
Global Observability Analysis of a Nonholonomic Robot using Range
Sensors

Luigi Palopoli Member, IEEE, Daniele Fontanelli Senior Member, IEEE

Abstract— The global observability property of nonholo-
nomic mobile robots equipped with a ranging systems is
considered in this paper in relation to the localisation problem.
The discrete time nature of the problem, induced by the
fixed sampling frequency of the sensor, turns the problem
into a set of algebraic conditions, whose solution naturally
maps onto the control space of the robot. To the best of the
Authors’ knowledge, this is the first solution providing global
observability results. The solution is reported for two different
mobile robots, a unicycle-like and an unmanned fixed-wing
robot.

I. INTRODUCTION

Modern applications of autonomous systems require the
ability to interface with the available sensing systems and
to deal with their limitations and constraints [1]. One of the
most relevant problems is to retrieve the actual state space
configuration in order to apply properly designed feedback
control laws. Hence, any (linear or nonlinear) observer or
filter conceived to this purpose can actually be implemented
if the system is observable or at least detectable. Since many
actually available sensors generate a measurement value that
is non-linearly related to the state (e.g. a distance, an angle,
etc.), nonlinear observability tools should be adopted. This is
even more relevant if the system dynamic is also nonlinear,
which is often the case when dealing with robots.
Related Work. It is unsurprising that observability analysis
is usually considered for state-feedback robot control in
many research papers dealing with nonlinear system models,
such as the popular unicycle-like vehicles. Among the others,
an observability analysis has been proposed in [2], where
collaborative localisation with generic nonlinear sensors is
considered to analyse the best linearisation point to apply
an Extended Kalman Filter (EKF). In [3] the observability
analysis for leader-follower formations is carried out consid-
ering the availability of visual data. Of particular interest is
the coupling of nonlinear observability with motion control
algorithms, as in [4], where ranging data are considered
as exteroceptive sensors for the design of a nonlinear ob-
server. Reference [5] presents the sensibility analysis of the
localisation problem when multiple landmarks are adopted
and when the relative angle measure is considered. The
work in [6], similarly to [7], proposes a planar bearing-
only observability analysis for unicycles using a nonlinear
continuous-time derivation, while [8] deals with a similar
problem in the presence of unknown but constant disturbance
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in the vehicle dynamics. Another observability analysis is
proposed in [9] for a ranging sensor with unknown but
constant offset associated with RFID tags.

All the previously discussed literature results, while wit-
nessing the relevance and the interest that this topic still
has, establish a clear link between the system observability
requirement and the localisation of a robot with respect to a
predefined fixed reference frame. For localisation purposes,
the state space corresponds to the set of generalised coor-
dinates needed to uniquely identify the robot position in
the environment, which is exactly the topic treated in this
paper for robots with nonholonomic dynamics. The localisa-
tion problem as a specific instantiation of the observability
condition has been also used in [10] for a unicycle-like
vehicle with only one landmark and using nonlinear tools for
observability analysis in a continuous time domain [11]. A
continuous time analysis in the same spirit is also proposed
in [12] for Autonomous Underwater Vehicles (UAVs) and
ranging measurements.
Contributions of the paper. In this paper, we consider
the problem of vehicle observability using ranging measure-
ments, which means that the output function is the distance
of the robot with respect to a number of ranging sensors
(landmarks). We consider a scenario in which the robot can
measure its own velocities, in essence a self localisation
problem. Contrary to most of the literature, we adopt a
discrete–time formulation for the dynamics of the robot. As
well as being the most natural setting for a realistic localisa-
tion system (induced by the presence of a digital platform),
the discrete–time formulation lends itself to an easy and
natural analysis of the observability problem, putting us in
condition to discover some insightful and noteworthy facts.
Specifically, we show that: i) If we use only two landmarks
the system’s state is globally unobservable as long as the
robot moves along straight lines; on the other hand, it is
sufficient that the robot turns for two sampling periods in
a row in order for its state to be observable; ii)If we use
at least three landmarks, then the state of the system can
be reconstructed in one step. Therefore its state is globally
observable whatever the trajectory it follows.

