
Supplementary Materials

Strategy analysis of RGB scientific dataset

Figure 1: Cluster analysis of the different decision strategies after training CNNs on the RGB data with the cross-
entropy loss (Default) in (a) and with the rrr loss in (b). The images are visualized in a two-dimensional t-SNE
embedding and colored by the spectral clustering assignments.

Fig. 1(a) shows the strategies of the CNN trained on the RGB data for data points only in the test set. When CLS
were visible the RGB-CNN correctly identifies these as relevant features for classifying the samples as inoculated.
However, for many inoculated samples, for which no spots are visible the CNN surprisingly focuses on regions in the
background, specifically often on the nutrition solution (agar), which the tissue was embedded in. Also for healthy
samples the RGB-CNN focuses on the background.

One can identify different decision strategies, after training with rrr as illustrated in Fig. 1(b). However, even
using different hyper-parameters for rrr, we were not able to reach a converged state such that the RGB-CNN fully
ignores the background.
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Faithfulness of learned explanations

Investigating the faithfulness of an explanation method is a very valid and relevant topic of research ([1], [2], [3]).
From our experiments the objection can be made that the revised models have merely learned to produce acceptable
explanations, but still focus on wrong features.

Although we have shown the generalization performance in previous experiments using non-confounded test sets,
we ran further experiments to investigate the faithfulness of explanations that have been revised using the XIL
framework. The questions we wanted to answer were the following: (Q1) are the features learned interactively using
XIL more relevant for the original task than the identified features of the default model? We note that an important
underlying assumption here is that the user feedback is correct and faithful. (Q2) Is the XIL revised model more
strongly influenced by it’s learned explanations in comparison to the default model with it’s unrevised explanations?

We focused on using a more widely used dataset of the ML and computer vision community: MSCOCO 2014 [4].
This dataset presents a multi-label image classification problem of commonly found objects and is completed with a
masked segmentation for each class of each sample. For the following experiments we used a subset of the COCO14
classes, focussing on the five classes: elephant, giraffe, cat, dog and truck.

As the MSCOCO dataset is a non-confounded dataset, the task when using XIL with this dataset is therefore to
mainly improve the model to focus on right reasons, rather than penalizing it when focusing on wrong reasons. A
characteristic of ce and rrr, is that both methods revise an ML model when it is using wrong features for a right
prediction, but not when it is not using a feature for a right prediction. More specifically, a user might want to direct
a model’s attention to features that she finds very relevant (similar to Selvaraju et al.’s hint method [5]). For this
reason we adapted the rrr loss of Eq. 1 in the main text to the following, resulting in a hint-like extension:
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i

θ2i︸ ︷︷ ︸
Weight regularization

. (1)

The notations are largely the same as for Eq. 1 of the main text. expl(yn) represents the specific differentiable
explanation method that produces an explanation in the dimensions of the input space given the true class label yn.
In comparison to the RRR loss used in previous experiments the matrix A now denotes a value of 1 for features that
the user finds relevant, −1 for irrelevant and 0 for features, where the user is indifferent. In our experiments we only
used values of 1 and −1. Additionally, to properly compute the difference between the user and model explanation we
rescaled the model explanation to the range [0, 1], thus additionally enforcing the model to ignore irrelevant regions.

For the following experiments we again focused on the grad-Cam explanation method. In this case we downscaled
the user annotations to the original output dimensions of the grad-Cam prior to computing Eq. 1. The user
interaction was again simulated, whereby the user annotations corresponded to the ground truth class segmentations
provided with the COCO dataset.

Fig. 2 shows several example images (Fig. 2(a)) for which the default explanations are partly correct (Fig. 2(b)).
However, it would be valid for a user to be unsatisfied with these explanations, given that only small regions of
the to-be-predicted objects are highlighted. These results highlight that even the grad-Cam method produces
explanations that a human user might not fully accept. With XIL in the form of Eq. 1 these explanations could be
refined to coincide more with the user’s explanations (Fig. 2(c)). we note that the default model was trained for as
many iterations as the XIL model.

To answer Q1 we applied the method of [6], termed “Remove and Retrain” (roar). The idea here is to investigate
indeed how relevant the features are that different explanation methods have deemed as important. This is done by
removing a certain percentage of relevant features that an explanation method has identified, set these features to
the mean of the training data and retrain a model from an initial parameter setting. If the model produces a low
prediction performance this is an indication that the features of the explanation method are indeed relevant for the
task. If the performance is high this is an indication that there are equally or more relevant features available for
the task.

Fig. 3 shows the results of roar where the initial on ImageNet-pretrained VGG-16 [7] was retrained until
convergence using the modified datasets. This was repeated for random explanations as a baseline, the default
trained model grad-Cam explanations and the XIL revised grad-Cam explanations. One can indeed observe that
given the assumption of relevant and faithful user feedback, with XIL it is possible for a differentiable model to
improve its explanations to focus on more relevant features.

