.89 15.592 34 57.32 20.909 e 062 [0.14;1.11] 3.6%
Exp. 5 81 66.30 18.309 84 60.83 19.952 ol 0.28 [-0.02;0.59] 8.9%
Overall (fixed) effect 936 938 <> 0.34 [0.25; 0.43] 100.0%
T T 1

Heterogeneity: 12 =39%, p=0.14 J
-1

B) Causal model first conditions

Direct Indirect
Experiment N Mean SD N Mean SD Effect Hedge's g 95%-Cl Weight
Exp. 2a 155 62.70 18.983 155 64.97 19.091 —°—{— -0.12 [-0.34;0.10] 31.3%
Exp. 2b 340 64.37 19.519 340 64.16 19.145 - 0.01 [-0.14;0.16] 68.7%
Overall (fixed) effect 495 495 ¢ -0.03 [-0.15; 0.10] 100.0%
1

Heterogeneity: 12 = 0%, p = 0.34 f
-1

T I T
-0.5 0 0.5 1

Note. (A) Interpolation conditions. (B) Causal model-first conditions from Experiments 2a and 2b. See the online

article for the color version of this figure.

two different factors independently can cause the effect (disjunc-
tive case).

The statistical analyses confirm these descriptive patterns. First,
a global one-way ANOVA was significant, F(3, 325) = 6.69, p <
.001, d = .51, confirming that participants did indeed make dif-
ferent predictive probability judgments in the four different causal
model conditions. Planned contrasts (one-tailed) revealed that the
difference between the direct and the chain conditions was signif-
icant, #(325) = 1.84, p = .034, d = 0.29. If we compare the means
shown in Table 7 with the ones obtained in Experiment 1, we see
that the relatively small difference between the direct and the chain
condition was not solely attributable to higher ratings in the chain
condition but also to lower ratings in the direct causal condition.

The difference between the direct and disjunctive diamond
conditions was significant, #(325) = 2.51, p = .006 (one-tailed),
d = 0.41. The difference between the conjunctive and the disjunc-
tive diamond conditions was also significant, #(325) = 1.95, p =
.026 (one-tailed), d = 0.31. Ratings in the conjunctive diamond
condition were significantly lower than the ratings in the direct
causal condition, #(325) = 4.43, p < .001 (one-tailed), d = 0.70.
Finally, ratings in the conjunctive diamond condition were lower
than ratings in the chain condition, #325) = 2.63, p = .004
(one-tailed), d = 0.40.

In sum, this experiment found that interpolations lead to weak-
ening effects also with more complex interpolated causal models.
Normatively, no difference whatsoever should have been observed
between causal model conditions, had participants a full grasp of
interpolations. The strong main effect of the causal model factor
clearly supports the hypothesis that people do not fully understand
interpolations and rather misrepresent them as augmentations of a
previously simpler causal model. Further specific support for this
hypothesis is provided by the results of the conjunctive diamond

model condition. This model seemed to convey that the effect
should be less likely than in the other conditions, which is reflected
in lowered ratings.

General Discussion

Causal knowledge is not static; it is constantly changing based
on new evidence. The present set of studies explores one important
case of causal belief revision: causal interpolations. The prototypic
case of an interpolation is a situation in which we initially have
gathered knowledge about a direct causal or covariational relation
between two variables but later become interested in the mecha-
nism linking these two variables. We may, for example, use our
knowledge that aspirin relieves headache as a direct causal relation
in daily life but later become interested in learning how aspirin
exerts this effect.