We would like to stress that the simplicity of the discrete
time formulation allows us to obtain global observability,
i.e. valid in the entire state space of the robot. This result
is often very difficult to achieve with standard tools [11] in
continuous time, given the nonlinearity of both the system
and of the output function. Importantly, it is possible to
apply the same algebraic machinery to a different but related
problem: creating a map of the position of the landmarks



with respect to the initial position of the robot. In particular,
we show that it is possible to construct a map if each
landmark is seen at least twice in two different steps along
the robot motion. Finally, even if most of our results have
been found for a robot moving in a 2D environment, we
show how it is possible to generalise them also to the case
of vehicles moving in a 3D environment (e.g., a fixed wing
drone).

The paper is organised as follows. In Section II, we set up
the problem introducing the model and the notation adopted.
In Section III, we present our observability study for two
landmarks and more, while, in Section IV, we show how our
framework is applicable to the inverse problem: generating a
map of the landmarks from the range measurements and from
the motion information of the robot. The proposed analysis
is then extended in Section V to vehicles moving in a 3D
space. Finally, in Section VI, we present our conclusions and
announce future work directions.

II. PROBLEM

Consider a unicycle vehicle with dynamics.

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω, (1)

where s(t) = (x, y, θ) is the state of the system (θ is the
orientation with respect to the Xw axis of the reference frame
〈W 〉), while v (the forward velocity) and ω (the angular
velocity) are the input variables. Assuming that the system
is sampled with period Ts and that the command variable v
and ω are held constant throughout the sampling period (a
customary assumption for digital control), it is possible to
find the following discrete time ZoH equivalent dynamics:

x((k + 1)Ts) = x(kTs) +

∫ (k+1)Ts

kTs

v cos(θ(τ))dτ,

y((k + 1)Ts) = y(kTs) +

∫ (k+1)Ts

kTs

v sin(θ(τ))dτ,

θ((k + 1)Ts) = θ(kTs) + ωTs.

(2)

Introducing for a generic function f(·) the notation fk =
f(kTs), using the simple variable transformation τ ′ = τ −
kTs, we obtain:∫ Ts

0

v cos(θ(τ ′ + kTs))dτ
′ =

=

{
vkTs cos θk if ω = 0,
2 vkωk

sin
(
ωk

2 Ts
)

cos
(
θk + ωk

2 Ts
)

otherwise.

Using the simplified notation xk+1 = x((k + 1)Ts) (i.e.,
sk+1 = [xk+1, yk+1, θk+1]T ) and applying the same argu-
ment to the second integral of (2), we finally have

xk+1 =

{
xk + vkTs cos θk if ωk = 0,

xk + 2 vkωk
sin
(
ωk

2 Ts
)

cos
(
θk + ωk

2 Ts
)

otherwise,

yk+1 =

{
yk + vkTs sin θk if ωk = 0,

yk + 2 vkωk
sin
(
ωk

2 Ts
)

sin
(
θk + ωk

2 Ts
)

otherwise,

θk+1 = θk + ωkTs.
(3)

The vehicle moves across a space instrumented with a
number of electromagnetic landmarks (e.g., UWB nodes).
Each landmark is deployed at coordinate (Xi, Yi), which are
known to the vehicle. At each time step kTs, the vehicle
receives a signal from each landmark from which it is
possible to reconstruct the distance between the vehicle and
the landmark. The readings are collected in the vector Yk:

Yk =

Y1, k. . .
YM,k

 =


√

(xk −X1)
2

+ (yk − Y1)
2

. . .√
(xk −XM )

2
+ (yk − YM )

2

 . (4)

Through the direct application of the definition, it is
possible to derive the relation between two consecutive
observations, i.e.

Y2
i,k+1=Y2

i,k +A2
k + 2AkCk (xk −Xi) + 2AkSk (yk − Yi)

(5)
where

Ak =

{
vkTs if ωk = 0,

2 vk
ωk

sin
(
ωk
2
Ts

)
if ωk 6= 0,

Ck =

{
cos θk if ωk = 0,

cos
(
θk + ωk

2
Ts

)
if ωk 6= 0,

Sk =

{
sin θk if ωk = 0,

sin
(
θk + ωk

2
Ts

)
if ωk 6= 0.

(6)

Our objective is to study under which conditions it is
possible for the robot to reconstruct its state sk, starting from
any initial state s0, assuming the knowledge of the sequence
of the distance vector Yk and of the velocities vk and ωk,
which is an observability problem. It is worth noting that, for
non-linear systems, observability is not a structural property
of the system as a whole but of its trajectories. Therefore, our
results will make a distinction between rectilinear trajectories
(for which ωk is zero) and bended trajectories (for which ωk
is allowed to be non-zero for some values of k).