With the previous experiment we could show that with a human in the loop a model can be revised to focus
on more relevant features, which accord more strongly with the user’s explanations, even if the model’s original
explanations were not considered as entirely wrong. ROAR, however, was developed to test explanation methods
which were not explicitly trained to improve their explanations. This is different in the XIL setting. Due to that,
for ROAR, the same model is retrained over all conditions, we have not yet shown, that the revised model actually
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(a) Test image (b) w/o Feedback (c) XIL

Figure 2: Several examples from MSCOCO 2014. The left column (a) presents the original images, the middle
column (b) presents the explanations (grad-Cam) after training without user feedback (default), the right column
(c) presents the explanations after training with user feedback (XIL). Also here, as in the main text, light regions
represent relevant regions for the model’s decision, dark regions represent irrelevant regions. Here the user annotations
were the complete class segmentations to illustrate that XIL can also aid in improving the explanations for non-
confounded data.

focuses more strongly on it’s learned explanations in comparison to the default model which had not optimized it’s
explanations. In other words it remains open to show that the explanations of the XIL revised model are more
faithful to the model’s decisions than the explanations of the default model are to the default model.

We therefore evaluated both models, the default and XIL revised model, on the test set where, similar to the
roar experiment, we replaced a certain percentage of relevant features with the per channel mean. Particularly
each model (default and XIL revised) was evaluated on the test set, where features were removed based on their
explanations. Importantly this was set in comparison to evaluation on the test set, where random features had been
removed.

The results can be found in Fig. 4, where also here a lower accuracy indicates a feature’s importance for the
specific model. One can observe that there is little difference between the evaluations of both models on the random-
explanation-modified test set (baseline). There are however strong differences between evaluations on the test sets
modified by their respective explanations, where the accuracy strongly drops for the XIL revised model based on
its explanations, than the default model, even when taking the difference between baseline evaluations into account.
Thus indicating that the learned explanations of the XIL revised model are more faithful to the model’s decisions.
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Figure 3: Three-fold cross-validation roar results for the MSCOCO 2014 dataset. A model was trained from an
initial parameter setting with altered datasets where a certain percentage of the most relevant features were removed
in the training and test set. The relevance of each feature is indicated by the explanations of the XIL trained and
default trained model as well as random explanations. The lower the accuracy, the more likely it is that the removed
features are informative for the original model.

Figure 4: Three-fold cross validation of default and XIL trained models evaluated on the test set. Varying percentages
of relevant pixels are removed from the test set, whereby the relevance is indicated by the explanations from the
trained models (default, or XIL) or random pixel assignments.

Data augmentation and training based on prior knowledge

To compare to the setting of removing the confounders in the datasets based on prior knowledge before training,
we train a model based on variants without confounders and test the resulting model on both variants, the original
dataset (with confounders) and the dataset with removed confounders (w/o confounders). We here focused on the
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HS data setting.
To remove confounders in the decoy fashion MNIST dataset we reverted to the original dataset (w/o confounders).

Regarding the scientific plant phenotyping dataset, no variant without confounders is available. Therefore, we
removed everything that is not belonging to the user annotated tissue and replaced it with the average reflectance
of each hyperspectral channel. The trained models were tested on both dataset variants (w/o confounders and with
confounders).

For both datasets, one can observe a similar behavior. Training with the XIL framework and training the
model on the dataset variant w/o confounders results in a similar score when testing the model on the dataset
without confounders. However, when testing on the original dataset one can observe that the model trained without
confounders has an extreme accuracy drop. Instead, the models trained with the XIL framework generalized to not
using confounders and perform well on both variants. The accuracy drop of XIL applied to the dataset without
confounders can be explained by the change of data distributions. By a stronger weight of the right reasons one
might be able to correct this even further.

Fashion-MNIST Scientific Dataset (HS)

trained w/o XIL trained w/o XIL
confounders of confounders

w/o confounders 85% 84% 86% 82%
with confounders 76% 85% 56% 95%

Table 1: Comparison of training on augmented data based on prior knowledge and XIL. The trained models were
tested on both dataset variants (w/o confounders and with confounders).

Questionnaire and example online survey used in User Study

The competence of a classifier can be assessed by monitoring its behavior and beliefs over time, directability can be
achieved by allowing the user to actively teach the model how to act and what to believe, while understandability can
be approached by explaining the models decisions. To investigate how interaction with a machine and augmenting
this interaction with explanations influences the trust of the user into the model we designed a questionnaire based
on a binary classification toy problem. The Questionnaire document, as well as an example of the online survey for
TC2, can be found at https://github.com/ml-research/XIL

Strategy analysis classification errors

Fig. 5 shows the class prediction versus underlying (ground truth) class for each sample of all four CNN training
versions (from upper left to bottom right: default RGB-CNN, revised RGB-CNN, default HS-CNN, revised HS-
CNN). Each sample is plotted in the embedding of Fig. 3 and Fig. 4 (main article). Particularly the HS-CNN,
regardless of the training configuration, shows strong differences in the decision strategies for the two classes.