Causal Belief Revision and the Weakening Effect

The key finding of our study is that interpolations tend to be
misrepresented, which leads to the paradox of knowing more: The
more we know about the mechanism, the less probable we seem to
find the effect given the cause. Interpolating a mechanism should
normatively not alter the statistical relationship between the vari-
ables that initially is represented as direct as long as it is assumed
that the mechanism already was in place prior to its discovery.
Weakening turned out to be a reliable effect that we found in all
experiments. Figure 14A provides a meta-analytic summary of the
effect sizes of the weakening effect. Moreover, we also list the
findings obtained in Experiments 2a and 2b that weakening dis-
appears when the causal model underlying the mechanism is
instructed prior to the learning phase (Figure 14B).
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The interpolation task involves belief revision based on new
findings, which raises the question whether weakening is a rational
response to an increase of the sample size. In the introduction we
discussed several possibilities of how an extension of the original
sample might alter the probability estimates. We showed that in
most cases it is reasonable to assume a symmetric confidence
interval that does not favor weakening over other possible changes
(e.g., strengthening), which we never observed. Possible context
changes were also discussed although previous research has shown
that learners only tend to consider context changes when they have
been saliently instructed (Cheng & Lu, 2017; Liljeholm & Cheng,
2007). But even if participants consider context changes, it was
argued that they also do not favor weakening over other possible
changes.

The remaining possibility that we eventually postulated as the
reason for weakening is that participants may misrepresent inter-
polations (see Figure 5). The correct representation of interpola-
tions can be best understood by considering what role the mech-
anism plays prior to its discovery. The discovery of a mechanism
linking two variables does not change their causal relation. If the
discovery correctly identifies variables on the mechanism path,
these variables were already in place and effective prior to their
discovery (see Figures 4, SA). Or put differently: Interpolations do
not add mechanisms, they just make them known. Thus, if the
covariation between two variables has been mediated by the later
discovered mechanism all along, discovering fragments of the
mechanism later should not alter the covariation, unless new data
have been collected that contradict the initial findings.

Our findings are consistent with the representation shown in
Figure 5B, which suggests that participants start with a two vari-
able model in Phase 1, and then, after being instructed about the
discovery of mechanism variables, augment the initial causal
model by adding the discovered variables to an otherwise invariant
causal model. In Experiments 3 and 4 we tested implications of
this theory. The theory predicts that the addition of a variable may
sensitize participants to possible additional external influences that
potentially disrupt the causal process, for example disablers. This
is demonstrated in Experiment 3.

Experiment 4 focuses on the difference between adding a new
variable versus discovering a preexisting variable. If variables are
added, it is reasonable to assume that the causal strengths of the
links are not affected by the number of added variables, which
should lead to a weakening proportional to the number of added
variables with probabilistic links. By contrast, increasing the
length of a discovered preexisting mechanism (Figure 5A) should
lead to adaptations of the causal strength estimates regarding the
newly discovered links in the mechanism to preserve the overall
covariation of the variables observed in Phase 1. The more mech-
anism variables are discovered, the stronger the causal strengths of
the new mechanism links should on average become. If causal
strength estimates are correctly adapted, the additional disablers
associated with the interpolated variables should not weaken the
causal relation of the two target variables because increasing
causal strength implies that the impact of each mediating disabler
will be diminished.

We also considered a heuristic model that can be derived from
a modular approach to Bayes nets. On a modular approach, people
should view the causal links as independent and use causal
strength priors when extending models. This approach predicts that

people use the heuristic that indirect relations tend to be weaker
than direct ones. Unlike our belief revision account, this heuristic
does not distinguish between interpolations of preexisting mech-
anisms and additions of new variables and is insensitive to the
order in which direct and indirect relations are presented. We
refuted this heuristic as an account of our task in Experiment 2, in
which we manipulated assumptions about the underlying causal
models (direct vs. indirect) between subjects. We showed in this
experiment that the weakening effect can only be seen in the
interpolation task in which learners acquired knowledge about the
covariation between two variables prior to being informed about
the underlying causal model (direct vs. indirect). When the order
was reversed, no weakening effect was observed. Thus, we did not
see evidence for the claim that in a between-subjects manipulation
participants generally view indirect relations as weaker than direct
ones given identical learning data.