The inverse problem is the mapping problem and can be
described in the following terms. Suppose that the robot does
not know the coordinate (Xi, Yi) of the landmarks, but it
can measure the distance from each landmark. As customary
for mapping problems, we assume that the robot starts from
the origin of the reference frame 〈W 〉 (or that the reference
frame origin is set on the robot initial position), with its
orientation aligned to the Xw-axis, i.e. s0 = [0, 0, 0]T . The
mapping problem amounts to finding the position of the
landmarks from the sequence of measurements.
Notation and useful relations. In the paper we will use the
symbol Sk if the robot at step k moves along a rectilinear
path (ωk = 0) and Tk if it bends at step k (ωk 6= 0). DWe
also denote Cw = cosωTs and Sw = sinωTs. By using
simple trigonometric formulae, we get from (6)

Ck+1 =

{
Ck Sk,

CkCw − SkSw Tk,

Sk+1 =

{
Sk Sk,

SkCw + SwCk Tk,

(7)



which will prove useful below.

III. OBSERVABILITY

Our objective in this section is to show under which
conditions it is possible to reconstruct the state of the robot
minimising the number of landmarks. We will consider two
types of trajectories: 1. rectilinear trajectories (Sk,∀k), 2.
bended trajectories (Tk for some k). Clearly, if the forward
velocity of the robot is vk = 0 (i.e., the robot is still or
rotates around its axis), its configuration will be unobservable
regardless of the number of landmarks. Therefore we will
henceforth assume that vk 6= 0,∀k.

A first simple result concerns the use of a single landmark.
In this case, any trajectory is unobservable because of the
radial symmetry of the distance, as formally shown in the
following:

Theorem 1: Consider a robot with kinematics (3), with
output function (4) and M = 1 (one landmark) and moving
with non-null forward velocity vk 6= 0. The system state is
unobservable for any trajectory.

Proof: Suppose, for the sake of simplicity and without
loss of generality that the landmark is placed in the origin:
X1 = 0, Y1 = 0 and that the initial state s0 = [x0, y0, θ0].
Consider as a different initial state s′0 = [x′0, y

′
0, θ
′
0] such that

a) x20+y20 = x′2o +y′20 , b) x0C0+y0S0 = x′0C
′
0+y′0S

′
0 and c)

C0Y0−S0X0 = C ′0Y
′
0−S′0X ′0, where Ck and Sk are defined

as in (6). It is easy to see that the initial distance from the
landmark is the same for both point Y1,0 = Y ′1,0. In view
of (5), the relations a) and b) imply that the distances will
remain equal after one step: Y1,1 = Y ′1,1. Furthermore the
use of the dynamic model (3) and of (7) shows, after some
manipulation, that if conditions b) and c) hold true at step 0,
they will also hold true at step 1: x1C1+y1S1 = x′1C

′
1+y′1S

′
1

and C1Y1 − S1X1 = C ′1Y
′
1 − S′1X

′
1. A simple inductive

argument leads us to the conclusion that the two trajectories
starting from s0 and s′0 will produce the same output at every
step, making the state unobservable from the evolution of the
measurements.

A. The case of two landmarks

Our intuition suggests that the simultaneous measurements
of two distances could be more promising than the measure-
ment of a single distance. Unfortunately, this is not true for
rectilinear trajectories, as stated in the following.

Theorem 2: Consider a robot with kinematics (3), with
output function (4), M = 2 (two landmarks) and moving
with non-null forward velocity vk 6= 0. If the system follows
rectilinear trajectories (i.e., Sk,∀k), then its state is not
globally observable.

Proof: Consider the case in which two tags are de-
ployed parallel to the Yw axis. This is not a loss of generality
because any system can be reduced to this condition through
a simple transformation of coordinates. With reference to
Fig. 1, suppose the robot lies in point U1 at step k − 1 and
moves to point U2 at step k (green line). The output functions
Yi,k, for i = 1, 2 in (4), will be given by the length of the
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Fig. 1. Evolution of the system along a linear trajectory (green line) and its
alias trajectory (blue line) producing the same measurement values for Yk ,
and Yk+1.
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Fig. 2. Evolution of the system along a circular trajectory (green line) and
its alias trajectory (blue line) producing the same measurement values

two segments H1U2 and H2U2. As we can see, the motion
along an alias trajectory (blue line) from point V1 to point
V2 produces the same readings, being the length of the two
segments H1V2 and H2V2 respectively equal to H1U2 and
H2U2. The same situation will be repeated at the next steps
from points U2 and V2 onward. In summary, if the robot
moves along a line, a specular motion along the symmetric
to the line joining the two tags produces the same readings
and is therefore indistinguishable.