Explanations along hyperspectral data dimension

Below are several detailed examples of the explanations from the HS-CNNs. Figures 2-9 present the explanations
from the default HS-CNN, showing samples from varying stages of disease progression (see captions for details).
Figures 10-17 present the explanations from the revised HS-CNN, showing samples from varying stages of disease
progression (see captions for details). Each Figure 2-17 depicts the sample in the leftmost panel, followed by the
corresponding spatial activations maps mapped to four different hyperspectral areas. The areas are 380-537 nm,
538-695 nm, 696-853 nm, and 854-1010 nm.
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Default RGB-CNN Strategy Analysis

Default HS-CNN Strategy Analysis
Human-revised HS-CNN

Strategy Analysis

Human-revised RGB-CNN
Strategy Analysis

Figure 5: T-SNE embeddings of the different image type and training loss configurations colored by the ground truth
(gt) and prediction (pred) labels of each sample. The top row depicts the results of training with RGB images, the
bottom row with hyperspectral images. The left column shows the results of training only with the cross-entropy
loss, whereas the right column shows the results of training with the right for the RRRLoss.

Figure 6: grad-Cams with spatial and spectral activations from healthy sample of unrevised network. Leftmost
image shows the sample followed by the corresponding spatial activations maps mapped to four different hyperspectral
areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.
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Figure 7: grad-Cams with spatial and spectral activations from healthy sample of unrevised network. Leftmost
image shows the sample followed by the corresponding spatial activations maps mapped to four different hyperspectral
areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.

Figure 8: grad-Cams with spatial and spectral activations from healthy sample of unrevised network. Leftmost
image shows the sample followed by the corresponding spatial activations maps mapped to four different hyperspectral
areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.

Figure 9: grad-Cams with spatial and spectral activations from healthy sample of not regularized network. Leftmost
image shows the sample followed by the corresponding spatial activations maps mapped to four different hyperspectral
areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.

Figure 10: grad-Cams with spatial and spectral activations from inoculated sample with single visible symptoms of
unrevised network. Leftmost image shows the sample followed by the corresponding spatial activations maps mapped
to four different hyperspectral areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.

Figure 11: grad-Cams with spatial and spectral activations from inoculated sample with single visible symptoms of
unrevised network. Leftmost image shows the sample followed by the corresponding spatial activations maps mapped
to four different hyperspectral areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.
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Figure 12: grad-Cams with spatial and spectral activations from inoculated sample with multiple visible symptoms
of not regularized network. Leftmost image shows the sample followed by the corresponding spatial activations maps
mapped to four different hyperspectral areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.

Figure 13: grad-Cams with spatial and spectral activations from inoculated sample with multiple visible symptoms
of unrevised network. Leftmost image shows the sample followed by the corresponding spatial activations maps
mapped to four different hyperspectral areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.

Figure 14: grad-Cams with spatial and spectral activations from healthy sample of revised network. Leftmost image
shows the sample followed by the corresponding spatial activations maps mapped to four different hyperspectral areas.
The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.

Figure 15: grad-Cams with spatial and spectral activations from healthy sample of revised network. Leftmost image
shows the sample followed by the corresponding spatial activations maps mapped to four different hyperspectral areas.
The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.

Figure 16: grad-Cams with spatial and spectral activations from inoculated sample without visible symptoms of
revised network. Leftmost image shows the sample followed by the corresponding spatial activations maps mapped
to four different hyperspectral areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.
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Figure 17: grad-Cams with spatial and spectral activations from inoculated sample without visible symptoms of
revised network. Leftmost image shows the sample followed by the corresponding spatial activations maps mapped
to four different hyperspectral areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.

Figure 18: grad-Cams with spatial and spectral activations from inoculated sample with single visible symptoms of
revised network. Leftmost image shows the sample followed by the corresponding spatial activations maps mapped
to four different hyperspectral areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.

Figure 19: grad-Cams with spatial and spectral activations from inoculated sample with single visible symptoms of
revised network. Leftmost image shows the sample followed by the corresponding spatial activations maps mapped
to four different hyperspectral areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.

Figure 20: grad-Cams with spatial and spectral activations from inoculated sample with multiple visible symptoms
of revised network. Leftmost image shows the sample followed by the corresponding spatial activations maps mapped
to four different hyperspectral areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.

Figure 21: grad-Cams with spatial and spectral activations from inoculated sample with multiple visible symptoms
of revised network. Leftmost image shows the sample followed by the corresponding spatial activations maps mapped
to four different hyperspectral areas. The areas are 380-537 nm, 538-695 nm, 696-853 nm, and 854-1010 nm.
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