We have used causal Bayes net theory as a framework for our
analysis of interpolations and causal discoveries. This framework
conveniently combines structure and strength information and is
therefore useful for making predictions about probability estimates
based on causal knowledge. However, our general findings are not
tied to the assumption that learners literally use causal Bayes nets
when reasoning about mechanisms. In the past decades, alternative
theories have been proposed, sometimes in opposition to causal
Bayes nets. For example, recent mechanism theories do not model
causation as dependency relations between events; instead, they
start with an analysis of entities and their activities which are
organized such that they are productive of regular changes (e.g.,
Machamer et al., 2000). Such a theory might, for example, de-
scribe the mechanism of chemical neurotransmission as beginning
with a presynaptic neuron that transmits a signal to a postsynaptic
neuron by releasing neurotransmitter molecules. Mechanism ac-
counts start with the analysis of the structure of the hardware and
the capacities of its components, which jointly give rise to causal
regularities (see also Cartwright, 1999; Glennan, 2017).

Generally, our predictions could also be cast within the frame-
work of these mechanism theories. Given that learners in our task
learn probabilistic relations between causes and effects, it would
be necessary to include the assumption that we often have only
partial knowledge of mechanisms and that unobserved factors may
influence the behavior of observed activities, either externally or as
mediating components. Given such an augmented representation
of mechanisms, it is easy to translate our hypothesis in this
framework. Normatively interpolations are then discoveries of
mediating mechanism components that had not been known before
(such as additional components that mediate neural signaling). The
hypothesis predicting the weakening effect could be explained by
the assumption that learners may have a tendency to represent
discoveries of preexisting mechanisms as the addition of new
mechanism variables.

In sum, our predictions are largely independent of the way
causal processes are represented. Different theories can be adapted
to derive the same qualitative predictions. Specific constraints of
causal Bayes nets, such as the Markov condition, are not necessary
to analyze interpolations and the weakening effect, although causal
Bayes nets have the advantage at the moment that they explicitly
link causal structures with probabilities and therefore allow for
more precise predictions.
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The Weakening Bias and Causal Stability

The majority of studies on biases in human reasoning compare
judgments with how normative accounts, such as probability the-
ory or logic, would represent the tasks at hand (see Newell et al.,
2015, for an overview). In some cases, multiple normative ac-
counts compete so that one goal for the psychologist is to coordi-
nate participants’ understanding of the task with the most adequate
normative account (see Skovgaard-Olsen et al., 2019, for an anal-
ysis of this process). In contrast to cases in which probability
theory or logic are taken as the normative standard, the bias we
discovered is based on an assessment of whether observed patterns
of belief revision are consistent with objective causal features of
the world, which is a topic of philosophical theories of causation
and scientific theories. We have discovered a mismatch here. The
weakening effect suggests that participants misrepresent interpo-
lations as additions of variables and not as discoveries of preex-
isting mechanisms. Thus, participants seem to routinely violate the
causal stability assumption. When scientists discovered the role of
prostaglandins in relieving headaches, they believed that prosta-
glandins already played a role prior to their discovery and did not
show up all of a sudden, which would make the previously
observed covariation seem magical.

It is important to note that the causal stability assumption is not
derived from axiomatic accounts but is an assumption about the
world. If we lived in a world in which discoveries would insert
mechanisms into preexisting simpler causal models, the weakening
effect would not be a bias but a correct reflection of how the world
operates. We believe that most researchers in natural kind do-
mains, such as biology, physics, physiology, or chemistry, share
the stability assumption we have postulated.