Despite this negative result, the situation for two land-
marks is not nearly as bad as it is for one. Indeed, as
discussed in the proof, the possible ambiguity is reduced
to a pair of symmetric lines, and by using standard results
of nonlinear system analysis [11], it is possible to see that
the system is locally observable [7]. For curvilinear motion,
it is even possible to recover global observability. Indeed,
the argument leading to the non observability of linear
trajectories hinges on the point that linear trajectories that
move symmetrically to the line joining the two tags generate
the same outputs and are, therefore, globally unobservable.
Following the same line of reasoning, we could conjecture
that the same problem occurs for circular trajectories, i.e.
ω 6= 0 in (3). In fact, it is easy to see that the only way
to obtain the same measurements is a circular trajectory that
is symmetric to the actual trajectory with respect to the line
joining the two landmarks. This is shown in Figure 2. If
the system moves from U1 to U2 the distance from the two
landmarks (i.e., the length of the segments H1U1 and H2U2)
will be the same for the system moving on the “alias” arc
of circle from the symmetric point V1 and V2. Luckily this



is not an observability loss since the direction of motion has
to be opposite (e.g., clockwise on the actual trajectory and
counter-clockwise on the alias trajectory or viceversa), and
the direction of the circular motion can be inferred from
the sign of ω, which is assumed an available input in any
observability analysis. This is formalised in the following.

Theorem 3: Consider a robot with kinematic (3), with
output function (4), M = 2 (two landmarks) and moving
with non-null forward velocity vk 6= 0. Suppose that for two
consecutive steps, the robot executes turns, e.g., it executes
the sequence T0T1. Then the state of the system is globally
observable if ω0Ts 6= hπ, and ω1Ts 6= hπ , for h ∈ N.

Proof: Consider (5) with i = 1, 2 and k = 0, 1.
Subtracting Y2

1,k from Y2
1,k+1 (two consecutive readings of

the i = 1 landmark) and Y2
2,k from Y2

2,k+1 (two consecutive
readings of the i = 2 landmark), we get:

1

2

(
Y2
1,1 − Y2

2,1 − Y2
1,0 + Y2

2,0

)
=

= 2A0C0(X2 −X1) + 2A0S0(Y2 − Y1)

1

2

(
Y2
1,2 − Y2

2,2 − Y2
1,1 + Y2

2,1

)
=

= 2A1C1(X2 −X1) + 2A1S1(Y2 − Y1).

If the velocities remain constant, from (6) we have A0 = A1.
Exploiting Equality (7), we can write[

A0(X2 −X1) A0(Y2 − Y1)
A1Σ1 A1Σ2

] [
C0

S0

]
=

=
1

2

[(
Y2
1,1 − Y2

2,1 − Y2
1,0 + Y2

2,0

)(
Y2
1,2 − Y2

2,2 − Y2
1,1 + Y2

2,1

)] ,
where Σ1 = Cw(X2−X1)+Sw(Y2−Y1) and Σ2 = Cw(Y2−
Y1)−Sw(Y2−Y1). Observe that the second row of the matrix
is given by the first one rotated by ωTs and scaled. Under
the assumption that ωTs 6= hπ, we have A0 6= 0, A1 6= 0
and that the second row of the matrix is linearly independent
from the first. Therefore the matrix is invertible and the pair
(C0, S0) is uniquely defined, which leads us to the angle
θ0 = atan2 (S0, C0). Moreover, observe that:

Y2
1,0 = (x0 −X1)2 + (y0 − Y1)2 =

= X2
1 + x20 + y20 + Y 2

1 − 2X1x0 − 2Y1y0,

Y2
2,0 = (x0 −X2)2 + (y0 − Y2)2 =

= X2
2 + x20 + y20 + Y 2

2 − 2X2x0 − 2Y2y0.

Subtracting the second equation from the first, we get:

Y2
1,0−Y2,0−X2

1+x22−Y 2
1 +Y 2

2 =2(X2−X1)x0+2(Y2−Y1)y0,

while another equation comes from (5):

Y2
1,1 − Y1,0 −A2

0=2A0C0 (x0 −X1) + 2A0S0 (y0 − Y1) .

Therefore x0 and y0 can be found as the solution of a linear
system whose matrix is[

(X2 −X1) (Y2 − Y1)
A0C0 A0S0

]
,

which is invertible if the initial orientation is not aligned
along the direction joining the two landmarks. Should this
unfortunate situation happen, another step is needed.

The bottom line of this discussion is that if we use two
landmarks, the vehicle can disambiguate its position as far
as it turns for at least two time steps.

B. The case of three landmarks

The use of three non collinear landmarks solves any
ambiguity and it enables global observability for any possible
trajectory with vk 6= 0, as stated in the following.

Theorem 4: Consider a robot with kinematic (3), with
output function (4), M = 3 (three landmarks) and moving
with non-null forward velocity vk 6= 0. Then the state of the
system is globally observable for any trajectory.

Proof: The Cartesian coordinates (x0, y0) can be found
using the usual trilateration technique. In our notation, start-
ing from three landmark measurements (4)

Y2
i,0 = (x0 −Xi)

2 + (y0 − Yi)2 =

= X2
i + x20 + y20 + Y 2

i − 2Xix0 − 2Yiy0,

we can subtract Y2
2,0 and Y2

3,0 to Y2
1,0, hence generating a

system of two equations in two unknowns (x0, y0), whose
coefficient matrix Σ =

[
X2−X1 Y2−Y1

X3−X1 Y3−Y1

]
is invertible since

the points are not collinear. The result is then[
x0
y0

]
=

1

2
Σ−1

[
Y2
1,0 − Y2

2,0 −X2
1 − Y 2

1 +X2
2 + Y 2

2

Y2
1,0 − Y2

3,0 −X2
1 − Y 2

1 +X2
3 + Y 2

3

]
.

For the computation of angle θ0, we can proceed as in the
proof of Theorem 3. Considering (5) for i = 1, 2, 3 and
k = 0, then subtracting Y2

2,1 and Y2
3,1 to Y2

1,1, we end up
with a system of linear equations, i.e.

[
X2 −X1 Y2 − Y1

X3 −X1 Y3 − Y1

][
C0

S0

]
=

1

2A0

[
Y2

1,1 − Y2
2,1 − Y2

1,0 + Y2
2,0

Y2
1,1 − Y2

3,1 − Y2
1,0 + Y2

3,0

]
,

that has a unique solution in (C0, S0) if, again, the points
are not collinear.

IV. MAPPING

Let us now consider the case in which the position of the
landmarks is unknown and that the robot needs to construct
a map of the environment associating some coordinates with
each of the landmarks. As introduced earlier, our problem is
in this case to reconstruct (Xi, Yi) with respect to the origin
of 〈W 〉 placed in (x0, y0) and with the Xw axis oriented
along θ0. Let us start form the simplified situation in which
we want to map three landmarks (Xi, Yi), for i = 1, 2, 3,
that remain always in sight of the robot and that the robot
moves for 3 steps. Using (5) for i = 1, 2, 3 and for k = 0, 1,
the following matrix equation can be derived

L3B3 = H3, (8)

where B3 = [X1, Y1, X2, Y2, X3, Y3]T , L3 =
diag(P0,1, P0,1, P0,1), P0,1 =

[
F0 G0

F1 G1

]
, Fi = −2AiCi,

Gi = −2AiSi, H3 = [H1,1, H1,2, H2,1, H2,2, H3,1, H3,2]T ,
Hi,j = Yi,j − Yi,j−1 − A2

j−1 − 2Aj−1Cj−1xj−1 −



2Aj−1Sj−1yj−1, that, once solved, returns the solution to
the mapping problem. In order to solve the problem, let us
consider the invertibility of the system matrix. Given the
recursive structure of the matrix it is possible to see that

D = det




F0 G0 0 0 0 0
0 0 F0 G0 0 0
0 0 0 0 F0 G0

F1 G1 0 0 0 0
0 0 F1 G1 0 0
0 0 0 0 F1 G1



 =

= (F0G1 − F1G0) = 4A0A1(C0S1 − C1S0)3

Using the Sk if and Tk notation and recalling (6) and (7),
we have after some algebraic manipulations

D1/3=


4v0v1T

2
s sin (θ1 − θ0) = 0, S0S1,

8 v0v1Ts
ω1

sin2
(
ω1Ts

2

)
, S0T1,

8 v1v0Ts
ω0

sin2
(
ω0Ts

2

)
, T0S1,

8 v1v0
ω0ω1

sin
(
ω0Ts

2

)
sin
(
ω1Ts

2

)
sin
(

(ω0+ω1)Ts

2

)
, T0T1.