However, there is one alternative position coming from a rep-
resentative of social constructionism (Latour, 2000).° Bruno La-
tour discusses the case of Ramses II, the third pharaoh of the
Nineteenth Dynasty of Egypt. In 1975 the pharaoh’s mummy was
medically examined by French doctors in Paris. Among other
diseases, they discovered signs of tuberculosis, which, as Robert
Koch has discovered in 1882, is caused by a bacillus. The question
Latour asks is whether Ramses II had tuberculosis and whether it
was caused by the bacillus that has been discovered three thousand
years after his death. Latour questions this when he writes: “The
attribution of tuberculosis and Koch’s bacillus to Ramses II should
strike us as an anachronism of the same caliber as if we had
diagnosed his death as having been caused by a Marxist upheaval,
or a machine gun, or a Wall Street crash” (p. 248). We believe that
both scientists and nonscientists would disagree with Latour, who
treated natural kinds and artifacts (e.g., machine guns) as analo-
gous. Unlike the Koch bacillus which plausibly already existed
when Ramses II contracted tuberculosis, machine guns were in-
vented in the 19th century and were therefore not part of the world
of Ramses II. Given the medical examination in Paris, the most
plausible assumption is indeed that Ramses II suffered from tu-
berculosis and that the disease was caused by a bacillus. This
backward inference seemed to be triggered by our belief in causal
stability. It is an interesting question whether weakening would be
a rational inference for a social constructionist, such as Latour.

Although our research is the first that discovered a bias in the
context of causal discovery and the representation of interpolation,
other researchers have studied with other tasks whether probability

inferences made in the context of causal reasoning conform to
normative accounts or are biased (see Waldmann, in press, for a
review). The majority of studies concludes that most deviations
can be explained as rational if the right assumptions about back-
ground knowledge participants bring to bear on the task are made.
However, unlike in the case of interpolations, the results are often
ambiguous.

For example, research on reasoning with causal conditionals has
also studied belief revision (Oaksford & Chater, 2013, 2017). One
central theory of reasoning with conditionals subscribes to what
has been called “The Equation” (Edgington, 1995). According to
this theory, the probability of a conditional is equated with a
conditional probability, P(if p then q) = P(qlp). According to the
Ramsey test, one supposes that p = True, adds it to one’s belief
basis, makes revisions, and then reads off the probability of ¢ (see
Evans et al., 2003; Over et al., 2007). Using Bayesian condition-
alization, one can then update the belief in ¢ when learning that p
is true by using the conditional probability P(glp). For example, if
we assume as conditional premise that “if the key is turned, then
the car starts,” we can use the associated conditional probability to
make a probabilistic inference from “the key is turned” to “the car
starts.” Bayesian conditionalization assumes invariance, which is
related to our causal stability assumption (Jeffrey, 1992). The
invariance assumption assumes that the conditional probabilities
stay the same between the old and new distributions, that is,
P,(qlp) = Py(glp). A number of empirical studies have shown that
people do not always conform to this assumption (Oaksford &
Chater, 2017; Zhao et al., 2012; Zhao & Osherson, 2010). When
confronted with cases that appear to be counterexamples of the
conditional (e.g., a car that does not start despite the key being
turned), thus suggesting the operation of disablers, reasoners often
seem to revise the conditional probability estimates to a lower
value. At first sight, this seems to be a case of weakening.

However, whether weakening is rational or irrational in this case
can be debated. On the one hand, one could argue that the infer-
ences may be biased because reasoners do not take into account
that counterexamples are normative implications of probabilistic
relations. If smoking probabilistically causes cancer in a large
sample of cases, a single case of a healthy smoker should be
viewed as a natural consequence of the probabilistic relation, not
as a counterexample that should lead to a major revision of the
probability. It may well be that the finding that people revise too
fast may be a sign of a faulty understanding of probabilities.
However, the alternative, defended by Oaksford and Chater
(2017), is equally plausible. Participants may infer that the car that
does not start is a counterexample that belongs to a different
population, cars that are broken. Using background knowledge,
people might then validly infer that the probabilities that have been
learned in the context of intact cars are invalid in this different
population because disablers are at work that in the regular pop-
ulation are not present.

We believe that the bias we discovered in the context of inter-
polations cannot be similarly explained away by background
knowledge. One key difference is that the findings in the research
about reasoning with conditionals presented participants with
cases in which causes and effects were both instructed as either

¢ We thank Ralph Hertwig for pointing us to this article.
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present or absent. These patterns might have led participants to
reason about possible factors explaining the individual case. More-
over, it is possible to represent each case as a singular case or as
being part of a separate subcategory. By contrast, in our paradigm
we instructed participants that they should envision a randomly
sampled test case in which the cause is present and then estimate
the probability of the effect. The status of the effect was left open.
Thus, our task is more similar to the request to assess the likeli-
hood of cancer given smoking than to asking about smokers and
nonsmokers with and without cancers, which may trigger different
explanations based on background knowledge. Moreover, we have
shown that background knowledge about disablers should in our
task only lead to weakening if participants confuse discoveries of
preexisting mechanisms with additions of variables. Had partici-
pants correctly understood what interpolations entail for causal
strength and for disablers, they should have inferred that the
observed covariation was mediated by the mechanism all along. In
our view, the weakening effect is therefore one of the first findings
in causal reasoning research that avoids the ambiguity of previous
research and demonstrates a clear case of biased reasoning.

Perspectives for Future Research

A key question that deserves further research concerns the
psychological mechanism underlying the weakening effect. We
argued that participants’ inferences were consistent with the hy-
pothesis that they treated causal discovery as a situation in which
further variables were added to an otherwise invariant causal
model, which violates causal stability assumptions. Although it is
possible that participants actually believed that discoveries add
variables as some social constructionists do (Latour, 2000), our
experience when presenting the project is that most members of
the audience agree that interpolations in natural kind domains
target preexisting mechanisms. Indirect evidence for this was
presented in Experiment 2, which showed that participants had a
perfect understanding of how a mechanism is connected to the two
learning variables when it is presented prior to the learning phase
(cf. Figure 14B), whereas we observed a weakening effect when
causal model information was presented subsequently (cf. Figure
14A). This pattern of results demonstrates that the sequence of
learning is crucial in this task. Therefore, a more plausible expla-
nation of the weakening effect is that participants have difficulties
with retroactively inferring the operation of a mechanism that had
been unknown until its discovery. To realize that a discovered
mechanism had already been present in the past requires to retro-
spectively insert that mechanism in the appropriate position in the
causal structure, as well as to make the right adjustments concern-
ing causal strength and the impact of surrounding variables (e.g.,
disablers). This is effortful and probably, owing to an attempt to
reduce effort, there seems to be a tendency to confuse lack of
knowledge about a variable with the assumption of its absence (see
Waldmann, 2000; Waldmann et al., 2012). We proposed a simu-
lation mechanism that explains the findings. If participants run
mental simulations to incorporate the new information provided in
Phase 2, it is easier to add a new variable while leaving the model
used in Phase 1 intact than to retroactively resimulate the Phase 1
trials. Future research will have to test this hypothesis more di-
rectly.

We already discussed that a simple alternative to our belief revision
theory of weakening in interpolation tasks is a heuristic which asserts
that people may have the general bias that indirect relations tend to be
weaker than direct ones. This heuristic is plausible when the direct
relations are subcomponents of indirect ones (as in Bes et al., 2012)
but is inappropriate when there is no reason to make this assumption
(see the introduction for examples). Experiment 2 has already shown
that participants do not generally use this heuristic. It may be inter-
esting to run further tests of the heuristic account, however. A plau-
sible mechanism underlying the weakening effect on this account
might be that people use causal strength priors both when learning
about the covariation in Phase 1 and when making assumptions about
the strengths of the interpolated links in Phase 2. Such an account
entails a weakening effect if it is assumed that uncertainty about the
covariation in Phase 1 allows the priors of the interpolated causal links
to revise the initial covariation estimates. An interesting prediction of
this account is that with an increase of the sample size in Phase 1
uncertainty should be reduced, thus leaving less space for a downward
revision of the initial estimate.” With increased sample size in Phase
1, thus decreasing uncertainty about the covariation observed in Phase
1, the weakening effect should become smaller. No such effect is
predicted by our belief revision account, which makes an experiment
manipulating sample size an interesting test.