Hence, if the robot moves with the three landmarks in
sight their position can be reconstructed in two steps if the
robot: a) moves one step turning (i.e., if we exclude the case
S0S1) with an angular velocity ωk 6= 2π

Ts
; b) turns for two

consecutive steps (i.e., T0T1) and ω0 6= −ω1. Under one of
these hypotheses, given the particular structure of the matrix,
it is also possible to compute the positions of the landmarks
in closed-form for the i-th landmark as

Xi =
A1S1Hi,1 −A0S0Hi,2

Σd
, Yi =

−A1C1Hi,1 +A0C0Hi,2

Σd
,

where Σd = 2A0A1(C0S1 − C1S0). The idea sketched
above can be generalised to an arbitrary number of landmarks
relaxing the in-sight requirement along the motion, as shown
in the following.

Theorem 5: Assume that there are M landmarks and that
the robot makes a number of steps such that it sees each
landmark at least twice in two different steps. Moreover,
assume that at least one of the steps in which the robot sees
each landmark is a turn. Then it is possible to reconstruct
the position of the M landmarks.

Proof: Let K be the total number of steps. Let j
be the index associated with the j-th landmark. Let j1 ∈
{1, 2, . . . , K} represent the first step in which the landmark
is in sight and j2 ∈ {1, 2, . . . , K} \ {j1} the second step.
After a few re-arrangements, it is possible to study the
resulting system of linear equations LMBM = HM , which
is a generalised version of (8) with M landmarks. Given the
structure of the matrix, it is possible to show that:

det(A) =

M∏
j=1

(Fj1Gj2 − Fj2Gj1) .

Therefore, the matrix is invertible if and only if Fj1Gj2 −
Fj2Gj1 6= 0,∀j. Proceeding as in the discussion made above

for three landmarks, we can see that the acceptable transi-
tions are: Tj1Sj2 , Tj1Tj2 , Sj1Tj2 , with the same conditions
stated previously.

V. EXTENSIONS TO 3D

The results above are easy to generalise for fixed wing
aircrafts having their kinematics described by the following
equation:

ẋ = v cosφ cos θ, ẏ = v cosφ sin θ,

ż = v sinφ, θ̇ =
g

v
tanψ

(9)

In this model, (x, y, z) are the Cartesian coordinates of the
origin of a frame attached to the vehicle, v is the air-speed,
g is the magnitude of the gravity at the sea level, θ is the
heading angle, φ is the pitch angle and ψ is the roll angle.
In this context, we are customarily assuming that the vehicle
moves in coordinated turn condition and that the roll and
pitch dynamics are much faster than the heading and altitude
dynamics. Therefore, we can consider the roll and flight path
angle, respectively ψ and φ, as command variables [13].
Assuming piece-wise constant inputs and velocity, we can
write the state sk = [xk, yk, zk, θk]T discrete time equivalent
dynamic with sampling period Ts:

xk+1 =

{
xk + vkTs cosφk cos θk if ψk = 0,

xk + 2 vk
ωk

cosφk sin
(
ωk
2
Ts

)
ax otherwise,

yk+1 =

{
yk + vkTs cosφk sin θk if ψk = 0,

yk + 2 vk
ωk

cosφk sin
(
ωk
2
Ts

)
ay otherwise,

zk+1 = zk + vkTs sinφk,

θk+1 = θk + ωkTs,

(10)

where ax = cos
(
θk + ωk

2 Ts
)
, ay = sin

(
θk + ωk

2 Ts
)

and
ωk = g

vk
tanψk. Given the model (10), we can re-write (5)

as follows:

Y2
i,k+1 =

=



Y2
i,k + (vkTs)2 + 2vkTs cosφk cos θk(xk −Xi)+

+2vkTs cosφk sin θk(yk − Yi)+

+2vkTs sinφk(zk − Zi) If ωk = 0

Y2
i,k +

(
2 vk
ωk

cosφk

)2
+ (vkTs sinφk)2 +

+4 vk
ωk

cosφk cos
(
θk + ωkTs

2

)
(xk −Xi)+

+4 vk
ωk

cosφk sin
(
θk + ωkTs

2

)
(yk − Yi)+

+2vkTs sinφk(zk − Zi) If ωk 6= 0.

(11)

By using this expression, it is possible to revisit the results
we found for the planar unicycle-like robot, for which we
give an example in the following.

Theorem 6: Consider the case of M = 4 non coplanar
landmarks in position Hi = (Xi, Yi, Zi), i = 1, . . . , 4. Then,
the whole state s0 can be reconstructed using two consecutive
measurements Y0,i, Y1,i.

Proof: The proof follows the one presented for Theo-
rem 4. Indeed, introduce the following notation.



Ak =

{
2vkTs cosφk if ωk = 0,

4 vk
ωk

cosφk if ωk 6= 0,

Bk =

{
(vkTs)2 if ωk = 0,(

2 vk
ωk

cosφk

)2
+ (vkTs sinφk)2 if ωk 6= 0,

Dk = 2vkTs sinφk

Ck =

{
cos θk if ω = 0,

cos (θk + ωkTs/2) if ωk 6= 0,

Sk =

{
sin θk if ω = 0,

sin (θk + ωkTs/2) if ωk 6= 0.

It is then possible to rewrite (11) as:

Y2
i,k+1 =Y2

i,k +Bk +AkCk(xk −Xi)+

+AkSk(yk − Yi) +Dk(zk − Zi)
(12)

If we consider one step of evolution, from k = 0 and
subtract the last three landmark equations j = 2, 3, 4 from
the first one, we find

Y2
1,1 − Y2

j,1 − (Y2
1,0 − Y2

j,0 +D0(Zj − Z1)) =

= A0C0(Xj −X1) +A0S0(Yj − Y1).

By defining the left hand side as Σj , the previous relation
can be rewritten in matrix form as:

1

A0

Σ2

Σ3

Σ4

 =

X2 −X1 Y2 − Y1

X3 −X1 Y3 − Y1

X4 −X1 Y4 − Y1

[C0

S0

]
.

If the four landmarks are not coplanar, then any landmark
triplet randomly extracted is not collinear, and, hence, the
solution of the system of linear equation in S0 and C0 can
be solved, which leads to θ0.

For the computation of (x0, y0, z0), we can apply a rather
standard trilateration technique, yielding the linear system

X2 −X1 Y2 − Y1 Z2 − Z1

X3 −X1 Y3 − Y1 Z3 − Z1

X4 −X1 Y4 − Y1 Z4 − Z1

x0y0
z0

 =

1

2

Y2
1,0 − Y2

2,0 −X2
1 − Y 2

1 − Z2
1 +X2

2 + Y 2
2 + Z2

2

Y2
1,0 − Y2

3,0 −X2
1 − Y 2

1 − Z2
1 +X2

3 + Y 2
3 + Z2

3

Y2
1,0 − Y2

4,0 −X2
1 − Y 2

1 − Z2
1 +X2

4 + Y 2
4 + Z2

4

 ,
that can be solved since the selected triplet is not coplanar.

VI. CONCLUSION

In this paper we have presented and discussed conditions
for the global observability of a vehicle extracting informa-
tion on its current location from a number of range sensors
deployed in the environment. A possible paradigm of this
rather general analysis is a robot travelling across an envi-
ronment instrumented with a number of UWB landmarks.
The main results are the conditions that make the system
state globally observable for different families of trajectories
and for different deployments of the sensors. A key enabler

for our analysis is the use of the discrete–time formulation
induced by the sensor sampling time that simplifies the
analytical form of the equations that need to be solved to
reconstruct the state. The same formulation allows us to set
up the complementary problem: constructing a map of the
landmarks position with respect to the initial position of the
robot. The analysis has been developed for systems moving
in the plane, but we have shown its easy generalisation to
the three dimensional case (e.g., fixed wing aerial vehicles).

We envision possible extensions of the work in different
directions, such as: 1. using the observability analysis to
develop effective filtering techniques based on a precise
characterisation of the noise propagation, 2. using our locali-
sation technique with noisy sensors to set up a Simultaneous
Localisation and Mapping (SLAM) problem, 3.extending our
results toward different types of sensors (e.g., passive RFID),
4. accounting for measurements affected by Poissonian noise
(e.g., data losses due to occasional occlusions).
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