Our main goal in the present study was on comparing direct with
indirect (interpolated) causal relations. Experiment 5 adds to these
studies a first examination of more complex causal models. An
additional interesting question concerns partial knowledge about com-
plex causal models. Imagine we gain knowledge about parts of a
complex mechanism but have a hunch that there are other components
we do not know yet (e.g., alternative paths to the effect); it would be
interesting to see how predictions are altered when participants be-
come aware that their mechanism knowledge is partial and fragmen-
tary.

Our focus was on natural kind domains, which we presented with
unfamiliar variables. We uniformly found weakening effects but there
may be tasks in which strengthening or no systematic change may be
observed. One possibility to find strengthening that was already
mentioned in the introduction is to systematically study other do-
mains. Artifacts seem to be a case in which mechanism change is
likely, which in this domain may lead to strengthening. Engineering
generally strives to improve the reliability of artifacts rather than
weaken it. For other domains, such as intuitive psychology, econom-
ics or sociology, we have few clear intuitions, which would make
studying these domains interesting for future research.

In discussions with colleagues and among ourselves, we were
sometimes confronted with cases which seem to indicate that mech-
anism knowledge may make a poorly understood initially direct
causal relation more plausible, thus suggesting another way of revers-
ing the weakening effect.® For example, understanding how a vaccine
helps us may make its efficacy more plausible than before. We have
focused on fairly abstract materials for which no prior knowledge was
available to be able to study the impact of causal structure information
that is relatively uncontaminated by prior knowledge. But of course,
it is well established that prior knowledge can affect our probability

7 We thank Bob Rehder for suggesting this study.
8 We thank Aaron Blaisdell and Keith Holyoak for mentioning this
possibility.
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assessments. Knowledge about a causal mechanism typically in-
creases estimates of perceived correlations relative to the objective
covariation in the data (see, e.g., Fugelsang & Thompson, 2003;
Koslowski, 1996; Perales et al., 2010). Based on these findings, we
may find a reversal of the weakening effect if the initial direct causal
relation seems implausible according to our prior knowledge but the
interpolated links raise the plausibility of the causal relation. This
mismatch between the direct relations and the knowledge about
interpolated links might not be a particularly frequent case, but it is
certainly conceivable.

Another more general question is whether weakening effects may
temper our urge to gain more knowledge. Recent research has shown
that people tend to know very little about mechanisms (Chater, 2018;
Rozenblit & Keil, 2002; Sloman & Fernbach, 2017). Although it is
rational to believe that knowing more increases the predictability and
controllability of the world, some people might, based on erroneous
intuitions about weakening, be reluctant to find out more about
mechanisms. Causal knowledge revision is certainly an important
topic for reasoning research and should attract more interest in the
future.

Context Paragraph

The article is a result of a long-standing collaboration between
Michael Waldmann and Katya Tentori, which aims at combining
expertise about causal and probabilistic reasoning. Michael Wald-
mann has studied causal learning and reasoning and has been partic-
ularly interested in investigating the role of causal models in learning
and reasoning. Katya Tentori has studied probabilistic and inductive
reasoning by combining normative analyses with psychological the-
ories. The collaborative project started with studies about differences
in the representation of causal chains versus direct causal relations.
But after Simon Stephan and Stefania Pighin had joined the project,
our interest shifted to a rarely investigated task, causal belief revision
and the interpolation of mechanism information. We found weaken-
ing effects in both the studies about causal chains and in the new
interpolation paradigm, and became interested in the question whether
this effect is based on similar psychological representations. More-
over, given that not only the participants in the experiments but also
many colleagues found weakening intuitive, we also wondered
whether the effect can be defended as rational or whether it represents
a new type of bias in causal reasoning.
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